平面任意力系的平衡条件和平衡方程(精选)

合集下载

第二章2 平面任意力系的简化,平衡条件和平衡方程

第二章2 平面任意力系的简化,平衡条件和平衡方程

FRy ' Fiy ' Fiy Fy
主矢大小 方向
2 2 FR ( Fix ) ( Fiy )
Fix cos( F 'R , i ) FR
Fiy cos( F 'R , j ) FR
作用点: 作用于简化中心 上
主矩
MO MO (Fi )
Fr Ft tan20 3.64P 1
F 0
x
FBx Fr 0
F
y
0
FBy P P2 Ft 0
FBy 32P 1
FBx 3.64P 1
取小轮,画受力图.
F 0 Fy 0 M 0
x
A
FAx Fr ' 0
FAy Ft 'P 1 0
将该力系中心的位置坐标 记为 xC
1 xC F qx 2 ql 2 dx l 3 0
l
l
y
q
Foy
O
xc
F
q
x
Fox
x l dx
FA
A
q
ql 2 l 2 3
最后,利用平面力系的平衡方程求 得 3 个未知的约束反力:
y
由: M Oz ( Fi ) 0
n i 1
xc
主矩:
M O M O ( F ) 3F1 1.5 P 1 3.9 P 2 2355kN m
(2)求合力其作用线位置:
M O M O FR x FRy y FRx x FR' y y FR' x

x 3.514
(3)求合力作用线方程:

理论力学第3章 力系的平衡条件与平衡方程

理论力学第3章 力系的平衡条件与平衡方程

10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)

第四章:力系的平衡条件与平衡方程

第四章:力系的平衡条件与平衡方程

未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
(未知量不能全部由平衡方程求解)
物体系的平衡·静定和超静定问题
未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
∑ M B = 0 −8FAy + 5*8 +10*6 +10* 4 +10* 2 = 0
得 FAy = 20kN ∑ Fiy = 0 FAy + FBy − 40 = 0
得 FBy = 20kN
求各杆内力
取节点A
⎧⎪∑ ⎨⎪⎩∑
Fiy Fix
= =
0 0
→ →
FAD FAC
取节点C
⎧⎪∑ ⎨⎪⎩∑
解得 P3max=350kN
22mm 22mm
所以,平衡载重P3取值范围为:
75kN ≤ P3 ≤ 350kN
(2)P3=180kN时:
∑ M A = 0 4P3 − 2P2 −14P1 + 4FB = 0
解得 FB=870kN
∑ Fy = 0 FA + FB − P1 − P2 − P3 = 0
∑M =0
FA'
⋅r
sinθ
− M2
=
0
解得 M 2 = 8kN ⋅m
FB = FA = 8kN

已知:OA=R,AB=
l,
r F
,
不计物体自重与摩擦,系统在图示位置平衡;
求: 力偶矩M 的大小,轴承O处的约 束力,连杆AB受力,滑块给导 轨的侧压力.

平面任意力系的合成与平衡条件(建筑力学)

平面任意力系的合成与平衡条件(建筑力学)

平面汇交力系 合成 FR=Fi 平面力偶系 合成 M=Mi
平面任意力系的平衡方程及应用
平面任意力系平衡的充要条件为:
力系的主矢 FR 和主矩 MO 都等于零 FR =0 为力平衡
MO =0 为力偶也平衡
FR' ( Fx )2 ( Fy )2 0
MO MO (Fi ) 0
平面任意力系 的平衡方程
Fx 0
Fy 0 MO(Fi ) 0
平面任意力系的平衡方程及应用
平面任意力系平衡方程的基本式
● 几点说明:
(1)三个方程只能求解三个未知量 (2)二个投影坐标轴不一定互相垂直,只要不平行即可 (3)投影坐标轴尽可能与多个未知力平行或垂直 (4)力矩方程中,矩心尽可能选多个未知力的交点
平面任意力系的平衡方程及应用
平面任意力系的合 成与平衡条件
平面任意力系的合成与平衡条件
平面任意力系
平面任意力系 1、力系的简化 2、平面任意力系的平衡方程及应用
平面任意力系的合成与平衡条件
平面任意力系:各力的作用线在同一平面 内,既不汇交为一点又不相互平行的力系。 研究方法:
(平面任意力系) 未知力系
力系向一点简化
已知力系 (平面汇交力系和平面力偶系)
平面任意力系的简化
F Bd
A
F′
F Bd
A F′ ′
F′ M
B A
M=±F. d=MB(F)
定理:可以把作用于刚体上点A的力F平行移到任一点B,但必须同 时附加一个力偶,这个附加力偶的矩等于原来的力F对新作用点B的矩。
平面任意力系的简化
为什么钉子有
时会折弯? F ′ F
M
两圆盘运动形式 是否一样?
空载时,为使起重机不绕点A翻倒,力系满足平衡方程 MA(F ) 0 。

平面任意力系的平衡资料

平面任意力系的平衡资料

' FDx FE cos 45 2 F
MB o
' FDx a F 2a 0

' FDx 2F
对ADB杆受力图
MA 0
FBx 2a FDx a 0

FBx F
例311 如图所示,静定多跨梁由梁AB和梁BC用中间铰B连 接而成。已知P=20kN,q=5kN/m,α=450,求支座A、C处 的约束反力和中间铰B处两梁之间的相互作用力。
O1 B O2 A
三矩式平衡方程为:
相比较二矩式最简单
M M M
O1 O2 C
0 :N B 2a W cos a W sin b 0 0 : N A 2a W cos a W sin b 0 0 : T b N Aa N B a 0
二矩式平衡方程为:
X 0 : T W sin 0 M 0 :N 2a W cos a W sin b 0 M 0 : N 2a W cos a W sin b 0
O1 B O2 A
解得:
T W sin 5kN W cos a W sin b NA 3.33kN 2a W cos a W sin b NB 5.33kN 2a
解得
FAy q 2a P FB 0
P 3 FAy qa 4 2
已知:P 100kN, M 20kN m,
q 20 kN
求: 固定端A处约束力。 解:取T型刚架,画受力图。
1 其中 F1 q 3l 30kN 2
m
,

工程力学-平面任意力系平衡方程

工程力学-平面任意力系平衡方程
大小与简化中心的选择无关。
4)FR=0 M0=0 力系处于平衡状态。
例3-1 图示物体平面A、B、C三点构成一等边三角形,三点分别作
用F力,试简化该力系。
解:1.求力系的主矢
F x F F cos60o F cos60o 0
Fy 0 F sin 60o F sin 60o 0
y
C
F M0 F
上作用F力,集中力偶M0=Fa,=45°,试求杆件AB的约束力。
A
M0=Fa
C
B
F
解:1.取AB杆为研究对象画受力图
2.列平衡方程求约束力
Da a
FAx
A
M0=Fa
C
FAy FC
B F
aa
M A (F ) 0 : FC sin 45 a F 2a M 0 0
FC
2Fa a
Fa 2/2
MC (F) 0:
FAx
2
3a 3
F
a
M0
0
FAy 0 FAx 3F
C aa
一 矩
MA(F) 0: Fx 0 :
二 矩
MA(F) 0: MB(F) 0:
三 矩
MA(F) 0: MB(F) 0:
2 3a
式 Fy 0 :
式 Fx 0 :
式 M C (F8) 0 :
3
本课节小结
A F
B x
FR ( Fx )2 ( Fy )2 0
2.选A点为简化中心,求力系的主矩
M0
M A (F)
F
sin 60
AB
F
AB 2
简化结果表明该力系是一平面力偶系。
4
二、平面任意力系的平衡方程

平面力系的平衡方程及应用

平面力系的平衡方程及应用
研究方法:几何法,解析法。
各力的作用线都在同一平面内且 汇交于一点的力系。
正文
力在直角坐标轴上的投影
1
Fx=F·cosa ; Fy=F·sina = F ·cosb
说明: (1)力在坐标轴上的投影为代数量; (2)力的指向与坐标轴的正向一致时,力的投影为正值,否则为负。
正文
合力投影定理
推论1:力偶对刚体的作用与力偶在其作用面内的位置无关;
推论2:只要保持力偶矩的大小和力偶的转向不变,可以同时改变力偶中力的大小和力偶臂的长短,而不改变力偶对刚体的作用。
M
M
M
力偶表示方法
正文
思考:
力偶与力的异同
共同点:单位统一,符号规定统一。 差异点:1.力矩随矩心位置不同而变化;力 偶矩对物体作用效果与矩心选取无关。 2.力偶矩可以完全描述一个力偶;力对点之矩不能完全描述一个力。

F
M
单 手 攻 丝
正文
平面任意力系的简化
1
平面一般力系向平面内一点简化
F3
F1
F2
O
O
O
F
R′
MO
F
1′
M1
F1 =F1
′ M1=MO(F1)
F
2′
M2
F
3′
M3
F2 =F2
′ M2=MO(F2)
F3 =F3
′ M3=MO(F3)
简化中心
O
FR=F1+F2+F3= F1+F2+F3 MO=M1+M2+M3=MO(F1)+ MO(F2) + MO(F3)
正文
平面力偶系的合成与平衡

第3章力系的平衡条件与平衡方程

第3章力系的平衡条件与平衡方程

第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。

力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。

平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。

其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。

已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。

求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。

钢索受力最大,并确定其数值。

解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。

建立平衡方程 取A 为矩心。

根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。

平面任意力系的平衡方程及应用

平面任意力系的平衡方程及应用

平面任意力系的平衡方程及应用
2. 平行力系的平衡方程
对于平面平行力系, 若投影轴垂直于各力作 用线,无论力系是否平 衡,力系中的各力向该 轴的投影恒为零,因此, 平衡方程组中不应含有 向该轴的投影式子,如 图3-3所示。
图3-3
平面任意力系的平衡方程及应用
平面平行力系的平衡方程组为
(3-6) 使用式(3-6)解题时,投影轴y与力系中的各力的作用线不能 垂直。平面平行力系有两个独立的平衡方程,因此最多能求解两个 未知量。 平面平行力系的平衡方程组还有一种表达式:
平面任意力系的平衡方程及应用
平面任意力系的平衡方程还有另外两种表达形式:二矩式与三矩式。 二矩式平衡方程:
(3-4) 式(3-4)有两个力矩式子和一个投影式子,该方程组的适用条件为x轴与 A、B两点的连线不能垂直。 三矩式平衡方程:
(3-5) 式(3-5)有三个力矩式子,该方程组的适用条件为A,B,C三点不共线。
工程力学
平面任意力系的平衡方程及应用
1.1 平面任意力系的平衡方程及应用 1. 一般情况下的平衡方程
平面任意力系向一点简化可得到一个主矢R和一个主矩M,当主矢和 主矩同时为零时,力系平衡。所以平面任意力系平衡的充分必要条件是R =0,M=0,于是,力系的平衡方程为
(3-3)
式(3-3)说明:平面任意力系平衡时,力系中各力在两个坐标轴投 影的代数和均为零,力系中的各力对其作用面内任一点的力矩代数和也 为零。由于方程中含有一个力矩式子,因此这一方程组称为一矩式。
平面任意力系的平衡方程及应用
在解决实际问题时,可以先以整体为研究对象,解出一部 分未知力,再以单个物体或小系统为研究对象,求出剩下的未 知力;也可以分别以系统中的单个物体为研究对象,求解问题。 选择研究对象时,以选择已知力和未知力共同作用的物体为好, 还要尽量使计算过程简单,尽可能避免解联立方程组。另外还 应注意一点,在以整体为研究对象时,系统内各物体间的相互 作用力是内力,相互抵消,不体现出来;而若以单个物体为研 究对象时,内力则转化成外力,必须考虑。

平面任意力系的平衡条件和平衡方程

平面任意力系的平衡条件和平衡方程

理论力学 3-2平面任意力系的平衡条件和平衡方程
(3)任何第四个方程只是前三个方程的线 性组合,因而不是独立的。
我们可以利用这个方程来校核计算的结果。
理论力学 3-2平面任意力系的平衡条件和平衡方程
四、平面平行力系
理论力学 3-2平面任意力系的平衡条件和平衡方程
1.平面平行力系是平面任意力系的一种特 殊情形。 2.如图3-10 所示,设物体受平面平行力系 F1,F2,…,Fn 的作用。如选取 x 轴与各力 垂直,则不必力系是否平衡,每一个力在 x 轴上的投影恒等于零,即 。
理论力学 3-2平面任意力系的平衡条件和平衡方程
解: (1)选梁AB为研究对象 梁 AB 所受的主动力有: 均布载荷 q, 重力 P 和矩为 M 的力偶。 梁AB所受的约束力有: 铰链 A 的两个分力 Fax 和 FAy ,滚动支 座 B 处铅直向上的约束力FB。
理论力学 3-2平面任意力系的平衡条件和平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程
(2)列平衡方程
取坐标系如图3-6 所示,列平面任意力 系的平衡方程,即
理论力学 3-2平面任意力系的平衡条件和平衡方程
(3)求解方程
求解以上方程,得
FB 为负值,说明它的方向与假设的方向相 反,即应指向左。
理论力学 3-2平面任意力系的平衡条件和平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程
b.如果力系对另一点 B的主矩也同时为 零,则这个力系或一合力沿 A,B 两点的连 线,或者平衡(图3-9)。 c.如果再加上 ,那么力系如 有合力,则此合力必与 x 轴垂直。
理论力学 3-2平面任意力系的平衡条件和平衡方程 图 3-9
理论力学 3-2平面任意力系的平衡条件和平衡方程

平面一般力系的平衡条件与平衡方程

平面一般力系的平衡条件与平衡方程

解得:
y MA
q
P
a
FAx A
l
Bx
FAy
(b)
6
三、平面平行力系的平衡方程
平面平行力系:各力的作用线在同一平面内且相互平行的力系
平面平行力系的平衡方程为: 一矩式
y
O
F2
F1
F3
Fn x
二矩式
(由平面一般力系的平衡方程,
其中投影方程
为恒等
式而自然满足,亦可得到平面平行 条件:AB 连线不能平行
力系平衡方程。)
工程力学
平面一般力系的平衡条件与平衡方程
一、平衡的必要与充分条件
由于 F'R=0 作用于简化中心的合力FRO=0,则汇交力系平衡; 由MO=0 则力偶矩MO=0 ,因此附加力偶系也平衡。 所以平面一般力系和主矩 MO 都等于零,即: (1) (2)
平面一般 必要
G
P
12m
A
B
NA
NB
2m 2m
[例] 已知:P=20kN, M=16kN·m, q=20kN/m, a=0.8m。求:
A、B的支反力。
解 ① 研究AB梁;② 受力如图b;③ 取Axy直角坐标;④ 列平衡方
程求解:
q
M
A
B
C
P
2a
2a
(a)
q
M
B
A
C
FAy
P
2a
FB 2a
(b)
工程力学
以上每式中只有三个独立的平衡方程,只能解出三个 未知量。
3
[例] 已知:P=20kN, M=16kN·m, q=20kN/m, a=0.8m。求:
A、B的支反力。

平面任意力系的平衡

平面任意力系的平衡
20
[例6] 在一钻床上水平放置工件,在工件上同时钻四个等直
径的孔,每个钻头的力偶矩为 m1 m2 m3 m4 15Nm 求工件的总切削力偶矩和A 、B端水平反力?
根据∑mi=0有:
解: 各力偶的合力偶距为
m m1 m2 m3 m4 4(15) 60N m
由力偶只能与力偶平衡的性质, 力NA与力NB组成一力偶。
y
F2
O
F1
x
mO (Fi ) 0
于是,由平面一般力系平衡方 程的基本形式,得平面汇交力 系的平衡方程:
Fn
∑FXi=0
∑FYi=0
18
三、平面平行力系的平衡方程
图示平行力系, 取如图所示直角坐标系,则
y
F1
O
F2 Fn
∑FXi≡0 于是,由平面一般力系平衡方程的 基本形式及二力矩式,得平面平行 力系的平衡方程:
0.45m
d
mA 1m
B
0.5m 0.45m
FAy
W1
W2
mA(Fi) = 0
mA - (0.5-0.333)F- 0.45W - 0.5 W1 - 0.95 W2 = 0
mA = 5.043 kN.m
11
例题2-5. 一容器连同
2m
盛装物共重W=10kN,
作用在容器上的风荷
载q=1kN/m,在容器的
Fxi= 0 投影轴x不能与矩心A和B的连线垂直.
(c)三力矩式
mA(Fi) = 0 mB(Fi) = 0 mC(Fi) = 0
三个矩心A ,B 和 C不在一直线上.
2
FX i 0 FY i 0
mO (Fi ) 0
mA(Fi) = 0 mB(Fi) = 0 Fxi= 0

4.2第4-2章平面任意力系的平衡条件和平衡方程

4.2第4-2章平面任意力系的平衡条件和平衡方程

(2)二个投影坐标轴不一定互相垂直,只要不平行即可; (3)投影坐标轴尽可能与多个未知力平行或垂直; (4)力矩方程中,矩心尽可能选多个未知力的交点。
例 题 1 已知:M=Pa
求:A、B处约束反力。
PC
2a M D
a
解法1: (1) 取刚架为研究对象
(2) 画受力图
A FAx
B
(3) 建立坐标系,列方程求解
解得:
P2

Pe a

P1l b
P2
a
l
(2)空载时,其限制条件是:FNB≥0
e
P
P1
M A 0, P2a FNBb P(e b) 0
解得:
P2

P(e b) a
A
B
FNA
b
FNB
因此,P2必须满足:
Pe P1l ab

P2

P(e b) a
解:取图示部分为研究对象
M B 0 P 3 FA .4 0
A
E
D
B
C
r
a
a
FA 9kN
Fx 0 FA FBx 0
FBx FA 9kN
Fy 0 FBy P 0
FBy P 12kN
A
FA
E
C
P
D r
P
B
FBx FBy
例 题6
FAx
Fy 0
FTE A
FAy
FB
D 45°
r
B
P
FAy P FB sin 45o 0 FBy 6kN
例 题7
已知:如图,

工程力学3—力系的平衡条件和平衡方程

工程力学3—力系的平衡条件和平衡方程
平面汇交力系平衡的必要和充分条件是:各力在 作用面内两个任选的坐标轴上投影的代数和等于零。 上式称为平面汇交力系的平衡方程。
[例2] 已知 P=2kN 求SCD , RA
解: 1. 取AB杆为研究对象
2. 画AB的受力图
3. 列平衡方程
X0 R A co S sCc Do 40 s 5 0
Y0 P R A si S n C s D 4 i0 n 0 5
Fx 0
M
A
(F
)
0
M B ( F ) 0
B A
x
其中A、B两点的连线AB不能垂直于投影轴x。
由后面两式知:力系不可能简化为一力偶,只能简化 为过A、B两点的一合力或处于平衡。再加第一条件, 若AB连线不垂直于x 轴 (或y 轴),则力系必平衡。
(2) 三矩式
M A(F ) 0
M
M A ( F ) 0 : F B a P s i n ( a b ) m 0
解之得:
FAxPcos
mPbsin
FAy a
mPsin(ab)
FB
a
P
FAx
A
m B
C
FAy
FB
例题3
悬臂式吊车结构中AB为吊车大梁,BC为钢索, A、处为固定铰链支座,B处为铰链约束。已知起 重电动电动机E与重物的总重力为FP(因为两滑轮之 间的距离很小,FP可视为集中力作用在大梁上), 梁的重力为FQ。已知角度θ=30º。 求:1. 电动机处于任意位置时,钢索BC所受的力和 支座A处的约束力; 2. 分析电动机处于什么位置时,钢索受力最大,并 确定其数值。
4 简单的刚体系统平衡问题
在静力学中求解物体系统的平衡问题时, 若未知量的数目不超过独立平衡方程数目,则 由刚体静力学理论,可把全部未知量求出,这 类问题称为静定问题。若未知量的数目多于独 立平衡方程数目,则全部未知量用刚体静力学 理论无法求出,这类问题称为静不定问题或超 静定问题。而总未知量数与总独立平衡方程数 之差称为静不定次数。

3-2平面力系的平衡条件

3-2平面力系的平衡条件

G3 A
1.8 m
G2 G
G1
2.0 m
B
2.5 m 3.0 m
FA
FB
例题
3-5
解: 1.取汽车及起重机为研究 取汽车及起重机为研究 对象,受力分析如图。 对象,受力分析如图。 2.列平衡方程。 列平衡方程。 列平衡方程
G3 G2 G
3.0 m
A
1.8 m
G1
2.0 m
B
2.5 m
∑F = 0,
F y
F
c
C
α
B
FAy
A
FAx
α D C E B xA来自WDaWE
b
解:
WD W
WE
l
1.取伸臂 为研究对象。 取伸臂AB为研究对象 取伸臂 为研究对象。 2.受力分析如图。 受力分析如图。 受力分析如图
3.选如图坐标系,列平衡方程。 3.选如图坐标系,列平衡方程。 选如图坐标系
∑F = 0, ∑Fy = 0, ∑M (F) = 0,
∑F = 0 , ∑F
x
y
= 0,
∑m (F) = 0
O
力系中的各力在其作用平面内两坐轴上的 投影的代数和分 力系中的 各力在其作用平面内两坐轴上的投影的代数和 分 各力在其作用平面内两坐轴上的投影的代数和 别等于零,同时力系中的各力对任一点矩的代数和也等于零。 别等于零,同时力系中的各力对任一点矩的代数和也等于零。 对任一点矩的代数和也等于零
∑F = 0,
x
FAx = 0
∑F
y
= 0,
FAy − F + FD = 0
AB −F× + FD × 2 − M = 0 2
y M FAy

平面任意力系的平衡

平面任意力系的平衡
17
二、平面汇交力系的平衡方程
图示平面汇交力系, y 取汇交点O为简化中心,则
m
F1
O
(F i ) 0
于是,由平面一般力系平衡方 程的基本形式,得平面汇交力 x
F2
O
系的平衡方程:
Fn
∑FXi=0 ∑FYi=0
18
三、平面平行力系的平衡方程
图示平行力系, 取如图所示直角坐标系,则 y
F1
∑FXi≡0 于是,由平面一般力系平衡方程的 基本形式及二力矩式,得平面平行
∑mi=0
20
[例6] 在一钻床上水平放置工件,在工件上同时钻四个等直
径的孔,每个钻头的力偶矩为 m1 m2 m3 m4 15Nm 求工件的总切削力偶矩和A 、B端水平反力? 解: 各力偶的合力偶距为
m m1 m2 m3 m4 4 (15) 60N m
d
FAx = - 1.225 kN Fyi= 0
A mA 1m
0.5m FAy
FAt - W - W1 - W2 = 0
W1
0.45m
W2
FAy= 8.575 kN mA(Fi) = 0 mA - (0.5-0.333)F- 0.45W - 0.5 W1 - 0.95 W2 = 0 mA = 5.043 kN.m
500N
2m
FAy A FEy E FEx
+ 4×500 = 0
FEx = 1500 N
2m
FGy
G
FGx
500N
C
32
Ay
取DEF杆为研究对象画受力图. Fxi = 0 FFx - 1500 = 0
FFx = 1500 N
500N

理论力学平面任意力系的平衡条件及方程

理论力学平面任意力系的平衡条件及方程

理论力学平面任意力系的平衡条件及方程一、平面任意力系的平衡条件平面任意力系平衡的必要和充分条件为:力系的主矢和对任一点的主矩M O 都等于零,F R'=M O =∑M O (F i )二、平面任意力系的平衡方程∑F ix =0∑F iy =0∑M (F )=0O i ⎧⎪⎨⎪⎩⎧∑F x =0⎨∑M A (F )=0⎩∑M B (F )=0条件:x AB⎪⎪⎧∑M A (F )=0⎨∑M B (F )=0⎩∑M C(F )=0条件:A ,B ,C 点⎪⎪上式只有 个独立方程,只能求出 个未知数。

[例]求图示刚架的约束力。

解:以刚架为研究对象,受力如图。

q∑F x =0:F Ax -qb =0∑F y =0:F Ay -F =0∑M A (F )=0:M -Fa -1qb 2=02=qb A解 :F Ax F Ay =F 212A M =Fa +qbq[例]求图示梁的支座约束力。

解:以梁为研究对象,受力如图。

∑F x =0:F Ax +F cos θ=0∑F y =0:F Ay +F B -F sin θ=0∑M A (F )=0:F B a -F sin θ⋅(a +b )-M =0解 :=-F cos θF Ax =M +F sin θ(a +b )aB F =-M +Fb sin θAyFa[例] 外伸梁的尺寸及载荷如图所示,F 1=2 kN ,F 2=1.5 kN ,M =1.2 kN·m , l 1=1.5 m ,l 2=2.5 m ,试求铰支座A 及支座B 的约束力。

60解:1、 梁为研究对象,受力分 如图2、 平衡方程3、解方程∑MA(F )=0F B l 2-M -F 1l 1-F 2(l 1+l 2)sin60=Fx=0F Ax -F 2cos ∑60=0=0∑FyF Ay +F B -F 1-F 2sin 60=0=0.75kN F =3.56kN=-0.261kNF Ax B F Ay[例]悬臂吊车如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档