(完整版)t分布的概念及表和查表方法.doc

合集下载

t分布概念

t分布概念

t分布概念
概念
统计学中的分布概念是一个十分重要的概念。

它是描述一组数据的变化情况的重要方法。

大多数统计学概念都是以此概念为基础,它代表了一个变量的概率分布。

定义
在数学概念中,统计学中的分布概念定义为:统计分布是一种描述数据变化情况的数学函数,它描述了一个变量的变化情况。

特点
分布概念的最大特点就是具有数学模型,以确定数据的变化趋势,这样的抽象概念可以帮助分析者迅速地分析一个变量的变化情况,提出准确的结论。

分类
分布概念可以分为离散分布和连续分布。

离散分布指的是变量只能取特定的数值,例如生活用电量,只能取特定的电量;连续分布指的是变量可以取到无穷多个值,例如身高,可以有无穷多种身高。

应用
分布概念的应用非常广泛,它可以用于几乎所有的统计分析中,从简单的描述性统计到复杂的回归分析,都可以使用分布概念。

它也是计算概率分布的重要工具,可以确定某个变量的概率分布,从而分析出其变化情况。

医学统计学医学统计学10

医学统计学医学统计学10
(3) 当自由度υ逼近∞,t分布趋向于标准正态分布。
表1 t 界值表
-t
0
t
以ν=10为例
双侧界值
t0.05/ 2,10 2.228
单侧界值 t0.05,10 1.812
THANK YOU
Sx
S n
15%

服从自由度υ=n-1的t分布
(t distribution)。
PART TWO
t 分布
图形
特征
t 界值
t分布图形
t分布是一簇曲线,当自由度
不同时,曲线的形状不同。
15%
不同自由度下的t 分布图
t分布特征
(1)单峰分布,以0为中心,左右两侧对称。
(2) t分布曲线不是一条曲线,而是一簇曲线。 其分布曲线的形态变化与自由度 υ有关。 υ越小, t 值越分散,t 分布图“峰低、尾高”。
PART ONEt 分布由来源自计算式 引入参数由来
t分布是 Student's t 分布 (Student'sdistribution)
的简称。
15%
William Gosset
图1
μ
X
图2
-1.96
0 1.96
Z
计算式 引入
图3
μ
图4
X
x x
z
x
n
S替代σ
-1.96
0
Z 1.96
参数
t x x

t分布

t分布

学生t-分布维基百科,自由的百科全书跳转到:导航、搜索汉漢▼▲学生t-分布概率密度函数累积分布函数参数自由度支撑集概率密度函數累积分布函数其中:是超几何函数期望值时为,时未定义中位数众数方差时为,否则为无穷大偏度时为峰度时为信息熵•: 双Γ函数,•: 贝塔函数未定义动差生成函数特性函数•: 贝塞尔函数在概率论和统计学中,学生t-分布(Student's t-distribution)应用在当对呈正态分布的母群体的均值进行估计。

它是对两个样本均值差异进行显著性测试的学生t测定的基础。

t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。

在样本数量大(超过30等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t检定。

在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t检定。

当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。

学生t-分布可简称为t分布。

其推导由威廉·戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。

因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。

之后t检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。

目录• 1 描述• 2 学生t-分布置信区间的推导• 3 表格• 4 范例• 5 相关条目描述假设是呈正态分布的独立的随机变量(随机变量的期望值是,方差是)。

令:为样本均值。

为样本方差。

它显示了数量呈正态分布并且均值和方差分别为0和1。

另一个相关数量T的概率密度函数是:等于n− 1。

T的分布称为t-分布。

参数一般被称为自由度。

是伽玛函数。

分布的矩为:学生t-分布置信区间的推导假设数量A在当T呈t-分布(T的自由度为n−1)满足这与是相同的A是这个概率分布的第95个百分点那么等价于因此μ的90%置信区间为:表格下表列出了自由度为的t-分布的单侧和双侧区间值。

(完整版)t分布的概念及表和查表方法.doc

(完整版)t分布的概念及表和查表方法.doc

t分布介绍在概率论和统计学中,学生 t - 分布(t -distribution ),可简称为 t 分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。

如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。

t 分布曲线形态与 n(确切地说与自由度 df )大小有关。

与标准正态分布曲线相比,自由度df 越小, t 分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度 df 愈大, t 分布曲线愈接近正态分布曲线,当自由度 df= ∞时, t 分布曲线为标准正态分布曲线。

中文名t 分布应用在对呈正态分布的总体外文名t -distribution 别称学生 t 分布学科概率论和统计学相关术语t 检验目录1历史2定义3扩展4特征5置信区间6计算历史在概率论和统计学中,学生 t -分布( Student's t-distribution )经常应用在对呈正态分布的总体的均值进行估计。

它是对两个样本均值差异进行显著性测试的学生t 测定的基础。

t 检定改进了Z 检定(en:Z-test ),不论样本数量大或小皆可应用。

在样本数量大(超过 120 等)时,可以应用Z 检定,但 Z 检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t 检定。

在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t 检定。

当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。

学生 t-分布可简称为t 分布。

其推导由威廉·戈塞于 1908 年首先发表,当时他还在都柏林的健力士酿酒厂工作。

因为不能以他本人的名义发表,所以论文使用了学生(Student )这一笔名。

之后t 检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。

定义由于在实际工作中,往往σ是未知的,常用s 作为σ的估计值,为了与u 变换区别,称为t 变换,统计量 t 值的分布称为t 分布。

t分布的概念表和查表方法

t分布的概念表和查表方法

t分布介绍在和中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计呈且方差未知的总体的均值。

如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。

t分布曲线形态与n(确切地说与自由度df)大小有关。

与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。

目录123456历史在和统计学中,学生t-分布(Student's t-distribution)经常应用在对呈的总体的进行估计。

它是对两个差异进行测试的学生t测定的基础。

t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。

在样本数量大(超过120等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t检定。

在数据有三组以上时,因为误差无法压低,此时可以用代替学生t检定。

当母群体的是未知的但却又需要估计时,我们可以运用学生t-分布。

学生t-分布可简称为t分布。

其推导由于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。

因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。

之后t检验以及相关理论经由的工作发扬光大,而正是他将此分布称为学生分布。

定义由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t 值的分布称为t分布。

假设X服从标准正态分布N(0,1),Y服从分布,那么的分布称为自由度为n 的t分布,记为。

分布密度函数,其中,Gam(x)为伽马函数。

扩展(normal distribution)是数理统计中的一种重要的理论分布,是许多的理论基础。

正态分布有两个参数,μ和σ,决定了正态分布的位置和形态。

为了应用方便,常将一般的正态变量X通过u变换[(X-μ)/σ]转化成标准正态变量u,以使原来各种形态的正态分布都转换为μ=0,σ=1的(standard normal distribution),亦称u分布。

t分布表精确完整图

t分布表精确完整图

t分布在概率论和统计学中,t-分布(t-distribution)用于根据小样本来估计呈正态分布且方差未知的总体的均值。

如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。

t分布曲线形态与n(确切地说与自由度df)大小有关。

与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df 愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。

设随机变量T ∼ t n, 则其密度函数为:t n(x)=Γ(n+12)Γ(n2)√nπ(1+x2)−n+12,−∞<x<∞该密度函数的图形如下:t分布表如下:n | α0.250.10 0.050.0250.010.005 1 1.0000 3.0777 6.3138 12.7062 31.8205 63.6567 20.8165 1.8856 2.9200 4.3027 6.9646 9.9248 30.7649 1.6377 2.3534 3.1824 4.5407 5.8409 40.7407 1.5332 2.1318 2.7764 3.7469 4.6041 50.7267 1.4759 2.0150 2.5706 3.3649 4.0321 60.7176 1.4398 1.9432 2.4469 3.1427 3.7074 70.7111 1.4149 1.8946 2.3646 2.9980 3.4995 80.7064 1.3968 1.8595 2.3060 2.8965 3.3554 90.7027 1.3830 1.8331 2.2622 2.8214 3.2498 100.6998 1.3722 1.8125 2.2281 2.7638 3.1693 110.6974 1.3634 1.7959 2.2010 2.7181 3.1058 120.6955 1.3562 1.7823 2.1788 2.6810 3.0545 130.6938 1.3502 1.7709 2.1604 2.6503 3.0123 140.6924 1.3450 1.7613 2.1448 2.6245 2.9768 150.6912 1.3406 1.7531 2.1314 2.6025 2.9467160.6901 1.3368 1.7459 2.1199 2.5835 2.9208 170.6892 1.3334 1.7396 2.1098 2.5669 2.8982 180.6884 1.3304 1.7341 2.1009 2.5524 2.8784 190.6876 1.3277 1.7291 2.0930 2.5395 2.8609 200.6870 1.3253 1.7247 2.0860 2.5280 2.8453 210.6864 1.3232 1.7207 2.0796 2.5176 2.8314 220.6858 1.3212 1.7171 2.0739 2.5083 2.8188 230.6853 1.3195 1.7139 2.0687 2.4999 2.8073 240.6848 1.3178 1.7109 2.0639 2.4922 2.7969 250.6844 1.3163 1.7081 2.0595 2.4851 2.7874 260.6840 1.3150 1.7056 2.0555 2.4786 2.7787 270.6837 1.3137 1.7033 2.0518 2.4727 2.7707 280.6834 1.3125 1.7011 2.0484 2.4671 2.7633 290.6830 1.3114 1.6991 2.0452 2.4620 2.7564 300.6828 1.3104 1.6973 2.0423 2.4573 2.7500 310.6825 1.3095 1.6955 2.0395 2.4528 2.7440 320.6822 1.3086 1.6939 2.0369 2.4487 2.7385 330.6820 1.3077 1.6924 2.0345 2.4448 2.7333 340.6818 1.3070 1.6909 2.0322 2.4411 2.7284 350.6816 1.3062 1.6896 2.0301 2.4377 2.7238 360.6814 1.3055 1.6883 2.0281 2.4345 2.7195 370.6812 1.3049 1.6871 2.0262 2.4314 2.7154 380.6810 1.3042 1.6860 2.0244 2.4286 2.7116 390.6808 1.3036 1.6849 2.0227 2.4258 2.7079 400.6807 1.3031 1.6839 2.0211 2.4233 2.7045 410.6805 1.3025 1.6829 2.0195 2.4208 2.7012 420.6804 1.3020 1.6820 2.0181 2.4185 2.6981 430.6802 1.3016 1.6811 2.0167 2.4163 2.6951 440.6801 1.3011 1.6802 2.0154 2.4141 2.6923 450.6800 1.3006 1.6794 2.0141 2.4121 2.6896 460.6799 1.3002 1.6787 2.0129 2.4102 2.6870 470.6797 1.2998 1.6779 2.0117 2.4083 2.6846 480.6796 1.2994 1.6772 2.0106 2.4066 2.6822 490.6795 1.2991 1.6766 2.0096 2.4049 2.6800 500.6794 1.2987 1.6759 2.0086 2.4033 2.6778 510.6793 1.2984 1.6753 2.0076 2.4017 2.6757 520.6792 1.2980 1.6747 2.0066 2.4002 2.6737 530.6791 1.2977 1.6741 2.0057 2.3988 2.6718 540.6791 1.2974 1.6736 2.0049 2.3974 2.6700 550.6790 1.2971 1.6730 2.0040 2.3961 2.6682 560.6789 1.2969 1.6725 2.0032 2.3948 2.6665 570.6788 1.2966 1.6720 2.0025 2.3936 2.6649 580.6787 1.2963 1.6716 2.0017 2.3924 2.6633 590.6787 1.2961 1.6711 2.0010 2.3912 2.6618600.6786 1.2958 1.6706 2.0003 2.3901 2.6603 610.6785 1.2956 1.6702 1.9996 2.3890 2.6589 620.6785 1.2954 1.6698 1.9990 2.3880 2.6575 630.6784 1.2951 1.6694 1.9983 2.3870 2.6561 640.6783 1.2949 1.6690 1.9977 2.3860 2.6549 650.6783 1.2947 1.6686 1.9971 2.3851 2.6536 660.6782 1.2945 1.6683 1.9966 2.3842 2.6524 670.6782 1.2943 1.6679 1.9960 2.3833 2.6512 680.6781 1.2941 1.6676 1.9955 2.3824 2.6501 690.6781 1.2939 1.6672 1.9949 2.3816 2.6490 700.6780 1.2938 1.6669 1.9944 2.3808 2.6479 710.6780 1.2936 1.6666 1.9939 2.3800 2.6469 720.6779 1.2934 1.6663 1.9935 2.3793 2.6459 730.6779 1.2933 1.6660 1.9930 2.3785 2.6449 740.6778 1.2931 1.6657 1.9925 2.3778 2.6439 750.6778 1.2929 1.6654 1.9921 2.3771 2.6430 760.6777 1.2928 1.6652 1.9917 2.3764 2.6421 770.6777 1.2926 1.6649 1.9913 2.3758 2.6412 780.6776 1.2925 1.6646 1.9908 2.3751 2.6403 790.6776 1.2924 1.6644 1.9905 2.3745 2.6395 800.6776 1.2922 1.6641 1.9901 2.3739 2.6387 810.6775 1.2921 1.6639 1.9897 2.3733 2.6379 820.6775 1.2920 1.6636 1.9893 2.3727 2.6371 830.6775 1.2918 1.6634 1.9890 2.3721 2.6364 840.6774 1.2917 1.6632 1.9886 2.3716 2.6356 850.6774 1.2916 1.6630 1.9883 2.3710 2.6349 860.6774 1.2915 1.6628 1.9879 2.3705 2.6342 870.6773 1.2914 1.6626 1.9876 2.3700 2.6335 880.6773 1.2912 1.6624 1.9873 2.3695 2.6329 890.6773 1.2911 1.6622 1.9870 2.3690 2.6322 900.6772 1.2910 1.6620 1.9867 2.3685 2.6316 910.6772 1.2909 1.6618 1.9864 2.3680 2.6309 920.6772 1.2908 1.6616 1.9861 2.3676 2.6303 930.6771 1.2907 1.6614 1.9858 2.3671 2.6297 940.6771 1.2906 1.6612 1.9855 2.3667 2.6291 950.6771 1.2905 1.6611 1.9853 2.3662 2.6286 960.6771 1.2904 1.6609 1.9850 2.3658 2.6280 970.6770 1.2903 1.6607 1.9847 2.3654 2.6275 980.6770 1.2902 1.6606 1.9845 2.3650 2.6269 990.6770 1.2902 1.6604 1.9842 2.3646 2.6264 1000.6770 1.2901 1.6602 1.9840 2.3642 2.6259 1010.6769 1.2900 1.6601 1.9837 2.3638 2.6254 1020.6769 1.2899 1.6599 1.9835 2.3635 2.6249 1030.6769 1.2898 1.6598 1.9833 2.3631 2.62441040.6769 1.2897 1.6596 1.9830 2.3627 2.6239 1050.6768 1.2897 1.6595 1.9828 2.3624 2.6235 1060.6768 1.2896 1.6594 1.9826 2.3620 2.6230 1070.6768 1.2895 1.6592 1.9824 2.3617 2.6226 1080.6768 1.2894 1.6591 1.9822 2.3614 2.6221 1090.6767 1.2894 1.6590 1.9820 2.3610 2.6217 1100.6767 1.2893 1.6588 1.9818 2.3607 2.6213 1110.6767 1.2892 1.6587 1.9816 2.3604 2.6208 1120.6767 1.2892 1.6586 1.9814 2.3601 2.6204 1130.6767 1.2891 1.6585 1.9812 2.3598 2.6200 1140.6766 1.2890 1.6583 1.9810 2.3595 2.6196 1150.6766 1.2890 1.6582 1.9808 2.3592 2.6193 1160.6766 1.2889 1.6581 1.9806 2.3589 2.6189 1170.6766 1.2888 1.6580 1.9804 2.3586 2.6185 1180.6766 1.2888 1.6579 1.9803 2.3584 2.6181 1190.6766 1.2887 1.6578 1.9801 2.3581 2.6178 1200.6765 1.2886 1.6577 1.9799 2.3578 2.6174 1210.6765 1.2886 1.6575 1.9798 2.3576 2.6171 1220.6765 1.2885 1.6574 1.9796 2.3573 2.6167 1230.6765 1.2885 1.6573 1.9794 2.3570 2.6164 1240.6765 1.2884 1.6572 1.9793 2.3568 2.6161 1250.6765 1.2884 1.6571 1.9791 2.3565 2.6157 1260.6764 1.2883 1.6570 1.9790 2.3563 2.6154 1270.6764 1.2883 1.6569 1.9788 2.3561 2.6151 1280.6764 1.2882 1.6568 1.9787 2.3558 2.6148 1290.6764 1.2881 1.6568 1.9785 2.3556 2.6145 1300.6764 1.2881 1.6567 1.9784 2.3554 2.6142 1310.6764 1.2880 1.6566 1.9782 2.3552 2.6139 1320.6764 1.2880 1.6565 1.9781 2.3549 2.6136 1330.6763 1.2879 1.6564 1.9780 2.3547 2.6133 1340.6763 1.2879 1.6563 1.9778 2.3545 2.6130 1350.6763 1.2879 1.6562 1.9777 2.3543 2.6127 1360.6763 1.2878 1.6561 1.9776 2.3541 2.6125 1370.6763 1.2878 1.6561 1.9774 2.3539 2.6122 1380.6763 1.2877 1.6560 1.9773 2.3537 2.6119 1390.6763 1.2877 1.6559 1.9772 2.3535 2.6117 1400.6762 1.2876 1.6558 1.9771 2.3533 2.6114 1410.6762 1.2876 1.6557 1.9769 2.3531 2.6111 1420.6762 1.2875 1.6557 1.9768 2.3529 2.6109 1430.6762 1.2875 1.6556 1.9767 2.3527 2.6106 1440.6762 1.2875 1.6555 1.9766 2.3525 2.6104 1450.6762 1.2874 1.6554 1.9765 2.3523 2.6102 1460.6762 1.2874 1.6554 1.9763 2.3522 2.6099 1470.6762 1.2873 1.6553 1.9762 2.3520 2.60971480.6762 1.2873 1.6552 1.9761 2.3518 2.6095 1490.6761 1.2873 1.6551 1.9760 2.3516 2.6092 1500.6761 1.2872 1.6551 1.9759 2.3515 2.6090 1510.6761 1.2872 1.6550 1.9758 2.3513 2.6088 1520.6761 1.2871 1.6549 1.9757 2.3511 2.6086 1530.6761 1.2871 1.6549 1.9756 2.3510 2.6083 1540.6761 1.2871 1.6548 1.9755 2.3508 2.6081 1550.6761 1.2870 1.6547 1.9754 2.3506 2.6079 1560.6761 1.2870 1.6547 1.9753 2.3505 2.6077 1570.6761 1.2870 1.6546 1.9752 2.3503 2.6075 1580.6760 1.2869 1.6546 1.9751 2.3502 2.6073 1590.6760 1.2869 1.6545 1.9750 2.3500 2.6071 1600.6760 1.2869 1.6544 1.9749 2.3499 2.6069 1610.6760 1.2868 1.6544 1.9748 2.3497 2.6067 1620.6760 1.2868 1.6543 1.9747 2.3496 2.6065 1630.6760 1.2868 1.6543 1.9746 2.3494 2.6063 1640.6760 1.2867 1.6542 1.9745 2.3493 2.6061 1650.6760 1.2867 1.6541 1.9744 2.3492 2.6060 1660.6760 1.2867 1.6541 1.9744 2.3490 2.6058 1670.6760 1.2866 1.6540 1.9743 2.3489 2.6056 1680.6760 1.2866 1.6540 1.9742 2.3487 2.6054 1690.6759 1.2866 1.6539 1.9741 2.3486 2.6052 1700.6759 1.2866 1.6539 1.9740 2.3485 2.6051 1710.6759 1.2865 1.6538 1.9739 2.3484 2.6049 1720.6759 1.2865 1.6538 1.9739 2.3482 2.6047 1730.6759 1.2865 1.6537 1.9738 2.3481 2.6045 1740.6759 1.2864 1.6537 1.9737 2.3480 2.6044 1750.6759 1.2864 1.6536 1.9736 2.3478 2.6042 1760.6759 1.2864 1.6536 1.9735 2.3477 2.6041 1770.6759 1.2864 1.6535 1.9735 2.3476 2.6039 1780.6759 1.2863 1.6535 1.9734 2.3475 2.6037 1790.6759 1.2863 1.6534 1.9733 2.3474 2.6036 1800.6759 1.2863 1.6534 1.9732 2.3472 2.6034 1810.6758 1.2862 1.6533 1.9732 2.3471 2.6033 1820.6758 1.2862 1.6533 1.9731 2.3470 2.6031 1830.6758 1.2862 1.6532 1.9730 2.3469 2.6030 1840.6758 1.2862 1.6532 1.9729 2.3468 2.6028 1850.6758 1.2861 1.6531 1.9729 2.3467 2.6027 1860.6758 1.2861 1.6531 1.9728 2.3466 2.6025 1870.6758 1.2861 1.6530 1.9727 2.3465 2.6024 1880.6758 1.2861 1.6530 1.9727 2.3463 2.6022 1890.6758 1.2860 1.6530 1.9726 2.3462 2.6021 1900.6758 1.2860 1.6529 1.9725 2.3461 2.6020 1910.6758 1.2860 1.6529 1.9725 2.3460 2.60181920.6758 1.2860 1.6528 1.9724 2.3459 2.6017 1930.6758 1.2860 1.6528 1.9723 2.3458 2.6015 1940.6758 1.2859 1.6527 1.9723 2.3457 2.6014 1950.6757 1.2859 1.6527 1.9722 2.3456 2.6013 1960.6757 1.2859 1.6527 1.9721 2.3455 2.6011 1970.6757 1.2859 1.6526 1.9721 2.3454 2.6010 1980.6757 1.2858 1.6526 1.9720 2.3453 2.6009 1990.6757 1.2858 1.6525 1.9720 2.3452 2.6008 2000.6757 1.2858 1.6525 1.9719 2.3451 2.6006 2010.6757 1.2858 1.6525 1.9718 2.3450 2.6005 2020.6757 1.2858 1.6524 1.9718 2.3449 2.6004 2030.6757 1.2857 1.6524 1.9717 2.3449 2.6003 2040.6757 1.2857 1.6524 1.9717 2.3448 2.6001 2050.6757 1.2857 1.6523 1.9716 2.3447 2.6000 2060.6757 1.2857 1.6523 1.9715 2.3446 2.5999 2070.6757 1.2857 1.6522 1.9715 2.3445 2.5998 2080.6757 1.2856 1.6522 1.9714 2.3444 2.5997 2090.6757 1.2856 1.6522 1.9714 2.3443 2.5996 2100.6757 1.2856 1.6521 1.9713 2.3442 2.5994 2110.6757 1.2856 1.6521 1.9713 2.3442 2.5993 2120.6756 1.2856 1.6521 1.9712 2.3441 2.5992 2130.6756 1.2855 1.6520 1.9712 2.3440 2.5991 2140.6756 1.2855 1.6520 1.9711 2.3439 2.5990 2150.6756 1.2855 1.6520 1.9711 2.3438 2.5989 2160.6756 1.2855 1.6519 1.9710 2.3437 2.5988 2170.6756 1.2855 1.6519 1.9710 2.3437 2.5987 2180.6756 1.2854 1.6519 1.9709 2.3436 2.5986 2190.6756 1.2854 1.6518 1.9709 2.3435 2.5985 2200.6756 1.2854 1.6518 1.9708 2.3434 2.5984 2210.6756 1.2854 1.6518 1.9708 2.3433 2.5983 2220.6756 1.2854 1.6517 1.9707 2.3433 2.5982 2230.6756 1.2854 1.6517 1.9707 2.3432 2.5981 2240.6756 1.2853 1.6517 1.9706 2.3431 2.5980 2250.6756 1.2853 1.6517 1.9706 2.3430 2.5979 2260.6756 1.2853 1.6516 1.9705 2.3430 2.5978 2270.6756 1.2853 1.6516 1.9705 2.3429 2.5977 2280.6756 1.2853 1.6516 1.9704 2.3428 2.5976 2290.6756 1.2853 1.6515 1.9704 2.3427 2.5975 2300.6756 1.2852 1.6515 1.9703 2.3427 2.5974 2310.6756 1.2852 1.6515 1.9703 2.3426 2.5973 2320.6755 1.2852 1.6514 1.9702 2.3425 2.5972 2330.6755 1.2852 1.6514 1.9702 2.3425 2.5971 2340.6755 1.2852 1.6514 1.9702 2.3424 2.5970 2350.6755 1.2852 1.6514 1.9701 2.3423 2.59692360.6755 1.2851 1.6513 1.9701 2.3423 2.5968 2370.6755 1.2851 1.6513 1.9700 2.3422 2.5967 2380.6755 1.2851 1.6513 1.9700 2.3421 2.5966 2390.6755 1.2851 1.6513 1.9699 2.3421 2.5966 2400.6755 1.2851 1.6512 1.9699 2.3420 2.5965 2410.6755 1.2851 1.6512 1.9699 2.3419 2.5964 2420.6755 1.2851 1.6512 1.9698 2.3419 2.5963 2430.6755 1.2850 1.6511 1.9698 2.3418 2.5962 2440.6755 1.2850 1.6511 1.9697 2.3417 2.5961 2450.6755 1.2850 1.6511 1.9697 2.3417 2.5960 2460.6755 1.2850 1.6511 1.9697 2.3416 2.5960 2470.6755 1.2850 1.6510 1.9696 2.3415 2.5959 2480.6755 1.2850 1.6510 1.9696 2.3415 2.5958 2490.6755 1.2850 1.6510 1.9695 2.3414 2.5957 2500.6755 1.2849 1.6510 1.9695 2.3414 2.5956 2510.6755 1.2849 1.6509 1.9695 2.3413 2.5956 2520.6755 1.2849 1.6509 1.9694 2.3412 2.5955 2530.6755 1.2849 1.6509 1.9694 2.3412 2.5954 2540.6755 1.2849 1.6509 1.9693 2.3411 2.5953 2550.6755 1.2849 1.6509 1.9693 2.3411 2.5952 2560.6754 1.2849 1.6508 1.9693 2.3410 2.5952 2570.6754 1.2849 1.6508 1.9692 2.3409 2.5951 2580.6754 1.2848 1.6508 1.9692 2.3409 2.5950 2590.6754 1.2848 1.6508 1.9692 2.3408 2.5949 2600.6754 1.2848 1.6507 1.9691 2.3408 2.5949 2610.6754 1.2848 1.6507 1.9691 2.3407 2.5948 2620.6754 1.2848 1.6507 1.9691 2.3407 2.5947 2630.6754 1.2848 1.6507 1.9690 2.3406 2.5947 2640.6754 1.2848 1.6506 1.9690 2.3406 2.5946 2650.6754 1.2848 1.6506 1.9690 2.3405 2.5945 2660.6754 1.2847 1.6506 1.9689 2.3404 2.5944 2670.6754 1.2847 1.6506 1.9689 2.3404 2.5944 2680.6754 1.2847 1.6506 1.9689 2.3403 2.5943 2690.6754 1.2847 1.6505 1.9688 2.3403 2.5942 2700.6754 1.2847 1.6505 1.9688 2.3402 2.5942 2710.6754 1.2847 1.6505 1.9688 2.3402 2.5941 2720.6754 1.2847 1.6505 1.9687 2.3401 2.5940 2730.6754 1.2847 1.6505 1.9687 2.3401 2.5940 2740.6754 1.2846 1.6504 1.9687 2.3400 2.5939 2750.6754 1.2846 1.6504 1.9686 2.3400 2.5938 2760.6754 1.2846 1.6504 1.9686 2.3399 2.5938 2770.6754 1.2846 1.6504 1.9686 2.3399 2.5937 2780.6754 1.2846 1.6504 1.9685 2.3398 2.5936 2790.6754 1.2846 1.6503 1.9685 2.3398 2.59362800.6754 1.2846 1.6503 1.9685 2.3397 2.5935 2810.6754 1.2846 1.6503 1.9684 2.3397 2.5934 2820.6754 1.2846 1.6503 1.9684 2.3396 2.5934 2830.6754 1.2846 1.6503 1.9684 2.3396 2.5933 2840.6754 1.2845 1.6502 1.9684 2.3395 2.5933 2850.6754 1.2845 1.6502 1.9683 2.3395 2.5932 2860.6753 1.2845 1.6502 1.9683 2.3395 2.5931 2870.6753 1.2845 1.6502 1.9683 2.3394 2.5931 2880.6753 1.2845 1.6502 1.9682 2.3394 2.5930 2890.6753 1.2845 1.6501 1.9682 2.3393 2.5929 2900.6753 1.2845 1.6501 1.9682 2.3393 2.5929 2910.6753 1.2845 1.6501 1.9681 2.3392 2.5928 2920.6753 1.2845 1.6501 1.9681 2.3392 2.5928 2930.6753 1.2844 1.6501 1.9681 2.3391 2.5927 2940.6753 1.2844 1.6501 1.9681 2.3391 2.5927 2950.6753 1.2844 1.6500 1.9680 2.3391 2.5926 2960.6753 1.2844 1.6500 1.9680 2.3390 2.5925 2970.6753 1.2844 1.6500 1.9680 2.3390 2.5925 2980.6753 1.2844 1.6500 1.9680 2.3389 2.5924 2990.6753 1.2844 1.6500 1.9679 2.3389 2.5924 3000.6753 1.2844 1.6499 1.9679 2.3388 2.5923 3010.6753 1.2844 1.6499 1.9679 2.3388 2.5923 3020.6753 1.2844 1.6499 1.9679 2.3388 2.5922 3030.6753 1.2844 1.6499 1.9678 2.3387 2.5922 3040.6753 1.2843 1.6499 1.9678 2.3387 2.5921 3050.6753 1.2843 1.6499 1.9678 2.3386 2.5920 3060.6753 1.2843 1.6498 1.9677 2.3386 2.5920 3070.6753 1.2843 1.6498 1.9677 2.3386 2.5919 3080.6753 1.2843 1.6498 1.9677 2.3385 2.5919 3090.6753 1.2843 1.6498 1.9677 2.3385 2.5918 3100.6753 1.2843 1.6498 1.9676 2.3384 2.5918 3110.6753 1.2843 1.6498 1.9676 2.3384 2.5917 3120.6753 1.2843 1.6498 1.9676 2.3384 2.5917 3130.6753 1.2843 1.6497 1.9676 2.3383 2.5916 3140.6753 1.2843 1.6497 1.9675 2.3383 2.5916 3150.6753 1.2842 1.6497 1.9675 2.3382 2.5915 3160.6753 1.2842 1.6497 1.9675 2.3382 2.5915 3170.6753 1.2842 1.6497 1.9675 2.3382 2.5914 3180.6753 1.2842 1.6497 1.9675 2.3381 2.5914 3190.6753 1.2842 1.6496 1.9674 2.3381 2.5913 3200.6753 1.2842 1.6496 1.9674 2.3381 2.5913 3210.6753 1.2842 1.6496 1.9674 2.3380 2.5912 3220.6753 1.2842 1.6496 1.9674 2.3380 2.5912 3230.6753 1.2842 1.6496 1.9673 2.3379 2.59113240.6752 1.2842 1.6496 1.9673 2.3379 2.5911 3250.6752 1.2842 1.6496 1.9673 2.3379 2.5910 3260.6752 1.2842 1.6495 1.9673 2.3378 2.5910 3270.6752 1.2841 1.6495 1.9672 2.3378 2.5909 3280.6752 1.2841 1.6495 1.9672 2.3378 2.5909 3290.6752 1.2841 1.6495 1.9672 2.3377 2.5909 3300.6752 1.2841 1.6495 1.9672 2.3377 2.5908 3310.6752 1.2841 1.6495 1.9672 2.3377 2.5908 3320.6752 1.2841 1.6495 1.9671 2.3376 2.5907 3330.6752 1.2841 1.6494 1.9671 2.3376 2.5907 3340.6752 1.2841 1.6494 1.9671 2.3376 2.5906 3350.6752 1.2841 1.6494 1.9671 2.3375 2.5906 3360.6752 1.2841 1.6494 1.9670 2.3375 2.5905 3370.6752 1.2841 1.6494 1.9670 2.3375 2.5905 3380.6752 1.2841 1.6494 1.9670 2.3374 2.5905 3390.6752 1.2841 1.6494 1.9670 2.3374 2.5904 3400.6752 1.2840 1.6493 1.9670 2.3374 2.5904 3410.6752 1.2840 1.6493 1.9669 2.3373 2.5903 3420.6752 1.2840 1.6493 1.9669 2.3373 2.5903 3430.6752 1.2840 1.6493 1.9669 2.3373 2.5902 3440.6752 1.2840 1.6493 1.9669 2.3372 2.5902 3450.6752 1.2840 1.6493 1.9669 2.3372 2.5902 3460.6752 1.2840 1.6493 1.9668 2.3372 2.5901 3470.6752 1.2840 1.6493 1.9668 2.3371 2.5901 3480.6752 1.2840 1.6492 1.9668 2.3371 2.5900 3490.6752 1.2840 1.6492 1.9668 2.3371 2.5900 3500.6752 1.2840 1.6492 1.9668 2.3370 2.5899 3510.6752 1.2840 1.6492 1.9667 2.3370 2.5899 3520.6752 1.2840 1.6492 1.9667 2.3370 2.5899 3530.6752 1.2840 1.6492 1.9667 2.3370 2.5898 3540.6752 1.2839 1.6492 1.9667 2.3369 2.5898 3550.6752 1.2839 1.6492 1.9667 2.3369 2.5897 3560.6752 1.2839 1.6491 1.9666 2.3369 2.5897 3570.6752 1.2839 1.6491 1.9666 2.3368 2.5897 3580.6752 1.2839 1.6491 1.9666 2.3368 2.5896 3590.6752 1.2839 1.6491 1.9666 2.3368 2.5896 3600.6752 1.2839 1.6491 1.9666 2.3368 2.5896 3610.6752 1.2839 1.6491 1.9666 2.3367 2.5895 3620.6752 1.2839 1.6491 1.9665 2.3367 2.5895 3630.6752 1.2839 1.6491 1.9665 2.3367 2.5894 3640.6752 1.2839 1.6491 1.9665 2.3366 2.5894 3650.6752 1.2839 1.6490 1.9665 2.3366 2.5894 3660.6752 1.2839 1.6490 1.9665 2.3366 2.5893 3670.6752 1.2839 1.6490 1.9664 2.3366 2.58933680.6752 1.2839 1.6490 1.9664 2.3365 2.5893 3690.6752 1.2839 1.6490 1.9664 2.3365 2.5892 3700.6752 1.2838 1.6490 1.9664 2.3365 2.5892 3710.6752 1.2838 1.6490 1.9664 2.3364 2.5891 3720.6751 1.2838 1.6490 1.9664 2.3364 2.5891 3730.6751 1.2838 1.6489 1.9663 2.3364 2.5891 3740.6751 1.2838 1.6489 1.9663 2.3364 2.5890 3750.6751 1.2838 1.6489 1.9663 2.3363 2.5890 3760.6751 1.2838 1.6489 1.9663 2.3363 2.5890 3770.6751 1.2838 1.6489 1.9663 2.3363 2.5889 3780.6751 1.2838 1.6489 1.9663 2.3363 2.5889 3790.6751 1.2838 1.6489 1.9662 2.3362 2.5889 3800.6751 1.2838 1.6489 1.9662 2.3362 2.5888 3810.6751 1.2838 1.6489 1.9662 2.3362 2.5888 3820.6751 1.2838 1.6489 1.9662 2.3361 2.5888 3830.6751 1.2838 1.6488 1.9662 2.3361 2.5887 3840.6751 1.2838 1.6488 1.9662 2.3361 2.5887 3850.6751 1.2838 1.6488 1.9661 2.3361 2.5887 3860.6751 1.2837 1.6488 1.9661 2.3360 2.5886 3870.6751 1.2837 1.6488 1.9661 2.3360 2.5886 3880.6751 1.2837 1.6488 1.9661 2.3360 2.5886 3890.6751 1.2837 1.6488 1.9661 2.3360 2.5885 3900.6751 1.2837 1.6488 1.9661 2.3359 2.5885 3910.6751 1.2837 1.6488 1.9660 2.3359 2.5885 3920.6751 1.2837 1.6488 1.9660 2.3359 2.5884 3930.6751 1.2837 1.6487 1.9660 2.3359 2.5884 3940.6751 1.2837 1.6487 1.9660 2.3358 2.5884 3950.6751 1.2837 1.6487 1.9660 2.3358 2.5883 3960.6751 1.2837 1.6487 1.9660 2.3358 2.5883 3970.6751 1.2837 1.6487 1.9660 2.3358 2.5883 3980.6751 1.2837 1.6487 1.9659 2.3358 2.5882 3990.6751 1.2837 1.6487 1.9659 2.3357 2.5882 4000.6751 1.2837 1.6487 1.9659 2.3357 2.5882 4010.6751 1.2837 1.6487 1.9659 2.3357 2.5881 4020.6751 1.2837 1.6487 1.9659 2.3357 2.5881 4030.6751 1.2837 1.6486 1.9659 2.3356 2.5881 4040.6751 1.2837 1.6486 1.9659 2.3356 2.5881 4050.6751 1.2836 1.6486 1.9658 2.3356 2.5880 4060.6751 1.2836 1.6486 1.9658 2.3356 2.5880 4070.6751 1.2836 1.6486 1.9658 2.3355 2.5880 4080.6751 1.2836 1.6486 1.9658 2.3355 2.5879 4090.6751 1.2836 1.6486 1.9658 2.3355 2.5879 4100.6751 1.2836 1.6486 1.9658 2.3355 2.5879 4110.6751 1.2836 1.6486 1.9658 2.3355 2.58784130.6751 1.2836 1.6486 1.9657 2.3354 2.5878 4140.6751 1.2836 1.6485 1.9657 2.3354 2.5878 4150.6751 1.2836 1.6485 1.9657 2.3354 2.5877 4160.6751 1.2836 1.6485 1.9657 2.3353 2.5877 4170.6751 1.2836 1.6485 1.9657 2.3353 2.5877 4180.6751 1.2836 1.6485 1.9657 2.3353 2.5876 4190.6751 1.2836 1.6485 1.9656 2.3353 2.5876 4200.6751 1.2836 1.6485 1.9656 2.3353 2.5876 4210.6751 1.2836 1.6485 1.9656 2.3352 2.5876 4220.6751 1.2836 1.6485 1.9656 2.3352 2.5875 4230.6751 1.2836 1.6485 1.9656 2.3352 2.5875 4240.6751 1.2836 1.6485 1.9656 2.3352 2.5875 4250.6751 1.2835 1.6484 1.9656 2.3352 2.5874 4260.6751 1.2835 1.6484 1.9655 2.3351 2.5874 4270.6751 1.2835 1.6484 1.9655 2.3351 2.5874 4280.6751 1.2835 1.6484 1.9655 2.3351 2.5874 4290.6751 1.2835 1.6484 1.9655 2.3351 2.5873 4300.6751 1.2835 1.6484 1.9655 2.3351 2.5873 4310.6751 1.2835 1.6484 1.9655 2.3350 2.5873 4320.6751 1.2835 1.6484 1.9655 2.3350 2.5873 4330.6751 1.2835 1.6484 1.9655 2.3350 2.5872 4340.6751 1.2835 1.6484 1.9654 2.3350 2.5872 4350.6751 1.2835 1.6484 1.9654 2.3350 2.5872 4360.6751 1.2835 1.6484 1.9654 2.3349 2.5872 4370.6751 1.2835 1.6483 1.9654 2.3349 2.5871 4380.6751 1.2835 1.6483 1.9654 2.3349 2.5871 4390.6750 1.2835 1.6483 1.9654 2.3349 2.5871 4400.6750 1.2835 1.6483 1.9654 2.3349 2.5870 4410.6750 1.2835 1.6483 1.9654 2.3348 2.5870 4420.6750 1.2835 1.6483 1.9653 2.3348 2.5870 4430.6750 1.2835 1.6483 1.9653 2.3348 2.5870 4440.6750 1.2835 1.6483 1.9653 2.3348 2.5869 4450.6750 1.2835 1.6483 1.9653 2.3348 2.5869 4460.6750 1.2835 1.6483 1.9653 2.3347 2.5869 4470.6750 1.2834 1.6483 1.9653 2.3347 2.5869 4480.6750 1.2834 1.6483 1.9653 2.3347 2.5868 4490.6750 1.2834 1.6483 1.9653 2.3347 2.5868 4500.6750 1.2834 1.6482 1.9652 2.3347 2.5868 4510.6750 1.2834 1.6482 1.9652 2.3346 2.5868 4520.6750 1.2834 1.6482 1.9652 2.3346 2.5867 4530.6750 1.2834 1.6482 1.9652 2.3346 2.5867 4540.6750 1.2834 1.6482 1.9652 2.3346 2.5867 4550.6750 1.2834 1.6482 1.9652 2.3346 2.58674570.6750 1.2834 1.6482 1.9652 2.3345 2.5866 4580.6750 1.2834 1.6482 1.9652 2.3345 2.5866 4590.6750 1.2834 1.6482 1.9651 2.3345 2.5866 4600.6750 1.2834 1.6482 1.9651 2.3345 2.5866 4610.6750 1.2834 1.6482 1.9651 2.3345 2.5865 4620.6750 1.2834 1.6482 1.9651 2.3344 2.5865 4630.6750 1.2834 1.6482 1.9651 2.3344 2.5865 4640.6750 1.2834 1.6481 1.9651 2.3344 2.5865 4650.6750 1.2834 1.6481 1.9651 2.3344 2.5864 4660.6750 1.2834 1.6481 1.9651 2.3344 2.5864 4670.6750 1.2834 1.6481 1.9651 2.3344 2.5864 4680.6750 1.2834 1.6481 1.9650 2.3343 2.5864 4690.6750 1.2834 1.6481 1.9650 2.3343 2.5864 4700.6750 1.2834 1.6481 1.9650 2.3343 2.5863 4710.6750 1.2834 1.6481 1.9650 2.3343 2.5863 4720.6750 1.2833 1.6481 1.9650 2.3343 2.5863 4730.6750 1.2833 1.6481 1.9650 2.3343 2.5863 4740.6750 1.2833 1.6481 1.9650 2.3342 2.5862 4750.6750 1.2833 1.6481 1.9650 2.3342 2.5862 4760.6750 1.2833 1.6481 1.9650 2.3342 2.5862 4770.6750 1.2833 1.6481 1.9649 2.3342 2.5862 4780.6750 1.2833 1.6480 1.9649 2.3342 2.5862 4790.6750 1.2833 1.6480 1.9649 2.3342 2.5861 4800.6750 1.2833 1.6480 1.9649 2.3341 2.5861 4810.6750 1.2833 1.6480 1.9649 2.3341 2.5861 4820.6750 1.2833 1.6480 1.9649 2.3341 2.5861 4830.6750 1.2833 1.6480 1.9649 2.3341 2.5860 4840.6750 1.2833 1.6480 1.9649 2.3341 2.5860 4850.6750 1.2833 1.6480 1.9649 2.3341 2.5860 4860.6750 1.2833 1.6480 1.9649 2.3340 2.5860 4870.6750 1.2833 1.6480 1.9648 2.3340 2.5860 4880.6750 1.2833 1.6480 1.9648 2.3340 2.5859 4890.6750 1.2833 1.6480 1.9648 2.3340 2.5859 4900.6750 1.2833 1.6480 1.9648 2.3340 2.5859 4910.6750 1.2833 1.6480 1.9648 2.3340 2.5859 4920.6750 1.2833 1.6480 1.9648 2.3340 2.5859 4930.6750 1.2833 1.6480 1.9648 2.3339 2.5858 4940.6750 1.2833 1.6479 1.9648 2.3339 2.5858 4950.6750 1.2833 1.6479 1.9648 2.3339 2.5858 4960.6750 1.2833 1.6479 1.9648 2.3339 2.5858 4970.6750 1.2833 1.6479 1.9647 2.3339 2.5858 4980.6750 1.2833 1.6479 1.9647 2.3339 2.5857 4990.6750 1.2833 1.6479 1.9647 2.3338 2.58575000.6750 1.2832 1.6479 1.9647 2.3338 2.5857。

t分布

t分布

第二节t分布一.t分布(t-distribution)(一)u分布在前一章中,我们已经讲述了正态分布(normal distribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。

正态分布有两个参数,μ和σ,决定了正态分布的位置和形态。

为了应用方便,常将一般的正态变量X通过u变换[]转化成标准正态变量u,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布(standard normal distribution),亦称u分布。

根据中心极限定理,通过上述的抽样模拟试验表明,在正态分布总体中以固定n (本次试验n=10)抽取若干个样本时,样本均数的分布仍服从正态分布,即N (μ,σ)。

所以,对样本均数的分布进行u变换[],也可变换为标准正态分布N (0,1)(二)t分布由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换t=,统计量t 值的分布称为t分布。

t分布有如下特征:1.以0为中心,左右对称的单峰分布;2.t分布是一簇曲线,其形态变化与n(确切地说与自由度ν)大小有关。

自由度ν越小,t分布曲线越低平;自由度ν越大,t分布曲线越接近标准正态分布(u分布)曲线,如图4.1。

t=图4.1自由度为1、5、∞的t分布对应于每一个自由度ν,就有一条t分布曲线,每条曲线都有其曲线下统计量t 的分布规律,计算较复杂。

因此,统计学家上根据自由度ν的大小与t分布曲线下面积的关系,编制了附表2,t界值表,以便于应用。

表中的横标目为自由度ν,纵标目为概率P,表中数字表示自由度ν为某值时,P为某值时,t的界值。

因t分布是以0为中心的对称分布,故附表中只列出正值,如果算出的t 值为负值,可以用绝对值查表。

t分布曲线下面积为95%或99%的界值不是一个常量,而是随着自由度大小而变化的,分别用和表示。

T分布(t-distribution)(一)u分布正态分布(normal distribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。

(最新整理)T分布临界值表

(最新整理)T分布临界值表

(完整)T分布临界值表编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)T分布临界值表)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)T分布临界值表的全部内容。

T分布表Df 自由度P概率0。

10.050。

0250.010。

0050.0010.0005单尾0.20.10。

050。

020。

010。

0020。

001双尾1 3.078 6.31412.70631。

82163。

657318.309636。

61921。

8862。

9204。

303 6.9659。

92522.32731。

599 31。

638 2.3533。

1824。

5415。

84110.21512.9244 1.533 2.1322。

7763。

747 4.6047.1738.6105 1.476 2.0152。

571 3.3654。

0325。

893 6.869 61。

4401。

9432。

447 3.1433。

7075。

208 5.9597 1.4151。

895 2.365 2.998 3.499 4.7855。

4088 1.3971。

860 2.306 2.896 3.355 4.5015。

0419 1.383 1.8332。

262 2.821 3.2504。

2974。

781 101。

3721。

8122。

2282。

7643。

1694。

1444。

587 11 1.3631。

7962。

2012。

718 3.106 4.025 4.437 121。

3561。

7822。

179 2.6813。

055 3.930 4.318 131。

3501。

771 2.160 2.650 3.0123。

t分布的概念及表和查表方法

t分布的概念及表和查表方法

ttt分布,用于根据-distribution-分布(),可简称为在概率论和统计学中,学生的均值。

如果总体方差已知(例如在样本数量足小样本来估计呈正态分布且方差未知的总体够多时),则应该用正态分布来估计总体均值。

)大小有关。

与标准正态分布曲线相比,自(确切地说与自由度tdf分布曲线形态与n愈大,曲线双侧尾部翘得愈高;自由度df由度df越小,t分布曲线愈平坦,曲线中间愈低,分布曲线为标准正态分布曲线。

∞时,分布曲线愈接近正态目录历史1定义2扩展3特征4置信区间56计算历史t t)经常应用在对呈正态分布的总体-distribution分布-(Student's 在概率论和统计学中,学生检定Z测定的基础。

tt检定改进了的均值进行估计。

它是对两个样本均值差异进行显著性测试的学生,但Z检定(超过(en:Z-test),不论样本数量大或小皆可应用。

在样本数量大120等)时,可以应用在数据有三组以上时,t检定。

因此样本很小的情况下得改用学生Z 检定用在小的样本会产生很大的误差,检定。

t因为误差无法压低,此时可以用变异数分析代替学生t-分布。

当母群体的标准差是未知的但却又需要估计时,我们可以运用学生tt分布。

其推导由威廉·戈塞于1908年首先发表,-分布可简称为当时他还在都柏林的健力士学生t检验以)这一笔名。

之后酿酒厂工作。

因为不能以他本人的名义发表,所以论文使用了学生(Student及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。

定义由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t 值的分布称为t分布。

假设X服从标准正态分布N(0,1),Y服从分布,那么的分布称为自由度为n的t分布,记为。

分布密度函数,其中,Gam(x)为伽马函数。

扩展正态分布(normal distribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。

5.3 t分布的概念与特征

5.3 t分布的概念与特征

第五章 参数估计基础三、t 分布的概念与特征正态分布2在统计应用中,可以把任何一个均数为µ,标准差为σ的正态分布N (µ , σ 2 )转变为 µ=0 σ=1的标准正态分布,即将正态变量值X 用 来代替。

由于 服从正态分布,故 服从标准正态分布N (0,1)。

X XX Z s m- = sm- = X Z 一、t 分布的概念3实际资料的分析中,由于σ 往往未知,故标准化转换演变为: 服从υ = n ­1 的 t 分布,即:XS X t m- = nS X S X X / mm- = - 45υ=∞(标准正态分布)υ=5υ=1 0 1 2 3 4 5­1 ­2 ­3 ­4 ­5 f (t ) 0.10.20.361.t 分布曲线是单峰分布,它以0为中心,左右对称。

2.t 分布的形状与样本例数 n 有关。

自由度越小,则越大,t 值越分散,曲线的峰部越矮,尾部则偏高。

3.当 n →∞时,则 S 逼近 σ,t 分布逼近标准正态分布。

t 分布不是一条曲线,而是一簇曲线。

t 分布曲线特点:X S 8与单侧概率相对应的 t 值用 表示,与双侧概率相对应的t 值用 表示。

由于 t 分布是以0为中心的对称分布,表中只列出了正值,故查表时,不管 t 值正负只用绝对值表示。

正确使用 t 界值表( ) n a , t ( ) n a , 2 / t 9。

5.3 t分布的概念与特征

5.3 t分布的概念与特征

第五章 参数估计基础三、t 分布的概念与特征正态分布2在统计应用中,可以把任何一个均数为µ,标准差为σ的正态分布N (µ , σ 2 )转变为 µ=0 σ=1的标准正态分布,即将正态变量值X 用 来代替。

由于 服从正态分布,故 服从标准正态分布N (0,1)。

X XX Z s m- = sm- = X Z 一、t 分布的概念3实际资料的分析中,由于σ 往往未知,故标准化转换演 变为:服从 υ = n ­1 的 t 分布,即:XS X t m - = nS X S X X / m m - = - 45υ=∞(标准正态分布)υ=5υ=1 0 1 2 3 4 5­1 ­2 ­3 ­4 ­5 f (t )0.10.20.3 61. t 分布曲线是单峰分布,它以0为中心,左右对称。

2. t 分布的形状与样本例数 n 有关。

自由度越小,则 越大,t 值越分散,曲线的峰部越矮,尾部则偏高。

3. 当 n →∞时,则 S 逼近 σ,t 分布逼近标准正态分布。

t 分布不是一条曲线,而是一簇曲线。

t 分布曲线特点:X S 8与单侧概率相对应的 t 值用 表示,与双侧概率相对应的t 值用 表示。

由于 t 分布是以0为中心的对称分布,表中只列出了正值, 故查表时,不管 t 值正负只用绝对值表示。

正确使用 t 界值表( ) n a , t ( ) n a , 2 / t 9。

t分布定义的名词解释

t分布定义的名词解释

t分布定义的名词解释t分布是统计学中的一种概率分布,由奥西普·威廉姆·学生(William Sealy Gosset)于1908年提出。

t分布在小样本情况下,根据样本均值与总体均值之间的差异来进行统计推断,因此在不知道总体标准差的情况下,可以使用t分布进行参数估计和假设检验。

一、t分布的背景统计学中的假设检验是用来判断总体参数是否满足某个假设或猜想的方法。

在假设检验中,我们常用样本均值来估计总体均值,但是当样本容量较小时,样本均值的抽样分布并不一定服从正态分布。

在这种情况下,学生发现样本均值与总体均值的比值(即t值)服从一种新的概率分布,即t分布。

二、t分布的定义和特点在统计学中,t分布的定义可以用自由度(degrees of freedom)来描述,自由度是样本的容量减去1。

自由度越大,t分布趋近于正态分布。

t分布的形状长得像钟形曲线,但是相对于正态分布,t分布的尖峰较低且两侧的尾部较厚。

三、t分布与正态分布的关系t分布与正态分布的关系非常密切。

当自由度大于30时,t分布与正态分布非常接近,可以近似认为它们是相同的。

在假设检验中,当样本容量较大时,可以使用正态分布来进行推断。

四、t分布的应用t分布的应用范围非常广泛。

它通常用于以下情况:1. 小样本的假设检验:当总体标准差未知且样本容量较小时,可以利用t分布进行参数估计和假设检验。

2. 置信区间估计:当样本容量较小且总体标准差未知时,可以利用t分布来构建样本均值的置信区间。

3. 回归分析:在统计回归分析中,t统计量用于检验回归系数的显著性。

五、结语综上所述,t分布是一种用于小样本情况下进行统计推断的概率分布。

它是由学生提出的,并且通常用于参数估计、假设检验和置信区间估计。

虽然t分布与正态分布具有一定的差异,但是当样本容量较大时,它们可以近似认为是相同的。

t 分布的应用范围广泛,对于统计学的研究和实践具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t分布介绍在概率论和统计学中,学生 t - 分布(t -distribution ),可简称为 t 分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。

如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。

t 分布曲线形态与 n(确切地说与自由度 df )大小有关。

与标准正态分布曲线相比,自由度df 越小, t 分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度 df 愈大, t 分布曲线愈接近正态分布曲线,当自由度 df= ∞时, t 分布曲线为标准正态分布曲线。

中文名t 分布应用在对呈正态分布的总体外文名t -distribution 别称学生 t 分布学科概率论和统计学相关术语t 检验目录1历史2定义3扩展4特征5置信区间6计算历史在概率论和统计学中,学生 t -分布( Student's t-distribution )经常应用在对呈正态分布的总体的均值进行估计。

它是对两个样本均值差异进行显著性测试的学生t 测定的基础。

t 检定改进了Z 检定(en:Z-test ),不论样本数量大或小皆可应用。

在样本数量大(超过 120 等)时,可以应用Z 检定,但 Z 检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t 检定。

在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t 检定。

当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。

学生 t-分布可简称为t 分布。

其推导由威廉·戈塞于 1908 年首先发表,当时他还在都柏林的健力士酿酒厂工作。

因为不能以他本人的名义发表,所以论文使用了学生(Student )这一笔名。

之后t 检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。

定义由于在实际工作中,往往σ是未知的,常用s 作为σ的估计值,为了与u 变换区别,称为t 变换,统计量 t 值的分布称为t 分布。

假设 X 服从标准正态分布N (0,1 ), Y 服从分布,那么的分布称为自由度为n 的 t 分布,记为。

分布密度函数,其中, Gam(x) 为伽马函数。

扩展正态分布( normal distribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。

正态分布有两个参数,μ和σ,决定了正态分布的位置和形态。

为了应用方便,常将一般的正态变量X 通过 u 变换 [(X- μ)/ σ]转化成标准正态变量u ,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布( standard normal distribution),亦称u分布。

根据中心极限定理,通过上述的抽样模拟试验表明,在正态分布总体中以固定n,抽取若干个样本时,样本均数的分布仍服从正态分布,即N(μ,)。

所以,对样本均数的分布进行u 变换,也可变换为标准正态分布N (0,1) 。

特征1 .以 0 为中心,左右对称的单峰分布;2 .t 分布是一簇曲线,其形态变化与n(确切地说与自由度df)大小有关。

自由度df 越小, t 分布曲线越低平;自由度df 越大,t 分布曲线越接近标准正态分布(u 分布)曲线,如图:t(n) 分布与标准正态N(0,1) 的密度函数。

3.随着自由度逐渐增大, t 分布逐渐接近标准正态分布。

对应于每一个自由度df,就有一条t 分布曲线,每条曲线都有其曲线下统计量t 的分布规律,计算较复杂。

学生的 t-分布(或也t 分布),在概率统计中,在置信区间估计、显著性检验等问题的计算中发挥重要作用。

t分布情况出现时(如在几乎所有实际的统计工作)的总体标准偏差是未知的,并要从数据估算。

教科书问题的处理标准偏差,因为如果它被称为是两类:(1 )那些在该样本规模是如此之大的一个可处理的数据为基础估计的差异,就好像它是一定的;( 2 )这些说明数学推理,在其中的问题,估计标准偏差是暂时忽略的,因为这不是一点,这是作者或导师当时的解释。

置信区间假设数量 A 在当 T 呈 t-分布( T 的自由度为 n- 1 )满足这与是相同的。

A 是这个概率分布的第 95 个百分点。

那么等价于因此μ的 90% 置信区间为:。

计算下表列出了自由度为1-30 以及80、100 、120 等t-分布的单侧和双侧区间值。

例如,当样本数量n=5 时,则自由度df=4 ,我们就可以查找表中以 4 开头的行。

该行第 5 列值为 2.132 ,对应的单侧值为95%(双侧值为90% )。

这也就是说,T 小于 2.132 的概率为95%(即单侧),记为Pr(- ∞< T < 2.132) = 0.95 ;同时, T 值介于-2.132 和2.132 之间的概率为90% (即双侧),记为Pr(-2.132 < T < 2.132) = 0.9 。

这是根据分布的对称性计算得到的。

Pr( T < -2.132) = 1 - Pr( T > -2.132) = 1 - 0.95 = 0.05因此,Pr(-2.132 < T < 2.132) = 1 - 2(0.05) = 0.9注意关于表格的最后一行的值:自由度为无限大(n=120 )的t-分布和正态分布等价。

( 查表时注意 :v 是指自由度,并分单侧和双侧两种类型)( 右侧的示意图是单侧检验的情形)(下图是左右、双侧等检验的情形)单侧75% 80% 85% 90% 95% 97.5% 99% 99.5% 99.75% 99.9% 99.95%双侧50% 60% 70% 80% 90% 95% 98% 99% 99.5% 99.8% 99.9% (V) 1 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.62 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.603 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.924 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.6105 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.8696 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.9597 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.4088 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.0419 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.78110 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.58711 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.43712 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.31813 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.22114 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.14015 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.07316 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.01517 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.96518 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.92219 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.88320 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.85021 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.81922 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.79223 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.76724 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.74525 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.72526 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.70727 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.69028 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.67429 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.65930 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.64640 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.55150 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.49660 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.46080 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390 120 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373 无穷大0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291如何查 t 分布表1、本表是自由度 V 和下侧概率 P 给出 t 分布的分位数 t p(v) 。

相关文档
最新文档