正态分布 t分布PPT精选课件

合集下载

正态分布ppt课件统计学

正态分布ppt课件统计学
详细描述
人类的身高和体重分布情况符合正态分布的特征。这是因为个体的生长发育受到多种因 素的影响,导致身高和体重的差异。根据正态分布规律,大部分人的身高和体重值会集 中在平均值附近,而偏离平均值越远的人数逐渐减少。这种分布形态有助于评估个体的
生长发育状况,并识别出异常身高和体重的个体。
股票价格波动
总结词
卡方检验
总结词
卡方检验是一种非参数检验方法,用于比较实际观测频数与 期望频数是否有显著性差异。
详细描述
卡方检验通过计算卡方值和对应的P值来判断实际观测频数与 期望频数是否有显著性差异。卡方值越大,P值越小,说明差 异越显著。
05
正态分布的实例分析
考试分数分布
总结词
考试分数分布通常呈现正态分布的特点,即大部分考生成绩集中在平均分附近,高分和低分均呈下降趋势。
03
正态分布的性质
钟形曲线
钟形曲线
正态分布的图形呈现钟形 ,中间高,两侧逐渐降低 ,对称轴为均值所在直线 。
概率密度函数
描述正态分布中取任意值 的概率大小,函数曲线下 的面积代表概率。
曲线下面积
正态分布曲线下的面积为1 ,表示随机变量取值在一 定范围内的概率。
平均数与标准差
平均数
正态分布的均值,表示数据的中 心位置,所有数据值加起来除以 数据个数得到。
概率密度函数
正态分布的概率密度函数公式为: $f(x) = frac{1}{sqrt{2pisigma^2}} e^{-frac{(x-mu)^2}{2sigma^2}}$
其中,$mu$表示平均值,$sigma$ 表示标准差,该公式描述了正态分布 曲线的形状和高度。
02
正态分布的应用
自然现象

统计学正态分布及t分布32页PPT

统计学正态分布及t分布32页PPT
40、人类法律,事物有规律,这是里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
统计学正态分布及t分布
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯

正态分布t分布ppt(共49张PPT)

正态分布t分布ppt(共49张PPT)

u=x-μ/σ
(五)标准正态分布曲线下的面积分布规律
标准正态分布曲线以u值为横轴变量,位置参数µ=0,形状参 数ơ=1,标准正态分布曲线与横轴之间的整体面积为1或100% 。标准正态分布曲线下面积的分布规律有如下规律(图5
) u=-1,u=1范围内的面积占正态曲线下总面积的68.27%,即有
研究以推论总体的方法,称为抽样研究方法。
由抽样而引起的样本均数与总体均数之间的差别及样
本均数与样本均数之间的差别称为抽样误差。 从正态分布的同一总体中随机抽取例数相等的若
干个样本,分别计算它们的均数,这些别
标准差描述个体变量值间的变异程度。凡同性 质的资料,标准差大表示个体变量值变异大, 样本均数对个体的代表性差。标准差小表示个 体变量值变异小,样本均数对个体的代表性好 。
B、样本均数
单项选择题
t 5、 0.05,9(单侧 )
t0.0 5,9(双侧 )
A、大于 B、小于 C、等于 D、无关
界值为
t 的t界值。0.0 5,
t0.0 1,
t值与自由度的关系
一般情况下,t分布曲线较标准正态分 布曲线低平,因此 , t0.05,1.96 t0.0,12.58 自
t 由度越小,t分布曲线越低平则 、t 0.05, 0.01,
界值越大。
t界值与概率的关系
设以t 分布曲线与 横轴所夹总面积为 100%,则横轴上某一区间和曲线所夹面 积与总面积之比,相当于t值在该区间内 出现的概率(P),从一个正态总体中随 机抽样,获得t 值落于整个横轴的概率 P=1,获得l t l 的P t0.05, 0.05 ,对应曲线 面积 0.05 ,|t| 的P t0.01 , 0.01 ,对应的 曲线面积 0.01 。

《正态分布》课件

《正态分布》课件

1
定义标准正态分布
标准正态分布是均值为0,标准差为1的正态分布。
2
概率密度函数
标准正态分布的概率密度函数是标准形式的正态分布。

3
转化为标准正态分布
通过标准化方法,可以将任意正态分布转化为标准正态分布。
正态分布的应用
1 股票市场
正态分布被广泛应用于股票市场的波动性分析和预测。
2 IQ 测试
正态分布在智商测评中用于解释测试结果的分布情况。
平均数和标准差
在正态分布中,平均数和标准差决定了分布的位置和形状。
对称性
正态分布以均值为对称中心,左右两侧呈对称分布。
正态分布的概率密度函数
概率密度函数
正态分布的概率密度函数描述了不同取值的概率分 布情况。
图形表示
概率密度函数可在图形上呈现出钟形曲线的形状, 帮助理解正态分布的特点。
标准正态分布
结论
正态分布是统计学中的重要概念,具有广泛的应用领域。深入理解正态分布有助于我们在实践中进行数据分析 和预测。
《正态分布》PPT课件
# 正态分布 PPT 课件大纲 正态分布是一种常见的概率分布,广泛应用于统计学和科学研究中。
引言
正态分布是一种对称分布,具有许多重要的性质和应用。通过本节课件,我 们将了解正态分布的基本概念和实际应用。
正态分布的定义和性质
定义正态分布
正态分布是一种连续型概率分布,其概率密度函数呈钟形曲线。

正态分布ppt精品课件

正态分布ppt精品课件
结果解释
根据检验结果,解释两组数据 是否存在显著差异,并结合实
际背景进行讨论。
06
正态分布在生活中的应用举例
质量控制领域应用举例
01
产品规格设定
在制造业中,正态分布用于设定产品规格。通过对产品特性进行统计分
析,可以确定产品特性的均值和标准差,进而设定合理的上下规格限。
02 03
过程能力分析
正态分布也用于评估生产过程的能力。通过计算过程能力指数(如Cp 和Cpk),可以了解生产过程是否稳定,并确定是否需要采取改进措施 。
多元方差分析(MANOVA)与多元回归分析( Multiple Regression Analysis):当涉及多个自 变量或多个因变量时,可以使用多元方差分析或 多元回归分析来探究它们之间的关系。
回归分析(Regression Analysis):用于探究自 变量与因变量之间的线性或非线性关系,通过拟 合回归方程来预测因变量的取值。
概率密度函数性质 f(x)≥0,对于所有x∈R。
02
正态分布在统计学中应用
描述性统计量计算
均值(Mean):表示数据的“中心 ”或“平均”水平,计算方法是所有 数值之和除以数值个数。
偏度(Skewness):描述数据分布 形态的偏斜程度,正偏态表示数据向 右偏,负偏态表示数据向左偏。
标准差(Standard Deviation):衡 量数据分布的离散程度,即数据偏离 均值的程度,计算方法是方差的平方 根。
实例分析:两组数据是否存在显著差异
数据描述
给出两组数据的描述性统计量, 如均值、标准差等。
假设检验步骤
按照上述假设检验步骤,对两组 数据进行假设检验。
结果解释
根据检验结果,判断两组数据是 否存在显著差异,并给出相应的

《数学正态分布》PPT课件

《数学正态分布》PPT课件

A.f (x)
1
( x )2
e 22
2
C.f (x)
1
( x 1)2
e4
2 2
B.f (x)
2
e
x2 2
2
D.f (x)
1
x2
e2
2
2.设随机变量 ~ N (2,2),则 D( 1 )的值为( C ).
2
A. 1 B. 2 C. 1 D. 4 2
2。正态分布的图像
当时 0, 1,正态总体称为标准正态总体,相应的函数
F( 2 ) F( 2 ) (2) (2) 0.954 正态总体 N(, 2 )在( 3 , 3 )内取值的概率是
F( 3 ) F( 3 ) (3) (3) 0.997
上述计算结果可用下表来表示:
区间
取值概率
( , )
( 2 , 2 )

( 3 , 3 )
解:(Ⅰ)设此次参加竞赛得人数为N,竞赛成绩为x, 则x服从N(70,100)

z
x70 10
,则z服从标准正态分布N(0,1)
∴P(x≥90)=1-P(x<90)191 0700=1-Φ(2)
查正态分布表知Φ(2)=
∴P(x≥90)=
12 ∴N=526 N
(Ⅱ)设设奖的分数线约为a分
p(xa)1p(xa)1 (a1 70)0
5 52 0 60.095 1a1 7000.9049
查正态分布表知Φ
a17001.31
∴a=
∴设奖的分数线约为分
4。标准正态分布 ~ N(0,1) 在标准正态分布表中相应于x0的值 ( x0 )是
指总体取值小于x0的概率,即 ( x0 ) P( x x0 )

第二节正态分布-PPT精选

第二节正态分布-PPT精选

正态曲线(normalcurve)
二、正态曲线( normal curve )
图形特点:
f(X)
1. 钟型
2. 中间高
3. 两头低
4. 左右对称
5. 最高处对应 于X轴的值
就是均数
X 6. 曲线下面积

为1
7. 标准差决定 曲线的形状
N(1,0.82)
0.6 f (X )
0.5
0.4 N(0,12 )

(
X )2 2 2
,
X
=3.14159,exp是以2.72818为底的自然对数指数
X ~ N(, 2),为X的总体均数,为总体标准差
f (X)称为概率密度函数p(robability densityfunction)
以f (X)为纵坐标,X为横坐标,绘制的曲就线是
分娩方式 顺产 助产 顺产 顺产 顺产
剖宫产 顺产
剖宫产 顺产 顺产
妊娠结局 足月 足月 足月 早产 足月 足月 死产 足月 足月 足月
按年龄(2岁一组)与职业整理
年龄 工人 管理人员 农民 商业服务 无 知识分子 总计
18
2
0
0
0
3
0
5
20
9
2
6
10
18
0
45
22 28
7
10
24
70
11
150
24 50
0.3
N(1,1.22)
μ决定曲线的位置,σ0.决2 定曲线的“胖瘦”
0.1
0
-4
-3
-2
-1
0
1
2
3
4
X
三、标准正态分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、正态分布 (一)正态分布的概念 (二)正态分布曲线下的面积分布规律 (三)正态分布曲线的两个参数 (四)标准正态分布 (五)标准正态分布曲线下的面积分布的正态分布(中心极限定理) (三)样本均数的标准正态分布 (四)t值、t分布 (五)t分布特征
计量资料统计分析
正态分布 t分布
1
正态分布 t分布
计量资料的统计推断是以正态分布、 标 准正态分布 、t分布为理论基础。
正态分布、标准正态分布、 t分布的相互 关系是参数估计和假设检验的理论基础。
本课件主要学习正态分布、标准正态分布、 t分布的概念、分布特征、相互关系。
2
正态分布 t分布
25
u x
x
t x
sx
26
(五)t 分布特征
t 值自由度( )
t 分布特征 t界值 t值与自由度的关系 t界值与概率的关系 单侧、双侧t界值
27
t 值自由度( )
从一个总体中抽取200个样本,每一个 样本含量n=6则200个样本可计算出200个 样本均数 x 每一个样本均数可计算出一个t
标准误是样本均数的标准差,即描述样本均数 的抽样误差。凡同性质的资料,标准误大说明 抽样误x 差大,用样本均数估计总体均数的可靠 性小;而标准误小,说明抽样误差小,用样本 均数估计总体均数的可靠性大。
17
标准误与标准差的区别
µ
x3
x1 s x2
xs
µ
x1
s x3 x
x2
x sx
18
(二)样本均数的正态分布(中心极限定理)
由抽样而引起的样本均数与总体均数之间的差 别及样本均数与样本均数之间的差别称为抽样 误差。
从正态分布的同一总体中随机抽取例数相等的 若干个样本,分别计算它们的均数,这些样本 均数的标准差称为标准误。
16
标准误与标准差的区别
标准差描述个体变量值间的变异程度。凡同性 质的资料,标准差大表示个体变量值变异大, 样本均数对个体的代表性差。标准差小表示个 体变量值变异小,样本均数对个体的代表性好。
µ+ 1ơ范围内的面积占正态曲线下总面积的68.27%,即 有68.27%的变量值分布在此范围内;
µ+ 1.96ơ范围内的面积占正态曲线下总面积的95.00%, 即有95.00%的变量值分布在此范围内;
µ+ 2.58ơ范围内的面积占正态曲线下总面积99.00%,即 有99.00%的变量值分布在此范围内
8
9
(三)正态分布曲线的两个参数
均数µ决定曲线在横轴上 的位置是正态分布曲线 的位置参数(图3.1)。
标准差ơ决定曲线的形状 是正态分布曲线的形状 参数(变异度参数) (图3.2)。
10
(四)标准正态分布
对于任何一个均数为µ ,标准差为ơ 的正态分布,都可以通过变换,使之成 为µ=0, ơ=1的标准正态分布。变换的 方法是将变量值x变换为u,u=x- µ / ơ , u值的分布就是标准正态分布。
11
u=x-μ/σ
12
(五)标准正态分布曲线下的面积分布规律
标准正态分布曲线以u值为横轴变量,位置参数µ=0,形 状参数ơ=1,标准正态分布曲线与横轴之间的整体面积 为1或100%。标准正态分布曲线下面积的分布规律有如 下规律(图5)
u=-1,u=1范围内的面积占正态曲线下总面积的68.27%, 即有68.27%的变量值分布在此范围内;
u=-1.96,u=1.96 范围内的面积占正态曲线下总面积的 95.00%,即有95.00%的变量值分布在此范围内;
u=-2.58,u=2.58范围内的面积占正态曲线下总面积99.00%, 即有99.00%的变量值分布在此范围内。
13
14
二、t 分布
15
(一)均数的抽样误差 标准误
在总体中随机抽取一部分个体作为样本,进行 调查研究以推论总体的方法,称为抽样研究方 法。
布就是标准正态分布。
22
u= x -μ/σ x
23
(四)t值 t分布
对于任何一个横轴变量为 x均数为µ ,标 准误为 x的正态分布,都可以通过变换,使之 成为µ=0, x =1的标准正态分布。变换的方法 是将变量值 x变换为u,u=x- µ / x ,u值的分
布就是标准正态分布。实际工作中 x 常用 s x
估计,t值就是样本均数 x 与总体均数µ的差数
除以 s x 所得之商 t x / sx
24
实际工作中 x 用 s x 估计,这时对
正态变量 x 采用的不是u变换,而是t
变换。如果从一个正态总体中,抽取样 本含量为n的许多样本,分别计算其样本 均数和标准误,然后再求出每一个t值, 这样可有许多t值,其频数分布是一种连 续型分布,这就是统计学上的t分布。
5
6
正态分布的特征
正态分布曲线以均数为中心,左右对称。 正态分布曲线下的面积分布有一定的规
律 正态分布曲线在横轴上方均数处最高。 正态分布曲线有两个参数:均数µ 为位
置参数,标准差ơ 为形状参数。
7
(二)正态分布曲线下的面积分布规律
数理统计证明:正态分布曲线下与横轴之间的整体 面积为1或100%。以µ为总体均数,ơ为总体标准差,则 正态分布曲线下面积的分布规律经积分法计算有如下 规律(图2)
3
一、正态分布
4
(一)正态分布的概念
正态分布又称高斯分布,是一种很重要的连 续型分布,应用甚广。在医学卫生领域中有许 多变量的频数分布资料可绘制成直方图而且频 数分布是中间(靠近均数处)频数多,两边频 数少,且左右对称。
可以设想,如果将观察人数逐渐增多,组 段不断分细,图中直条将逐渐变窄,其顶端的 中点的连线将逐渐接近于一条光滑的曲线,这 条曲线略呈钟型,两头低,中间高,左右对称, 近似于数学上的正态分布曲线(图1)
从一个呈正态分布的总体中随机抽取样 本含量相等的许多样本,分别计算出它们 的样本均数。这些样本均数的频数分布仍 是以总体均数为中心的正态分布。
19
µ
x1
x3 x
x2
20
21
(三)样本均数的标准正态分布 对于任何一个横轴变量为 x 均数为µ ,标
准误为 x 的正态分布,都可以通过变换,使之 成为µ=0、 x =1的标准正态分布。变换的方法 是将变量值x 变换为u,u= x- µ / x ,u值的分
相关文档
最新文档