数列概念及其表示
高考数学 第一节 数列的概念及其表示法教材

第一节 数列的概念及其表示法考 点 串 串 讲1.数列的定义(1)定义按一定顺序排成的一列数叫做数列.如a1,a2,a3,…,an ,…,简记为{an},数列中的一个数叫做数列的项,项所在的位置叫做项的序号,也叫项数,用下标表示,如a3表示第3项,a10表示第10项,an 表示第n 项.(2)对数列定义的理解:(ⅰ)数列{an}与集合{a1,a2,...,an ,...}不同,前者是借用集合符号表示数列,如数列 1,12,13, (1),…① 可记为{1n },它表示数列①,而数列{1+-1n 2}那么表示数列② 0,1,0,1,0,1,…,1+-1n 2,…② 从数列②中可以看出数列中项的值可以重复,而集合中是不允许的. {a1,a2,…,an ,…}表示集合,其中的元素是a1,a2,…,an ,…这些数,它们是互不相等的,根据集合的意义,这些元素可以在集合中的任何一个位置,即它们在集合中是无序的,然而数列中每一个数它们的位置是固定的,因为数列中的数是按一定顺序排列而成的.如数列12,1,32,2,③ 与数列1,12,2,32,④ 这两个数列虽然它们都是由同样的几个数组成,但由于它们所处的位置不同,因此这是两个不同的数列.(ⅱ)an 与{an}不同根据定义an 表示数列的第n 项,如a1表示第1项,an +1表示第n +1项,所以an 也叫做数列的通项.而{an}是数列a1,a2,…,an ,…的一种简写的形式.特别地,当an 可以用一个解析式子表示时,可以直接将这个式子写在花括号内来表示数列.所以an 与{an}是数列的第n 项与整个数列的关系.(ⅲ)多少个数才能称为“一列数〞两个数不能称为一列,三个或三个以上(可以重复)的数,才能称为一列数,所以数列的项数n 最少为3.(ⅳ)数列的本质是函数从数列的定义中,可以看出,在一个数列中,其中任一项的值,由这个项的“序号〞唯一确定,也就是说数列中每个项的值是其项的序号的函数,即an =f(n),n ∈N +.如此看来,数列就可看作是定义在正整数集N +或其有限真子集{1,2,…,n}上的函数,当自变量n 从小到大依次取值时对应的一列函数值.这种从“函数的观点〞看待数列的思想使我们有可能借助熟悉的研究函数的方法来研究数列.但是要特别注意:对数列来说,定义域不是1个或几个区间,而是正整数集N +或某个真子集,这就是数列的个性特征.反思数列的定义可以看出:数列最突出的特点是其项的离散性和有序性.因此,关注每个项的“下标〞(项的序号)就成了研究数列的最重要的切入点.2.数列的表示法(1)列举法把数列{an}的项依次列举出来:a1,a2,a3,…,an ,…这种方法称为列举法,其中an(n =1,2,3,…)叫做第n 项(又叫通项),列举法在提出问题与分析问题时广泛使用,如问题一:等比数列12,14,18,116,…,求数列的前n 项和. 问题二:等差数列1,4,7,10,…,求这个数列的通项等等,这些数列都是用列举法形式给出. 用列举法给出的数列直观,由于规律隐含在前面给出的这些项中,所以又很抽象.分析或解决问题时,要从中抽象出通项来.如从问题一的数列中抽象出an =12n,n ∈N +,从问题二的数列中抽象出an =3n -2,n ∈N +.(2)图象法和函数一样,在直角坐标平面内描绘出数列{an}的一系列散点图,这也是给出数列的一种方式.这种表示方法也具有很强的直观性,可以直接从图象上了解到项an 与自变量n 之间的变化趋势,但是确定的函数关系并不清楚.如果要求通项an =f(n)可以像拟合函数一样来拟合数列.(3)解析法——数列的通项公式把数列{an}的第n 项an 用n 的解析式表示出来,这种方法称为解析法.这个解析式叫做数列的通项公式,即an =f(n),n ∈N +.通项公式表达了数列的本质规律,它在计算或讨论数列的性质时,有独特的直接作用,因此成为人们经常使用的一种方法.如同有的函数找不到解析式一样,不是所有的数列都能用解析法表示.(4)递推法数列{an}还可用它的第一项(或前几项)和一个由连续几项构成的递推式an +1=f(an ,an -1,…)联合给出,这种方法称为递推法.如a1=-2,an +1=an +1(n ∈N +),从n =1开始从小到大依次可以写出数列的全部项.3.数列的分类不同的标准导致不同的分类.(1)按数列的项数多少可分为有穷数列与无穷数列.注意有穷数列与无穷数列的列举法表示.如1,12,14,18为有穷数列,这个数列只有4项. 而1,12,14,18,…为无穷数列,有无穷多项. (2)按邻项的大小来分类可分为常数列、单调数列与摆动数列.一般地,对于数列{an}:假设恒有an <an +1(n ∈N +)⇔{an}为递增数列;假设恒有an =an +1(n ∈N +)⇔{an}为常数列;假设恒有an >an +1(n ∈N +)⇔{an}为递减数列;假设相邻大小顺序不固定⇔{an}为摆动数列.递增数列与递减数列统称为单调数列,假设数列是单调数列,那么称这个数列具有单调性.(3)周期数列:如果对所有的n ∈N +,都有an +k =an(k 为常数),那么称{an}为以k 为周期的周期数列.(4)有界数列:如果对所有的n ∈N +,都有|an|<M 或|an|≤M ,那么称{an}为有界数列,否那么称{an}为无界数列.(5)正项数列:如果数列{an}中所有的项都满足an >0,那么数列{an}叫做正项数列.4.Sn 求an数列的前n 项和公式,求数列的通项公式,其方法是an =Sn -Sn -1(n≥2).这里常常因为忽略了n≥2的条件而出错,即由an =Sn -Sn -1求得an 时的n 是从2开始的自然数.否那么会出现当n =1时,Sn -1=S0而与前n 项和定义矛盾.可见an =Sn -Sn -1不一定是数列{an}的通项公式,只有验算了由an =Sn -Sn -1所确定的an ,当(n≥1,n ∈N *)n =1时的a1与S1相等时,an 才是通项公式,否那么要用分段函数表示为an =⎩⎪⎨⎪⎧ S1, n =1Sn -Sn -1. n≥2.典 例 对 对 碰题型一 由数列的前几项写出通项公式例1写出下面数列的一个通项公式. (1)212,414,618,8116,…; (2)10,11,10,11,10,11,…;(3)-1,85,-157,249,…. 解析 (1)这是个混合数列,可看成2+12,4+14,6+18,8+116,….故通项公式an =2n +12n. (2)该数列中各项每两个元素重复一遍,可以利用这个周期性求an.原数列可变形为:10+0,10+1,10+0,10+1,….故其一个通项为an =10+1+-1n 2. (3)通项符号为(-1)n ,如果把第一项-1看作-33,那么分母为3,5,7,9,…,分母通项为2n +1;分子为3,8,15,24,…,分子通项为(n +1)2-1即n(n +2),所以原数列通项为an =(-1)n n2+2n 2n +1. 点评 仅给出函数的前n 项,其通项公式并非唯一,如(2)中通项公式可为an =10+|sinn -1π2|,但是,假设给出数列通项公式,那么数列被唯一确定.变式迁移1写出下面各数列的一个通项公式:(1)3,5,7,9,…; (2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…; (4)23,-1,107,-179,2611,-3713,…; (5)3,33,333,3333,….解析 (1)各项减去1后为正偶数,所以an =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以an =2n -12n. (3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以an =(-1)n·2+-1n n. 也可写为an =⎩⎨⎧ -1n ,n 为正奇数,3n ,n 为正偶数.(4)偶数项为负,奇数项为正,故通项公式必含因子(-1)n +1,观察各项绝对值组成的数列,由第3项到第6项可见,分母分别由奇数7,9,11,13组成,而分子那么是32+1,42+1,52+1,62+1,按照这样的规律第1、2两项可改写为12+12+1,-22+12·2+1,所以an =(-1)n +1·n2+12n +1. (5)将数列各项改写为:93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以an =13(10n -1).题型二 由递推公式写出数列前几项例2数列{an}中,a1=1,a2=3,a2n +1-anan +2=(-1)n ,求数列的前5项.解析 把条件写成an +2=a2n +1--1n an,有 a1=1,a2=3,a3=a22--11a1=32+11=10, a4=a23--12a2=102-13=33, a5=a24--13a3=332+110=109, 故前5项分别为1,3,10,33,109.变式迁移2数列{an}中,a1=1,对所有n≥2,都有a1a2a3…an =n2,那么a3+a5=________. 答案 6116 解析 令n =2,得a1a2=22=4,故a2=4a1=41=4;令n =3,得a1a2a3=32=9,故a3=9a1a2=94;令n =4,得a1a2a3a4=42=16,故a4=16a1a2a3=169;再令n =5,得a1a2a3a4a5=52=25,故a5=25a1a2a3a4=2516.从而a3+a5=94+2516=6116.题型三 与数列的性质有关的问题例3数列的通项公式为an =n2n2+1, (1)0.98是不是它的项?(2)判断此数列的增减性和有界性.解析 (1)令n2n2+1=0.98,解得n =7,所以0.98是此数列的第7项. (2)∵an +1-an =n +12n +12+1-n2n2+1 =2n +1[n +12+1]n2+1>0, ∴an +1>an ,故此数列是递增数列;又|n2n2+1|=1-1n2+1<1, ∴此数列是有界数列.变式迁移3数列{an}的通项an =(n +1)·(1011)n(n ∈N*).试问该数列{an}有没有最大项?假设有,求出最大项和最大项的项数;假设没有,说明理由.解析 ∵an +1-an =(n +2)(1011)n +1-(n +1)·(1011)n =(1011)n·9-n 11, ∴当n <9时,an +1-an >0,即an +1>an ;当n =9时,an +1-an =0,即an +1=an.当n >9时,an +1-an <0,即an +1<an.故a1<a2<…<a9=a10>a11>a12>…∴数列{an}的最大项为a9或a10,其值为10·(1011)9,其项数为9或10.题型四 由递推公式求通项公式例4数列{an}满足a1=1,an =3n -1+an -1(n≥2),求通项公式an.解析 解法一:由a1=1,an =3n -1+an -1(n≥2)得a1=1,a2=31+a1,a3=32+a2,…an -1=3n -2+an -2,an =3n -1+an -1.等式两端对应分别相加得an =1+3+32+…+3n -1=3n -12, 所以an =3n -12. 解法二:由an =3n -1+an -1得an =3n -1+an -1=3n -1+3n -2+an -2=3n -1+3n -2+3n -3+an -3=…=3n -1+3n -2+…+32+a2=3n -1+3n -2+…+32+31+a1=3n -1+3n -2+…+32+31+1=3n -12. 点评 解法一是抓住了等式两端an 与an -1系数相等这一特点;解法二是一种常见的重要方法,它的关键是依次将an -1,an -2,…a2,a1代入,抓住式子特点,转化为等比数列前n 项和.变式迁移4数列{an}中,a1=1,an +1=2an an +2,求该数列的通项公式an. 解析 由an +1=2an an +2得2an -2an +1=anan +1, 两边同除以anan +1,得1an +1-1an =12, 所以数列{1an }是以1a1=1为首项,12为公差的等差数列, 所以1an =1a1+(n -1)·12, 即1an =n +12,所以an =2n +1.题型五 数列的前n 项和Sn 与通项an例5设Sn 为数列{an}的前n 项和,且Sn =32(an -1)(n ∈N *).求数列{an}的通项公式. 解析 ∵Sn =32(an -1), ∴当n =1时,S1=a1=32·(a1-1).解得a1=3.当n≥2时,an =Sn -Sn -1=32(an -1)-32(an -1-1) 得an an -1=3, ∴当n≥2时,数列{an}是以3为公比的等比数列,且首项a2=3a1=9.∴n≥2时,an =9·3n -2=3n.显然,当n =1时也成立.故数列的通项公式为an =3n(n ∈N *).变式迁移5下面各数列{an}的前n 项和Sn 的公式,求{an}的通项公式.(1)Sn =2n2-3n ;(2)Sn =3n -2.解析 (1)a1=S1=-1,当n≥2时,an =Sn -Sn -1=(2n2-3n)-[2(n -1)2-3(n -1)]=4n -5.由于a1也适合此等式,因此an =4n -5(n ∈N*).(2)a1=S1=1,当n≥2时,an =Sn -Sn -1=(3n -2)-(3n -1-2)=2·3n -1.∴an =⎩⎪⎨⎪⎧ 1 n =1,2·3n -1 n≥2.【教师备课资源】题型六 数列的周期性问题例6数列{an}的前4项分别为2008,2009,2010,2011,且对于任意非零自然数n ,都有an +4=an +3-an +2+an +1-an ,那么a2009=( )A .2008B .2009C .-2010D .-2011解析 ∵an +4=an +3-an +2+an +1-an ,∴an +5=an +4-an +3+an +2-an +1,以上两式相加得an +5=-an ,故an +10=-an +5=an ,即数列{an}是周期为10的周期数列,∴a2009=a9=-a4=-2011,选D.答案 D点评 数列的通项公式是一种特殊的函数关系式,因此周期数列的定义形式与周期函数的定义形式很相似,由递推关系推导数列的周期性可以类比函数周期性的推导,关键是脚标的数字特征及转化技巧,对于大部分选择题来说,我们只需要由递推公式求出前几项,就可以猜测出数列的周期,不需要推理证明.变式迁移6假设数列{an}满足an +1=⎩⎨⎧ 2an ,0≤an <122an -1,12≤an <1,且a1=67,那么a20的值为( ) A.67 B.57C.37D.17答案 B 解析 由a1=67∈[12,1),知a2=2×67-1=57;由57∈[12,1),知a3=2×57-1=37;由37∈[0,12),知a4=2×37=67;….据此可知{an}是周期为3的周期数列.∴a20=a2=57.题型七 数列与图形例7如下图,一条螺旋线用如下方法画成:△ABC 是边长为1的正三角形,曲线CA1、A1A2、A2A3分别是以A 、B 、C 为圆心,AC 、BA1、CA2为半径画的弧,曲线CA1A2A3称为螺旋线旋转一圈.然后又以A 为圆心,AA3为半径画弧,…,这样旋转到第n 圈,那么所得螺旋线的长度ln =________.(用π表示即可)分析 此题将螺旋线的弧长作为数列的通项来求解,考查了数列通项与求和的知识.解析 ln =23π(1+2+3+…+3n)=23π·3n 1+3n 2=(3n2+n)π. 答案 (3n2+n)π点评 此题错误率的最高点在于将此螺旋线的长度视作是n 条弧长的和,计算得ln =23π(1+2+3+…+n)=23π·n 1+n 2=n2+n π3.变式迁移7根据以下5个图形及相应点的个数的变化规律,试猜测第n 个图中有________个点.答案 n2-n +1解析 图(1)中为12-0;图(2)中为22-1;图(3)中为32-2;图(4)中为42-3;图(5)中为52-4,…故第n 个图中为n2-(n -1)=n2-n +1.专题 由递推关系式求数列通项公式的问题(一)形如an +1=pan +r(p 为常数,p≠0,p≠1)的一阶递推数列的通项求法(1)an +1=pan +r(p 为常数,p≠0,p≠1,r 为常数)的递推数列的通项.例如a1=2,an +1=2an -1,求数列{an}的通项an.方法一:(迭代法)a1=2,an +1=2an -1∴an =2an -1-1=2(2an -2-1)-1=22an -2-2-1=22(2an -3-1)-2-1=23an -3-22-2-1=…=2n -1a1-2n -2-2n -3-…-2-1=2n -(1+2+22+…+2n -2)=2n -2n -1-12-1=2n -2n -1+1=2n -1+1.说明 迭代法就是根据递推公式从an 开始不断地反复地代入递推下去,直到a1为止,达到求出an 的目的.使用迭代法,要善于观察过程中每一项与项数的规律,这样才能保证递推的正确性.方法二:(阶差法)由an +1=2an -1,得an =2an -1-1 (n≥2),an +1-an =2(an -an -1),令bn =an +1-an ,那么bn =2bn -1(n≥2),∵a1=2,∴a2=2a1-1=2×2-1=3.∴b1=a2-a1=3-2=1,∴bn =2n -1.即 an +1-an =2n -1.(注:也可不必累加,见题后说明②)∴a2-a1=1,a3-a2=2,a4-a3=22,……an -an -1=2n -2.以上n -1个等式相加,得an -a1=1+2+22+…+2n -2即an =2+2n -1-12-1=2n -1+1.说明 ①将递推式上升一阶或下降一阶后作差,其目的就是为了消去常数项,通过换元构造一个新的等比数列,求出连续两项的差.再用叠加(或称累加)法.求出通项an.②此题中在得到阶差an +1-an =2n -1后将an +1=2an -1代入得an =2n -1+1,这里表达了一种方程思想.方法三:由an +1=2an -1,得 an +12n +1=an 2n -(12)n +1. 令bn =an 2n ,得 bn +1-bn =-(12)n +1 ∴b2-b1=-(12)2 b3-b2=-(12)3 ……bn -bn -1=-(12)n 以上n -1个等式相加,得bn -b1=-[(12)2+(12)3+…+(12)n] =-14[1+12+(12)2+…+(12)n -2] =-14×1-12n -11-12=-12(1-12n -1) ∴bn =b1-12+12n=a12-12+12n=1-12+12n=12+12n, 即an 2n =12+12n, ∴an =2n -1+1.说明 ①对于形如an +1=pan +r(p≠0,p≠1,p 为常数)的递推数列,可以将递推式的两边同除以pn +1,得an +1pn +1=an pn +r(1p )n +1. 令bn =an pn ,得bn +1-bn =r(1p)n +1. 然后赋值累加,得bn =b1+r p2(1+1p +1p2+…+1pn -2) =b1+r p2·1-1pn -11-1pan pn =a1p +r p p -1(1-1pn -1) ∴an =(a1+r p -1)pn -1-r p -1(n ∈N +). ②注意同除以pn 的目的是为了形成连续两项差的形式!方法四:(拆分法)由an +1=2an -1,得an +1-1=2(an -1).令bn =an -1,那么b1=a1-1=2-1=1,bn +1=2bn ,数列{bn}为等比数列,首项为1,公比为2.∴bn =1·2n -1=2n -1,即an -1=2n -1.∴an =2n -1+1.说明 这里是将常数项-1拆分成-2+1,拆分的目的是为了构造新的等差或等比数列,便于运用公式求解.方法五:(待定系数法)令an +1-λ=2(an -λ),得an +1=2an -λ.和原递推式比较对应项得λ=1,∴an +1-1=2(an -1).以下同方法四.说明 有时拆分目标不明确,因此采用这种待定系数法方便,同样可以起到转化的目的. 方法六:(特征方程法)根据an +1=2an -1,令x =2x -1,解得x =1.∴递推公式可以化为an +1-1=2(an -1).以下同方法一.说明 方法六与方法五比较,免去了待定系数变换的过程,而是直接由一个方程求出λ的值.这个方程x =2x -1叫做递推式an +1=2an -1的特征方程.一般一阶递推公式an +1=pan +r(p 、r 为常数,p≠0,p≠1)的特征方程为x =px +r.解这个方程,得x =r 1-p. ∴an +1-r 1-p =p(an -r 1-p).令bn =an -r 1-p ,得b1=a1-r 1-p. bn +1=pbn.∴数列{bn}为等比数列,首项为a1-r 1-p,公比为p. ∴bn =(a1-r 1-p)pn -1. 即an -r 1-p =(a1-r 1-p)pn -1. ∴an =r 1-p +(a1-r 1-p)pn -1(n ∈N +). 说明 采用特征方程的目的是为了将递推式转化为新的等比数列{bn},其中bn =an -λ的形式,而λ就是特征方程x =px +r 的根.小结 在以上的六种方法中,除方法四外都具有一般性.方法一与方法二运算麻烦,方法三虽然有点麻烦,但构造新数列很特别,具有使用和推广的重要价值,方法四虽然特殊,但如果能一下子将递推式拆分成an +1-λ=p(an -λ)的形式时可不必去用待定系数法去解特征方程.从方法四到方法六,这三种方法都是在围绕如何迅速找到λ,使得an +1-λ=p(an -λ),方法五是用待定系数法,方法六是用特征方程求λ.比较起来,六种方法中,特征方程既方便,又快捷.(2)an +1=pan +kn +r(p 、k 、r 为常数,p≠0,k≠0)例如a1=1,an +1=2an +3n +1,求数列{an}的通项.解 由an +1=2an +(3n +1)得an +12n +1=an 2n +3n +12n +1. 令bn =an 2n,得 bn +1-bn =(3n +1)(12)n +1, ∴b2-b1=4×(12)2 b3-b2=7×(12)3 ……bn -bn -1=(3n -2)(12)n. 将以上n -1个等式相加,得bn =b1+4×(12)2+7×(12)3+…+(3n -2)×(12)n ① 即bn =12+4×(12)2+7×(12)3+…+(3n -2)×(12)n ∴12bn =(12)2+4×(12)3+…+(3n -5)×(12)n +(3n -2)(12)n +1② ①-②得12bn =12+3×(12)2+3×(12)3+…+3×(12)n -(3n -2)(12)n +1 =12+34·1-12n -11-12-(3n -2)(12)n +1 =12+32[1-(12)n -1]-(3n -2)·(12)n +1 ∴bn =1+3(1-12n -1)-(3n -2)(12)n =4-3n +42n. 即an 2n =4-3n +42n. ∴an =2n +2-3n -4(n ∈N +).说明 ①当递推公式是an +1=pan +kn +r(p 、k 、r 为常数且p≠0,k≠0)时,假设p≠1我们可以像(1)中的方法三那样,两边同除以pn +1得到 an +1pn +1=an pn+(kn +r)(1p )n +1. 令bn =an pn,得 bn +1-bn =(kn +r)(1p)n +1. 赋值,累加,得bn =b1+(k +r)(1p )2+(2k +r)·(1p )3+…+[(n -1)k +r](1p)n , 再用错位相减法,求出bn ,再由bn =an pn,得an =bnpn. ②假设p =1,可直接由an +1-an =kn +r ,赋值,累加求出an.(3)递推式为an +1=pan +cqn(c 、p 、q 为常数,且c≠0,p≠0,q≠0,1)解 将递推式两边同除以pn +1,得an +1pn +1=an pn +c p (q p)n , 令bn =an pn ,得bn +1=bn +c p (q p)n , 再将递推式bn +1-bn =c p (q p)n , 从n =1到n -1赋值累加得bn =b1+c p [(q p )+(q p )2+…+(q p)n -1] ①假设p =q ,那么{bn}为等差数列,bn =b1+(n -1)·c p=1p (cn +a1-c), 此时an =pn -1(cn +a1-c). ②假设p≠q ,那么bn =a1p +cq p2·1-q p n -11-q p=a1p +cq pn p -q(pn -1-qn -1) ∴an =a1pn -1+cq p -q(pn -1-qn -1) =(a1+cq p -q )pn -1-cqn p -q综合,得an =⎩⎪⎨⎪⎧ pn -1n +a1-1p =q .a1+cq p -q pn -1-cqn p -q p≠q(二)形如an +2=pan +1+qan(p 、q 为常数,且p≠0,q≠0)的二阶递推数列的通项求法 如a1=1,a2=2,an +2=2an +1+3an(n ∈N +),求数列{an}的通项.方法一:(拆分法)由an +2=2an +1+3an ,得an +2+an +1=3(an +1+an).令bn =an +1+an ,得b1=a2+a1=3.bn +1=3bn ,{bn}为等比数列,且首项b1=3,公比q =3.∴bn =3n ,即an +1+an =3n.∴an +1=-an +3n.两边同除以(-1)n +1,得an +1-1n +1=an -1n -(-3)n 令Cn =an -1n,得Cn +1-Cn =-(-3)n , ∴C2-C1=-(-3),C3-C2=-(-3)2,……Cn -Cn -1=-(-3)n -1,以上n -1个等式相加,得Cn =C1-[(-3)+(-3)2+…+(-3)n -1]=C1+3+-3n 4=-1+3+-3n 4=14[(-3)n -1]即an -1n =14[(-3)n -1] ∴an =-1n[-3n -1]4. 说明 (1)也可以这样来拆分,即an +2-3an +1=-(an +1-3an).令bn =an +1-3an ,得bn +1=-bn.数列{bn}为等比数列,公比为-1,首项为b1=a2-3a1=-1,∴bn =(-1)n ,即an +1-3an =(-1)n.两边同除以3n +1得an +13n +1-an 3n =13(-13)n. 以下同方法一.(2)拆分的目的是为了能够构造新的等比数列,将二阶递推降为一阶递推,使之转化为我们已经熟悉的an +1=pan +r 的形式.(3)两种不同的拆分都与3和-1这两个数有关.而3和-1正好是方程x2-2x -3=0的两个根.因此我们把方程x2=2x +3叫做由递推公式an +2=2an +1+3an 给出的数列{an}的特征方程.一般地,我们希望存在两个实数λ1与λ2,使得an +2-λ1an +1=λ2(an +1-λ1an)对任意的正整数n 都成立.由此,得到an +2=(λ1+λ2)an +1-λ1λ2an.比较递推公式中,对应项的系数,得λ1+λ2=p ,λ1λ2=-q.∴λ1,λ2是方程x2-px -q =0的两个实根.我们把这个方程就叫做由递推公式an +2=pan +1+qan 给出的二阶递推数列的特征方程,λ1与λ2叫特征根.有时用拆分法很难找到特征根,因此采用特征方程求特征根既省时,又方便.例如裴波那契数列,a1=a2=1,an +2=an +1+an 求an.解 (特征方程法)特征方程为x2=x +1. 解之,得x =1±52, 即λ1=1+52,λ2=1-52或λ1=1-52,λ2=1+52. 随便取一组,得an +2-1+52an +1=1-52(an +1-1+52an) 令bn =an +1-1+52an ,得b1=a2-1+52a1=1-52,bn +1=1-52bn. ∴{bn}为等比数列,且首项为1-52,公比为1-52. ∴bn =(1-52)n. 即an +1-1+52an =(1-52)n.两边同除以(1+52)n +1,得 an +11+52n +1-an 1+52n =5-12(5-32)n 令Cn =an 1+52n ,得 Cn +1-Cn =5-12(5-32)n ∴C2-C1=5-12(5-32), C3-C2=5-12(5-32)2, ……Cn -Cn -1=5-12(5-32)n -1. 以上n -1个等式相加,得Cn =C1+5-12×[5-32+(5-32)2+…+(5-32)n -1] 又C1=a11+52=5-12, ∴Cn =5-12[1+5-32+(5-32)2+…+(5-32)n -1] =5-12×1-5-32n 1-5-32=55[1-(5-32)n] 即an 1+52n =55[1-(5-32)n] ∴an =55[(1+52)n -(1-52)n](n ∈N +). 这就是著名的裴波那契数列的通项公式.(三)形如an +1=an ran +p(r 、p 为常数,且rp≠0)的简单分式递推数列的通项求法 将递推公式化为1an +1-p an=r 的形式,令bn =1an ,那么bn +1-pbn =r. 1°假设p =1,那么bn +1-bn =r(常数)此时{bn}为等差数列,首项为b1=1a1,公差为r.∴bn =1a1+(n -1)r 即1an =1a1+(n -1)r ∴an =11a1+n -1r. 2°假设p≠1,由bn +1-pbn =r ,且r 为常数.解特征方程,x -px =r ,得x =r 1-p. ∴bn +1-r 1-p =p(bn -r 1-p). 令Cn =bn -r 1-p ,C1=b1-r 1-p =1a1-r 1-p,Cn +1=pCn. ∴{Cn}是等比数列,首项为1a1-r 1-p,公比为p. ∴Cn =(1a1-r 1-p)pn -1. 即bn -r 1-p =(1a1-r 1-p)pn -1. ∴bn =r 1-p +(1a1-r 1-p)pn -1. ∴an =1r 1-p +1a1-r 1-p pn -1(n ∈N +) (四)由递推式an +1=f(n)an(n ∈N +)给出的数列{an}的通项.形如an +1=f(n)an(n ∈N +)的递推数列没有一般的求解法那么,但有一些这样的递推数列还是可求的.例如(1)在数列{an}中,a1=2,an +1=n +1nan ,求通项an ; (2)在数列{an}中,a1=1,an +1=(n +1)an ,求通项an ;(3)在数列{an}中,a1=1,an +1=2nan ,求通项an.解 (1)∵an +1an =n +1n, ∴a2a1×a3a2×…×an an -1=21×32×…×n n -1=n , 即an a1=n ,∴an =2n(n ∈N +). (2)∵an +1an=n +1 ∴a2a1·a3a2·a4a3·…·an an -1=2×3×4·…·n , 即an a1=2·3·4·…·n ,∴an =a1·2·3·4·…·n =n!(3)∵an +1an =2n , ∴a2a1·a3a2·…·an an -1=21·22·…·2n -1=21+2+…+(n -1)=2(-)n n 12,即an a1=2(-)n n 12.∴an =a1·2(-)n n 12=2(-)n n 12(n ∈N +).说明 从上面可以看出,如果{f(n)}的前n 项的积可求,那么由递推式an +1=f(n)an 可用累乘法求通项an.(五)与Sn 有关的递推数列{an}的通项①在数列{an}中,Sn =3+2an ,求an.②在数列{an}中,a1=1,an =2S2n 2Sn -1(n≥2),求an. 解 ①∵an =Sn -Sn -1=(3+2an)-(3+2an -1)=2an -2an -1(n≥2),∴an =2an -1,∴{an}是等比数列,公比为2,首项为a1=S1=-3.∴an =-3·2n -1(n≥1).②∵an =Sn -Sn -1=2S2n 2Sn -1(n≥2), (Sn -Sn -1)(2Sn -1)=2S2n ,整理,得Sn -1-Sn =2Sn -1Sn.∴1Sn -1Sn -1=2,又a1=S1=1,那么1S1=1. ∴{1Sn}是等差数列,首项为1,公差为2. ∴1Sn =1+(n -1)×2=2n -1, ∴Sn =12n -1(n ∈N +). 当n =1时,a1=S1=1.当n≥2时,将Sn =12n -1代入原递推式中,得an =-22n -12n -3.将n =1代入,设a1=2≠1.∴an =⎩⎪⎨⎪⎧ 1 n =1-22n -12n -3 n≥2说明 在由递推式Sn =f(an)中,有时是消去Sn ,如①,有时是消去an ,如②.要灵活运用公式an =Sn -Sn -1(n≥2).方 法 路 路 通1.数列具有函数的本质特征是指数列是由定义在自然数集或其有限真子集上的函数,当自变量n 从小到大依次取值时,所对应的一列函数值.离散性和有序性是数列的两个重要特征,这是数列有别于一般函数的最重要的两点.2.通项公式是给出数列的一种重要方法,抓住通项公式是解决数列问题的关键.3.递推公式也是给出数列的一种方法,灵活地运用递推公式表达了递推思想.4.求数列的最大项与最小项与求函数的最值相似,既可用单调法,还可以根据数列的离散性与有序性的特点,用⎩⎪⎨⎪⎧an≥an +1an≥an -1(n≥2)这种方法来求,不过要注意使用条件有两个:一是各项符号一致,即不是摆动数列;二是注意所求的an 应与首项a1单独比较.5.给出数列的几项求通项时,常用特征分析法和化归法,所求的通项并不唯一.6.数列的通项an 和数列的前n 项和Sn 是数列中两个重要的量,要注意各自的意义和相互间的关系.在使用公式an =Sn -Sn -1时切不可忽略n≥2的条件.7.数列是一类特殊的函数,数列的有关概念应在函数的观点下加深理解,在研究数列问题时既要注意函数方法的普遍适用性,又要注意数列方法的特殊性.8.数列的通项公式的一般求法(1)数列的前几项,写出数列的通项公式,主要从以下几个方面来考虑:①负号用(-1)n 或(-1)n +1来调节,这是因为n 和n +1奇偶交错.②分式形式的数列,分子找通项,分母找通项,要充分借助分子、分母的关系. ③对于比较复杂的通项公式,要借助于等差数列、等比数列和其他方法来解决.④此类问题虽无固定模式,但也有其规律可循,主要靠观察(观察规律)、比较(比较的数列)、归纳、转化(转化为等差或等比数列)等方法.(2)递推公式求通项,可把每相邻两项的关系列出来,抓住它们的特征进行适当的处理.9.在处理有关递推数列的问题时,一个核心的理念是——转化与化归.采用相关的方法,如阶差法、累加(乘)法、构造法、换元法、分解通项法,等等.使问题朝着等差、等比数列以及正整数方幂数列方向转化,最终用这三种数列的知识去求解.10.递推思想与方法是求解递推数列的一种重要的途径,特别是当数列结构尚不明确时,递推能够起到“投石问路〞的作用.但要注意这种递推的方法常与数学归纳法联合起来,即递推解决归纳猜想,而数学归纳法那么起到严格证明的作用.正 误 题 题 辨例数列{an}的前n 项和Sn =aqn(a≠0,q≠1,q 为非零常数),那么数列{an}( )A .是等差数列B .是等比数列C .既不是等差数列,又不是等比数列D .既是等差数列又是等比数列错解 ∵an +1=Sn +1-Sn=aqn +1-aqn =aqn(q -1)an =Sn -Sn -1=aqn -1(q -1),∴an +1an=q(常数) ∴数列{an}为等比数列.应选B.点击 忽略了an =Sn -Sn -1中隐含条件n≥2.正解 当n =1时,a1=S1=aq当n≥2时,an =Sn -Sn -1=aqn -1(q -1)an +1=aqn(q -1),∴an +1an=q(n≥2)为常数 但a2a1=q -1≠q ∴数列{an}从第二项起为等比数列,但整体不等比,应选C. 答案 C。
第六章数列与数学归纳法

第六章⎪⎪⎪数列与数学归纳法第一节数列的概念与简单表示法1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类[小题体验]1.已知数列{a n }的前4项为12,34,78,1516,则数列{a n }的一个通项公式为________.答案:a n =2n -12n (n ∈N *)2.已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 5等于________. 答案:11613.(教材改编题)已知数列{a n }的前n 项和为S n ,若S n =3n -1,则a n =________. 答案:2×3n -11.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.[小题纠偏]1.已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥22.数列{a n }的通项公式为a n =-n 2+9n ,则该数列第________项最大. 答案:4或5考点一 由数列的前几项求数列的通项公式(基础送分型考点——自主练透)[题组练透]1.(2019·温岭模拟)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 018项与5的差即a 2 018-5=( )A .2 017×2 024B .2 017×1 012C .2 018×2 024D .2 018×1 012解析:选B 结合图形可知,该数列的第n 项为a n =2+3+4+…+(n +2),所以a 2 018-5=4+5+6+…+2 020=2 017×(2 020+4)2=2 017×1 012.2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…;(2)(易错题)-11×2,12×3,-13×4,14×5,…; (3)-1,7,-13,19, …; (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以它的一个通项公式a n =2(n +1),n ∈N *. (2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1),n ∈N *.(3)这个数列,去掉负号,可发现是一个等差数列,其首项为1,公差为6,所以它的一个通项公式为a n =(-1)n (6n -5),n ∈N *.(4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1,n ∈N *.[谨记通法]由数列的前几项求数列通项公式的策略(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项符号特征等.(2)根据数列的前几项写出数列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n+1来调整.考点二 由a n 与S n 的关系求通项a n (重点保分型考点——师生共研)[典例引领]已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式. (1)S n =n 2+1; (2)S n =2n -a n .解:(1)a 1=S 1=1+1=2,当n ≥2时,a n =S n -S n -1=n 2+1-(n -1)2-1=2n -1,而a 1=2,不满足此等式.所以a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.(2)当n =1时,S 1=a 1=2-a 1,所以a 1=1;当n ≥2时,a n =S n -S n -1=(2n -a n )-[2(n -1)-a n -1]=2-a n +a n -1, 即a n =12a n -1+1,即a n -2=12(a n -1-2).所以{a n -2}是首项为a 1-2=-1,公比为12的等比数列,所以a n -2=(-1)·⎝⎛⎭⎫12n -1, 即a n =2-⎝⎛⎭⎫12n -1.[由题悟法]已知S n 求a n 的 3个步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[即时应用]已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若a n >0,S n >1,且6S n =(a n +1)(a n +2),求a n . 解:(1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式, 所以a n =(-1)n +1·(2n -1).(2)当n =1时,a 1=S 1=16(a 1+1)(a 1+2),即a 21-3a 1+2=0.解得a 1=1或a 1=2.因为a 1=S 1>1,所以a 1=2.当n ≥2时,a n =S n -S n -1=16(a n +1)(a n +2)-16(a n -1+1)(a n -1+2),所以(a n -a n -1-3)(a n+a n -1)=0.因为a n >0,所以a n +a n -1>0, 所以a n -a n -1-3=0,所以数列{a n }是以2为首项,3为公差的等差数列. 所以a n =3n -1.考点三 由递推关系式求数列的通项公式(题点多变型考点——多角探明) [锁定考向]递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.常见的命题角度有: (1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .[题点全练]角度一:形如a n +1=a n f (n ),求a n 1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. 解:∵a n =n -1n a n -1(n ≥2), ∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立. ∴a n =1n(n ∈N *).角度二:形如a n +1=a n +f (n ),求a n2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).角度三:形如a n +1=Aa n +B (A ≠0且A ≠1),求a n3.已知数列{a n }满足a 1=1,当n ≥2,n ∈N *时,有a n =2a n -1-2,求数列{a n }的通项公式.解:因为a n =2a n -1-2,所以a n-2=2(a n-1-2).所以数列{a n-2}是以a1-2=-1为首项,2为公比的等比数列.所以a n-2=(-1)×2n-1,即a n=2-2n-1.[通法在握]典型的递推数列及处理方法[演练冲关]根据下列条件,求数列{a n}的通项公式.(1)a1=1,a n+1=a n+2n(n∈N*);(2)a1=1,2na n+1=(n+1)a n(n∈N*);(3)a1=1,a n=3a n-1+4(n≥2).解:(1)由题意知a n+1-a n=2n,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=2n-1+2n-2+…+2+1=1-2n1-2=2n-1.(2)由2na n+1=(n+1)a n,得a n+1a n=n+12n.所以a n=a na n-1·a n-1a n-2·a n-2a n-3·…·a2a1·a1=n2(n-1)·n-12(n-2)·n-22(n-3)·…·22×1×1=n2n-1.(3)因为a n=3a n-1+4(n≥2),所以a n+2=3(a n-1+2).因为a1+2=3,所以{a n+2}是首项与公比都为3的等比数列.所以a n+2=3n,即a n=3n-2.一抓基础,多练小题做到眼疾手快1.(2018·嘉兴七校联考)已知数列{a n}的通项公式为a n=n2+n,则a5=() A.25B.30C .10D .12解析:选B 因为a n =n 2+n ,所以a 5=25+5=30.2.(2018·浙江三地联考)已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n (n ∈N *),则数列{a n }的通项公式a n =( )A .2nB .2n -1C .2n -1-1D.⎩⎪⎨⎪⎧1,n =1,2n ,n ≥2解析:选B 由log 2(S n +1)=n 可得S n =2n -1.当n ≥2时,a n =S n -S n -1=2n -1-(2n-1-1)=2n -1;当n =1时,a 1=S 1=21-1=1满足上式.所以数列{a n }的通项公式a n =2n -1.3.(2018·衢州模拟)已知数列{a n }满足:a 1=1,a n +1=2a na n +2,则数列{a n }的通项公式a n 为( )A.1n +1B.2n +1 C.1n D.2n解析:选B 由a n +1=2a n a n +2可得1a n +1=a n +22a n =1a n +12. 所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,公差为12的等差数列,所以1a n =n +12,即a n =2n +1.4.(2018·诸暨模拟)已知数列{a n }中,对任意的p ,q ∈N *都满足a p +q =a p a q ,若a 1=-1,则a 9=________.解析:由题可得,因为a 1=-1,令p =q =1,则a 2=a 21=1;令p =q =2,则a 4=a 22=1;令p =q =4,则a 8=a 24=1,所以a 9=a 8+1=a 1a 8=-1.答案:-15.(2019·杭州模拟)设数列{a n }的前n 项和S n =n 2,则a 8=________,a 2+a 3+a 4=________.解析:因为S n =n 2,所以a 8=S 8-S 7=82-72=15,a 2+a 3+a 4=S 4-S 1=42-1=15. 答案:15 15二保高考,全练题型做到高考达标1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π解析:选D 令n =1,2,3,…,逐一验证四个选项,易得D 正确.2.(2019·天台模拟)已知数列{a n }的前n 项和S n ,且满足S n =2a n -3(n ∈N *),则S 6=( ) A .192 B .189 C .96D .93解析:选B 因为S n =2a n -3,当n =1时,S 1=2a 1-3=a 1,解得a 1=3.当n ≥2时,a n =S n -S n -1=2a n -3-2a n -1+3=2a n -2a n -1,解得a na n -1=2.所以数列{a n }是首项为3,公比为2的等比数列,所以S 6=3(1-26)1-2=189.3.设数列{a n }的前n 项和为S n ,且S n +S n +1=a n +1(n ∈N *),则此数列是( ) A .递增数列 B .递减数列 C .常数列D .摆动数列解析:选C 因为S n +S n +1=a n +1,所以当n ≥2时,S n -1+S n =a n ,两式相减,得a n+a n +1=a n +1-a n ,所以有a n =0.当n =1时,a 1+a 1+a 2=a 2,所以a 1=0.所以a n =0.即数列是常数列.4.(2019·绍兴模拟)已知数列{a n }的通项公式a n =1n +n +1,若该数列的前n 项和为10,则项数n 的值为( )A .11B .99C .120D .121解析:选C 因为a n =1n +n +1=n +1-n ,所以该数列的前n 项和S n =n +1-1=10,解得n =120.5.(2018·丽水模拟)数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n<12,2a n-1,12≤a n<1,若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 由a 1=35∈⎣⎡⎭⎫12,1,得a 2=2a 1-1=15∈⎣⎡⎭⎫0,12,所以a 3=2a 2=25∈⎣⎡⎭⎫0,12,所以a 4=2a 3=45∈⎣⎡⎭⎫12,1,所以a 5=2a 4-1=35=a 1.由此可知,该数列是一个周期为4的周期数列,所以a 2 018=a 504×4+2=a 2=15.6.(2019·镇海模拟)已知数列{a n }满足a 1=2,a n +1=a 2n (a n >0,n ∈N *),则数列{a n }的通项公式a n =________.解析:对a n +1=a 2n 两边取对数,得log 2a n +1=log 2a 2n =2log 2a n .所以数列{log 2a n }是以log 2a 1=1为首项,2为公比的等比数列,所以log 2a n =2n -1,所以a n =22n -1.答案:22n -17.(2018·海宁模拟)已知数列{a n }满足a n +1+a n =2n -1,则该数列的前8项和为________.解析:S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=1+5+9+13=28. 答案:288.在一个数列中,如果对任意的n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知数列{a n }满足a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *).(1)求a 2,a 3的值; (2)证明:a n =3n -12.解:(1)因为a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *),所以a 2=32-1+1=4,a 3=33-1+a 2=9+4=13.(2)证明:因为a n =3n -1+a n -1(n ≥2,n ∈N *),所以a n -a n -1=3n -1,所以a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…+(a 2-a 1)+a 1 =3n -1+3n -2+…+3+1=3n -12(n ≥2,n ∈N *).当n =1时,a 1=3-12=1满足条件. 所以当n ∈N *时,a n =3n -12.10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 三上台阶,自主选做志在冲刺名校1.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行、第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵第10行、第3个数为97.答案:972.(2018·温州模拟)设函数f (x )=log 2x -log x 4(0<x <1),数列{a n }的通项公式a n 满足f (2a n )=2n (n ∈N *).(1)求数列{a n }的通项公式; (2)判定数列{a n }的单调性.解:(1)因为f (x )=log 2x -log x 4(0<x <1),f (2a n )=2n (n ∈N *) , 所以f (2a n )=log 22a n -log2a n 4=a n -2a n=2n ,且0<2a n <1, 解得a n <0.所以a n =n -n 2+2.(2)因为a n +1a n =(n +1)-(n +1)2+2n -n 2+2=n +n 2+2n +1+(n +1)2+2<1.因为a n <0,所以a n +1>a n . 故数列{a n }是递增数列.第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题体验]1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案:102.(2018·温州模拟)已知等差数列{a n }的前n 项和为S n ,若a 3=5,a 5=3,则a n =________;S 7=________.答案:-n +8 283.(2018·温州十校联考)在等差数列{a n }中,若a 3+a 4+a 5=12,则S 7=______.答案:281.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.[小题纠偏]1.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( ) A .(-3,+∞) B.⎝⎛⎭⎫-∞,-83 C.⎝⎛⎭⎫-3,-83 D.⎣⎡⎭⎫-3,-83 答案:D2.(2018·湖州模拟)设等差数列{a n }的前n 项和为S n ,已知a 3=16,a 6=10,则公差d =________;S n 取到最大时的n 的值为________.解析:因为数列{a n }是等差数列,且a 3=16,a 6=10,所以公差d =a 6-a 36-3=-2,所以a n =-2n +22,要使S n 能够取到最大值,则需a n =-2n +22≥0,所以解得n ≤11.所以可知使得S n 取到最大时的n 的值为10或11.答案:-2 10或11考点一 等差数列的基本运算(基础送分型考点——自主练透)[题组练透]1.(2017·嘉兴二模)设S n 为等差数列{a n }的前n 项和,若S 1S 4=110,则S 3S 5=( )A.25 B.35 C.37D.47解析:选A 设数列{a n }的公差为d ,因为S n 为等差数列{a n }的前n 项和,且S 1S 4=110,所以10a 1=4a 1+6d ,所以a 1=d .所以S 3S 5=3a 1+3d 5a 1+10d =6d 15d =25.2.设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( ) A .5 B .6 C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9或k =0(舍去),故选C.3.公差不为零的等差数列{a n }中,a 7=2a 5,则数列{a n }中第________项的值与4a 5的值相等.解析:设等差数列{a n }的公差为d ,∵a 7=2a 5,∴a 1+6d =2(a 1+4d ),则a 1=-2d ,∴a n =a 1+(n -1)d =(n -3)d ,而4a 5=4(a 1+4d )=4(-2d +4d )=8d =a 11,故数列{a n }中第11项的值与4a 5的值相等.答案:114.(2019·绍兴模拟)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=______,公差d =________.解析:由S 2=S 6,得S 6-S 2=a 3+a 4+a 5+a 6=4a 1+14d =0,即2a 1+7d =0.由S 55-S 44=2,得52(a 1+a 5)5-42(a 1+a 4)4=12(a 5-a 4)=12d =2,解得d =4,所以a 1=-14.答案:-14 4[谨记通法]等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.解决这些问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想. 考点二 等差数列的判断与证明(重点保分型考点——师生共研)[典例引领](2019·温州模拟)已知数列{a n }中,a 1=12,a n +1=1+a n a n +12(n ∈N *).(1)求证:⎩⎨⎧⎭⎬⎫1a n -1是等差数列;(2)求数列{a n }的通项公式.解:(1)证明:因为对于n ∈N *,a n +1=1+a n a n +12, 所以a n +1=12-a n, 所以1a n +1-1-1a n -1=112-a n-1-1a n -1=2-a n -1a n -1=-1.所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为1a 1-1=-2,公差为-1的等差数列.(2)由(1)知1a n -1=-2+(n -1)(-1)=-(n +1), 所以a n -1=-1n +1, 即a n =n n +1. [由题悟法]等差数列的判定与证明方法已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式. 解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2+1a n ,∴b n +1-b n =2+1a n -1a n =2.又b 1=1a 1=1,∴数列{b n }是首项为1,公差为2的等差数列. (2)由(1)知数列{b n }的通项公式为 b n =1+(n -1)×2=2n -1, 又b n =1a n,∴a n =1b n=12n -1. ∴数列{a n }的通项公式为a n =12n -1. 考点三 等差数列的性质及最值(重点保分型考点——师生共研)[典例引领]1.(2019·宁波模拟)在等差数列{a n }中,若a 9a 8<-1,且其前n 项和S n 有最小值,则当S n >0时,n 的最小值为( )A .14B .15C .16D .17解析:选C ∵数列{a n }是等差数列,它的前n 项和S n 有最小值,∴公差d >0,首项a 1<0,{a n } 为递增数列,∵a 9a 8<-1,∴a 8·a 9<0,a 8+a 9>0,由等差数列的性质知2a 8=a 1+a 15<0,a 8+a 9=a 1+a 16>0.∵S n =(a 1+a n )n2,∴当S n >0时,n 的最小值为16. 2.(2018·嘉兴一中模拟)设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足a n >0的最大n 的值为______,满足S k S k +1<0的正整数k =______.解析:由题可得a 6=S 6-S 5>0,a 7=S 7-S 6<0,所以使得a n >0的最大n 的值为6.又a 6+a 7=S 7-S 5>0,则S 11=11(a 1+a 11)2=11a 6>0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,S 13=13(a 1+a 13)2=13a 7<0,因为{a n }是递减的等差数列,所以满足S k S k +1<0的正整数k =12. 答案:6 12[由题悟法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时应用]1.(2018·浙江新高考联盟)已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.310 B.37 C.13D.12解析:选A 因为数列{a n }是等差数列,所以S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列,因为S 4S 8=13,所以不妨设S 4=1,则S 8=3,所以S 8-S 4=2,所以S 16=1+2+3+4=10,所以S 8S 16=310.2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18一抓基础,多练小题做到眼疾手快1.(2018·杭州模拟)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4.则数列{a n }的通项公式为( )A .a n =2n -1B .a n =-2n +3C .a n =2n -1或-2n +3D .a n =2n解析:选A 设数列{a n }的公差为d ,由a 3=a 22-4可得1+2d =(1+d )2-4,解得d =±2.因为数列{a n }是递增数列,所以d >0,故d =2.所以a n =1+2(n -1)=2n -1.2.(2018·舟山期末)在等差数列{a n }中,若a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .25解析:选B 因为a 2=1,a 4=5,所以S 5=5(a 1+a 5)2=5(a 2+a 4)2=15. 3.(2019·缙云模拟)已知{a n }为等差数列,其公差d 为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( )A .-110B .-90C .90D .110解析:选D 设数列{a n }的首项为a 1,因为a 7是a 3与a 9的等比中项,所以(a 1-12)2=(a 1-4)(a 1-16),解得a 1=20.所以S 10=10a 1+45d =200-90=110.4.(2019·腾远调研)我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:________日相逢?解析:由题意知,良马每日行的距离成等差数列,记为{a n },其中a 1=103,d 1=13;驽马每日行的距离成等差数列,记为{b n },其中b 1=97,d 2=-0.5.设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m (m -1)×132+97m +m (m -1)×(-0.5)2=2×1 125,解得m =9(负值舍去).即二马需9日相逢.答案:95.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5二保高考,全练题型做到高考达标1.(2018·金丽衢十二校联考)已知正项数列{a n }中,a 1=1,a 2=2,当n ≥2,n ∈N *时,a n =a 2n +1+a 2n -12,则a 6=( ) A .2 2 B .4 C .16D .45解析:选B 因为a n =a 2n +1+a 2n -12,所以2a 2n =a 2n +1+a 2n -1,即a 2n +1-a 2n =a 2n -a 2n -1,所以数列{a 2n }是等差数列,公差d =a 22-a 21=4-1=3,所以a 2n =1+3(n -1)=3n -2,所以a n =3n -2,所以a 6=18-2=4.2.(2018·浙江五校联考)等差数列{a n }中,a 1=0,等差d ≠0,若a k =a 1+a 2+…+a 7,则实数k =( )A .22B .23C .24D .25解析:选A 因为a 1=0,且a k =a 1+a 2+…+a 7, 即(k -1)d =21d ,又因为d ≠0,所以k =22.3.(2018·河南六市一联)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A.114 B.32 C.72D .1解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,又{a n }和{S n}都是等差数列,且公差相同,∴⎩⎨⎧d = d 2,a 1-d2=0,解得⎩⎨⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(2018·东阳模拟)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A nB n=7n +45n +3,则使得a nb n 为整数的正整数的个数为( )A .2B .3C .4D .5解析:选D 由A n B n =7n +45n +3,可得a n b n =A 2n -1B 2n -1=7n +19n +1=7+12n +1,所以要使a n b n为整数,则需12n +1为整数,所以n =1,2,3,5,11,共5个. 5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0, 解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.(2019·台州中学期中)已知等差数列{a n }的前n 项和为S n ,若a 2=18,S 18=54,则a 17=________,S n =__________.解析:设等差数列{a n }的首项为a 1,公差为d ,因为a 2=18,S 18=54,所以⎩⎪⎨⎪⎧a 1+d =18,18a 1+18×172d =54,解得a 1=20,d =-2.所以a 17=a 1+16d =20-32=-12,S n =na 1+n (n -1)2d =-n 2+21n .答案:-12 -n 2+21n7.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 8.(2018·金华浦江适考)设数列{a n },{b n }的前n 项和分别为S n ,T n ,其中a n =-3n +20,b n =|a n |,则使T n =S n 成立的最大正整数n 为________,T 2 018+S 2 018=________.解析:根据题意,数列{a n }中,a n =-3n +20,则数列{a n }是首项为17,公差为-3的等差数列,且当n ≤6时,a n >0,当n ≥7时,a n <0,又由b n =|a n |,当n ≤6时,b n =a n ,当n ≥7时,b n =-a n ,则使T n =S n 成立的最大正整数为6,T 2 018+S 2 018=(a 1+a 2+…+a 6+a 7+a 8+…+a 2 018)+(b 1+b 2+…+b 6+b 7+b 8+…+b 2 018)=2(a 1+a 2+…+a 6)=(17+2)×6=114.答案:6 1149.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n . 解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k . 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1), 则b n =S nn=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2. 10.(2018·南昌调研)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0.当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列, 所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(2018·浙江五校联考)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 为数列{a n }的前n 项和,则2S n +16a n +3的最小值为________.解析:设公差为d .因为a 1,a 3,a 13成等比数列,所以(1+2d )2=1+12d ,解得d =2.所以a n =2n -1,S n =n 2.所以2S n +16a n +3=2n 2+162n +2=n 2+8n +1.令t =n +1,则原式=t 2+9-2t t =t +9t -2.因为t ≥2,t ∈N *,所以当t =3,即n =2时,⎝ ⎛⎭⎪⎫2S n +16a n +3min=4.答案:42.已知数列{a n }满足a n +1+a n =4n -3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值; (2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3, ∴2dn +(2a 1-d )=4n -3, 即2d =4,2a 1-d =-3, 解得d =2,a 1=-12.法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1, ∴2d =a n +2-a n =(a n +2+a n +1)-(a n +1+a n ) =4n +1-(4n -3)=4, ∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=4×1-3=1, ∴a 1=-12.(2)由题意,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n ) =2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52.②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7) =2n 2-3n 2.第三节等比数列及其前n 项和1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . [小题体验]1.(教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4,…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列C .公比为q 3的等比数列D .不一定是等比数列答案:B2.(2018·台州模拟)已知等比数列{a n }各项都是正数,且a 4-2a 2=4,a 3=4,则a n =________;S 10=________.解析:设公比为q ,因为a 4-2a 2=4,a 3=4, 所以有4q -8q =4,解得q =2或q =-1. 因为q >0,所以q =2.所以a 1=a 3q 2=1,a n =a 1q n -1=2n -1.所以S 10=1-2101-2=210-1=1 023.答案:2n -1 1 0233.在数列{a n }中,a 1=1,a n +1=3a n (n ∈N *),则a 3=______;S 5=_________. 答案:9 1211.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.[小题纠偏]1.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4D .±4解析:选C a 25=a 3a 7=2×8=16,∴a 5=±4,又∵a 5=a 3q 2>0,∴a 5=4. 2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 答案:-12或1考点一 等比数列的基本运算(重点保分型考点——师生共研)[典例引领]1.(2018·绍兴模拟)等比数列{a n }的公比为2,前n 项和为S n .若1+2a 2=S 3,则a 1=( ) A .17 B.15 C.13D .1解析:选C 由题可得,1+4a 1=a 1+2a 1+4a 1,解得a 1=13.2.(2018·杭二中仿真)各项都是正数的等比数列{a n }中,若a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( ) A.5+12B.5-12C.1-52D.5+12或1-52解析:选B 设数列{a n }的公比为q (q >0,q ≠1),由a 2,12a 3,a 1成等差数列可得a 3=a 2+a 1,所以有q 2-q -1=0,解得q =5+12(负值舍去).所以a 3+a 4a 4+a 5=1q =5-12. [由题悟法]解决等比数列有关问题的2种常用思想1.(2019·浙北联考)设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4 C.152D.172解析:选C 因为q =2,所以S 4a 2=a 1+a 2+a 3+a 4a 2=1+q +q 2+q 3q =1+2+4+82=152.2.(2018·宁波模拟)已知等比数列{a n }满足a 2=14,a 2a 8=4(a 5-1),则a 4+a 5+a 6+a 7+a 8的值为( )A .20B .31C .62D .63解析:选B 因为a 2a 8=a 25=4(a 5-1),解得a 5=2.所以q =2.所以a 4+a 5+a 6+a 7+a 8=1+2+4+8+16=31.3.(2018·杭州二检)设各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=80,S 2=8,则公比q =________,a 5=________.解析:由题可得,设数列{a n }的公比为q (q >0,q ≠1),根据题意可得a 1(1-q 4)1-q =80,a 1(1-q 2)1-q=8,解得a 1=2,q =3,所以a 5=a 1q 4=2×34=162. 答案:3 162考点二 等比数列的判定与证明(重点保分型考点——师生共研)[典例引领](2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.[由题悟法]等比数列的4种常用判定方法选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[即时应用](2018·衢州模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若数列{b n }满足b n =a n +1-2a n ,求证:{b n }是等比数列.证明:因为S n +1=4a n +2, 所以S 2=a 1+a 2=4a 1+2,又a 1=1,所以a 2=5,b 1=a 2-2a 1=3, 当n ≥2时,S n =4a n -1+2. 所以S n +1-S n =a n +1=4a n -4a n -1. 因为b n =a n +1-2a n , 所以当n ≥2时,b n b n -1=a n +1-2a n a n -2a n -1=4a n -4a n -1-2a n a n -2a n -1=2(a n -2a n -1)a n -2a n -1=2. 所以{b n }是以3为首项,2为公比的等比数列.考点三 等比数列的性质(重点保分型考点——师生共研)[典例引领]1.(2018·宁波模拟)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=( )A .1B .2C .4D .8解析:选D 由等差数列的性质,得a 6+a 8=2a 7. 由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.2.若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.解析:由题可得,S 2,S 4-S 2,S 6-S 4,S 8-S 6成等比数列,因为S 4S 2=5,不妨设S 2=1,则S 4=5,所以S 4-S 2=4, 所以S 8=1+4+16+64=85, 所以S 8S 4=855=17.答案:17[由题悟法]等比数列的性质可以分为3类1.(2018·诸暨模拟)已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20.则该数列的前9项和为( )A .50B .70C .80D .90解析:选B 由等比数列的性质得S 3,S 6-S 3,S 9-S 6也成等比数列,由S 3=40,S 6-S 3=20,知公比为12,故S 9-S 6=10,S 9=70.2.(2018·浙江联盟模拟)已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5=________;a 4的最大值为________.解析:因为a n >0,a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25,所以a 3+a 5=5,所以a 3+a 5=5≥2a 3a 5=2a 4,所以a 4≤52.即a 4的最大值为52.答案:552一抓基础,多练小题做到眼疾手快1.(2018·舟山模拟)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( )A .-3B .±3C .-3 3D .±3 3解析:选C 因为-1,x ,y ,z ,-3成等比数列,由等比数列的性质及等比中项可知,xz =3,y 2=3,且y 与-1,-3符号相同,所以y =-3,所以xyz =-3 3.2.(2019·湖州六校联考)已知等比数列的前n 项和为54,前2n 项和为60,则前3n 项和为( )A .66B .64C .6623D .6023解析:选D 因为等比数列中,S n ,S 2n -S n ,S 3n -S 2n 成等比数列,所以54(S 3n -60)=36,解得S 3n =6023.3.(2018·金华十校联考)在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为( ) A .10 B .25C .50D .75解析:选B 因为a 7a 12=a 8a 11=a 9a 10=5,所以a 8a 9a 10a 11=52=25.4.(2018·浙江名校协作体测试)设等比数列{a n }的前n 项和为S n ,且对任意的正整数n ,均有S n +3=8S n +3,则a 1=_________,公比q =________.解析:因为S n +3=8S n +3,所以当n ≥2时,S n +2=8S n -1+3,两式相减,可得a n +3=8a n ,所以q 3=8,解得q =2;当n =1时,S 4=8S 1+3,即15a 1=8a 1+3,解得a 1=37.答案:3725.(2018·永康适应性测试)数列{a n }的前n 项和为S n ,S n =2a n +n ,则a 1=______,数列{a n }的通项公式a n =_______.解析:因为S n =2a n +n ,所以当n =1时,S 1=a 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n +n -2a n -1-n +1,即a n =2a n -1-1,即a n -1=2(a n -1-1),所以数列{a n -1}是以-2为首项,2为公比的等比数列,所以a n -1=-2n ,所以a n =1-2n .答案:-1 1-2n二保高考,全练题型做到高考达标1.(2019·浙大附中模拟)已知数列{a n }的前n 项和为S n ,且a n +1=pS n +q (n ∈N *,p ≠-1),则“a 1=q ”是“{a n }为等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为a n +1=pS n +q ,所以当n ≥2时,a n =pS n -1+q ,两式相减得a n +1-a n =pa n ,即当n ≥2时,a n +1a n =1+p .当n =1时,a 2=pa 1+q .所以当a 1=q 时,a 2a 1=1+p ,满足上式,故数列{a n }为等比数列,所以是充分条件;当{a n }为等比数列时,有a 2=pa 1+q =(1+p )a 1,解得a 1=q ,所以是必要条件,从而选C.2.(2019·乐清模拟)设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( )A .44B .45 C.46-13D.45-13解析:选B 因为a 1=1,a n +1=3S n =S n +1-S n ,所以S n +1=4S n ,所以数列{S n }是首项为S 1=a 1=1,公比为4的等比数列,所以S 6=45.3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.15解析:选A ∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是以公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.4.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为( )A .7B .8C .9D .10解析:选B 设该女子第一天织布x 尺,则x (1-25)1-2=5,得x =531,∴前n 天所织布的尺数为531(2n -1).由531(2n -1)≥30,得2n ≥187,则n 的最小值为8.5.(2019·金华模拟)设A n ,B n 分别为等比数列{a n },{b n }的前n 项和.若A n B n =12n +1,则a 7b 3=( )。
数列概念及其表示

解:由 a1=2,an+1=2an,得 a2=2a1=4=22,a3=2a2=2·22=23, a4=2a3=2·23=24. 猜想 an=2n(n∈N*). 证明如下: 由 a1=2,an+1=2an,
得aan-n 1=aann--12=…=aa32=aa21=2(n≥2). ∴an=aan-n 1·aann--12·…·aa32·aa21·a1=2·2·…·2·2=2n. 又当 n=1 时,a1=21=2 成立, ∴an=2n(n∈N*).
跟踪练习
1.已知数列{an}分别满足下列条件,写出它的前五项,并归 纳出各数列的一个通项公式.
(1)a1=0,an+1=an+(2n-1); (2)a1=1,an+1=a2n+an2.
解:(1)∵a1=0,an+1=an+(2n-1), ∴a2=a1+(2×1-1)=1, a3=a2+(2×2-1)=4, a4=a3+(2×3-1)=9, a5=a4+(2×4-1)=16, ∴它的前五项为 0,1,4,9,16,此数列又可写成 (1-1)2,(2-1)2,(3-1)2,(4-1)2,(5-1)2,… 故该数列的一个通项公式为 an=(n-1)2.
1. 已 知 函 数 f (x) log 2 x log x 4, (0 x 1) , 数 列 {an} 满 足
f (2an ) 2n
(1)求 an; (2)判断数列{an}的单调性。
2. 数列{an}满足 an n2 kn 1是增数列,求 k 的取值范围。
3.
数列{an}满足 an
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1) +a1
=12[(n-1 1-n+1 1)+(n-1 2-1n)+…+(12-14)+(1-13)]+ 1=12(-n+1 1-1n+12+1)+1
高中数学 数列专题

高中数学-数列专题第1讲数列的概念及其表示 (1)第2讲等差数列及前n项和 (16)第3讲等比数列及前n项和 (31)第4讲数列求和、数列的综合应用 (46)第1讲数列的概念及其表示考点一数列的概念及其表示方法知识点1数列的定义(1)按照一定顺序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为这个数列的第一项,也叫首项.(2)数列与函数的关系从函数观点看,数列可以看成:以正整数集N*或N*的有限子集{1,2,3,…,n}为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.2数列的表示方法3数列的分类注意点数列图象是一些孤立的点数列作为一种特殊的函数,由于它的定义域为正整数集N*或它的有限子集,所以它的图象是一系列孤立的点.入门测1.思维辨析(1)数列{a n}和集合{a1,a2,a3,…,a n}表达的意义相同.()(2)所有数列的第n项都能使用公式表达.()(3)根据数列的前几项归纳出数列的通项公式可能不止一个.()(4)数列:1,0,1,0,1,0,…,通项公式只能是a n=1+(-1)n+12.()答案(1)×(2)×(3)√(4)×2.数列13,18,115,124,…的一个通项公式为()A.a n=12n+1B.a n=1n+2C.a n=1n(n+2)D.a n=12n-1答案 C解析观察知a n=1(n+1)2-1=1n(n+2).3.若数列{a n}中,a1=3,a n+a n-1=4(n≥2),则a2015的值为()A.1 B.2C.3 D.4答案 C解析因为a1=3,a n+a n-1=4(n≥2),所以a1=3,a2=1,a3=3,a4=1,…,显然当n是奇数时,a n=3,所以a2015=3.解题法[考法综述]利用归纳法求数列的通项公式,或给出递推关系式求数列中的项,并研究数列的简单性质.命题法数列的概念和表示方法及单调性的判断典例(1)已知数列{a n}的通项公式为a n=n2-2λn(n∈N*),则“λ<1”是“数列{a n}为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)写出下面各数列的一个通项公式:①3,5,7,9,…; ②1,3,6,10,15,…;③-1,32,-13,34,-15,36,…;④3,33,333,3333,….[解析] (1)若数列{a n }为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是有3>2λ,λ<32.由λ<1可得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件,故选A.(2)①各项减去1后为正偶数,所以a n =2n +1. ②将数列改写为1×22,2×32,3×42,4×52,5×62,…因而有a n =n (n +1)2,也可逐差法a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式累加得a n =n (n +1)2.③奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1, 所以a n =(-1)n·2+(-1)nn.④将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).[答案] (1)A (2)见解析【解题法】 归纳法求通项公式及数列单调性的判断(1)求数列的通项公式实际上是寻找数列的第n 项与序号n 之间的关系,常用技巧有:①借助于(-1)n 或(-1)n +1来解决项的符号问题.②项为分数的数列,可进行恰当的变形,寻找分子、分母各自的规律以及分子、分母间的关系.③对较复杂的数列的通项公式的探求,可采用添项、还原、分割等方法,转化为熟知的数列,如等差数列、等比数列等来解决.④根据图形特征写出数列的通项公式,首先,要观察图形,寻找相邻的两个图形之间的变化;其次,要把这些变化同图形的序号联系起来,发现其中的规律;最后,归纳猜想出通项公式.(2)数列单调性的判断方法①作差比较法:a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n =0⇔数列{a n }是常数列.②作商比较法:当a n >0时,则a n +1a n >1⇔数列{a n }是单调递增数列;a n +1a n<1⇔数列{a n }是单调递减数列;a n +1a n=1⇔数列{a n }是常数列. 当a n <0时,则a n +1a n >1⇔数列{a n }是单调递减数列;a n +1a n <1⇔数列{a n }是单调递增数列;a n +1a n=1⇔数列{a n }是常数列.③结合相应函数的图象直观判断数列的单调性.对点练1.设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >0答案 C解析 ∵数列{2a 1a n }为递减数列,∴2 a 1a n >2 a 1a n +1,n ∈N *,∴a 1a n >a 1a n +1,∴a 1(a n +1-a n )<0.∵{a n }为公差为d 的等差数列,∴a 1d <0.故选C.2.下列可以作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2D .a n =(-1)n -1+32答案 C解析 A 项显然不成立;n =1时,a 1=-1+12=0,故B 项不正确;n =2时,a 2=(-1)2-1+32=1,故D 项不正确.由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…,故选C. 3.下列关于星星的图案构成一个数列,该数列的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n (n +2)2答案 C解析 解法一:令n =1,2,3,4,验证选项知选C.解法二:a 1=1,a 2=a 1+2,a 3=a 2+3,a 4=a 3+4,…,a n =a n -1+n . ∴(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)=n +(n -1)+…+3+2.因此a n =1+2+3+…+n =n (n +1)2.考点二 数列的通项公式知识点1 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).2 已知递推关系式求通项一般用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.注意点 已知S n 求a n 时应注意的问题(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1中需n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合“a n 式”,则需统一“合写”. (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合“a n 式”,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).入门测1.思维辨析(1)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) (2)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( ) (3)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( )答案 (1)√ (2)√ (3)√ 2.数列{a n }中,a 1=1,a n =1a n -1+1,则a 4等于( )A.53B.43 C .1 D.23答案 A解析 由a 1=1,a n =1a n -1+1得,a 2=1a 1+1=2,a 3=1a 2+1=12+1=32,a 4=1a 3+1=23+1=53.故选A.3.在正项数列{a n }中,若a 1=1,且对所有n ∈N *满足na n +1-(n +1)a n =0,则a 2015=( ) A .1011 B .1012 C .2014 D .2015答案 D解析 由a 1=1,na n +1-(n +1)a n =0可得a n +1a n =n +1n ,得到a 2a 1=21,a 3a 2=32,a 4a 3=43,…,a n +1a n=n +1n ,上述式子两边分别相乘得a 2a 1×a 3a 2×a 4a 3×…×a n +1a n =a n +1=21×32×43×…×n +1n =n +1,故a n =n ,所以a 2015=2015,故选D.解题法[考法综述] 高考以考查a n 与S n 的关系为主要目标以求通项公式a n 为问题形式,特别是给出递推公式如何构造数列求通项公式作为一个重难点和命题热点.命题法 由S n 求a n 或由递推关系式求a n典例 (1)若数列{a n }的前n 项和S n =2n 2+3n ,则此数列的通项公式为a n =________. (2)已知数列{a n }的前n 项和为S n 满足a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,求S n .[解析] (1)当n =1时, a 1=S 1=2×12+3×1=5;当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1.当n =1时,4×1+1=5=a 1,∴a n =4n +1.(2)∵当n ≥2,n ∈N *时,a n =S n -S n -1, ∴S n -S n -1+2S n S n -1=0,即1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是公差为2的等差数列,又S 1=a 1=12,∴1S 1=2,∴1S n =2+(n -1)·2=2n , ∴S n =12n.[答案] (1)4n +1 (2)见解析 【解题法】 求通项公式的方法 (1)由S n 求a n 的步骤 ①先利用a 1=S 1求出a 1.②用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n的表达式.③对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.(2)由递推公式求通项公式的常见类型与方法①形如a n +1=a n +f (n ),常用累加法.即利用恒等式a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)求通项公式.②形如a n +1=a n f (n ),常用累乘法,即利用恒等式a n =a 1·a 2a 1·a 3a 2·…·a na n -1求通项公式.③形如a n +1=ba n +d (其中b ,d 为常数,b ≠0,1)的数列,常用构造法.其基本思路是:构造a n +1+x =b (a n +x )⎝⎛⎭⎫其中x =db -1,则{a n +x }是公比为b 的等比数列,利用它即可求出a n .④形如a n +1=pa n qa n +r (p ,q ,r 是常数)的数列,将其变形为1a n +1=r p ·1a n +qp .若p =r ,则⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为q p ,可用公式求通项;若p ≠r ,则采用③的办法来求.⑤形如a n +2=pa n +1+qa n (p ,q 是常数,且p +q =1)的数列,构造等比数列.将其变形为a n +2-a n +1=(-q )·(a n +1-a n ),则{a n -a n -1}(n ≥2,n ∈N *)是等比数列,且公比为-q ,可以求得a n-a n -1=f (n ),然后用累加法求得通项.⑥形如a 1+2a 2+3a 3+…+na n =f (n )的式子, 由a 1+2a 2+3a 3+…+na n =f (n ),①得a 1+2a 2+3a 3+…+(n -1)a n -1=f (n -1),② 再由①-②可得a n .对点练1.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.答案2011解析 由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2, 则1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2⎝⎛⎭⎫1-111=2011. 2.已知数列{a n }满足a 1=1,a n +1=3a n +2,则数列{a n }的通项公式为________. 答案 a n =2·3n -1-1解析 ∵a n +1=3a n +2,∴a n +1+1=3(a n +1). ∴a n +1+1a n +1=3,∴数列{a n +1}是等比数列,公比q =3.又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.3.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为________.答案 a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=-1; 当n ≥2时,a n =S n -S n -1=2n -1,∴a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.4.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3. 可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即 2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知 b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n =12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3 =n3(2n +3).5.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N *,且S n 的最大值为8.试确定常数k ,并求数列{a n }的通项公式.解 因为S n =-12n 2+kn =-12(n -k )2+12k 2,其中k 是常数,且k ∈N *,所以当n =k 时,S n取最大值12k 2,故12k 2=8,k 2=16,因此k =4,从而S n =-12n 2+4n .当n =1时,a 1=S 1=-12+4=72;当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n 2+4n -⎣⎡⎦⎤-12(n -1)2+4(n -1)=92-n .当n=1时,92-1=72=a1,所以a n=92-n.微型专题数列中的创新题型创新考向以数列为背景的新定义问题是高考命题创新型试题的一个热点,考查频次较高.命题形式:常见的有新定义、新规则等.创新例题把1,3,6,10,15,21,…这些数叫做三角形数,这是因为以这些数目的点可以排成一个正三角形(如图).则第7个三角形数是()A.27 B.28C.29 D.30答案 B解析由图可知,第7个三角形数是1+2+3+4+5+6+7=28.创新练习1.将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2014项与5的差,即a2014-5=()A.2018×2012 B.2020×2013C.1009×2012 D.1010×2013答案 D解析观察图中的“梯形数”可得:a2-a1=4,a3-a2=5,a4-a3=6…a2014-a2013=2016,累加得:a2014-a1=4+5+6+…+2016=2013×20202=2013×1010,即a2014-5=2013×1010.2.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.答案28解析依题意得数列{a n}是周期为3的数列,且a1=1,a2=2,a3=4,因此a1+a2+a3+…+a12=4(a1+a2+a3)=4×(1+2+4)=28.3.对于E={a1,a2,...,a100}的子集X={a i1,a i2,...,a ik},定义X的“特征数列”为x1,x2,...,x100,其中x i1=x i2=...=x ik=1,其余项均为0,例如:子集{a2,a3}的“特征数列”为0,1,1,0,0, 0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于________.(2)若E的子集P的“特征数列”为p1,p2,…,p100满足p1=1,p i+p i+1=1,1≤i≤99.E的子集Q的“特征数列”为q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为________.答案(1)2(2)17解析(1)据“特征数列”定义知子集{a1,a3,a5}的特征数列为1,0,1,0,1,0,…,0,故其前三项和为2.(2)由定义知p1=1,p2=0,p3=1,p4=0…故集合P={a1,a3,a5,…,a99}={a i|i=2k+1,k∈N且k≤49},又q1=1,q2=q3=0,q4=1,q5=q6=0,q7=1,…,∴集合Q={a1,a4,a7,a10…}={a i|i=3k+1,k∈N且k≤33}.若a k∈P∩Q,则k=2k1+1=3k2+1,k1,k2∈N,k1≤49,k2≤33.即2k1=3k2,不妨设6k3=2k1=3k2,所以k1=3k3,k2=2k3,0≤3k3≤49,0≤2k3≤33,k3∈N,得k3∈{0,1,2,3,…,16},k =6k3+1,共有17个,P∩Q中元素个数为17.创新指导1.准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要求的形式,切忌同已有概念或定义相混淆.2.方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法.已知数列{a n}中,a n=n2-kn(n∈N*),且{a n}单调递增,则k的取值范围是________.[错解][错因分析]在解答的过程中虽然注意了数列的定义域为正整数集,但是不能用二次函数对称轴法来判断数列的单调性.因为数列的图象不是连续的,而是离散的点.[正解]由题意得a n+1-a n=2n+1-k,又{a n}单调递增,故2n+1-k>0恒成立,即k<2n +1(n∈N*)恒成立,解得k<3.[答案]k<3[心得体会]课时练基础组1.数列{a n}的通项a n=nn2+90,则数列{a n}中的最大值是()A.310 B.19C.119 D.1060答案 C解析因为a n=1n+90n,运用基本不等式得,1n+90n≤1290,由于n∈N*,不难发现当n=9或10时,a n=119最大,故选C.2.数列{a n}的前n项积为n2,那么当n≥2时,{a n}的通项公式为() A.a n=2n-1 B.a n=n2C.a n=(n+1)2n2D.a n=n2(n-1)2答案 D解析设数列{a n}的前n项积为T n,则T n=n2,当n≥2时,a n=T nT n-1=n2 (n-1)2.3.已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10等于() A.1 B.9C.10 D.55答案 A解析∵S n+S m=S n+m,a1=1,∴S1=1.可令m=1,得S n+1=S n+1,∴S n+1-S n=1.即当n≥1时,a n+1=1,∴a10=1.4.已知数列{a n}的前n项和为S n,且S n=2a n-1(n∈N*),则a5等于()A.-16 B.16C.31 D.32答案 B解析当n=1时,S1=2a1-1,∴a1=1.当n ≥2时,S n -1=2a n -1-1, ∴a n =2a n -2a n -1, ∴a n =2a n -1.∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16.5.已知数列{a n }满足a 0=1,a n =a 0+a 1+…+a n -1(n ≥1),则当n ≥1时,a n 等于( ) A .2n B.12n (n +1) C .2n -1 D .2n -1答案 C解析 由题设可知a 1=a 0=1,a 2=a 0+a 1=2. 代入四个选项检验可知a n =2n -1.故选C.6. 已知数列{a n }的通项公式为a n =(n +2)⎝⎛⎭⎫78n,则当a n 取得最大值时,n 等于( ) A .5 B .6 C .5或6 D .7答案 C解析 由题意知⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,∴⎩⎨⎧(n +2)⎝⎛⎭⎫78n≥(n +1)⎝⎛⎭⎫78n -1,(n +2)⎝⎛⎭⎫78n≥(n +3)⎝⎛⎭⎫78n +1.∴⎩⎪⎨⎪⎧n ≤6,n ≥5.∴n =5或6. 7.在数列{a n }中,a 1=1,a n +1-a n =2n +1,则数列的通项a n =________. 答案 n 2解析 ∵a n +1-a n =2n +1.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=(2n -1)+(2n -3)+…+5+3+1=n 2(n ≥2).当n =1时,也适用a n =n 2.8.已知数列{a n }的首项a 1=2,其前n 项和为S n .若S n +1=2S n +1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,3·2n -2,n ≥2解析 由S n +1=2S n +1,则有S n =2S n -1+1(n ≥2),两式相减得a n +1=2a n ,又S 2=a 1+a 2=2a 1+1,a 2=3,所以数列{a n }从第二项开始成等比数列,∴a n =⎩⎪⎨⎪⎧2,n =1,3·2n -2,n ≥2.9.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1)都成立,则S 10=________.答案 91解析 ∵⎩⎪⎨⎪⎧S n +1+S n -1=2S n +2,S n +2+S n =2S n +1+2,两式相减得a n +2+a n =2a n +1(n ≥2),∴数列{a n }从第二项开始为等差数列,当n =2时,S 3+S 1=2S 2+2,∴a 3=a 2+2=4,∴S 10=1+2+4+6+…+18=1+9(2+18)2=91. 10. 如图所示的图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是________.答案n (n +1)2解析 由已知,有a 1=1,a 2=3,a 3=6,a 4=10, ∴a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n , 各式相加,得a n -a 1=2+3+…+n , 即a n =1+2+…+n =n (n +1)2,故第n 个图形中小正方形的个数是n (n +1)2. 11.已知数列{a n }满足:a 1=1,2n -1a n =a n -1(n ∈N *,n ≥2). (1)求数列{a n }的通项公式;(2)这个数列从第几项开始及以后各项均小于11000? 解 (1)n ≥2时,a n a n -1=⎝⎛⎭⎫12n -1, 故a n =a n a n -1·…·a 3a 2·a 2a 1·a 1=⎝⎛⎭⎫12n -1·⎝⎛⎭⎫12n -2·…·⎝⎛⎭⎫122·⎝⎛⎭⎫121 =⎝⎛⎭⎫121+2+…+(n -1)=⎝⎛⎭⎫12(n -1)n 2,当n =1时,a 1=⎝⎛⎭⎫120=1,即n =1时也成立. ∴a n =⎝⎛⎭⎫12(n -1)n 2.(2)∵y =(n -1)n 在[1,+∞)上单调递增, ∴y =⎝⎛⎭⎫12(n -1)n 2在[1,+∞)上单调递减. 当n ≥5时,(n -1)n 2≥10,a n =⎝⎛⎭⎫12(n -1)n 2 ≤11024. ∴从第5项开始及以后各项均小于11000. 12.已知数列{a n }满足a n +1=⎩⎨⎧2a n ,0<a n≤12,2a n-1,12<a n<1,且a 1=67,求a 2015.解 ∵a 1=67∈⎝⎛⎭⎫12,1,∴a 2=2a 1-1=57. ∵a 2∈⎝⎛⎭⎫12,1,∴a 3=2a 2-1=37. ∵a 3∈⎝⎛⎭⎫0,12,∴a 4=2a 3=67=a 1, ∴{a n }是周期数列,T =3,∴a 2015=a 3×671+2=a 2=57.能力组13.已知数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则数列{a n }的通项公式为( )A .a n =2n +1B .a n =⎩⎪⎨⎪⎧14(n =1)2n +1(n ≥2)C .a n =2nD .a n =2n +2答案 B解析 由题意可知,数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则12a 1+122a 2+123a 3+…+12n -1a n -1 =2(n -1)+5,n >1,两式相减可得:a n2n =2n +5-2(n -1)-5=2,∴a n =2n +1,n >1,n ∈N *. 当n =1时,a 12=7,∴a 1=14,综上可知,数列{a n }的通项公式为:a n =⎩⎪⎨⎪⎧14(n =1),2n +1(n ≥2).故选B.14.在如图所示的数阵中,第9行的第2个数为________.答案 66解析 每行的第二个数构成一个数列{a n },由题意知a 2=3,a 3=6,a 4=11,a 5=18,则a 3-a 2=3,a 4-a 3=5,a 5-a 4=7,…,a n -a n -1=2(n -1)-1=2n -3,各式两边同时相加,得 a n -a 2=(2n -3+3)×(n -2)2=n 2-2n ,即a n =n 2-2n +a 2=n 2-2n +3(n ≥2),故a 9=92-2×9+3=66. 15.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∴b n=⎩⎨⎧23(n =1)1n (n ≥2).(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴{c n }是递减数列.16.已知数列{a n }中,a 1=12,a n +1=3a na n +3.(1)求a n ;(2)设数列{b n }的前n 项和为S n ,且b n ·n (3-4a n )a n =1,求证:12≤S n <1.解 (1)由已知得a n ≠0则由a n +1=3a n a n +3,得1a n +1=a n +33a n ,即1a n +1-1a n =13,而1a 1=2,∴⎩⎨⎧⎭⎬⎫1a n 是以2为首项,以13为公差的等差数列.∴1a n =2+13(n -1)=n +53,∴a n =3n +5. (2)证明:∵b n ·n (3-4a n )a n =1,由(1)知a n =3n +5,∴b n =a n n (3-4a n )=1n (n +1)=1n -1n +1,∴S n =b 1+b 2+…+b n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=1-1n +1, 又∵n ≥1,∴n +1≥2,∴0<1n +1≤12. ∴12≤S n <1. 第2讲 等差数列及前n 项和 考点一 等差数列的概念及运算知识点1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b2. 3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和 等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列; 当d <0时,数列{a n }为递减数列; 当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.入门测1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( ) A .1 B.53 C .2 D .3答案 C 解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2. 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4.∵a 1=2,∴d =a 2-a 1=4-2=2. ∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50. (1)求通项a n ; (2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50.解得a 1=12,d =2.所以a n =2n +10; (2)由S n =na 1+n (n -1)2d ,S n =242, 得方程12n +n (n -1)2×2=242, 解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2, ∴b n +1-b n =a n +2-a n +1-(a n +1-a n ) =2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列. (2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1, ∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5, …,a n -a n -1=2n -3,累加法可得 a n -a 1=1+3+5+…+(2n -3)=(n -1)2, ∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立. (3)通项公式法:验证a n =pn +q . (4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( ) A .a 1d >0,dS 4>0 B .a 1d <0,dS 4<0 C .a 1d >0,dS 4<0 D .a 1d <0,dS 4>0 答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析 由已知得S 1=a 1,S 2=a 1+a 2=2a 1-1,S 4=4a 1+4×32×(-1)=4a 1-6,而S 1,S 2,S 4成等比数列,所以(2a 1-1)2=a 1(4a 1-6),整理得2a 1+1=0,解得a 1=-12.4.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解 (1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.考点二 等差数列的性质及应用知识点等差数列及其前n 项和的性质已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a 1+a n =a 2+a n -1=a 3+a n -2=…=a k +a n -k +1=….(2)等差数列{a n }中,当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *). 特别地,若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *).(3)相隔等距离的项组成的数列是等差数列,即a k ,a k +m ,a k +2m ,…仍是等差数列,公差为md (k ,m ∈N *).(4)S n ,S 2n -S n ,S 3n -S 2n ,…也成等差数列,公差为n 2d .(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a na n +1.②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=nn -1.(7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a mb m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .入门测1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( ) (3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( ) A .12 B .18 C .22 D .44答案 C解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13. 由a 3+a 6+a 9=27,得3a 6=27,a 6=9. 所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C. [答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a mn -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.(2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m+a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1.从而S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0, 即⎩⎨⎧a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. 解法四:由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大. 【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *. (2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0 答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确. 2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能. ∴a 2012>0,a 2013<0. 再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0,而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,则a nb n =( )A.23 B.2n -13n -1 C.2n +13n +1D.2n -13n +4答案 B解析 a n b n =2a n2b n =2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________. 答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝⎛⎭⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c . 解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4. 所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1. (3)由(2)知S n =2n 2-n ,所以b n =S nn +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c. 因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c, 所以2c 2+c =0,所以c =-12或c =0(舍去),故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32.∴当n =1或n =2时,S 1=S 2且最小. [心得体会]课时练 基础组1.已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A. 2.已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C.3.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 A解析由已知式2a n+1=1a n+1a n+2可得1a n+1-1a n=1a n+2-1a n+1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a1=1,公差为1a2-1a1=2-1=1的等差数列,所以1a n=n,即a n=1n.4.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9=()A.63 B.45C.36 D.27答案 B解析S3=9,S6-S3=36-9=27,根据S3,S6-S3,S9-S6成等差数列,S9-S6=45,S9-S6=a7+a8+a9=45,故选B.5.已知等差数列{a n}中,前四项和为60,最后四项和为260,且S n=520,则a7=() A.20 B.40C.60 D.80答案 B解析前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n=520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a7是中间项,所以a7=40.6.已知等差数列{a n}的前n项和为S n,且S4S2=4,则S6S4=()A.94 B.32C.53D.4答案 A解析由S4S2=4,可设S2=x,S4=4x.∵S2,S4-S2,S6-S4成等差数列,∴2(S4-S2)=S2+(S6-S4).则S6=3S4-3S2=12x-3x=9x,因此,S6S4=9x4x=94.7.设等差数列{a n}的前n项和为S n,若a1=-3,a k+1=32,S k=-12,则正整数k=______.答案13解析由S k+1=S k+a k+1=-12+32=-212,又S k+1=(k+1)(a1+a k+1)2=(k+1)⎝⎛⎭⎫-3+322=-212,解得k=13.8.设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n ,∴S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________. 答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39. 10设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝⎛⎭⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝⎛⎭⎫a 2a 12=3+2 2. 11.等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52. 因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛ 110-3n -⎭⎫113-3n=13⎝⎛⎭⎫110-3n -110=n10(10-3n ).12.已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.解 数列{a n }不是等差数列,a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, ∴S n -S n -1+2S n S n -1=0(n ≥2), ∴1S n -1S n -1=2(n ≥2),又S 1=a 1=12, ∴⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. ∴1S n =2+(n -1)×2=2n ,故S n =12n. ∴当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),∴a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1).∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.能力组13.已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4答案 D解析 由2a 2n =a 2n +1+a 2n -1(n ≥2)可得,数列{a 2n }是首项为a 21=1,公差为a 22-a 21=3的等差数列,由此可得a 2n =1+3(n -1)=3n -2,即得a n =3n -2,∴a 6=3×6-2=4,故应选D.14.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21答案 B 解析 ∵a 11a 10<-1,且S n 有最大值, ∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.。
数列的概念与常见类型

数列的概念与常见类型数列是数学中的重要概念,它是按照一定规律排列的一组数。
数列的类型多种多样,常见的有等差数列、等比数列、斐波那契数列等。
本文将介绍数列的基本概念,并详细阐述常见的数列类型及其特点。
一、数列的概念与性质数列是指按照一定次序排列的一组数,其中每一个数被称为数列的项。
数列可以表示为{a₁, a₂, a₃, ...},其中a₁、a₂、a₃等分别表示第1项、第2项、第3项,以此类推。
数列的每一项都有自己的位置,也即项的序号。
数列可以有有限项,也可以有无限项。
有限项的数列在一个特定的位置停止,而无限项的数列则继续向后延伸。
数列的常见性质有首项、公差(对于等差数列)、公比(对于等比数列)、通项公式等。
二、等差数列等差数列是指数列中的任意两项之间的差值始终相等的数列。
等差数列的通项公式可表示为an = a₁ + (n-1)d,其中an表示第n项,a₁表示首项,d表示公差。
等差数列的公差决定了数列中每一项与前一项的差值。
等差数列常见的应用包括数学、物理、经济等领域。
例如,当我们计算等差数列中某一位置的值时,可以直接利用通项公式进行计算,而不需要一个个遍历数列的每一项。
此外,等差数列还可以用来表示一些增长或减少规律明显的现象。
三、等比数列等比数列是指数列中的任意两项之间的比值始终相等的数列。
等比数列的通项公式可表示为an = a₁ * r^(n-1),其中an表示第n项,a₁表示首项,r表示公比。
等比数列的公比决定了数列中每一项与前一项的比值。
等比数列在很多领域中都有重要的应用。
例如,当物体的速度以一定比例递减时,可以用等比数列来表示每个时间点上的速度。
此外,等比数列还可以用来表示一些指数增长或衰减的现象,如人口增长、细菌繁殖等。
四、斐波那契数列斐波那契数列是指数列中每一项都等于前两项之和的数列。
斐波那契数列的前两项通常为1,1或0,1,后续每一项都等于前两项之和。
斐波那契数列可以表示为{1, 1, 2, 3, 5, 8, 13, ...}。
高中数学-数列

二、数列的分类
分类原则
类型
满足条件
按项数分类
有穷数列 无穷数列
项数有限 项数无限
按项与项间的大小关 系分类
按其他标准分类
递增数列 递减数列 常数列 有界数列
摆动数列
an+1>an
an+1<an
其中 n∈N+
an+1=an
存在正数 M,使|an|≤M
从第二项起,有些项大于它的前一项,
有些项小于它的前一项的数列
12.若an 是等差数列,公差为d ,则ak、ak +m、ak +2m …(k,m∈N+)是公差为 md 的等差
数列
13.若数列 an
是等差数列,前
n
项和为
Sn
,则
Sn n
也是等差数列,其首项和 an
的首
项相同,公差是
an
公差的
1 2
14.若三个数成等差数列,则通常可设这三个数分别为 x − d, x, x + d ;若四个数成等差数
an−1
an
3.等比中项:如果三个数 x,G,y 组成等比数列,那么 G 叫做 x 与 y 的等比中项,其中
G= xy
二、等比数列的通项公式及前 n 项和公式
1.若等比数列an 的首项为a1 ,公比是 q ,则其通项公式为an = a1q n −1
通项公式的推广: an = amq n −m
( ) 2.等比数列的前 n 项和公式:当 q =1 时, Sn = na1
(2)若 f (n) 是关于 n 的指数函数,累加后可转化为等比数列求和
(3)若 f (n) 是关于 n 的二次函数,累加后可分组求和
(4)若 f (n) 是关于 n 的分式函数,累加后可裂项求和
数列的概念与简单表示法-1

§2.1数列的概念与简单表示法学习目标 1.理解数列及其有关概念(难点);2.理解数列的通项公式,并会用通项公式写出数列的任意一项(重点);3.对于比较简单的数列,会根据其前几项写出它的一个通项公式.4、理解数列的几种表示方法,能从函数的观点研究数列;5.理解递推公式的含义,能根据递推公式求出数列的前几项(重、难点).知识点一数列的概念1.数列与数列的项按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,……,排在第n位的数称为这个数列的第n项.2.数列的表示方式数列的一般形式可以写成a1,a2,…,a n,…,简记为{a n}.3.数列中的项的性质:(1)确定性;(2)可重复性;(3)有序性.知识点二数列的分类1.按项的个数分类2.按项的变化趋势分类知识点三数列的函数性质1.数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.2.在数列{an}中,若an+1>an,则{an}是递增数列;若an+1<an,则{an}为递减数列;若an+1=an,则{an}为常数列.知识点四数列的表示方法1、如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.2.数列的递推公式:如果数列{an}的第1项或前几项已知,并且数列{an}的任一项an与它的前一项an -1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式.3.数列的通项公式与递推公式有什么区别?题型一 数列的概念与分类规律方法 处理数列分类问题的技巧 (1)有穷数列与无穷数列.判断给出的数列是有穷数列还是无穷数列,只需观察数列是有限项还是无限项.若数列含有限项,则是有穷数列,否则为无穷数列. (2)数列的单调性若满足a n <a n +1(n ∈N *)则是递增数列;若满足a n >a n +1(n ∈N *)则是递减数列;若满足a n =a n +1(n ∈N *)则是常数列;若a n 与a n +1(n ∈N *)的大小不确定时,则是摆动数列.【例1】 (1)下列四个数列中,既是无穷数列又是递增数列的是( ) A.1,12,13,14,… B.sin π7,sin 2π7,sin 3π7,…C.-1,-12,-14,-18,… D.1,2,3,…,21(2)设函数f (x )=⎩⎨⎧(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫94,3 B.[94,3) C.(1,3) D.(2,3) 答案 (1)C (2)D【训练】 下列形式中哪些是数列?若是数列,哪些是有穷数列,哪些是无穷数列? (1){0,1,2,3,4};(2)0,1,2,3,4; (3)0,1,2,3,4,…;(4)1,-1,1,-1,1,-1,…; (5)6,6,6,6,6.解 (1)是集合,不是数列;(2)(3)(4)(5)是数列.其中(3)(4)是无穷数列,(2)(5)是有穷数列.题型二 数列的通项公式规律方法 1.根据数列的前几项求通项公式的思路 (1)统一项的结构,如都化成分数,根式等;(2)分析结构中变化的部分与不变的部分,探索变化部分的规律与对应序号间的函数关系式; (3)对于符号交替出现的情况,可先观察其绝对值,再用(-1)n 处理符号;(4)对于周期出现的数列,可考虑拆成几个简单数列和的形式,或者利用周期函数,如三角函数等.2.利用数列的通项公式求某项的方法数列的通项公式给出了第n项a n与它的位置序号n之间的关系,只要用序号代替公式中的n,就可以求出数列的相应项.3.判断某数值是否为该数列的项的方法先假定它是数列中的第n项,然后列出关于n的方程.若方程解为正整数,则是数列的一项;若方程无解或解不是正整数,则不是该数列的一项.方向1 根据通项公式写数列的项【例2-1】根据下面数列{a n}的通项公式,写出它的前5项:(1)a n=nn+1; (2)a n=(-1)n n.方向2 观察法求数列的通项公式【例2-2】根据数列的前几项,写出下面各数列的一个通项公式.(1)-3,0,3,6,9,…;(2)3,5,9,17,33,…;(3)2,0,2,0,2,0,…;(4)12,14,-58,1316,-2932,6164,….解(1) a n=-3+(n-1)×3=3n-6(n∈N*).(2)a n=2n+1(n∈N*).(3)a n=1+(-1)n-1(n∈N*).(4)a n=(-1)n 2n-32n(n∈N*).方向3 数列的通项公式的简单应用【例2-3】已知数列{a n}的通项公式为a n=1n(n+2)(n∈N*),则(1)计算a3+a4的值;(2)1120是不是该数列中的项?若是,应为第几项?若不是,说明理由.解(1)∴a3+a4=115+124=13120.(2)若1120为数列{a n}中的项,则1n(n+2)=1120,∴n(n+2)=120,∴n2+2n-120=0,∴n=10或n=-12(舍),即1120是数列{a n}的第10项.题型三 数列的函数特性1.已知数列{a n }的通项公式是a n =(n +1)⎝ ⎛⎭⎪⎫1011n,试问该数列有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解 法一 a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n =(9-n )⎝ ⎛⎭⎪⎫1011n11,当n <9时,a n +1-a n >0,即a n +1>a n ;当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 则a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…,故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.法二 根据题意,令⎩⎨⎧a n -1≤a na n ≥a n +1,即⎩⎨⎧n ×⎝ ⎛⎭⎪⎫1011n -1≤(n +1)⎝ ⎛⎭⎪⎫1011n (n +1)⎝ ⎛⎭⎪⎫1011n ≥(n +2)⎝ ⎛⎭⎪⎫1011n +1,解得9≤n ≤10.又n ∈N *,则n =9或n =10.故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.规律方法 1.由于数列是特殊的函数,所以可以用研究函数的思想方法来研究数列的相关性质,如单调性、最大值、最小值等,此时要注意数列的定义域为正整数集或其有限子集{1,2,…,n }这一条件.2.可以利用不等式组⎩⎨⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎨⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.【训练】 已知数列{a n }的通项公式为a n =nn 2+9(n ∈N *),写出其前5项,并判断数列{a n }的单调性.解 当n =1,2,3,4,5时,a n 依次为110,213,16,425,534, a n +1-a n =n +1(n +1)2+9-nn 2+9=-n 2-n +9[(n +1)2+9][n 2+9].∵函数f (x )=-x 2-x +9=-⎝⎛⎭⎪⎫x +122+374在[1,+∞)上单调递减,又f (1)=7>0,f (2)=3>0,f (3)<0,∴当n =1,2时,a n +1>a n ,当n ≥3,n ∈N *时,a n +1<a n , 即a 1<a 2<a 3>a 4>a 5>….∴数列{a n}的前3项是递增的,从第3项往后是递减的.题型四数列的递推数列规律方法 1.由递推公式写出通项公式的步骤(1)先根据递推公式写出数列的前几项(至少是前3项).(2)根据写出的前几项,观察归纳其特点,并把每一项统一形式.(3)写出一个通项公式并证明.2.递推公式的常见类型及通项公式的求法(1)求形如a n+1=a n+f(n)的通项公式.将原来的递推公式转化为a n+1-a n=f(n),再用累加法(逐差相加法)求解,即a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=a1+f(1)+f(2)+f(3)+…+f(n-1).(2)求形如a n+1=f(n)a n的通项公式.将原递推公式转化为an+1an=f(n),再利用累乘法(逐商相乘法)求解,即由a2a1=f(1),a3a2=f(2),…,an a n-1=f(n-1),累乘可得ana1=f(1)f(2)…f(n-1).方向1 由递推公式写出数列的项1、已知数列{a n}的第一项a1=1,以后的各项由递推公式a n+1=2a nan+2给出,试写出这个数列的前5项.解∵a1=1,a n+1=2a nan+2,∴a2=2a1a1+2=23,a3=2a2a2+2=2×2323+2=12,a4=2a3a3+2=2×1212+2=25,a 5=2a4a4+2=2×2525+2=13.故该数列的前5项为1,23,12,25,13.方向2 由数列的递推公式求通项公式2、已知数列{a n}满足a1=1,a n=a n-1+1n(n-1)(n≥2),写出该数列前5项,并归纳出它的一个通项公式.解∵a1=1,a n=a n-1+1n(n-1)(n≥2),∴a2=a1+12×1=1+12=32,a3=a2+13×2=32+16=53,a 4=a3+14×3=53+112=74,a5=a4+15×4=74+120=95.故数列的前5项分别为1,32,53,74,95.由于1=2×1-11,32=2×2-12,53=2×3-13,74=2×4-14,95=2×5-15,故数列{a n }的一个通项公式为a n =2n -1n=2-1n.方向3 构造数列法求通项公式3、设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________.法一 (累乘法):把(n +1)a 2n +1-na 2n +a n +1a n =0分解因式,得[(n +1)a n +1-na n ](a n +1+a n )=0. ∵a n >0,∴a n +1+a n >0,∴(n +1)a n +1-na n =0,∴a n +1a n =n n +1,∴a 2a 1·a 3a 2·a 4a 3·…·a na n -1=12×23×34×…×n -1n ,∴a n a 1=1n .又∵a 1=1,∴a n =1n a 1=1n . 法二 (迭代法):同法一,得a n +1a n =n n +1,∴a n +1=n n +1a n ,∴a n =n -1n ·a n -1=n -1n ·n -2n -1·a n -2=n -1n ·n -2n -1·n -3n -2·a n -3…=n -1n ·n -2n -1·n -3n -2·…·12a 1=1n a 1.又∵a 1=1,∴a n =1n .法三 (构造特殊数列法):同法一,得a n +1a n =nn +1, ∴(n +1)a n +1=na n ,∴数列{na n }是常数列,∴na n =1·a 1=1,∴a n =1n.练习1.下列叙述正确的是( D )A.数列1,3,5,7与7,5,3,1是相同的数列B.数列0,1,2,3,…可以表示为{n }C.数列0,1,0,1,…是常数列 D.数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n n +1是递增数列 2.数列2,3,4,5,…的一个通项公式为( B )A.a n =nB.a n =n +1C.a n =n +2D.a n =2n 解析 这个数列的前4项都比序号大1,所以,它的一个通项公式为a n =n +1. 3.数列-1,85,-157,249,…的一个通项公式是(D )A.a n =(-1)n·n 2+n 2n +1 B.a n =(-1)n·n 2+32n -1C.a n =(-1)n·(n +1)2-12n -1 D.a n =(-1)n ·n (n +2)2n +14.已知数列{a n }的通项公式a n =(-1)n -1·n2n -1,则a 1=________;a n +1=________.a 1=(-1)1-1×12×1-1=1,a n+1=(-1)n+1-1(n+1)2(n+1)-1=(-1)n(n+1)2n+1.答案 1(-1)n(n+1)2n+15.已知数列{a n}的通项公式为a n=-n2+n+110.(1)20是不是{a n}中的一项?(2)当n取何值时,a n=0.解(1)令a n=-n2+n+110=20,即n2-n-90=0,∴(n+9)(n-10)=0,∴n=10或-9(舍). ∴20是数列{a n}中的一项,且为数列{a n}中的第10项.(2)令a n=-n2+n+110=0,即n2-n-110=0,∴(n-11)(n+10)=0,∴n=11或n=-10(舍),∴当n=11时,a n=0.6.下列四个命题:①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项;②数列23,34,45,56,…的通项公式是a n=nn+1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列.其中真命题的个数是()A.1B.2C.3D.4解析只有③正确.①中,如已知a n+2=a n+1+a n,a1=1,无法写出除首项外的其他项.②中a n=n+1n+2,④中-1和1排列的顺序不同,即二者不是同一数列.7.数列2,4,6,8,10,…的递推公式是( c )A.a n=a n-1+2(n≥2)B.a n=2a n-1(n≥2)C.a1=2,a n=a n-1+2(n≥2)D.a1=2,a n=2a n-1(n≥2)解析A,B中没有说明某一项,无法递推,D中a1=2,a2=4,a3=8,不合题意.8.数列{x n}中,若x1=1,x n+1=1xn+1-1,则x2 017等于( D )A.-1B.-12C.12D.1解析∵x1=1,∴x2=-12,∴x3=1,∴数列{x n}的周期为2,∴x2 017=x1=1.9.已知数列{a n},对于任意的p,q∈N*,都有a p+a q=a p+q,若a1=19,则a36=________.由已知得a1+a1=a1+1=a2,∴a2=29,同理a4=49,a8=89,∴a9=a8+1=a8+a1=89+19=1,∴a36=2a18=4a9=4.10.求数列{-2n2+29n+3}中的最大项.a n =-2n2+29n+3=-2⎝⎛⎭⎪⎫n-2942+10818.由于n∈N*,故当n取距离294最近的正整数7时,a n取得最大值108,∴数列{-2n2+29n+3}中的最大项为a7=108.。
数列知识点、公式总结

数列知识点、公式总结一、数列的概念 1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成123,,,,,n a a a a ,简记为数列{}n a ,其中第一项1a 也成为首项;na 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集N *(或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列{}n a 的第n 项n a 与项数n 之间的函数关系可以用一个式子表示成()n a f n =,那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列{}n a ,如果从第二项起,每一项都大于它前面的一项,即1n n a a +>,那么这个数列叫做递增数列;如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列;如果数列{}n a 的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列 1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列{}n a 的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列{}n a 为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是n a 与2n a +的等差中项,且21=2n n n a a a +++;反之若数列{}n a 满足21=2n n n a a a +++,则数列{}n a 是等差数列.4、等差数列的性质: (1)等差数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列{}n a 和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题: 设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和;(2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列 1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠). 即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a q a q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ;(2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是n a 与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质: (1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列,{}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则(1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m ma a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列); (2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结 1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列. 2、两个恒等式: 对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n nn S n a S S n -==-≥类型二(累加法):已知:数列{}n a 的首项1a ,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列{}n a 的首项1a ,且()()1,n na f n n N a ++=∈,求n a 通项.给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得:()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
数列知识点分析

数列是数学中的重要概念,它可以用来描述一系列按照特定规律排列的数字。
数列的研究在数学领域和其他科学领域都有着广泛的应用。
本文将以“数列知识点分析”为标题,从步骤性思维的角度,逐步介绍数列的基本概念、性质、分类以及一些常见的数列应用,帮助读者更好地理解和应用数列知识。
一、数列的基本概念数列是由一系列按照特定规律排列的数构成的有序集合。
数列中的每一个数称为数列的项,用通常用字母a、b、c等表示。
数列可以是有限的,也可以是无限的。
二、数列的性质 1. 公差:对于等差数列,相邻两项之差称为公差,用字母d表示。
公差可以为正数、负数或零,它决定了数列的增减规律。
2. 公比:对于等比数列,相邻两项之比称为公比,用字母q表示。
公比可以为正数、负数或零,它决定了数列的倍增规律。
3. 首项和通项:数列中的第一个数称为首项,用字母a₁表示;数列中的第n个数称为第n项,用字母aₙ表示。
通项公式可以用来表示数列中的第n项与n的关系,常见的通项公式有等差数列的an=a₁+(n-1)d和等比数列的an=a₁q^(n-1)。
三、数列的分类根据数列的增减规律或倍增规律,数列可以分为不同的类型。
常见的数列类型有等差数列、等比数列、等差几何数列等。
1.等差数列:等差数列是指相邻两项之差恒定的数列。
它的通项公式为an=a₁+(n-1)d。
等差数列在数学和物理中常用来描述等间隔的变化规律。
2.等比数列:等比数列是指相邻两项之比恒定的数列。
它的通项公式为an=a₁q^(n-1)。
等比数列在金融、生物学等领域有广泛的应用。
3.等差几何数列:等差几何数列是指既是等差数列又是等比数列的数列。
它的通项公式为an=aq^(n-1)+d。
等差几何数列在复利计算等方面有重要应用。
四、数列的应用数列在很多领域中都有着广泛的应用。
以下是一些常见的数列应用:1.金融领域:复利计算中的等差几何数列,股票价格波动中的等差数列等。
2.自然科学:物理学中的等差数列用于描述速度、加速度等变化规律,生物学中的等比数列用于描述生物繁殖规律等。
§6.1 数列的概念及其表示法

解题导引
栏目索引
解析 由an(an-1+2an+1)=3an-1· an+1(n≥2,n∈N*), 可得 - =2
1 - 1 =3-1=2, a2 a1 1 1 an 1 an
1 an
1 , an1
∴数列
1 1 ∴ - =2n. an 1 an
栏目索引
解析 当n≥2时,an=2Sn-1, ∴an+1-an=2Sn-2Sn-1=2an, 即an+1=3an, ∴数列{an}的第2项及以后各项构成等比数列,a2=2a1=2,公比为3,∴an=2· 3n-2,n≥2,
当n=1时,a1=1,
∴数列{an}的通项公式为an= 答案
1, n 1 an= n2 2 3 , n 2 1, n 1, n2 2 3 , n 2.
易错警示 利用an=Sn-Sn-1求通项时,应注意n≥2这一前提条件.
栏目索引
方法 2 由递推公式求数列的通项公式
由递推公式求数列通项的常用方法 (1)形如an+1=an+f(n),常用累加法,即利用an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
(n≥2,n∈N*)求解.
an a2 a3 * (2)形如an+1=an· f(n),常用累乘法,即利用an=a1· · · … · ( n ≥ 2, n ∈ N )求解. a1 a2 an1
栏目索引
若p=r,则 ,可用等差数列的通项公式求 , 是等差数列,且公差为
1 an
q p
1 an
进而求an;
若p≠r,则采用(3)的方法来求 ,进而求an. (5)形如an+2=pan+1+qan(p+q=1),常用构造等比数列法. 将an+2=pan+1+qan变形为an+2-an+1=(-q)· (an+1-an),则{an-an-1}(n≥2,n∈N*)是等 比数列,且公比为-q,可以求得an-an-1=f(n)(n≥2,n∈N*),然后用累加法求an.
数列的基本概念

数列的基本概念数列是数学中的一个重要概念,它在数学研究和实际应用中都具有广泛的应用价值。
本文将介绍数列的基本概念及其相关特性。
一、数列的定义数列是由一系列有序的数字所组成的集合,每个数字称为数列的项。
数列可以用一个通项公式来表示,并按照一定的规律排列,其中通项公式可以是一个递推公式或直接给出每一项的算式。
二、等差数列等差数列是一种常见的数列形式,其中每一项与前一项之差都相等。
等差数列的通项公式通常表示为an=a1+(n-1)d,其中an表示第n项,a1表示首项,d表示公差。
例如,1, 4, 7, 10, 13就是一个公差为3的等差数列,其中a1=1,d=3,可以通过通项公式an=1+(n-1)3计算出任意一项的值。
等差数列具有以下特性:1. 公差相等,每一项与前一项之差都为固定值。
2. 通项公式可以确定数列中任意一项的值。
3. 数列的前n项和可以通过求和公式Sn=n/2[2a1+(n-1)d]计算,其中Sn表示前n项的和。
三、等比数列等比数列是一种特殊的数列形式,其中每一项与前一项之比都相等。
等比数列的通项公式通常表示为an=a1*r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
例如,2, 4, 8, 16, 32就是一个公比为2的等比数列,其中a1=2,r=2,可以通过通项公式an=2*2^(n-1)计算出任意一项的值。
等比数列具有以下特性:1. 公比相等,每一项与前一项之比都为固定值。
2. 通项公式可以确定数列中任意一项的值。
3. 数列的前n项和可以通过求和公式Sn=a1*(1-r^n)/(1-r)计算,其中Sn表示前n项的和。
四、斐波那契数列斐波那契数列是一种经典的数列形式,其特点是每一项都是前两项的和。
斐波那契数列的通项公式通常表示为an=an-1+an-2,其中a1和a2为给定的首项。
例如,1, 1, 2, 3, 5, 8就是一个斐波那契数列,可以通过通项公式递推计算出后续的项。
高中数学《数列》知识点归纳

高中数学《数列》知识点归纳
一、数列的概念
1. 数列的定义与表示
2. 数列的分类:等差数列、等比数列、等差几何数列、斐波那契数列、调和数列等
3. 数列的通项公式、前n项和公式及其应用
五、斐波那契数列
1. 斐波那契数列的定义和性质
2. 斐波那契数列的通项公式及其应用
3. 斐波那契数列的递推公式及其推导方法
4. 斐波那契数列的特殊应用:黄金分割
六、调和数列
1. 调和数列的定义和特征:调和平均数、算术平均数、宾汉姆不等式
2. 调和数列的通项公式及应用
3. 调和数列和几何平均数的关系
4. 调和数列的应用:调和平均数与平均速度等
七、数列极限
1. 数列的极限及其定义
2. 数列极限的性质:唯一性、有界性、保号性、代数运算性等
3. 数列极限的判定法:夹逼定理、单调有界原理等
4. 数列极限的应用:数学归纳法、发散数列的研究等
八、数列的应用领域
1. 数列在经济方面的应用:摆脱“复利”套路等
2. 数列在自然科学中的应用:波动方程、元素周期表等
3. 数列在计算机科学中的应用:搜索算法、排序算法等
4. 数列在生命科学和社会实践中的应用:基因序列分析、大学分配问题等。
六年级数列知识点归纳

六年级数列知识点归纳数列是数学中的一个重要概念,在六年级的学习中,我们需要对数列进行深入了解。
下面是六年级数列知识点的归纳:一、数列的定义数列是由一列数字按照一定的规律排列而成的序列。
它通常由一般项的通项公式或递推公式来表示。
二、等差数列1. 定义:等差数列是指数列中的每一项与其前一项之差都相等的数列。
我们用字母"a"表示首项,字母"d"表示公差。
2. 等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
3. 等差数列的性质:- 首项:a1- 公差:d- 通项公式:an = a1 + (n-1)d- 前n项和:Sn = (n/2)(a1+an) 或 Sn = (n/2)(2a1+(n-1)d)三、等比数列1. 定义:等比数列是指数列中的每一项与其前一项之比都相等的数列。
我们用字母"a"表示首项,字母"r"表示公比。
2. 等比数列的通项公式:an = a1 × r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
3. 等比数列的性质:- 首项:a1- 公比:r- 通项公式:an = a1 × r^(n-1)- 前n项和:Sn = (a1 × (1 - r^n))/(1 - r)四、等差数列与等比数列的比较1. 公式:等差数列的通项公式为an = a1 + (n-1)d,而等比数列的通项公式为an = a1 × r^(n-1)。
2. 关系:在等差数列中,相邻两项之间的差是常数,而在等比数列中,相邻两项之间的比是常数。
3. 增长速度:等比数列的增长速度比等差数列的增长速度快,因为等比数列中的公比通常大于1。
五、图像表示我们可以通过绘制数列对应的图像,来更直观地理解数列的规律。
等差数列对应的图像是一条直线,而等比数列对应的图像是一个指数曲线。
数列的概念及基本性质

数列的概念及基本性质数列是数学中非常重要的概念之一,它在许多数学领域中都有广泛的应用。
本文将介绍数列的概念及其基本性质,并探讨它在数学中的重要意义。
一、数列的概念数列是按照一定规则排列的一组数。
通常用{an}或{an}(n≥1)表示数列,其中an表示数列中第n个元素。
数列中的每个元素都有其特定的位置和值。
数列可以有无穷多项,也可以只有有限项。
当数列有无穷多项时,可以用递推公式或通项公式来表示数列中的每个元素。
递推公式指出每一项与前一项的关系,而通项公式直接给出第n项的表达式。
二、数列的基本性质1. 数列的有界性:一个数列称为有界的,当且仅当存在正数M,使得对于所有的正整数n,都有|an|≤M。
有界数列在许多数学问题中具有重要作用。
2. 数列的单调性:一个数列称为单调递增的,当且仅当对于所有的正整数n,都有an≤an+1。
一个数列称为单调递减的,当且仅当对于所有的正整数n,都有an≥an+1。
3. 数列的极限:数列中的元素可能会趋向于一个确定的值,这个值被称为数列的极限。
如果数列{an}的极限存在,记为lim(n→∞)an=L,其中L为实数。
若不存在这样的L,称数列为发散的。
4. 数列的公差:对于等差数列{an},如果对于所有的正整数n,都有an+1-an=d,则d称为数列的公差。
等差数列的通项公式为an=a1+(n-1)d。
5. 数列的比率:对于等比数列{an},如果对于所有的正整数n,都有an/an+1=q,则q称为数列的比率。
等比数列的通项公式为an=a1*q^(n-1)。
三、数列的应用数列的概念及其基本性质在许多数学领域中都有广泛的应用。
下面以几个例子来说明数列的重要性:1. 等差数列:等差数列是最常见的数列之一,在代数学、几何学、物理学等领域中都有广泛应用。
例如,在物理学中,等差数列可用于描述匀速直线运动的位移、速度和加速度。
等差数列的性质还有利于解决一些数学问题。
2. 等比数列:等比数列也是一种常见的数列类型,经常出现在代数学、几何学和金融等领域。
数列知识点及方法归纳总结

数列知识点及方法归纳总结数列是数学中重要的一部分,广泛应用于各个领域。
本文将对数列的概念、性质以及常见的解题方法进行归纳总结。
一、数列的概念与性质数列是由若干项按照一定规律排列组成的数序,用{an}或者{an}表示。
其中,an表示数列中的第n项。
数列的性质包括有界性、单调性和有限或无限等。
1. 有界性:如果数列{an}存在一个数M,使得对于任意的正整数n,都有an ≤ M,那么称这个数列有上界M;如果存在一个数m,使得对于任意的正整数n,都有an ≥ m,那么称这个数列有下界m。
既有上界又有下界的数列称为有界数列。
2. 单调性:如果数列{an}中的每一项与它的后一项比较,满足an ≤ an+1或者an ≥ an+1,那么称这个数列是单调递增的或者单调递减的。
3. 有限或无限:如果数列{an}只有有限个项,那么称它是有限数列;如果数列{an}有无穷多个项,那么称它是无限数列。
二、常见数列及其求和方法1. 等差数列等差数列是指数列中任意两个相邻的项之差都相等的数列。
通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
等差数列的前n项和Sn的求和公式为Sn = (n/2)(a1 + an)。
2. 等比数列等比数列是指数列中任意两个相邻的项之比都相等的数列。
通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比。
等比数列的前n项和Sn的求和公式为Sn = a1 * (q^n - 1) / (q - 1),当q ≠ 1时成立。
3. 斐波那契数列斐波那契数列是指数列中的每一项都是前两项的和。
通常将第一项和第二项分别设为1,得到的数列为1, 1, 2, 3, 5, 8, 13, ...。
斐波那契数列有许多特殊性质及应用,详细的推导和性质可以进一步深入研究。
4. 算术级数算术级数是指数列中任意两个相邻的项之差都为定值的数列。
设首项为a1,公差为d,第n项为an,则有an = a1 + (n-1)d。
高三数列知识点总结

高三数列知识点总结一、数列的概念与表示方法数列是由按照一定顺序排列的一列数构成的数学对象。
通常用小写字母a、s、b等表示数列,数列中的每一个数称为数列的项。
数列可以表示为a_{1}, a_{2}, a_{3}, ...,其中a_{1}是首项,a_{n}是第n 项。
数列的一般形式可以表示为a_{n} = f(n),其中f(n)是项的函数表达式。
二、等差数列与等比数列1. 等差数列等差数列是指从第二项起,每一项与其前一项的差都相等的数列。
这个相等的差称为公差,通常用字母d表示。
等差数列的通项公式为a_{n} = a_{1} + (n - 1)d,其中a_{1}是首项,d是公差。
等差数列的前n项和公式为S_{n} = \frac{n}{2} [2a_{1} + (n - 1)d]。
2. 等比数列等比数列是指每一项与其前一项的比都相等的数列。
这个相等的比称为公比,通常用字母q表示。
等比数列的通项公式为a_{n} =a_{1}q^{n-1},其中a_{1}是首项,q是公比。
等比数列的前n项和公式为S_{n} = \frac{a_{1}(1 - q^n)}{1 - q},当q ≠ 1时成立。
三、数列的极限与函数极限数列的极限是指当项数n无限增大时,数列的项趋向于某个确定的值。
如果数列{a_{n}}的项满足a_{n} → L (n → ∞),那么我们称L是数列{a_{n}}的极限。
数列极限的性质包括唯一性、有界性、保号性等。
四、递推数列递推数列是指通过数列的前一项或前几项来定义下一项的数列。
递推数列的一般形式可以表示为a_{n} = g(a_{n-1}, a_{n-2}, ...,a_{n-k}),其中g是定义递推关系的函数。
常见的递推数列有斐波那契数列等。
五、无穷等比数列及其和无穷等比数列是指项数无限的等比数列。
无穷等比数列的和是指所有项的和,只有当公比的绝对值小于1时,无穷等比数列的和才收敛。
无穷等比数列的和公式为S = \frac{a_{1}}{1 - q},其中a_{1}是首项,q是公比。
数列的概念及其表示

数列的概念(an 与Sn的关系、最大项和最小项、递推关系式求通项)1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类原则类型满足条件按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列an+1>an其中n∈N*递减数列an+1<an常数列an+1=an摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的表示法:数列有三种常见表示法,它们分别是列表法、图象法和解析法.4.数列的通项公式:如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.数列的前n项和:一般地,我们称a1+a2+a3+…+an为数列{an}的前n项和,用Sn表示,即Sn=a1+a2+a3+…+an.1.求数列中最大项和最小项的方法在数列{an}中,若ann≥an-1,n≥an+1.若ann≤an-1,n≤an+1.(n≥2) 2.数列与函数的关系数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数,当自变量从小到大依次取值时所对应的一列函数值,就是数列.3.数列通项公式的注意点(1)并不是所有的数列都有通项公式;(2)同一个数列的通项公式在形式上未必唯一;(3)对于一个数列,如果只知道它的前几项,而没有指出它的变化规律,是不能确定这个数列的.4.递推公式如果已知数列{an}的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.5.通项公式和递推公式的异同点不同点相同点通项公式可根据某项的序号n 的值,直接代入求出a n都可确定一个数列,也都可求出数列的任意一项递推公式可根据第1项(或前几项)的值,通过一次(或多次)赋值,逐项求出数列的项,直至求出所需的a n ,也可通过变形转化,直接求出a n6.数列{a n }的a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项为a n ,则a n S 1,n =1,S n -S n -1,n ≥2.已知S n 求a n 的一般步骤(1)当n =1时,由a 1=S 1求a 1的值;(2)当n ≥2时,由a n =S n -S n -1,求得a n 的表达式;(3)检验a 1的值是否满足(2)中的表达式,若不满足,则分段表示a n ;(4)写出a n 的完整表达式.7.由递推关系式求通项公式的常用方法(1)已知a 1且a n -a n -1=f (n ),可用“累加法”求a n .例:a 1=0,a n +1=a n +2n -1(n ∈N *);(2)已知a 1且a n a n -1=f (n ),可用“累乘法”求a n .例:a 1=1,a n =n n -1a n -1(n ≥2,n ∈N *);(3)已知a 1且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可由待定系数法确定),可转化为等比数列{a n +k }.例:a 1=1,a n +1=3a n +2(n ∈N *);(4)形如a n +1=Aa nBa n +C(A ,B ,C 为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.例:a 1=1,a n +1=a n1+3a n(n ∈N *).8.利用递推公式探求数列的周期性的两种思想思想一:根据递推公式,写出数列的前n 项直到出现周期情况后,利用a n +T =a n 写出周期(n +T )-n =T .思想二:利用递推公式“逐级”递推,直到出现a n +T =a n ,即得周期T =(n +T )-n .9.判断数列的单调性的两种方法。
第一节 数列的概念

分别求出满足下列条件的数列的通项公式. (1)a1=0,an+1=an+(2n-1)(n∈N ); n * (2)a1=1,an= an-1(n≥2,n∈N ). n-1
*
解:(1)an=a1+(a2-a1)+…+(an-an-1)=0+1+3+… +(2n-5)+(2n-3)=(n-1) , 所以数列的通项公式为an=(n-1) . a2 a3 an 2 (2)n≥2,n∈N 时,an=a1× × ×…× =1× a1 a2 1 an-1
第一节 数列的概念及其表示法
• 1.数列的定义:按照一定顺序排列着的一列数 称为数列,数列中的每一个数叫做这个数列的 项 .数列可以看成以正整数集N*(或它的有 限子集{1,2,…,n})为定义域的函数an=f(n), 当自变量按照从小到大的顺序依次取值时,所 对应的一列函数值.数列的图象是一系列孤立 的点.
-
解法二:由 an=3 +an-1 得 n-1 n-1 n-2 an=3 +an-1=3 +3 +an-2 n-1 n-2 n-3 =3 +3 +3 +an-3 n-1 n-2 2 =…=3 +3 +…+3 +a2 n-1 n-2 =3 +3 +…+32+31+a1 n-1 n-2 2 1 =3 +3 +…+3 +3 +1 3n-1 = . 2 点评 解法一是抓住了等式两端 an 与 an-1 系数 相等这一特点;解法二是一种常见的重要方法,它 的关键是依次将 an-1,an-2,…,a2,a1 代入,抓住 式子特点,转化为等比数列前 n 项和.
1 1 1 1 解析 (1)这是个混合数列,可看成 2+ ,4+ ,6+ ,8+ , 2 4 8 16 1 ….故通项公式 an=2n+ n. 2 (2)该数列中各项每两个元素重复一遍,可以利用这个周期性求 an.原数列可变形为:10+0,10+1,10+0,10+1,….故其一个通项为 1+-1 n an=10+ . 2 3 n (3)通项符号为(-1) ,如果把第一项-1 看作- ,则分母为 3 3,5,7,9,…,分母通项为 2n+1;分子为 3,8,15,24,…,分子通项为 n2+2n (n+1)2-1 即 n(n+2),所以原数列通项为 an=(-1)n . 2n+1
第1讲-数列的概念

第1讲-数列的基本概念学习提纲与学习目标1、数列的定义、通项公式和前n项和公式2、数列前n项和公式与通项公式的关系3、数列前n项和公式和通项公式的求法1.数列的定义及其表示按照一定顺序排列的一列数称为数列.数列的一般形式为:12,,,,n a a a ,简记为{}n a ,其中n a 称为数列的第n 项。
项数有限的数列称为有穷数列,项数无限的数列称为无穷数列。
对于数列{}n a :如对任意n N *∈,总有1n n a a +>,则称{}n a 为递增数列; 如对任意n N *∈,总有1n n a a +<,则称{}n a 为递减数列; 如对任意的n N *∈,均有1n n a a +=,则称数列{}n a 为常数列;如存在正数M ,使||n a M ≤对任意的n N *∈均成立,则称{}n a 为有界数列; 如对任意正数M ,总存在n a ,使得||n a M >,则称数列{}n a 为无界数列;如存在正整数N ,使得对任意的n N *∈,均有n N n a a +=,则称数列{}n a 为周期数列。
从定义看,数列是定义域为正整数集N *(或其子集{1,2,3,,}n )的一种特殊的函数。
对于数列{}n a ,如果任意一项n a 均与它的前一项1n a -(或前几项)之间的关系可以用一个公式来表示,则称这个公式为该数列的递推公式,这样的数列称为递推数列。
例如斐波拉契数列{}n a ,其中121a a ==,12(3)n n n a a a n --=+≥,事实上,我们碰到的数列大多是递推数列。
2.数列的通项公式如果数列{}n a 的第n 项n a 与n 之间可以用一个公式来表示,则称这个公式为数列{}n a 的通项公式。
例如,数列{}n a 的第n 项为12n -,则12n n a -=叫数列{}n a 的通项公式。
注意:(1)并非每个数列都有通项公式,如数列1,1.4,1.41, 1.414,…;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是2)1(11+-+=n n a ,也可以是|21cos |π+=n a n .3.数列的前n 项和公式对于数列{}n a ,我们称12n n S a a a =+++为数列{}n a 的前n 项和,如果n S 与n 之间可以用一个公式来表示,则称这个公式为数列{}n a 的前n 项和公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
跟踪练习
1.已知数列{an}分别满足下列条件,写出它的前五项,并归 纳出各数列的一个通项公式. (1)a1=0,an+1=an+(2n-1); 2an (2)a1=1,an+1= . an+2
解:(1)∵a1=0,an+1=an+(2n-1), ∴a2=a1+(2× 1-1)=1, a3=a2+(2× 2-1)=4, a4=a3+(2× 3-1)=9, a5=a4+(2× 4-1)=16, ∴它的前五项为 0,1,4,9,16,此数列又可写成 (1-1)2,(2-1)2,(3-1)2,(4-1)2,(5-1)2,… 故该数列的一个通项公式为 an=(n-1)2.
列不存在通项公式.
4.递推公式 递推公式是给出数列的一种重要方法, 是指已知数列{an} 的第一项 ( 或前几项 ) 及相邻两项 ( 或几项 ) 间关系可以用一个 公式来表示,这个公式也就是递推公式,其关键是先求出 a1 或 a2,然后用递推关系逐一写出数列中的各项. 注意 并不是所有数列都有递推公式,即使有些数列存
an (2)∵bn= ,a1=1,a2=2,a3=3,a4=5, an+1 a5=8, a1 1 a2 2 ∴b1= = ,b2= = , a2 2 a3 3 a3 3 a4 5 b3 = = , b4 = = . a4 5 a5 8 1 2 3 5 即数列{bn}的前 4 项依次为 , , , . 2 3 5 8
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1) +a1 1 1 1 1 1 1 1 1 = [( - )+( - )+…+( - )+(1- )]+ 2 n-1 n+1 2 4 3 n-2 n 1 1 1 1 1=2(- - + +1)+1 n+1 n 2 7n2+3n-2 = (n∈N*). 2 4n +4n
2.已知平面内两直线最多有 2 个交点,3 直线最多 3 个交点, 4 直线最多 6 个交点,依次记为 a2 1 , a3 3 , a4 6 , (1) 请写出 an 与 a n1 的递归关系; (2)求 a8 ; (3)你能求出 an ?
易错点: 对于数列{an}, 若第 n
an≥an-1, 项最大,则 an≥an+1, an>an-1, 而不是 an>an+1.
例题讲解
题型六 用累乘法求数列的通项公式 例 6.已知数列{an},a1=2,an+1=2an,写出数列的 前 4 项,猜想 an,并加以证明.
1 1 1 1 = n(n 1) + (n 1)(n 2) +…+ + +1 3× 2 2× 1
1 1 1 1 1 1 1 =( - )+ ( - )+…+( - )+(1- )+1 2 3 2 n-1 n n-2 n-1 1 2n-1 =2-n= n (n∈N*).
跟踪练习
1 1. 若把本例中“an = an - 1 + (n≥2)”改为“an = an - 1 nn-1 + 1 (n≥2)”其他不变,如何求数列的前 5 项与 n-1n+1
跟踪练习
1. 已 知 函 数 f ( x) log2 x logx 4, (0 x 1) , 数 列 {an} 满 足
f (2 an ) 2n
(1)求 an; (2)判断数列{an}的单调性。
2 2. 数列{an}满足 an n kn 1是增数列,求 k 的取值范围。
1 3 解:(1)a1=1;a2=a1+ = ; 2× 1 2 1 5 1 7 a3=a2+ = ;a4=a3+ = ; 3× 2 3 4× 3 4 1 9 a5=a4+ = . 5× 4 5
1 (2)由 an=an-1+ n(n 1) 得
1 an-an-1= n(n 1) (n≥2),
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1
1 (1) n 1 an 4 2
9 (1) n1 5,n为奇数, 或an= . 2 4,n为偶数
跟踪练习
1. 观察下面数列的特点,用适当的数填空: (1)1,4,9,( 1 (2)1, ,( 3 ),25,36; 1 1 ), , ; 7 9 1 1 ), ,- ; 2× 4 2× 5 5 ), ,( 32 1 ), . 4 );
n 2013 a 3. 数列{an}满足 n n 2014 ,则最大项和最小项分别是
__________。
例题讲解
题型五 用累加法求数列的通项公式 例 5. 已知数列 {an} , a1 = 1 ,以后各项由 an = an - 1 + 1 (n≥2)给出. nn-1 (1)写出数列{an}的前 5 项; (2)求数列{an}的通项公式.
例题讲解
题型四 单调性分析 9n· n+1 * 例 4. 已知 an= ( n ∈ N ), 则数列{an}中有没有最 n 10 大项?如果有,求出最大项;如果没有,请说明理由. [错解] 设 an 最大(n≥2),
n n+1 9n-1· n 9 · 10n > n-1 , 10 an>an-1, 则 即 n an>an+1, 9 · n+1 9n+1· n+2 > , n n 1 10 10 +
n
n
1 n+
.
(3)0.9=1-0.1,0.99=1-0.01,0.999=1-0.001,0.9999=1
- - - - -0.0001,而 0.1=10 1,0.01=10 2,0.001=10 3,0.0001=10 4,
2 - ∴它的一个通项公式为 an= 3 (1-10 n)
(4)这个数列前 4 项构成一个摆动数列,奇数项是 5, 偶数项是 4. 所以,它的一个通项公式为
1 1 (3)- , ,( 2× 1 2× 2 1 1 3 (4) ,- , ,( 2 2 8 2 1 (5)1, , ,( 2 2
答案 (1)16 (2) 1 5
1 (3)- 2× 3 1 (4)- 4 2 (5) 4 - 3 32
例题讲解
题型二 数列通项公式的应用 例 2. 已知数列 2, 5,2 2, 11,… (1)写出数列的一个通项公式,并求出它的第 20 项; (2)问 4 2是否是该数列的项?10 呢?
2an (2)∵a1=1,an+1= , an+2 2 1 2 1 ∴a2= ,a3= ,a4= ,a5= . 3 2 5 3 2 1 2 1 2 它的前五项依次为 1, , , , , 因此该数列可写成 , 3 2 5 3 1+ 1 2 2 2 2 , , , ,… 2+1 3+1 4+1 5+1 2 故它的一个通项公式为 an= . n+1
2.1 数列概念和表示
新课讲解
1.数列的概念 数列是指按一定顺序排列的一列数,数列中的数与顺序 有关系,每一项都对应着一个序号即项数,一般可表示为 a1, a2,…或记为{an}. 注意 判断两个数列是否为相同的数列,主要看顺序和
项是否相同.
2.数列的分类 按数列中项数的多少,可分为有穷数列和无穷数列,其 中项数是有限项的数列为有穷数列,其定义域为{1,2,3,…, n};项数为无限项的数列为无穷数列,其定义域为{1,2,3,…, n,…}. 按数列中相邻两项间的大小关系可分为递增数列,递减 数列,常数列,摆动数列. 注意 判断一个数列属哪一类型的数列,要搞清概念,
通项公式 an?
解:∵a1=1, 1 an=an-1+ (n≥2), n-1n+1 1 4 1 35 ∴a2=a1+ = ;a3=a2+ = ; 1×3 3 2×4 24 1 61 1 47 a4=a3+ = ;a5=a4+ = . 3×5 40 4×6 30 1 又an-an-1= n-1n+1 1 1 1 = ( - )(n≥2), 2 n-1 n+1
解:(1)原数列可写为 2, 5, 8, 11,…,不难发现, “ ”下面的数值后一项比前一项大 3,故通项公式可写为 n-1 × 3= 3n-1,即 an= 3n-1.
an= 2+
a20= 3× 20-1= 59.
(2)令 4 2= 3n-1,即 32=3n-1,解得 n=11, ∴4 2是数列的第 11 项. 101 * 再令 10= 3n-1,即 3n-1=100,解得 n= ∉ N , 3 ∴10 不是该数列的项.
在递推公式,递推公式也不一定唯一.特别是依据数列前几 项寻求递推关系,递推公式可能不止一个.
5.求和公式
S n a1 a2 ... an
S (n 1) 1 an S n S n 1 (n 2)
1. 分别写出下列数列的一个通项公式, 数列的前 4 项 已给出. 22-1 32-1 42-1 52-1 (1) , , , ,…; 2 3 4 5 1 1 1 1 (2)- , ,- , ,…; 2 6 12 20 (3)0.6, 0.66, 0.666, (4)5,4,5,4,…. 0.6666,…;
解得 8<n<9. 又因为 n∈N*,所以 n 不存在, 故数列{an}中没有最大项. [错因分析] 若
an>an-1, 是 an>an+1, an≥an-1, an 最大(n≥2),则应有 an≥an+1,
而不
因为有可能 an 与 an-1 或 an+1 同时最大.
[正解]
利用各类数列的要求判断.
3.通项公式 如果已知一个数列的通项公式,只要用序号代替公式中 的 n 就可以求出数列中的指定项, 如果给出数列中的前几项, 也可发现序号、项之间的一种关系,一个数列依据前几项归 纳出的通项公式只适合前几项,对后面省略的项是否成立, 并不知道. 注意 一个数列的通项公式并不一定唯一,甚至有些数
跟踪练习
1.已知数列{an}的通项公式 an=2n2-n. (1)写出这个数列的第 4 项和第 6 项; (2)试问 45 是否是{an}中的项,3 是否是{an}中的项?