IIR数字带通滤波器设计
实验四 IIR数字滤波器的设计
电气与信息工程学院数字信号处理实验报告学生姓名班级电子信息工程学号指导教师2019.12实验四 IIR 数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。
2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。
3. 熟悉巴特沃思滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。
二、实验原理:1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则)2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s s T s T z z z T s =+=-+=+-⋅=-- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。
三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率;fr阻带边界频率;δ通带波动;At 最小阻带衰减;fs采样频率;T采样周期上机实验内容:(1)fc=0.3KHz,δ=0.8dB,fr=0.2KHz, At=20dB,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num = 0.0304 -0.1218 0.1827 -0.1218 0.0304 den = 1 1.3834 1.4721 0.8012 0.2286系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。
iir数字滤波器设计原理
iir数字滤波器设计原理IIR数字滤波器设计原理IIR(Infinite Impulse Response)数字滤波器是一种常用的数字滤波器,其设计原理基于无限冲激响应。
与FIR(Finite Impulse Response)数字滤波器相比,IIR数字滤波器具有更低的计算复杂度和更窄的频率过渡带。
在信号处理和通信系统中,IIR数字滤波器被广泛应用于滤波、陷波、均衡等领域。
IIR数字滤波器的设计原理主要涉及两个方面:滤波器的结构和滤波器的参数。
一、滤波器的结构IIR数字滤波器的结构通常基于差分方程来描述。
最常见的结构是直接型I和直接型II结构。
直接型I结构是基于直接计算差分方程的形式,而直接型II结构则是通过级联和并联方式来实现。
直接型I结构的特点是简单直接,适用于一阶和二阶滤波器。
它的计算复杂度较低,但对于高阶滤波器会存在数值不稳定性的问题。
直接型II结构通过级联和并联方式来实现,可以有效地解决数值不稳定性的问题。
它的计算复杂度相对较高,但适用于高阶滤波器的设计。
二、滤波器的参数IIR数字滤波器的参数包括滤波器的阶数、截止频率、增益等。
这些参数根据实际需求来确定。
滤波器的阶数决定了滤波器的复杂度和性能。
阶数越高,滤波器的频率响应越陡峭,但计算复杂度也越高。
截止频率是指滤波器的频率响应开始衰减的频率。
截止频率可以分为低通、高通、带通和带阻滤波器。
根据实际需求,选择合适的截止频率可以实现对信号的滤波效果。
增益是指滤波器在特定频率上的增益或衰减程度。
增益可以用于滤波器的频率响应的平坦化或强调某些频率。
IIR数字滤波器的设计通常包括以下几个步骤:1. 确定滤波器的类型和结构,如直接型I或直接型II结构;2. 确定滤波器的阶数,根据要求的频率响应和计算复杂度来选择;3. 设计滤波器的差分方程,可以使用脉冲响应不变法、双线性变换法等方法;4. 根据差分方程的系数,实现滤波器的级联和并联结构;5. 进行滤波器的参数调整和优化,如截止频率、增益等;6. 对滤波器进行性能测试和验证,确保设计满足要求。
数字带通滤波器
课程设计报告专业班级课程题目学号学生姓名指导教师年月一、设计题目:IIR 数字带通滤波器设计 二、设计目的1、巩固所学理论知识。
2、提高综合运用所学理论知识独立分析和解决问题的能力。
3、更好地将理论与实践相结合。
4、掌握信号分析与处理的基本方法与实现。
5、熟练使用MATLAB 语言进行编程实现。
三、设计要求采用适当方法基于MATLAB 设计一个IIR 带通滤波器,其中带通的中心频率为ωp0=0.5π,;通带截止频率ωp1=0.4π,ωp2=0.6π;通带最大衰减αp =3dB;阻带最小衰减αs =15dB;阻带截止频率ωs2=0.7π. 四、设计原理1.用脉冲相应不变法设计IIR 数字滤波器利用模拟滤波器来设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可以从不同的角度出发。
脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h (n )模仿模拟滤波器的冲激响应h a (t ),即将h a (t )进行等间隔采样,使h (n )正好等于h a (t )的采样值,满足 h (n )=h a (nT )式中,T 是采样周期。
如果令H a (s )是h a(t )的拉普拉斯变换,H (z )为h (n )的Z 变换,利用采样序列的Z 变换与模拟信号的拉普拉斯变换的关系得(1-1)则可看出,脉冲响应不变法将模拟滤波器的S 平面变换成数字滤波器的Z 平面,这个从s 到z 的变换z =e sT 是从S 平面变换到Z 平面的标准变换关系式。
⎪⎭⎫ ⎝⎛-=Ω-=∑∑∞-∞=∞-∞==k T j s X T jk s X Tz X k a s k a ez sTπ21)(1)(图1-1脉冲响应不变法的映射关系由(1-1)式,数字滤波器的频率响应和模拟滤波器的频率响应间的关系为(1-2)这就是说,数字滤波器的频率响应是模拟滤波器频率响应的周期延拓。
正如采样定理所讨论的,只有当模拟滤波器的频率响应是限带的,且带限于折叠频率以内时,即(1-3)才能使数字滤波器的频率响应在折叠频率以内重现模拟滤波器的频率响应,而不产生混叠失真,即|ω|<π (1-4)但是,任何一个实际的模拟滤波器频率响应都不是严格限带的,变换后就会产生周期延拓分量的频谱交叠,即产生频率响应的混叠失真,如图7-4所示。
IIR数字滤波器设计及软件实现[1]
IIR数字滤波器设计及软件实现[1]IIR数字滤波器是一种常见的数字滤波器类型,它利用数字信号处理技术对信号进行滤波,广泛应用于信号处理、音频处理、图像处理等领域。
本文将介绍IIR数字滤波器的设计方法和软件实现。
一、IIR数字滤波器的基本原理IIR数字滤波器是一种基于递归算法的数字滤波器,它可以用于对离散时间信号进行滤波。
具体而言,IIR数字滤波器是由一组差分方程组成的,其中包括有限冲激响应(FIR)和无限冲激响应(IIR)数字滤波器两种类型。
与FIR数字滤波器不同的是,IIR数字滤波器是具有无限冲激响应的性质,因此可以实现更高阶的滤波效果。
IIR数字滤波器可以用如下的一阶滤波器来进行递归实现:y(n) = a1 * y(n-1) + a0 * x(n) - b1 * x(n-1)其中,x(n)表示输入信号,y(n)表示输出信号,a0、a1、b1是滤波器的系数。
这种一阶滤波器可以通过级联组合来构成更高阶的滤波器,形成一系列级联的一阶滤波器。
1.滤波器类型的选择在开始设计IIR数字滤波器之前,需要先确定所需的滤波器类型,即低通滤波器、高通滤波器、带通滤波器或带阻滤波器等。
各种类型的滤波器的特点及应用范围不同,需要根据具体需求进行选择。
2.设计滤波器参数确定了滤波器类型之后,需要根据要求的滤波器截止频率、带宽、通带衰减等参数来确定滤波器的系数。
一般可以采用Butterworth滤波器设计方法、Chebyshev滤波器设计方法或Elliptic滤波器设计方法等常见方法来进行设计。
3.验证设计结果设计出的IIR数字滤波器需要进行验证,可以采用MATLAB等数字信号处理软件进行仿真测试,进行频率响应、相位响应、群延迟等分析,以确保设计结果满足要求。
IIR数字滤波器的实现可以采用MATLAB、Python等数字信号处理工具,也可以使用C 语言来进行程序设计。
下面以MATLAB为例,介绍IIR数字滤波器的实现。
IIR数字滤波器设计及软件实现
IIR数字滤波器设计及软件实现实验一:IIR数字滤波器设计及软件实现一、实验指导1.实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
2.实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB 信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip 可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
3. 实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图1 三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
第六章 IIR数字滤波器的设计方法
x(n m) e
X (e
)
上页
下页
理想滤波器不可实现,只能以实际滤波器逼近(以低通为例)
通带: c 阻带:
st
1 1 H (e
H (e
j
j
) 1
2
)
过渡带: c st
c
:通带截止 (cutoff)频率 :通带容限 :阻带(stop)截止 频率 :阻带容限
j
)] )]
j j
H (e ) H (e ) e
*
j
j
j (e
)
H (e H (e
*
) )
e
2 j (e
j
)
(e
j
H (e 1 ) ln * 2 j H (e
j
H (z) 1 ) ln 1 2 j j ) H ( z ) z e j
上页 下页
6.2、最小与最大相位延时系统、最小与最大相位超前系统
LSI系统的系统函数:
H (z) K
M M
m 1 N
(1 c m z (1 d k z
M
1
) Kz
(N M )
m 1 N
( z cm ) (z dk )
k 1
1
)
k 1
频率响应:
H (e
j
上页 下页
因果稳定系统
H (e a rg K
j
z r, r 1
n < 0时,h(n) = 0
全部极点在单位圆内:po = 0,pi = N
) 2 m i 2 p i 2 ( N M ) 2
IIR数字滤波器设计实验报告
实验三IIR数字滤波器设计实验报告一、实验目的:1.通过仿真冲激响应不变法和双线性变换法2.掌握滤波器性能分析的基本方法二、实验要求:1.设计带通IIR滤波器2.按照冲激响应不变法设计滤波器系数3. 按照双线性变换法设计滤波器系数4. 分析幅频特性和相频特性5. 生成一定信噪比的带噪信号,并对其滤波,对比滤波前后波形和频谱三、基本原理:㈠IIR模拟滤波器与数字滤波器IIR数字滤波器的设计以模拟滤波器设计为基础,常用的类型分为巴特沃斯(Butterworth)、切比雪夫(Chebyshev)Ⅰ型、切比雪夫Ⅱ型、贝塞尔(Bessel)、椭圆等多种。
在MATLAB信号处理工具箱里,提供了这些类型的IIR数字滤波器设计子函数。
(二)性能指标1.假设带通滤波器要求为保留6000hz~~7000hz频段,滤除小于2000hz和大宇9000hz频段2.通带衰减设为3Db,阻带衰减设为30dB,双线性变换法中T取1s.四、实验步骤:1.初始化指标参数2.计算模拟滤波器参数并调用巴特沃斯函数产生模拟滤波器3.利用冲激响应不变法和双线性变换法求数字IIR滤波器的系统函数Hd (z)4.分别画出两种方法的幅频特性和相频特性曲线5.生成一定信噪比的带噪信号6.画出带噪信号的时域图和频谱图6.对带噪信号进行滤波,并画出滤波前后波形图和频谱图五、实验结果模拟滤波器的幅频特性和相频特性:101010101Frequency (rad/s)P h a s e (d e g r e e s )1010101011010-5100Frequency (rad/s)M a g n i t u d e在本实验中,采用的带通滤波器为6000-7000Hz ,换算成角频率为4.47-0.55,在上图中可以清晰地看出到达了题目的要求。
冲击响应不变法后的幅频特性和相频特性:0.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )0.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )双线性变换法的幅频特性和相频特性:0.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )00.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )通过上图比较脉冲响应不变法双线性变换法的幅频特性和相频特性,而在在幅频曲线上几乎没有差别,都能达到相同的结果。
iir数字滤波器的设计方法
iir数字滤波器的设计方法IIR数字滤波器的设计方法IIR数字滤波器是一种常用的数字信号处理工具,用于对信号进行滤波和频率域处理。
其设计方法是基于传统的模拟滤波器设计技术,通过将连续时间滤波器转换为离散时间滤波器来实现。
本文将介绍IIR数字滤波器的设计方法和一些常见的实现技巧。
一、IIR数字滤波器的基本原理IIR数字滤波器是一种递归滤波器,其基本原理是将输入信号与滤波器的系数进行加权求和。
其输出信号不仅与当前输入值有关,还与之前的输入和输出值有关,通过不断迭代计算可以得到最终的输出结果。
二、IIR数字滤波器的设计步骤1. 确定滤波器的类型:低通滤波器、高通滤波器、带通滤波器或带阻滤波器。
2. 确定滤波器的阶数:阶数决定了滤波器的陡峭度和性能。
3. 选择滤波器的截止频率或通带范围。
4. 根据所选的滤波器类型和截止频率,设计滤波器的模拟原型。
5. 将模拟原型转换为数字滤波器。
三、IIR数字滤波器的设计方法1. 巴特沃斯滤波器设计方法:- 巴特沃斯滤波器是一种最常用的IIR数字滤波器,具有平坦的通带特性和陡峭的阻带特性。
- 设计方法为先将模拟滤波器转换为数字滤波器,然后通过对模拟滤波器进行归一化来确定截止频率。
2. 阻带衰减设计方法:- 阻带衰减设计方法是一种通过增加滤波器的阶数来提高滤波器阻带衰减特性的方法。
- 通过增加阶数,可以获得更陡峭的阻带特性,但同时也会增加计算复杂度和延迟。
3. 频率变换方法:- 频率变换方法是一种通过对滤波器的频率响应进行变换来设计滤波器的方法。
- 通过对模拟滤波器的频率响应进行变换,可以得到所需的数字滤波器。
四、IIR数字滤波器的实现技巧1. 级联结构:- 将多个一阶或二阶滤波器级联起来,可以得到更高阶的滤波器。
- 级联结构可以灵活地实现各种滤波器类型和阶数的设计。
2. 并联结构:- 将多个滤波器并联起来,可以实现更复杂的频率响应。
- 并联结构可以用于设计带通滤波器和带阻滤波器。
iir数字滤波器设计实验总结
iir数字滤波器设计实验总结IIR数字滤波器设计实验总结一、设计目的IIR数字滤波器是数字信号处理中的一种常见滤波器。
本次实验的设计目的在于掌握IIR数字滤波器的设计方法,并掌握MATLAB软件工具在数字信号处理中的应用。
二、设计原理IIR数字滤波器是由反馈和前馈两个滤波器组成的结构,具有无限长冲激响应的特点。
其中反馈滤波器主要用于抑制高频信号,前馈滤波器则用于增益低频信号。
IIR数字滤波器通常使用差分方程表示,并通过z变换将其转化为传递函数形式。
三、设计步骤1. 选择滤波器类型和参数在实验中,我们主要采用了IIR低通滤波器的设计。
根据设计要求,选择滤波器的截止频率、通带增益和阻带衰减等参数。
2. 设计IIR滤波器传递函数根据选择的滤波器类型和参数,采用MATLAB软件中的fdatool工具箱进行设计,生成IIR滤波器的传递函数。
3. 实现数字滤波器将生成的传递函数导入到MATLAB软件中,进行编程实现,实现数字滤波器。
四、实验结果1. 对IIR数字滤波器进行功能验证采用MATLAB软件中的测试向量,对IIR数字滤波器进行功能验证。
比较输入信号和输出信号的波形和频谱图,验证滤波器的正确性。
2. 对IIR数字滤波器的性能进行测试采用不同波形和频率的信号,对IIR数字滤波器的性能进行测试。
比较滤波器输出信号和参考信号的波形和频谱图,评估滤波器的性能。
五、实验体会通过本次实验,我们学会了IIR数字滤波器的设计方法和MATLAB软件的应用技巧。
同时,我们也深刻理解了数字信号处理中常见的滤波器的工作原理和特点。
此外,实验还培养了我们的编程实践能力和信号处理思维能力。
六、总结IIR数字滤波器是数字信号处理中常用的滤波器,其设计方法和MATLAB软件的应用技巧都是数字信号处理领域中必备的知识点。
通过本次实验,我们深刻理解了滤波器的工作原理和特点,并在编程实践中掌握了数字信号处理的基本技能,收益颇丰。
实验五 IIR数字滤波器设计
‘high’为高通滤波器,截止频率wn ‘stop’为带阻滤波器,截止频率wn=[w1,w2] 缺省时为低通或带通滤波器
b,a分别为滤波器传递函数分子和分母的系数向量。
设计一个Butterworth高通数字滤波器,通带边界频率
为300Hz,阻带边界频率为200Hz,通带波纹小于1dB, 阻带衰减大于20dB,采样频率为1000Hz。
例:用直接法设计一个多频带滤波器
已知:f=[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
m=[0,0,1,1,0,0,1,1,0,0,0]
MATLAB程序 N=10; f=0:0.1:1; m=[0,0,1,1,0,0,1,1,0,0,0];
IIR滤波器设计
由于它的脉冲响应序列h(n)是无限长的,称为无限长
冲激响应滤波器。
IIR滤波器的设计根据滤波器某些性能指标要求,设计
滤波器的分子和分母多项式。
设计方法:
模拟滤波器变换法(经典设计法) 直接设计法 参数模型设计法 最大平滑滤波器设计法
IIR设计方法比较
借助模拟filter的设计方法(经典设计法)
实验四 IIR数字滤波器设计
一、实验目的
掌握滤波器的作用、分类。 掌握IIR数字滤波器的原理。
学习数字滤波器的设计方法。
二、实验原理及方法
滤波
是信号处理的一种最基本而重要的技术。利用滤波 从复杂的信号中提取所需要的信号,抑制不需要的部 分。
滤波器
是具有一定传输特性的信号处理装置。
数字滤波器的工作原理
数字滤波器是具有一定传输特性的数字信号处理装置。
它的输入和输出均为离散的数字信号,借助数字器件
matlab实验报告 IIR数字滤波器设计
实验报告姓名:李鹏博 实验名称: IIR 数字滤波器设计 学号:2011300704 课程名称: 数字信号处理 班级:03041102 实验室名称: 航海西楼303 组号: 1 实验日期: 2014.06.20一、实验目的、要求掌握IIR 数字滤波器设计的冲激响应不变法和双线性变换法。
掌握IIR 数字滤波器的计算机编程实现方法,即软件实现。
二、实验原理为了从模拟滤波器设计IIR 数字滤波器,必须先设计一个满足技术指标的模拟滤波器,然后将其数字化,即从s 平面映射到z 平面,得到所需的数字滤波器。
虽然IIR 数字滤波器的设计本质上并不取决于连续时间滤波器的设计,但是因为在许多应用中,数字滤波器就是用来模仿模拟滤波器功能的,所以由模拟滤波器转化为数字滤波器是很自然的。
因此,由模拟滤波器设计数字滤波器的方法准确、简便,是目前最普遍采用的方法。
三、实验环境PC 机,Windows XP ,office 2003,Matlab 软件。
四、实验过程、数据记录、分析及结论实验过程1.编程设计滤波器,用冲激响应不变法设计IIR 数字滤波器。
2.编程设计滤波器,用双线性变换法设计IIR 数字滤波器。
3.求脉冲响应、频率响应以及零极点。
4.编程滤波,求滤波器输出,完成对不同频率的多个正弦信号的滤波。
实验步骤根据所给定的技术指标进行指标转换。
112c c f πΩ=,222c c f πΩ=,112s s f πΩ=,222s s f πΩ=,21p c c B Ω==Ω-Ω,221222s s s s s B Ω-ΩΩΩ=Ω,3,18p s αα=-=-。
根据指标设计Butterworth 模拟低通滤波器。
调用函数[n,wn]=buttord(wp,ws,rp,rs,’s ’)确定阶次。
调用函数[zl,pl,kl]=buttap(n),求低通原型的模型。
调用函数[bl,al]=zp2tf(zl,pl,kl)实现模型转换。
IIR数字滤波器的设计及软件实现
IIR数字滤波器的设计及软件实现什么是IIR数字滤波器?IIR数字滤波器是一种数字信号处理滤波器,它基于递归的思想,可以对原始信号进行滤波处理。
与FIR数字滤波器相比,IIR数字滤波器具有更高的效率和更灵活的设计。
它的设计基于对滤波器的传递函数进行分析和优化,可以通过不同的传递函数来实现不同的滤波目标。
IIR数字滤波器的设计方法要设计一个IIR数字滤波器,可以采用以下步骤:步骤1:确定滤波器的类型根据滤波的目的和要求,确定滤波器的类型。
常见的滤波器类型有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
步骤2:计算滤波器的阶数滤波器的阶数是指滤波器中的二阶段数。
阶数越高,滤波器的性能越好,但也意味着计算量和实现难度会增加。
根据滤波的要求和性能要求,计算滤波器的阶数。
步骤3:选择滤波器的截止频率滤波器的截止频率是指滤波器在截止频率附近的频率响应。
对于低通滤波器和高通滤波器,截止频率通常是一个常数。
对于带通滤波器和带阻滤波器,截止频率需要确定两个频率。
步骤4:计算滤波器的传递函数根据滤波器类型、阶数和截止频率,可以通过传递函数的计算得到滤波器的传递函数。
步骤5:采用正则化处理在计算得到传递函数后,需要进行正则化处理。
正则化处理可以消除传递函数中的不稳定性,并确保滤波器的稳定性和可变性。
步骤6:实现反馈环和前馈环根据传递函数,可以实现反馈环和前馈环。
反馈环和前馈环的选择会影响滤波器的性能。
IIR数字滤波器的软件实现要实现IIR数字滤波器,可以使用MATLAB或Python等数学软件。
这里以Python为例进行说明。
步骤1:导入必要的库import numpy as np #用于处理数组和矩阵import scipy.signal as signal #用于信号处理import matplotlib.pyplot as plt #用于绘图步骤2:指定滤波器的类型、截止频率和阶数type ='lowpass'#低通滤波器fc =2000#截止频率order =4#阶数步骤3:计算滤波器的系数b, a = signal.butter(order, fc, type)步骤4:生成信号并进行滤波t = np.linspace(0, 1, 500, endpoint=False)x = np.sin(2* np.pi *5* t) + np.sin(2* np.pi *10* t) + np.sin(2* np.pi *20* t)y = signal.filtfilt(b, a, x)步骤5:绘制原始信号和滤波后的信号plt.plot(t, x, label='original signal')plt.plot(t, y, label='filtered signal')plt.legend(loc='best')plt.show()IIR数字滤波器是数字信号处理中一种重要的滤波器。
第六章 IIR数字滤波器设计1
10
p /10
1 101/10 1 0.508847 A 10s / 20 100
p k 0.2, s
从而得到
再求出过渡比和偏离参数
k1
2
A 1
0.50885 9999
0.00508875
N
取整数N=4
lg k1 3.2811 lg k
1 2 1
N=4 N=8
N=2
0
c
18
截止频率与阶数如何确定?
• 滤波器幅频响应随频率的增大而单调下降 2 1 1 H a ( j p ) p 1 ( p / c)2 N 1 2
1 1 H a ( j s ) 2 2N 1 ( s / c) A
2
(
输入信号
输出信号,
幅度放大了C倍 时间延迟 n0
表示输出信号相对输入信号没有发生失真。
4
假设低通滤波器的频率响应为 j n0 e , c j H e 0, c 式中, n0是一个正整数,称为通带截止频率。 其幅频特性和相频特性图形如下:
2
理想数字滤波器的特点 (5.2.1 )
理想滤波器的特点: 在滤波器的通带内幅度为常数(非零),在阻带中 幅度为零; 具有线性相位; 单位脉冲响应是非因果无限长序列。
理想滤波器的传输函数:
j n0 Ce , 1 2 j H e 0, 其它 式中,C和n是常数。
( p)和c代入,得到系统函数 将 D4 c4 1 H a (s) 2 s / c ( s 0.7654c s c2 )( s 2 1.8478c s c2 ) DN
实验四 IIR数字滤波器的设计与滤波
实验四 IIR 数字滤波器的设计与滤波一、巴特沃斯模拟滤波器的设计1. 模拟滤波器的设计参数模拟滤波器的4个重要的通带、阻带参数为:p f 或Omegap :通带截止频率 s f 或Omegas :阻带截至频率p R :通带内波动(dB),即通带内所允许的最大衰减;s R :阻带内最小衰减通过以上参数就可以进行模拟滤波器的设计。
2. 巴特沃斯模拟滤波器设计1) 巴特沃斯滤波器阶数的选择:在已知设计参数p f ,s f ,p R ,s R 之后,可利用“buttord ”命令可求出所需要的滤波器的阶数和3dB 截止频率,其格式为:[N ,Omegac]=buttord[fp ,fs ,Rp ,Rs ,’s ’],其中fp ,fs ,Rp ,Rs 分别为通带截止频率、阻带起始频率、通带内波动、阻带内最小衰减。
返回值N 为滤波器的最低阶数,Wc 为3dB 截止频率。
2) 巴特沃斯滤波器系数计算:由巴特沃斯滤波器的阶数N 以及3dB 截止频率Omegac 可以计算出对应传递函数H(z)的分子分母系数,MATLAB 提供的命令如下:● 巴特沃斯低通滤波器系数计算:[b ,a]=butter(N,Omegac),其中b 为H(z)的分子多项式系数,a 为H(z)的分母多项式系数● 巴特沃斯高通滤波器系数计算:[b ,a]=butter(N,Omegac,’High ’)● 巴特沃斯带通滤波器系数计算:[b ,a]=butter(N ,[Omega1,Omega2]),其中[Omega1,Omega2]为通带截止频率,是2元向量,需要注意的是该函数返回的是2N 阶滤波器系数。
● 巴特沃斯带阻滤波器系数计算:[b ,a]=butter(N ,[Omega1,Omega2],’stop ’),其中[Omega1,Omega2]为通带截止频率,是2元向量,需要注意的是该函数返回的也是2N 阶滤波器系数。
二、巴特沃斯数字滤波器的设计1. 数字滤波器的设计参数滤波器的4个重要的通带、阻带参数为:p f :通带截止频率(Hz ) s f :阻带起始频率(Hz )p R :通带内波动(dB ),即通带内所允许的最大衰减; s R :阻带内最小衰减设采样速率(即奈奎斯特速率)为N f ,将上述参数中的频率参数转化为归一化频率参数:p ω:归一化通带截止频率,)2//(N p p f f =ω;s ω:归一化阻带截至频率,)2//(N s s f f =ω通过以上参数就可以进行数字滤波器的设计。
IIR数字带通滤波器设计
目录前言 (2)工程概括 (3)1.1 IIR数字滤波器工作原理 (3)正文 (4)2.1 数字滤波器介绍 (4)2.2 数字滤波器的分类 (5)2.3 脉冲响应不变法 (5)2.4 双线性变换法 (7)2.5 滤波器的特性及使用函数 (8)3.1 设计步骤 (10)3.2 程序流程图 (11)3.3 MATLAB程序 (11)3.4 仿真结果 (14)3.5 总结 (16)致谢 (16)参考文献 (17)前言随着信息时代和数字世界的到来,数字信号处理已成为当今一门极其重要的学科和技术领域。
目前数字信号处理在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。
在数字信号处理中起着重要的作用并已获得广泛应用的是数字滤波器(DF,Digital Filter)。
数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
MATLAB是英文MA Trix LABoratory(矩阵实验室)的缩写。
它是美国的MathWorks公司推出的一套用于科学计算和图形处理可视化、高性能语言与软件环境。
它的信号处理工具箱包含了各种经典的和现代的数字信号处理技术,是一个非常优秀的算法研究与辅助设计的工具。
在设计数字滤波器时,通常采用MATLAB来进行辅助设计和仿真。
本次基课程设计将完成一个数字切比雪夫带通IIR滤波器的设计,利用双线性变换和无限冲激响应IIR原理完成设计,并利用MATLAB进行仿真。
工程概括1.1 IIR 数字滤波器工作原理数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。
如数字滤波器的系统函数为H(z),其脉冲响应为h(n),则在时间域内存在下列的关系。
)()()(n h n x n y ⊗=在z 域内,输入和输出存在下列关系:)()()(z X z H z Y =式中,X(z)、Y(z)分别为输入x(n)和输出y(n)的z 变换。
实验四IIR数字滤波器的设计实验报告
实验四IIR数字滤波器的设计实验报告
实验材料:
Matlab2023a软件
实验目的:
1、了解和掌握IIR滤波器的基本设计方法;
2、掌握基于频响特性的滤波器设计方法,熟悉Matlab中滤波器设计函数的使用;
3、实验中设计一组窄带通滤波器,掌握滤波器图形的绘制和滤波器参数的计算方法.
一、实验内容
本次实验中,我们设计一个窄带通滤波器,频率响应为:
截止频率为:0.3πrad/s;
抑制频率为:0.4πrad/s;
频率带宽为:≤ 0.1πrad/s;
通带增益为:≥0dB;
抑制区增益为:≤-40dB.
二、实验步骤
1、设计并绘制IIR滤波器的频率响应:绘制滤波器的通带和抑制区的频率响应;
2、确定IIR滤波器的极点数:根据上述设计要求,确定滤波器的极
点数;
3、使用matlab设计IIR滤波器:使用matlab设计IIR滤波器,调
节滤波器的极点数、滤波器的通带增益、频率带宽和抑制区增益,调节滤
波器的频率响应;
4、绘制滤波器的极点图:使用matlab绘制滤波器的极点图,并观察
滤波器的极点分布;
5、绘制滤波器的频率响应:使用matlab绘制滤波器的实际频率响应;。
实验五IIR数字滤波器设计及软件实现
实验五IIR数字滤波器设计及软件实现IIR数字滤波器是一种基于递归方程的滤波器,在频域中表现为有限的非零频率响应。
与FIR数字滤波器相比,IIR数字滤波器具有更高的滤波效率和更窄的滤波器幅频响应。
设计IIR数字滤波器的一种常见方法是使用模拟滤波器设计技术,然后将其转换为数字域。
以下是一种基本的IIR数字滤波器设计流程:1.确定滤波器的规范:确定滤波器的带宽、截止频率、滤波器阶数等规范。
2.使用模拟滤波器设计方法设计滤波器:可以使用模拟滤波器设计方法,如巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等来设计模拟滤波器。
选择适当的滤波器类型和滤波器参数,以满足滤波器规范。
3.将模拟滤波器转换为数字滤波器:使用数字滤波器设计方法,如双线性变换、频率采样等方法将模拟滤波器转换为数字滤波器。
这些方法可以将模拟滤波器的差分方程转换为数字滤波器的差分方程。
4.优化数字滤波器性能:可以使用优化方法,如最小均方误差、最小最大误差等方法,来优化数字滤波器的性能。
5.实现数字滤波器:将优化后的数字滤波器的差分方程实现为计算机程序,可以使用软件工具、编程语言等来实现数字滤波器。
根据设计的滤波器规范,可以选择不同的设计方法和工具来实现IIR 数字滤波器。
常用的设计工具包括MATLAB、Python中的SciPy等。
这些工具提供各种滤波器设计函数和优化工具,可以方便地进行IIR数字滤波器的设计和实现。
需要注意的是,在实际应用中,IIR数字滤波器的设计还需要考虑滤波器的稳定性、量化效应等因素。
此外,数字滤波器的实现还需要考虑计算复杂度和实时性等问题。
因此,在设计和实现IIR数字滤波器时,需要结合具体的应用需求进行综合考虑。
(完整word)IIR带通与带阻滤波器的设计
IIR 带通与带阻滤波器的设计张磊 S200502096(小组成员:张磊,闫宏阳,孙章固,王婕,邵文婷)[设计目的]1. 用Matlab 设计一个IIR 带通与带阻滤波器2. 用设计好的滤波器对声音文件进行过滤3. 学习了解Matlab 滤波器相关函数[设计原理]IIR 滤波器 是一个递归型系统,其系统函数:作。
性能要求,并能稳定工以使滤波器满足给定的或零极点确定的设计系统至少有一个不为其中,ii i i i Ni iM i iN i i i Mi ii d c b a z H N i a zd zC Az a zb z H ,,,)(.0),1()1()1(1)(1111110⇒=--=-=∏∏∑∑=--=-=-=-利用模拟滤波器设计IIR 数字低通滤波器的步骤。
(1)确定数字低通滤波器的技术指标:通带截止频率ωp 、通带衰减αp 、阻带截止频率ωs 、阻带衰减αs 。
(2)将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标。
(3)按照模拟低通滤波器的技术指标设计模拟低通滤波器.(4)将模拟滤波器Ha (s),从s 平面转换到z 平面,得到数字低通滤波器系统函数H (z )。
[Matlab 设计步骤]设滤波器的通带截止频率为wp ,止带截止频率为ws,通带衰减为Rp ,止带衰减为As ,通带波纹为Rp 。
这里,我们设定Wpl=20Hz ,Wph=30Hz ,Wsl=15Hz ,Wsh=35Hz1、根据给定指标得出,低通模拟原型滤波器的阶数和截止频率。
利用函数buttord , cheb1ord ,cheb2ord 。
[n ,wn ]=buttord(wp ,ws ,Rp ,As,’s’) [n ,wn ]=cheb1ord(wp ,ws,Rp,As,’s’) 这里我们采用Buttord 函数。
2、求出低通模拟原型滤波器,利用函数Buttap,Cheb1ap,Cheb2ap. [z,p,k]=Buttap(n)[z,p ,k]=Cheb1ap (n ,Rp)由于所得的结果为零极点型,还必须转成b/a 型,可用函数zp2tf 。
设计IIR切贝雪夫数字带通滤波器
设计IIR切贝雪夫数字带通滤波器发布时间:2021-08-09T15:40:00.743Z 来源:《中国科技信息》2021年9月中作者:黄寒冰朱家玮胡旺文郭祥宇[导读] 仿真设计的案例效果对比分析证明了该设计方法可行、有效。
河南科技大学黄寒冰朱家玮胡旺文郭祥宇 450062一、设计要求指标1:通带截止频率 wp1=1/3*pi,wp2=2/3*pi指标2:通带最大衰减Ap=1dB指标3:阻带截止频率 ws1=1/6*pi,ws2=5/6*pi指标4:阻带最小衰减As=18dB二、设计步骤步骤1:确定性能指标根据研究任务,需设计切比雪夫 I 型数字带通滤波器的性能指标如下:通带截止频率 wp1=π/3, wp2=2π/3,阻带截止频率 ws1=π/6, ws2=5π/6, 实际通带波动 Ap≤1dB,最小阻带衰减 As≥ 18dB。
步骤2:作预畸处理求样本归一化模拟低通切贝雪夫滤波器的阶次取N=2借助切贝雪夫(chebyshev)滤波器得到归一化模拟低通滤波器系统函数Ha(s) 步骤5:模拟低通滤波器转换成模拟带通滤波器作逆归一化处理,调用lp2bp函数将模拟低通滤波器转化为模拟带通滤波器步骤6:模拟带通滤波器转换成数字带通滤波器利用双线性法将模拟带通滤波器(s)转换成数字带通滤波器H(z)三、仿真分析为验证分析滤波器性能,输入不同频率的正弦波信号,观察结果如下:结果显示当频率为2500HZ时经过滤波器后输出波形是符合滤波器的设计。
应用双线性变换法设计的基于Matblab的IIR数字滤波器不仅具有精度高、稳定性和灵活性好、处理功能强等数字滤波器的诸多优点,而且高效、方便,较少的阶数就可以满足设计指标的要求。
仿真设计的案例效果对比分析证明了该设计方法可行、有效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字信号处理课程设计报告》题目:IIR数字带通滤波器设计学院:专业:班级:姓名:指导教师:2012年6月24日目录1数字滤波器设计原理 (3)1.1数字滤波器简介 (3)1.2 IIR滤波器的设计原理 (3)2 IIR数字滤波器设计方法 (4)2.1用脉冲相应不变法设计IIR数字滤波器 (4)2.2用双线性变换法设计IIR数字滤波器 (7)3 IIR数字带通滤波器设计过程 (9)3.1设计步骤 (9)3.2程序流程框图 (10)3.3 MATLAB程序 (11)4运行结果及分析 (12)5总结 (13)6参考书目 (14)基于MATLAB的IIR数字带通滤波器设计一、数字滤波器设计原理1.1 数字滤波器简介数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。
如果系统是一个连续系统,则滤波器称为模拟滤波器。
如果系统是一个离散系统,则滤波器称为数字滤波器。
信号通过线性系统后,其输出就是输入信号和系统冲激响应的卷积。
除了外,的波形将不同于输入波形。
从频域分析来看,信号通过线性系统后,输出信号的频谱将是输入信号的频谱与系统传递函数的乘积。
除非为常数,否则输出信号的频谱将不同于输入信号的频谱,某些频率成分较大的模,因此,中这些频率成分将得到加强,而另外一些频率成分的模很小甚至为零,中这部分频率分量将被削弱或消失。
因此,系统的作用相当于对输入信号的频谱进行加权。
1.2 IIR滤波器的设计原理IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel 函数、椭圆滤波器函数等。
IIR数字滤波器的设计步骤:(1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标;(2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器;(3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器;(4) 如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。
二、IIR 数字滤波器设计方法IIR 数字滤波器是一种离散时间系统,其系统函数为假设M ≤N ,当M >N 时,系统函数可以看作一个IIR 的子系统和一个(M-N)的FIR 子系统的级联。
IIR 数字滤波器的设计实际上是求解滤波器的系数和 ,它是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。
如果在S 平面上去逼近,就得到模拟滤波器;如果在z 平面上去逼近,就得到数字滤波器。
1.用脉冲相应不变法设计IIR 数字滤波器利用模拟滤波器来设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可以从不同的角度出发。
脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h (n )模仿模拟滤波器的冲激响应h a (t ),即将h a (t )进行等间隔采样,使h (n )正好等于h a (t )的采样值,满足h (n )=h a (nT )式中,T 是采样周期。
如果令H a (s )是h a(t )的拉普拉斯变换,H (z )为h (n )的Z 变换,利用采样序列的Z 变换与模拟信号的拉普拉斯变换的关系得(1-1)则可看出,脉冲响应不变法将模拟滤波器的S 平面变换成数字滤波器的Z 平面,这个从s 到z 的变换z =e sT 是从S 平面变换到Z 平面的标准变换关系式。
⎪⎭⎫ ⎝⎛-=Ω-=∑∑∞-∞=∞-∞==k T j s X T jk s X T z X k a s k a e z sT π21)(1)(图1-1脉冲响应不变法的映射关系由(1-1)式,数字滤波器的频率响应和模拟滤波器的频率响应间的关系为(1-2) 这就是说,数字滤波器的频率响应是模拟滤波器频率响应的周期延拓。
正如采样定理所讨论的,只有当模拟滤波器的频率响应是限带的,且带限于折叠频率以内时,即(1-3) 才能使数字滤波器的频率响应在折叠频率以内重现模拟滤波器的频率响应,而不产生混叠失真,即|ω|<π (1-4) 但是,任何一个实际的模拟滤波器频率响应都不是严格限带的,变换后就会产生周期延拓分量的频谱交叠,即产生频率响应的混叠失真,如图7-4所示。
这时数字滤波器的频响就不同于原模拟滤波器的频响,而带有一定的失真。
当模拟滤波器的频率响应在折叠频率以上处衰减越大、越快时,变换后频率响应混叠失真就越小。
这时,采用脉冲响应不变法设计的数字滤波器才能得到良好的效果。
对某一模拟滤波器的单位冲激响应h a (t )进行采样,采样频率为f s ,若使fs 增加,即令采样时间间隔(T =1/f s )减小,则系统频率响应各周期延拓分量之间相距更远,因而可减小频率响应的混叠效应。
⎪⎭⎫ ⎝⎛-=∑∞-∞=T k j H T e H k a j πωω21)(2||s T Ω=≥Ωπ0)(=Ωj H a ⎪⎭⎫ ⎝⎛=T j H T e H a j ωω1)(脉冲响应不变法优缺点:从以上讨论可以看出,脉冲响应不变法使得数字滤波器的单位脉冲响应完全模仿模拟滤波器的单位冲激响应,也就是时域逼近良好,而且模拟频率Ω和数字频率ω之间呈线性关系ω=ΩT 。
因而,一个线性相位的模拟滤波器(例如贝塞尔滤波器)通过脉冲响应不变法得到的仍然是一个线性相位的数字滤波器。
脉冲响应不变法的最大缺点是有频率响应的混叠效应。
所以,脉冲响应不变法只适用于限带的模拟滤波器(例如,衰减特性很好的低通或带通滤波器),而且高频衰减越快,混叠效应越小。
至于高通和带阻滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中。
如果要对高通和带阻滤波器采用脉冲响应不变法,就必须先对高通和带阻滤波器加一保护滤波器,滤掉高于折叠频率以上的频率,然后再使用脉冲响应不变法转换为数字滤波器。
当然这样会进一步增加设计复杂性和滤波器的阶数。
2.用双线性变换法设计IIR 数字滤波器脉冲响应不变法的主要缺点是产生频率响应的混叠失真。
这是因为从S 平面到Z平面是多值的映射关系所造成的。
为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-π/T ~π/T 之间,再用z =e sT 转换到Z 平面上。
也就是说,第一步先将整个S 平面压缩映射到S 1平面的-π/T ~π/T 一条横带里;第二步再通过标准变换关系z =e s 1T 将此横带变换到整个Z 平面上去。
这样就使S 平面与Z 平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图1-3所示。
图1-3双线性变换的映射关系为了将S 平面的整个虚轴j Ω压缩到S1平面j Ω1轴上的-π/T 到π/T 段上,可以通过以下的正切变换实现(1-5)式中,T 仍是采样间隔。
Z 平面S 1平面S 平面⎪⎭⎫ ⎝⎛Ω=Ω2tan 21T T当Ω1由-π/T 经过0变化到π/T 时,Ω由-∞经过0变化到+∞,也即映射了整个j Ω轴。
将式(1-5)写成将此关系解析延拓到整个S 平面和S1平面,令j Ω=s ,j Ω1=s 1,则得再将S1平面通过以下标准变换关系映射到Z 平面z =e s 1T从而得到S 平面和Z 平面的单值映射关系为:(1-6) (1-7) 式(1-6)与式(1-7)是S 平面与Z 平面之间的单值映射关系,这种变换都是两个线性函数之比,因此称为双线性变换式(1-5)与式(1-6)的双线性变换符合映射变换应满足的两点要求。
首先,把z =e j ω,可得(1-8)即S 平面的虚轴映射到Z 平面的单位圆。
其次,将s =σ+j Ω代入式(1-8),得因此由此看出,当σ<0时,|z |<1;当σ>0时,|z |>1。
也就是说,S 平面的左半平面映射到Z 平面的单位圆内,S 平面的右半平面映射到Z 平面的单位圆外,S 平面的虚轴映射到Z 平面的单位圆上。
因此,稳定的模拟滤波器经双线性变换2/2/2/2/11112T j T j T j T j ee e e T j Ω-ΩΩΩ+-⋅=ΩT s T s T s T s T s T s e e T T s T e e e e T s 1111111122tanh 2212/2/2/2/----+-⋅=⎪⎭⎫ ⎝⎛=+-⋅=11112--+-=z z T s s Ts T s T s T z -+=-+=222121Ω=⎪⎭⎫ ⎝⎛=+-=--j T j e e T s j j 2tan 2112ωωωΩ--Ω++=j T j T z σσ22222222||Ω+⎪⎭⎫ ⎝⎛-Ω+⎪⎭⎫ ⎝⎛+=σσT T z后所得的数字滤波器也一定是稳定的。
双线性变换法优缺点双线性变换法与脉冲响应不变法相比,其主要的优点是避免了频率响应的混叠现象。
这是因为S 平面与Z 平面是单值的一一对应关系。
S 平面整个j Ω轴单值地对应于Z 平面单位圆一周,即频率轴是单值变换关系。
这个关系如式(1-8)所示,重写如下:上式表明,S 平面上Ω与Z 平面的ω成非线性的正切关系,如图7-7所示。
由图7-7看出,在零频率附近,模拟角频率Ω与数字频率ω之间的变换关系接近于线性关系;但当Ω进一步增加时,ω增长得越来越慢,最后当Ω→∞时,ω终止在折叠频率ω=π处,因而双线性变换就不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象,从而消除了频率混叠现象。
图1-4双线性变换法的频率变换关系但是双线性变换的这个特点是靠频率的严重非线性关系而得到的,如式(1-8)及图1-4所示。
由于这种频率之间的非线性变换关系,就产生了新的问题。
首先,一个线性相位的模拟滤波器经双线性变换后得到非线性相位的数字滤波器,不再保持原有的线性相位了;其次,这种非线性关系要求模拟滤波器的幅频响应必须是分段常数型的,即某一频率段的幅频响应近似等于某一常数(这正是一般典型的低通、高通、带通、带阻型滤波器的响应特性),不然变换所产生的数字滤波器幅频响应相对于原模拟滤波器的幅频响应会有畸变,如图1-5所示。
⎪⎭⎫ ⎝⎛=Ω2tan 2ωT图1-5双线性变换法幅度和相位特性的非线性映射对于分段常数的滤波器,双线性变换后,仍得到幅频特性为分段常数的滤波器,但是各个分段边缘的临界频率点产生了畸变,这种频率的畸变,可以通过频率的预畸来加以校正。
也就是将临界模拟频率事先加以畸变,然后经变换后正好映射到所需要的数字频率上。