4蚁群算法的基本思想
蚁群算法的原理与实现
蚁群算法的原理与实现蚁群算法的原理与实现蚁群算法是一种基于蚁群行为觅食的启发式搜索算法,它模拟了蚁群觅食的过程,通过蚂蚁之间的信息交流和相互合作,最终找到最优解。
蚁群算法具有自组织、分布式计算和并行搜索等特点,被广泛应用于优化问题的求解。
蚁群算法的基本原理是模拟蚂蚁觅食的行为。
在蚂蚁觅食的过程中,蚂蚁们会释放信息素,并根据信息素的浓度选择路径。
当一只蚂蚁找到食物后,它会返回蚁巢,并释放更多的信息素,吸引其他蚂蚁跟随它的路径。
随着时间的推移,路径上的信息素浓度会逐渐增加,越来越多的蚂蚁会选择这条路径,形成正反馈的效应。
最终,蚂蚁们会找到一条最优路径连接蚁巢和食物。
蚁群算法的实现过程可以分为两个阶段,即路径选择阶段和信息素更新阶段。
在路径选择阶段,蚂蚁根据信息素的浓度和距离选择路径。
通常情况下,蚂蚁倾向于选择信息素浓度高且距离短的路径。
在信息素更新阶段,蚂蚁会根据路径的质量释放信息素。
一般来说,路径质量好的蚂蚁会释放更多的信息素,以吸引更多的蚂蚁跟随。
为了实现蚁群算法,需要定义一些重要的参数,如信息素浓度、信息素挥发率、蚂蚁的移动速度和路径选择的启发因子等。
信息素浓度表示路径上的信息素浓度大小,信息素挥发率表示信息素的衰减速度,蚂蚁的移动速度表示蚂蚁在路径上的移动速度,路径选择的启发因子表示蚂蚁在选择路径时信息素和距离的权重。
蚁群算法的优势在于它能够找到全局最优解,并且对解空间的搜索范围不敏感。
同时,蚁群算法还能够处理具有多个局部最优解的问题,通过信息素的传播和挥发,逐渐淘汰次优解,最终找到全局最优解。
然而,蚁群算法也存在一些不足之处。
首先,算法的收敛速度较慢,需要进行多次迭代才能达到较好的结果。
此外,算法的参数设置对算法的性能影响较大,需要进行调优。
最后,蚁群算法在处理大规模问题时,需要消耗较大的计算资源。
总的来说,蚁群算法是一种有效的优化算法,能够解决许多实际问题。
通过模拟蚂蚁的觅食行为,蚁群算法能够找到最优解,具有自组织、分布式计算和并行搜索等特点。
蚂蚁算法和蚁群算法
蚂蚁算法(Ant Colony Algorithm)和蚁群算法(Ant Colony Optimization)是启发式优化算法,灵感来源于蚂蚁在觅食和建立路径时的行为。
这两种算法都基于模拟蚂蚁的行为,通过模拟蚂蚁的集体智慧来解决组合优化问题。
蚂蚁算法和蚁群算法的基本原理类似,但应用领域和具体实现方式可能有所不同。
下面是对两者的简要介绍:蚂蚁算法:蚂蚁算法主要用于解决图论中的最短路径问题,例如旅行商问题(Traveling Salesman Problem,TSP)。
其基本思想是通过模拟蚂蚁在环境中寻找食物的行为,蚂蚁会通过信息素的释放和感知来寻找最优路径。
蚂蚁算法的核心概念是信息素和启发式规则。
信息素(Pheromone):蚂蚁在路径上释放的一种化学物质,用于传递信息和标记路径的好坏程度。
路径上的信息素浓度受到蚂蚁数量和路径距离的影响。
启发式规则(Heuristic Rule):蚂蚁根据局部信息和启发式规则进行决策。
启发式规则可能包括路径距离、路径上的信息素浓度等信息。
蚂蚁算法通过模拟多个蚂蚁的行为,在搜索过程中不断调整路径上的信息素浓度,从而找到较优的解决方案。
蚁群算法:蚁群算法是一种更通用的优化算法,广泛应用于组合优化问题。
除了解决最短路径问题外,蚁群算法还可应用于调度问题、资源分配、网络路由等领域。
蚁群算法的基本原理与蚂蚁算法类似,也是通过模拟蚂蚁的集体行为来求解问题。
在蚁群算法中,蚂蚁在解决问题的过程中通过信息素和启发式规则进行路径选择,但与蚂蚁算法不同的是,蚁群算法将信息素更新机制和启发式规则的权重设置进行了改进。
蚁群算法通常包含以下关键步骤:初始化:初始化蚂蚁的位置和路径。
路径选择:根据信息素和启发式规则进行路径选择。
信息素更新:蚂蚁在路径上释放信息素,信息素浓度受路径质量和全局最优解的影响。
全局更新:周期性地更新全局最优解的信息素浓度。
终止条件:达到预设的终止条件,结束算法并输出结果。
蚁群算法与遗传算法的混合算法
蚁群算法与遗传算法的混合算法近年来,混合算法作为一种特殊的人工智能技术,受到了许多研究机构和企业的广泛关注。
其中,蚁群算法与遗传算法的混合算法(下称混合算法)具有一定的特殊优势,可以有效解决复杂的模式识别、信息检索和最优化问题。
本文从蚁群算法和遗传算法的基本思想出发,深入剖析混合算法的基本构成、优点以及企业的应用场景,以期能够更好地认识和掌握这一技术。
一、蚁群算法与遗传算法:基本思想1、蚁群算法:蚁群算法是一种仿生、基于群体智能的算法,它是以蚂蚁搜寻食物的行为模式为模型,从而实现最优解搜索的过程。
它由计算机模拟蚁群行为进行最优化搜索,以解决困难的问题。
蚁群算法的核心思想是:利用一群蚂蚁以同源的形式对不同的最优解进行搜索,通过了解蚂蚁的可供选择的信息和搜索结果,从而实现进化规律。
2、遗传算法:遗传算法是一种基于生物遗传的群体智能模拟算法,它采用“多体、多次、随机”的搜索原理,模拟生物在自然选择中进化的过程,最终得到最优解。
遗传算法主要通过对初始群体进行繁殖和变异,得到新一代群体,并按照某种适应性评价准则,逐渐改良算法求解。
二、混合算法的基本构成混合算法是将蚁群算法和遗传算法两者相结合,综合利用其优势而研究出来的一种智能算法。
它通过引入染色体编码对解空间进行搜索,从而充分利用两种算法的优点,实现最优解的搜索和挑选。
其基本构成包括:(1)蚁群算法:利用蚁群算法搜索最优解,主要由局部搜素和全局新种群构成;(2)遗传算法:采用遗传算法构建最优解,主要由适应性函数、编码、交叉、变异等过程组成;(3)编码:采用双编码方式,利用蚁群算法得到的最优解作为初始种群,再利用遗传算法的交叉和变异技术,最终构成混合最优解;(4)评价函数:采用基于路径编码的评价函数,根据遗传算法求得的最优解来计算蚁群搜索出来的最优解;(5)迭代:采用混合算法进行迭代,一般采用多次,可以通过增加遗传算法的个体迭代次数,改变蚁群算法的更新概率等方法,来改变最优解搜索的结果。
蚁群算法的基本原理
蚁群算法的基本原理蚁群算法 (Ant Colony Optimization, ACO) 是一种基于群体智能的优化算法,模拟了蚂蚁在寻找食物时候的行为,被广泛应用于求解组合优化问题、路径规划等领域。
蚁群算法的基本思路蚁群算法的基本思路是通过模拟蚂蚁在寻找食物的过程中释放信息素来获取全局最优解。
具体过程如下:1.初始化信息素: 首先,需要在所有可行解的路径上放置一些信息素。
在开始时,信息素值可以选择为等量的值或一些默认值。
2.蚁群搜索: 一开始,所有的蚂蚁都分别随机选择一个节点作为起点,并开始在网络中搜索。
蚂蚁行动的过程中,会根据路径上信息素浓度的大小来选择下一步的方向。
同时,每只蚂蚁都会记录其所经过的路径和信息素值。
3.信息素更新: 每只蚂蚁到达终点之后,计算其所经过路径的费用,然后根据一定的规则更新路径上的信息素。
较优的路径上将会添加更多的信息素,使下一次蚂蚁选择该路径的概率更大。
4.重复搜索: 重复上面的步骤,直到满足一个停止条件为止。
一种常见的停止条件是达到预定的迭代次数。
蚁群算法的优势蚁群算法在解决组合优化问题时,具有以下的优势:1.全局优化能力极强: 因为每只蚂蚁都只关注自己所经过的路径上的信息素值,所以可以同时搜索并更新多个路径,从而有可能找到全局最优解。
2.能够避免陷入局部最优: 蚁群算法可以通过信息素的挥发、说长存、信息素值的启发式更新等手段来避免陷入局部最优解。
3.易于扩展和并行化: 蚁群算法通常是一种并行的算法,可以很轻松地应用于分布式计算环境中。
蚁群算法的应用蚁群算法在解决组合优化问题、路径规划、调度等方面有着广泛的应用,如下所示:1.旅行商问题: 蚁群算法可以用于解决旅行商问题。
2.线性规划问题: 蚁群算法可以用于求解线性规划问题。
3.路径规划问题: 蚁群算法可以用于车辆路径规划问题。
4.调度问题: 蚁群算法可以用于作业车间调度问题。
蚁群算法是一种基于群体智能的优化算法,模拟了蚂蚁在寻找食物时候的行为。
《蚁群算法的研究及其在路径寻优中的应用》范文
《蚁群算法的研究及其在路径寻优中的应用》篇一蚁群算法研究及其在路径寻优中的应用一、引言蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁觅食行为的仿生优化算法,它借鉴了蚁群在寻找食物过程中所表现出的寻优特性。
自20世纪90年代提出以来,蚁群算法因其优秀的全局寻优能力和较强的鲁棒性,在许多领域得到了广泛的应用。
本文将重点研究蚁群算法的原理及其在路径寻优中的应用。
二、蚁群算法的研究(一)蚁群算法的原理蚁群算法的基本思想是模拟自然界中蚂蚁觅食的行为过程。
蚂蚁在寻找食物的过程中,会释放一种称为信息素的化学物质,通过信息素的浓度来指导其他蚂蚁的行动。
蚁群算法通过模拟这一过程,使整个群体通过协同合作的方式寻找最优解。
(二)蚁群算法的特点1. 分布式计算:蚁群算法通过多只蚂蚁的协同合作来寻找最优解,具有较好的分布式计算能力。
2. 正反馈机制:信息素的积累和扩散使得算法具有较强的正反馈机制,有利于快速找到最优解。
3. 鲁棒性强:蚁群算法对初始解的依赖性较小,具有较强的鲁棒性。
三、蚁群算法在路径寻优中的应用路径寻优问题是一种典型的组合优化问题,广泛应用于物流配送、车辆路径规划、网络路由等领域。
蚁群算法在路径寻优中的应用主要体现在以下几个方面:(一)物流配送路径优化物流配送过程中,如何合理安排车辆的行驶路径,使总距离最短、时间最少,是物流企业关注的重点。
蚁群算法可以通过模拟蚂蚁觅食的过程,为物流配送提供最优路径。
(二)车辆路径规划车辆路径规划是指在一定区域内,如何合理安排车辆的行驶路线,以满足一定的约束条件(如时间、距离等),使总成本最低。
蚁群算法可以通过多只蚂蚁的协同合作,为车辆路径规划提供有效的解决方案。
(三)网络路由优化在网络通信领域,如何选择最佳的路由路径,以实现数据传输的高效性和可靠性是网络路由优化的关键。
蚁群算法可以通过模拟信息素的传播过程,为网络路由选择提供最优的路径。
蚁群算法概述
作业4蚁群算法概述1.蚁群算法的基本思想现实生活中单个蚂蚁的能力和智力非常简单,但它们能通过相互协调、分工、合作来完成筑巢、觅食、迁徙、清扫蚁穴等复杂行为,尤其是蚂蚁有能力在没有任何可见提示的条件下找到从蚁穴到食物源的最短路径,并且能随环境的变化而变化地搜索新的路径,产生新的选择。
这是因为蚂蚁在其走过的路上会分泌一种信息素,其他的蚂蚁能够感知这种物质的存在和强度,并以此指导自己的运动方向,使其倾向于朝着信息素强度高的方向移动。
蚁群算法就是从自然界中真实蚂蚁觅食的群体行为中得到启发而提出的。
在蚁群算法中,为了实现对真实蚂蚁的抽象,提出了人工蚁的概念。
人工蚁和真实蚂蚁有如下相同点:(1)人工蚁和蚂蚁一样,是一群相互合作的个体,每个蚂蚁都能建立一种解决方案,整个蚁群相互合作在全局范围内找出问题的较优的解决方案。
(2)人工蚁和真实蚂蚁有着公共的任务,寻找最优路径。
(3)人工蚁和真实蚂蚁一样也通过使用信息素进行间接通讯。
(4)人工蚁和真实蚂蚁的觅食行为都是一种正反馈过程。
(5)在蚁群算法中存在一种信息素的挥发机制,类似于真实世界中的情况,(6)不预测未来状态概率的状态转移策略。
人工蚁的策略是充分利用了局部信息,而没有前瞻性的预测未来的状态。
图1:二元桥实验初始状态图2:二元桥实验结束状态2. 蚁群算法基本原理蚁群算法[3]可以表述如下:初始时刻,各条路径上的信息素量相等,设τij(0) = C (C 为常数),蚂蚁k (k=1,2,3,…,m )在运动过程中根据各条路径上的信息量决定转移方向。
蚂蚁系统所使用的转移规则被称为随机比例规则,在时刻 t ,蚂蚁 k 从城市i 选择城市j 的转移概率k ij p (t)为:[][]k ()()(), if j J ()()()0, otherwise k ijij k is is ij s J i t t i t p t αβαβτητη∈⎧⎡⎤⎡⎤⋅⎣⎦⎣⎦⎪∈⎪⋅=⎨⎪⎪⎩∑ (2. 1)其中,Jk(i)= {1,2,……,n}- tabuk 表示蚂蚁 k 下一步允许选择的城市。
蚁群算法
一、蚁群算法的起源
蚁群算法(Ant Colony Algorith m,简称ACA,也称ACO),是一种仿生类启发式 算法,也是一种分布式智能模拟算法.其基本思想是吸 收蚁群的信息共享特性,通过内在搜索机制求解组合优 化问题.该算法于1992年由意大利学者Dorig o提出,并被成功应用于解决TSP和QAP,后经诸 多学者研究逐渐发展起来。
四、蚁群算法的优点:
(1)它是一种启发式算法,一种基于蒙特卡罗方法的试探性信息正反馈机 制或增强型学习系统,并通过信息素轨迹的不断更新分布式计算避免了 过早收敛. (2)它较强的启发性使得在早期的寻优过程中能迅速找到合适的解决方案, 且已经在很多复杂的组合优化问题中得到成功应用. (3)它是一种通用型随机优化算法,其人工蚂蚁融入了人类智慧,易于与 其他方法结合,特别是与其他启发式算法的结合,能够得到很好的性能 改善. (4)它具有较强的鲁棒性,只要对其模型稍加修改,就可用于解决不同的 问题. (5)它是一种分布式优化算法,既有串行性,又有并行性,串行和并行计 算机都可以实现
三、蚁群算法基本原理
在从食物源到蚁穴并返回的过程中,蚂蚁能在其走过的 路径上分泌一种化学物质,称为信息素,并通过这种方 式形成信息素轨迹 J。蚂蚁在运动过程中能够感知信息 素的存在及强度,并依此指导自己的运动方向,使蚂蚁 倾向于朝着该物质强度高的方向移动,形成回到蚁穴的 最短路径
蚁群在完成觅节点j的运动过程中或是在完成一 次循环后,蚂蚁在边(i,j)上释放一种物质,称 为信息素轨迹。 (2)蚂蚁概率地选择下一个将要访问的节点,这 个概率是两节点间距离和连接两节点的路径上存 有信息素量的函数。 (3)为了满足问题的约束条件,在完成一次循环 之前,不允许蚂蚁访问已经访问过的节点
蚁群算法的基本原理
2.1 蚁群算法的基本原理蚁群优化算法是摹拟蚂蚁觅食的原理,设计出的一种群集智能算法。
蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向挪移,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。
某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。
蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成为了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。
蚁穴食物源AB 15cm(a) 蚁穴 1 2 食物源A B (b)人工蚂蚁的搜索主要包括三种智能行为:(1)蚂蚁的记忆行为。
一只蚂蚁搜索过的路径在下次搜索时就再也不被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行摹拟。
(2)蚂蚁利用信息素进行相互通信。
蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。
(3)蚂蚁的集群活动。
通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就彻底不同。
当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。
3.3.1蚂蚁系统蚂蚁系统是最早的蚁群算法。
其搜索过程大致如下:在初始时刻,m 只蚂蚁随机放置于城市中,各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,mL 是由最近邻启示式方法构造的路径长度。
蚁群算法简介
蚁群算法简介蚁群算法是一种优化技术,受到自然界中蚂蚁寻找食物的行为的启发。
这种算法模拟了蚂蚁的信息共享和移动模式,用于解决复杂的组合优化问题,如旅行商问题(TSP)、车辆路径问题(VRP)等。
一、蚁群算法的基本原理在自然界中,蚂蚁寻找食物的行为非常有趣。
它们会在路径上留下信息素,后续的蚂蚁会根据信息素的强度选择路径,倾向于选择信息素浓度高的路径。
这样,一段时间后,大多数蚂蚁都会选择最短或最佳的路径。
这就是蚁群算法的基本原理。
二、蚁群算法的主要步骤1.初始化:首先,为每条边分配一个初始的信息素浓度。
通常,所有边的初始信息素浓度都是相等的。
2.路径选择:在每一步,每个蚂蚁都会根据当前位置和周围信息素浓度选择下一步的移动方向。
选择概率与信息素浓度成正比,与距离成反比。
这意味着蚂蚁更倾向于选择信息素浓度高且距离短的路径。
3.释放信息素:当蚂蚁完成一次完整的路径后,它会在其经过的边上留下信息素。
信息素的浓度与解决问题的质量成正比,即如果蚂蚁找到了一条更好的路径,那么这条路径上的信息素浓度会增加。
4.更新:经过一段时间后,信息素会随时间的推移而挥发,这使得那些不再被认为是最优的路径上的信息素浓度逐渐减少。
同时,每条边上的信息素浓度也会随着时间的推移而均匀增加,这使得那些从未被探索过的路径也有被选择的可能性。
5.终止条件:算法会在找到满足条件的最优解或达到预设的最大迭代次数后终止。
三、蚁群算法的优势和局限性蚁群算法的优势在于其对于组合优化问题的良好性能和其自然启发式的搜索过程。
这种算法能够有效地找到全局最优解,并且在搜索过程中能够避免陷入局部最优解。
此外,蚁群算法具有较强的鲁棒性,对于问题的规模和复杂性具有较强的适应性。
然而,蚁群算法也存在一些局限性。
首先,算法的性能高度依赖于参数的设置,如信息素的挥发速度、蚂蚁的数量、迭代次数等。
其次,对于一些复杂的问题,可能需要很长的计算时间才能找到最优解。
此外,蚁群算法可能无法处理大规模的问题,因为这可能导致计算时间和空间的复杂性增加。
蚁群算法的基本原理和应用
蚁群算法的基本原理和应用简介蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁觅食行为的启发式算法,它源于对蚂蚁在寻找食物时的行为规律的研究。
蚁群算法模拟了蚂蚁在寻找最佳路径时释放信息素、选择路径的策略,通过蚁群成员之间的相互合作和信息共享来求解各类优化问题。
蚁群算法具有较高的适应性和鲁棒性,被广泛应用于优化问题求解中。
基本原理蚁群算法基于一种基本的反馈机制:蚂蚁在行动过程中释放信息素,并根据所释放的信息素密度来选择路径。
信息素在路径上的积累程度会影响蚂蚁选择路径的概率,从而引导整个蚁群向目标位置集中。
具体的基本原理如下:1.蚂蚁的行动规则:蚂蚁按照一定的规则进行移动,每个蚂蚁根据当前位置的信息素密度以及启发式信息(例如距离、路径质量等)选择下一步的移动方向。
2.信息素的更新:蚂蚁在路径上释放信息素,并且信息素的蒸发和更新过程会导致信息素的动态变化。
经过多次迭代后,信息素会逐渐积累在最优路径上,从而引导后续的蚂蚁选择该路径。
3.路径选择概率:蚂蚁在选择下一步移动方向时,会根据当前位置的信息素和启发式信息计算路径选择概率。
较高的信息素密度和启发式信息将增加路径的选择概率。
应用领域蚁群算法在众多领域中取得了广泛的应用,以下列举几个示例:1.路径规划问题:蚁群算法可以用于解决路径规划问题,例如在城市中找到最短路径。
蚁群算法通过模拟蚂蚁的觅食行为,可以在复杂的网络中找到最优路径,无论是在城市道路网络还是在电信网络中。
–寻找最短路径:蚁群算法可以应用于解决最短路径问题,例如在城市导航、物流路径规划等领域。
–车辆路径优化:蚁群算法可以优化车辆的路线,减少行驶距离和时间,提高运输效率。
2.优化问题:蚁群算法在求解各种优化问题中具有较好的性能,例如旅行商问题、装箱问题等。
–旅行商问题:蚁群算法可以应用于解决旅行商问题,找到最短的旅行路线,减少旅行的距离和时间。
–装箱问题:蚁群算法可以优化装箱问题,将不同大小的物品装入不同大小的容器中,减少空间浪费。
【转】蚁群算法原理及其实现(python)
【转】蚁群算法原理及其实现(python)蚁群算法(AG)是⼀种模拟蚂蚁觅⾷⾏为的模拟优化算法,它是由意⼤利学者Dorigo M等⼈于1991年⾸先提出,并⾸先使⽤在解决TSP(旅⾏商问题)上。
之后,⼜系统研究了蚁群算法的基本原理和数学模型.蚁群算法的基本思想:蚁群算法的基本原理:1、蚂蚁在路径上释放信息素。
2、碰到还没⾛过的路⼝,就随机挑选⼀条路⾛。
同时,释放与路径长度有关的信息素。
3、信息素浓度与路径长度成反⽐。
后来的蚂蚁再次碰到该路⼝时,就选择信息素浓度较⾼路径。
4、最优路径上的信息素浓度越来越⼤。
5、最终蚁群找到最优寻⾷路径。
⼈⼯蚁群与真实蚁群对⽐:基于TSP问题的基本蚁群算法:TSP求解中,假设蚁群算法中的每只蚂蚁是具有以下特征的简单智能体:每次周游,每只蚂蚁在其经过的⽀路(i,j)上都留下信息素。
‚蚂蚁选择城市的概率与城市之间的距离和当前连接⽀路上所包含的信息素余量有关。
ƒ为了强制蚂蚁进⾏合法的周游,直到⼀次周游完成后,才允许蚂蚁游⾛已访问过的城市(这可由禁忌表来控制)。
基本蚁群的两个过程:(1)状态转移(2)信息素更新(1)状态转移为了避免残留信息素过多⽽淹没启发信息,在每只蚂蚁⾛完⼀步或者完成对所有n个城市的遍历(也即⼀个循环结束)后,要对残留信息进⾏更新处理。
由此,t+n时刻在路径(i,j)上的信息量可按如下规则进⾏调整:(2)信息素更新模型蚁周模型(Ant-Cycle模型)蚁量模型(Ant-Quantity模型)蚁密模型(Ant-Density模型)区别:1.蚁周模型利⽤的是全局信息,即蚂蚁完成⼀个循环后更新所有路径上的信息素;2.蚁量和蚁密模型利⽤的是局部信息,即蚂蚁完成⼀步后更新路径上的信息素。
基本流程:蚁群算法中主要参数的选择:蚁群算法中主要参数的理想选择如下:国内外,对于离散域蚁群算法的改进研究成果很多,例如⾃适应蚁群算法、基于信息素扩散的蚁群算法等,这⾥仅介绍离散域优化问题的⾃适应蚁群算法。
《蚁群算法》课件
目
CONTENCT
录
• 蚁群算法简介 • 蚁群算法的基本原理 • 蚁群算法的实现过程 • 蚁群算法的改进策略 • 蚁群算法的性能评价 • 蚁群算法的应用案例
01
蚁群算法简介
蚁群算法的基本概念
蚁群算法是一种模拟自然界中蚂蚁觅食行为的优化 算法,通过模拟蚂蚁的信息素传递机制来寻找最优 解。
02
蚁群算法的基本原理
信息素的挥发与更新
信息素挥发与更新是蚁群算法中一个重要的过程,它影响着蚂蚁 的移动和信息传递。
在蚁群算法中,信息素是蚂蚁之间传递的一种化学物质,用于标 识路径的优劣。信息素会随着时间的推移而挥发,同时蚂蚁在移 动过程中会释放新的信息素。挥发和更新的过程是动态的,影响 着蚂蚁对路径的选择。
要点一
总结词
信息素更新规则是蚁群算法中的重要环节,通过改进信息 素更新规则,可以提高算法的性能。
要点二
详细描述
在蚁群算法中,信息素更新规则决定了蚂蚁在移动过程中 如何更新信息素。改进信息素更新规则可以提高算法的全 局搜索能力和局部搜索能力。例如,可以采用动态调整策 略,根据蚂蚁的移动路径和状态动态调整信息素的更新量 ,或者采用自适应策略,根据问题的特性和求解结果自适 应地调整信息素更新规则,以提高算法的性能。
详细描述
在蚁群算法中,信息素挥发速度决定了信息素消散的快慢。较慢的挥发速度可以使信息素积累,有利于增强算法 的全局搜索能力;较快的挥发速度则有利于算法的局部搜索。通过调整信息素的挥发速度,可以在全局搜索和局 部搜索之间取得平衡,提高算法的效率和稳定性。
蚂蚁数量与移动规则的调整
总结词
蚂蚁数量和移动规则是蚁群算法中的重要参数,通过调整这些参数,可以改善算法的性 能。
23个基本测试函数 蚁群算法
23个基本测试函数蚁群算法蚁群算法是一种模拟蚂蚁行为的启发式算法,它通过模拟蚁群寻找食物的行为,来解决各种优化问题。
蚁群算法的核心思想是通过信息交流和反馈机制来寻找问题的最优解。
本文将介绍蚁群算法的基本原理,并以23个基本测试函数为例,展示蚁群算法在解决优化问题中的应用。
1. 算法简介蚁群算法最早由意大利学者Dorigo在1992年提出,其灵感来自于观察蚂蚁在寻找食物时的行为。
蚁群算法将问题抽象成一个图论模型,其中蚂蚁代表解空间中的候选解,信息素则代表蚂蚁之间的信息交流。
蚂蚁根据信息素的浓度和距离选择路径,并在路径上释放信息素,从而影响其他蚂蚁的选择。
通过多次迭代,蚂蚁群体逐渐收敛于最优解。
2. 蚁群算法的基本步骤蚁群算法主要包括初始化、路径选择、信息素更新和收敛判断等步骤。
2.1 初始化在蚁群算法中,需要初始化蚂蚁的位置和信息素的浓度。
蚂蚁的初始位置可以随机选择或者根据问题的特点进行设置。
信息素的初始浓度通常设置为一个较小的常数。
2.2 路径选择在路径选择阶段,蚂蚁根据信息素的浓度和距离选择路径。
通常情况下,信息素浓度较高的路径会有更多的蚂蚁选择,但也存在一定的随机性,以保证算法能够全局搜索。
2.3 信息素更新在信息素更新阶段,蚂蚁根据问题的优化目标更新路径上的信息素。
通常情况下,蚂蚁在路径上释放的信息素与路径的优化程度成正比。
信息素的更新规则可以根据具体问题进行设计。
2.4 收敛判断在每轮迭代之后,需要判断算法是否收敛。
通常情况下,可以通过设定一个停止准则来判断算法是否继续迭代。
常用的停止准则包括迭代次数、目标函数值的变化幅度等。
3. 蚁群算法在优化问题中的应用蚁群算法在解决各种优化问题中具有广泛的应用。
下面以23个基本测试函数为例,展示蚁群算法在不同问题中的应用。
3.1 球面函数球面函数是一个简单的优化问题,目标是找到一个全局最小值。
蚁群算法通过信息素的交流和反馈机制,可以在搜索空间中快速找到最优解。
蚁群算法python代码实现
蚁群算法python代码实现蚁群算法是一种基于模拟蚂蚁觅食行为的智能优化算法,适用于求解复杂的优化问题。
本文介绍了蚁群算法的基本原理,并提供了一份Python代码实现。
蚁群算法的基本思想是模拟蚂蚁在寻找食物时的行为,通过蚂蚁之间的信息交流和路径选择来不断优化解的质量。
在蚁群算法中,蚂蚁在搜索过程中会留下信息素,而其他蚂蚁会根据信息素的浓度选择路径,从而不断优化搜索结果。
蚁群算法的核心是信息素更新和路径选择。
信息素更新包括信息素的挥发和信息素的增量,路径选择则通过轮盘赌选择和最大值选择两种方式进行。
下面是蚁群算法的Python实现代码:```import numpy as npclass AntColonyOptimizer:def __init__(self, n_ants, n_iterations, alpha, beta, rho, q, init_pheromone):self.n_ants = n_ants # 蚂蚁数量self.n_iterations = n_iterations # 迭代次数self.alpha = alpha # 信息素重要程度self.beta = beta # 启发因子重要程度self.rho = rho # 信息素挥发速度self.q = q # 信息素增量self.init_pheromone = init_pheromone # 初始信息素浓度 self.distances = None # 距离矩阵self.pheromones = None # 信息素矩阵self.best_path = None # 最佳路径self.best_path_length = np.inf # 最佳路径长度def optimize(self, distances):self.distances = distancesself.pheromones = np.ones_like(self.distances) * self.init_pheromonefor iteration in range(self.n_iterations):paths = self.generate_paths()self.update_pheromones(paths)self.update_best_path(paths)return self.best_path, self.best_path_lengthdef generate_paths(self):paths = []for ant in range(self.n_ants):path = self.generate_path()paths.append(path)return pathsdef generate_path(self):n_cities = self.distances.shape[0]visited_cities = set()path = [np.random.randint(n_cities)]visited_cities.add(path[-1])while len(path) < n_cities:city = self.select_next_city(path, visited_cities)path.append(city)visited_cities.add(city)return pathdef select_next_city(self, path, visited_cities):n_cities = self.distances.shape[0]pheromone_matrix = np.copy(self.pheromones)pheromone_matrix[list(visited_cities), :] = 0pheromone_matrix[:, path[-1]] = 0prob = np.zeros(n_cities)prob[path[-1]] = 0if np.random.rand() < 0.9: # 轮盘赌选择prob = pheromone_matrix[path[-1], :] ** self.alpha * (1.0 / self.distances[path[-1], :]) ** self.betaprob[list(visited_cities)] = 0if np.sum(prob) == 0: # 最大值选择prob = np.ones(n_cities)prob[list(visited_cities)] = 0prob = prob / np.sum(prob)return np.random.choice(range(n_cities), p=prob)def update_pheromones(self, paths):pheromone_delta = np.zeros_like(self.distances)for path in paths:for i in range(len(path) - 1):pheromone_delta[path[i], path[i + 1]] += self.q /self.distances[path[i], path[i + 1]]self.pheromones = (1 - self.rho) * self.pheromones + pheromone_deltadef update_best_path(self, paths):for path in paths:path_length = self.path_length(path)if path_length < self.best_path_length:self.best_path_length = path_lengthself.best_path = pathdef path_length(self, path):return sum([self.distances[path[i], path[i + 1]] for i in range(len(path) - 1)])```需要注意的是,在使用蚁群算法求解优化问题时,需要先将问题转化为图论问题。
蚁群算法在连续空间寻优问题求解中的应用
蚁群算法在连续空间寻优问题求解中的应用蚁群算法是一种启发式优化算法,经常用于解决连续空间寻优问题。
蚁群算法的基本思想是模拟蚂蚁在寻找食物时的行为,通过不断的搜索和信息交流来寻找最优解。
具体地,蚁群算法将搜索空间看作是一个地图,将每个搜索点看作是一座城市。
蚂蚁在搜索过程中通过信息素量来指导搜索方向,同时不断更新信息素,以便更好地指导后续的搜索。
在连续空间寻优问题中,蚁群算法可以通过以下步骤进行求解: 1. 确定目标函数:需要明确需要优化的目标函数,以便判断算
法是否收敛。
目标函数可以是连续的,也可以是离散的。
2. 初始化参数:需要确定蚂蚁个数、信息素初始值、挥发系数、启发式函数等参数。
3. 蚂蚁搜索:每个蚂蚁从随机的起始点开始,按照信息素量和
启发式函数确定搜索方向,直到达到终止条件。
在搜索过程中,每个蚂蚁通过更新信息素来指导搜索方向。
4. 更新信息素:在所有蚂蚁完成搜索后,更新每个搜索点的信
息素量。
一般情况下,信息素量会随着时间的推移而挥发,以便搜索能够更好地探索新的搜索空间。
5. 判断是否收敛:当目标函数的变化小于预定的阈值时,算法
可以认为已经收敛,可以结束搜索过程。
否则,需要重复步骤 3-5 直到满足条件。
总的来说,蚁群算法在解决连续空间寻优问题时具有很好的效果。
它可以快速地搜索整个搜索空间,同时具有很好的全局搜索能力和局部搜索能力。
当问题具有多个局部最优解时,蚁群算法可以通过信息素量的作用,避免落入局部最优解而无法跳出。
蚁群算法求解函数最小值
蚁群算法求解函数最小值蚁群算法是一种群体智能算法,它模拟蚂蚁在寻找食物时留下信息、跟随信息和更新信息的行为。
其主要思想是让一群智能体(蚂蚁)在问题空间中随机游走,通过留下信息来指导其他蚂蚁的搜索,最终找到问题的最优解。
本文将介绍如何使用蚁群算法求解函数最小值问题。
1. 问题描述我们要求解函数f(x)的最小值,其中x是一个d维向量,f(x) = ∑(x_i^2),i=1,2,...,d。
因为所有维度上的值都是正的,所以函数的最小值为0。
但在搜索过程中,优化器需要在向量空间中寻找最小值。
2. 蚁群算法基本思想3. 蚁群算法具体实现1)初始化初始化迭代次数、蚁群大小、信息素浓度以及每只蚂蚁的位置和速度。
对于每个蚂蚁的初始位置和速度,可以使用随机值来生成。
同时,需要记录当前所有蚂蚁中最优的位置和最优的适应度值。
2)信息素选取蚂蚁在搜索过程中留下信息,用于指导其他蚂蚁的行动。
信息素的选择需要权衡两个因素,即蚂蚁个体的局部搜索策略和群体策略。
在局部策略方面,蚂蚁会在已经访问的路径上留下信息素,吸引其他蚂蚁走向已经访问过的区域。
在群体策略方面,信息素可以加速全局搜索,吸引更多的蚂蚁在全局范围内搜索。
3)更新信息素蚂蚁在搜索过程中留下信息,导致当前路径上信息素的浓度增加。
信息素的浓度会随着时间的推移而逐渐降低。
信息素的更新根据当前路径的质量,决定增加或者减少信息素的浓度。
4)更新速度和位置根据留下的信息素和当前位置,更新蚂蚁的速度和位置。
5)计算适应度根据当前位置计算适应度。
这里的适应度即函数的值。
6)更新最优值如果当前的适应度比已记录的最优适应度更优,则更新记录的最优适应度值和位置。
7)终止条件循环运行以上步骤,直到达到指定的迭代次数或满足特定的终止条件。
4. 代码实现示例以Python语言为例,下面给出了求解函数最小值的蚁群算法实现示例:```pythonimport numpy as npclass Ant(object):def __init__(self, dim, max_pos, min_pos):self.dim = dimself.max_pos = max_posself.min_pos = min_posself.pos = np.random.uniform(min_pos, max_pos, size=dim)self.velocity = np.random.uniform(min_pos, max_pos, size=dim)self.pbest = self.posself.pbest_fitness = float('inf')self.fitness = float('inf')def evaluate(self, f):self.fitness = f(self.pos)if self.fitness < self.pbest_fitness:self.pbest = self.posself.pbest_fitness = self.fitnessdef update_velocity(self, other_ant_pos, w, c1, c2, max_velocity):r1 = np.random.rand(self.dim)r2 = np.random.rand(self.dim)self.velocity = w * self.velocity + c1 * r1 * (self.pbest - self.pos) + c2 * r2 * (other_ant_pos - self.pos)self.velocity = np.clip(self.velocity, -max_velocity, max_velocity)def update_pos(self):self.pos = self.pos + self.velocityself.pos = np.clip(self.pos, self.min_pos, self.max_pos)class ACO(object):def __init__(self, f, dim=2, max_iter=100, n_ant=10, max_velocity=1, w=0.5, c1=1, c2=1, max_pos=10, min_pos=-10):self.f = fself.dim = dimself.max_iter = max_iterself.n_ant = n_antself.max_velocity = max_velocityself.w = wself.c1 = c1self.c2 = c2self.max_pos = max_posself.min_pos = min_posself.global_best_fitness = float('inf')self.global_best_pos = np.zeros(dim)self.ants = [Ant(dim, max_pos, min_pos) for i in range(n_ant)]self.init_random_ant()def init_random_ant(self):for ant in self.ants:ant.evaluate(self.f)if ant.fitness < self.global_best_fitness:self.global_best_fitness = ant.fitnessself.global_best_pos = ant.posdef search(self):for i in range(self.max_iter):for ant in self.ants:for other_ant in self.ants:if ant != other_ant:ant.update_velocity(other_ant.pos, self.w, self.c1, self.c2, self.max_velocity)ant.update_pos()ant.evaluate(self.f)if ant.fitness < self.global_best_fitness:self.global_best_fitness = ant.fitnessself.global_best_pos = ant.posdef run(self):self.search()print("best fitness: {:.6f}, best position:{}".format(self.global_best_fitness, self.global_best_pos))def f(x):return np.sum(x**2)aco = ACO(f)aco.run()```在这个实现中,我们用Ant表示每个蚂蚁,包含了位置、速度、适应度等信息。
蚁群算法的基本原理及应用
蚁群算法的基本原理及应用1. 简介蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁觅食行为的计算机算法。
蚁群算法最早由意大利学者Dorigo等人于1992年提出,它通过模拟蚂蚁在搜索食物时的行为规律,能够解决很多优化问题。
在近年来,蚁群算法在路线规划、任务分配、组合优化等方面得到了广泛的应用。
2. 基本原理蚁群算法的基本原理是模拟蚂蚁在搜索食物过程中的行为规律。
蚂蚁在搜索食物的过程中,会释放一种称为信息素(pheromone)的化学物质,用以指引其他蚂蚁前往食物的路径。
当蚂蚁选择了一条路径后,它会在路径上释放信息素,并且信息素会随着时间的推移逐渐挥发。
蚂蚁在选择路径时具有一定的随机性,同时也受到信息素浓度的影响。
信息素浓度高的路径会更有可能被选择,从而使得路径上的信息素浓度进一步增加。
蚁群算法利用蚂蚁在搜索食物过程中的行为规律来解决优化问题。
算法首先随机生成一群蚂蚁,在每一次迭代中,蚂蚁根据信息素浓度和启发式信息(即问题本身的特征)来选择路径,并更新路径上的信息素浓度。
随着迭代次数的增加,信息素浓度会不断迭代更新,蚂蚁在路径选择时也会趋向于选择信息素浓度高的路径。
最终,蚁群算法通过大量蚂蚁的合作和信息素的反馈来寻找到最优解。
3. 应用领域蚁群算法在很多优化问题中得到了广泛的应用。
以下是一些常见的应用领域:•路线规划:蚁群算法可以用于解决旅行商问题(TSP),在城市之间找到最优的路径,从而提高运输效率和降低成本。
•任务分配:蚁群算法可以用于解决多机器人的任务分配问题,将任务分配给不同的机器人来实现协作完成。
•组合优化:蚁群算法可以用于解决组合优化问题,例如在工程中安排最优的资源分配,或者在电信网络中找到最短的路径以优化网络流量。
4. 算法流程蚁群算法的基本流程如下:1.初始化信息素和启发式信息。
2.生成一群蚂蚁,放置在起始位置。
3.每只蚂蚁根据信息素浓度和启发式信息选择路径,并更新路径上的信息素浓度。
群智能算法
群智能算法群智能算法简介群智能算法(Swarm Intelligence Algorithms)是一类基于群体智能的优化算法。
群体智能是指通过模拟大自然中各种群体行为和智能的方法,来解决较复杂的问题。
在群智能算法中,通过模拟群体中个体之间的合作和交流,以达到全局最优解或者近似最优解的目标。
蚁群算法蚁群算法(Ant Colony Optimization, ACO)是群智能算法的一种,灵感来自于蚂蚁寻找食物的行为。
蚁群算法通过模拟蚂蚁在寻找食物的过程中释放信息素并根据信息素浓度选择路径的行为,来解决优化问题。
蚁群算法的优点是能够自适应地搜索最优解,并且对于复杂的问题也有很好的适应性。
蚁群算法的基本思想是,蚂蚁在寻找食物的过程中会释放信息素,其他蚂蚁会根据信息素浓度选择路径。
信息素的浓度会根据路径的质量进行更新,路径质量越高,信息素浓度越大。
蚂蚁寻找食物的路径会受到信息素浓度的引导,随着时间的推移,信息素浓度越高的路径被越多的蚂蚁选择。
最终,蚂蚁会集中在质量较高的路径上,找到最优解。
粒子群算法粒子群算法(Particle Swarm Optimization, PSO)是另一种群智能算法,灵感来自于鸟群或鱼群等群体中的个体行为。
粒子群算法通过模拟个体之间沟通和协作的行为,以达到优化问题的求解。
粒子群算法的特点是快速收敛和易于实现。
粒子群算法的基本思想是将待优化的问题看作搜索空间中的一个点,这个点的位置表示解的位置。
粒子代表一个个体,其位置表示解的位置,速度表示解的搜索方向。
每个个体根据自身的搜索经验和群体的信息进行位置和速度的更新。
通过不断迭代,粒子群算法最终能够找到最优解。
群智能算法的应用群智能算法在各个领域都有广泛的应用。
下面几个常见的应用领域:1. 旅行商问题旅行商问题是计算机科学中的一个经典问题,其目标是寻找一条最优路径,使得旅行商可以从一个城市出发,经过所有其他城市,最后回到出发城市,且路径总长度最小。
蚁群算法 蚁狮算法
蚁群算法蚁狮算法
蚁群算法(Ant Colony Algorithm)是一种模拟蚂蚁觅食行为的启发式优化算法。
它通过模拟蚂蚁在寻找食物过程中释放信息素的行为,来解决组合优化问题。
蚂蚁在寻找食物时会在路径上释放一种化学物质,称为信息素,其他蚂蚁通过感知到信息素的浓度来选择路径,从而实现最优路径的搜索。
蚁群算法的基本思想是:在解空间中随机生成一群蚂蚁,每只蚂蚁根据当前位置和信息素浓度选择下一个移动位置,移动后释放信息素。
信息素浓度会随着时间的推移逐渐蒸发。
蚂蚁根据信息素浓度和启发函数来选择下一个位置,启发函数一般根据问题的特性来设计。
最终,通过迭代更新信息素浓度和蒸发,蚂蚁群体会逐渐收敛到最优解。
蚁狮算法(Ant Lion Optimizer)是一种基于蚁狮捕食行为的启发式优化算法。
蚁狮是一种昆虫,它会在沙地上挖掘坑穴,然后隐藏在坑穴中等待猎物。
当猎物掉进坑穴时,蚁狮会迅速捕捉并吃掉它。
蚁狮算法模拟了蚁狮捕食行为,通过追踪猎物的行为来寻找最优解。
蚁狮算法的基本思想是:在解空间中随机生成一群蚂蚁,每只蚂蚁根据当前位置和信息素浓度选择下一个移动位置。
与蚁群算法不同的是,蚁狮算法引入了一个蚁狮,它代表了当前最优解,蚂蚁会追踪蚁狮的位置。
当蚂蚁接近蚁狮时,它会增加信息素浓度,从而吸引其他蚂蚁朝着蚁狮方向移动。
蚁狮会不断更新自身位置,以寻找
更优解。
最终,通过迭代更新信息素浓度和蚁狮位置,蚂蚁群体会逐渐收敛到最优解。
sigmoid蚁群算法
sigmoid蚁群算法
蚁群算法,是优化算法当中的一种。
蚁群算法擅长解决组合优化问题。
蚁群算法能够有效的解决著名的旅行商问题(TSP),不止如此,在其他的一些领域也取得了一定的成效,例如工序排序问题,图着色问题,网络路由问题等等。
接下来便为大家简单介绍蚁群算法的基本思想。
蚁群算法,顾名思义就是根据蚁群觅食行为而得来的一种算法。
单只蚂蚁的觅食行为貌似是杂乱无章的,但是据昆虫学家观察,蚁群在觅食时总能够找到离食物最近的路线,这其中的原因是什么呢?其实,蚂蚁的视力并不是很好,但是他们又是凭借什么区寻找到距离食物的最短路径的呢?经过研究发现,每一只蚂蚁在觅食的过程中,会在沿途释放出一种叫做信息素的物质。
其他蚂蚁会察觉到这种物质,因此,这种物质会影响到其他蚂蚁的觅食行为。
当一些路径上经过的蚂蚁越多时,这条路径上的信息素浓度也就越高,其他蚂蚁选择这条路径的可能性也就越大,从而更增加了这条路径上的信息素浓度。
当然,一条路径上的信息素浓度也会随着时间的流逝而降低。
这种选择过程被称之为蚂蚁的自催化行为,是一种正反馈机制,也可以将整个蚁群认定为一个增强型学习系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蚁群算法的基本思想
一、引言
蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优
化路径的算法。
它由Marco Dorigo于1992年在他的博士论文中提出,其灵感
来源于蚂蚁在寻找食物过程中发现路径的行为。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。
蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且
最多一次最后又回到第一个城市。
寻找一条最短路径,使他从起点的城市到达
所有城市一遍,最后回到起点的总路程最短。
若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。
二、基本蚁群算法
(一)算法思想
各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。
当
一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这
里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。
假设有两条路从窝通向食物,
开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无
关紧要)。
当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁
来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的
蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,
从而洒下更多的信息素。
因此,越来越多地蚂蚁聚集到较短的路径上来,最短
的路径就找到了。
蚁群算法的基本思想如下图表示:
(二)算法描述
基本蚁群算法的算法简单描述如下:
1.所有蚂蚁遇到障碍物时按照等概率选择路径,并留下信息素; 2.随着时间的推移,较短路径的信息素浓度升高; 3.蚂蚁再次遇到障碍物时,会选
择信息素浓度高的路径; 4.较短路径的信息素浓度继续升高,最终最优路径
被选择出来。
三、随机蚁群算法
在基本蚁群算法中,蚂蚁会在多条可选择的路径中,自动选择出最短的一
条路径。
但是,一旦蚁群选择了一条比之前短的路径,就会认为这条路径是最
好的,在这条路径上一直走下去。
这样的算法存在问题:蚂蚁可能只是找到了
局部的最短路径,而忽略了全局最优解。
因此,在基本蚁群算法的基础上,需要对蚂蚁选路的方案加以改善:有些
蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,也就是它会按
照一定的概率不往信息素高的地方。
如果令开辟的道路比原来的其他道路更短,
那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。
最后,经过一段时间
运行,可能会出现一条最短的路径被大多数蚂蚁重复着,这就是优化的随机蚁
群算法为了实现蚂蚁的“随机”选路,我们需要做以下假设:
1.范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径,如果半径等于2,那么它能观察到的范围就是2*2个方格世界,并且能移动的
距离也在这个范围之内。
2.环境:环境以一定的速率让信息素消失。
3.觅食规则:在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。
否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,那么它朝哪个方向走的概率就大。
这就意味着每只蚂蚁多会以小概率犯错误,
从而并不是往信息素最多的点移动。
4.避障规则:如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
5.播撒信息素规则:每只蚂蚁在找到食物后撒发的信息素。
自然想到一个问题:开始时环境没有信息素,蚂蚁为什么会相对有效的找
到食物呢?这个问题用蚂蚁的移动规则同样可以解释。
首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个
方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽
然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的
干扰。
这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,
但又有新的试探,这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然
能找到隐蔽得很好的食物。
(二)算法描述
随机蚁群算法的算法描述如下:
算法输入:城市数量N,两两城市间的距离,所有路径的信息素浓度算
法输出:蚂蚁走过的路径长度
1.设置全部城市都没有去过,走过的路径长度为0;
2.随机选择一个出发的城市;
3.i = 1
4.while(i < N)
根据可选择路径的信息素浓度,计算出各自选中的概率;
5根据不同选择的概率,使用轮盘选择算法,得到选择的下一个城市;
6将所在城市标记为不可选择;
7.end
8.计算走过路径的长度;
用随机蚁群算法解决旅行商问题,实际上是多次使用蚁群算法,不断更新最短路径的过程。
由此,我们容易得到旅行商问题的算法描述:算法输入:所有城市的X、Y坐标,蚂蚁数量n,迭代次数K 算法输出:旅行商的最短路径
1.计算两两城市间的距离,初始化所有路径信息素为0
2.for i = 1 : K
3. for j = 1 : n
4.第j只蚂蚁搜索一遍;
5. if 走过的路径小于最短路径
6.更新最短路径;
7.更新走过路径的信息素;
8. end
9.end。