青藏高原东缘龙门山冲断带与四川盆地的现今构造表现_数字地形和地震活动证据

合集下载

川西龙门山断裂带活动性特征

川西龙门山断裂带活动性特征

建筑设计191产 城川西龙门山断裂带活动性特征邹媛1 王祥松2摘要:龙门山断裂带位于青藏高原东缘,四川盆地西界,是构造活动较强的巴颜喀拉地块和较稳定的川滇块体之间的界线,同时也是我国南北地震带的中部,呈NE-SW向展布,构造位置非常重要。

龙门山断裂带具有长期活动性,张培震等在2008年通过GPS发现龙门山断裂带在长达10年的时间内,它的构造变形的速度都非常的小(小于2mm/a )。

关键词:龙门山断裂带;活动性;特征1 龙门山区域地质概况龙门山是青藏高原和四川盆地的分界线,也是扬子地块和松潘—甘孜地块的分界线,还是中国中西部地质、地貌、气候的陡变带。

龙门山断裂带主要包括 3 条大断裂,自西向东分别是:龙门山后山大断裂:汶川-茂县-平武-青川; 龙门山主中央大断裂:映秀-北川-关庄,属于逆走滑断裂;龙门山主山前边界大断裂:都江堰-汉旺-安县,属于逆冲断层。

龙门山地区的构造位置属于扬子板块的西北部,其在羌塘板块和扬子板块相互的挤压的过程中形成的逆冲推覆构造带,是中国大陆造山带的一个典型。

在龙门山地区内,它的地势西北部分较高,而东南部分较低。

在西北部分是山石青峰,山峦巍峨起伏的龙门山山脉,主要是要由变质岩,岩浆岩构成。

2 断裂活动性差异研究表明,龙门山断裂带晚第四纪活动性分段特征明显,以往研究认为北(平武—青川断裂)晚更新世以来已不再活动(李传友等,2004;),最新的研究认为全新世是活动的(孙浩越,2015)。

中段在晚第四纪以来有活动,而南段因为分支较多等因素活动性较中段弱(李传友等,2004;杨晓平等,1999;邓起东等,1994;赵小麟等,1994;李勇等,2006;周荣军等,2006;)。

由断裂活动引起的水系扭曲、断裂槽谷、阶地位错等现象充分验证了以上结论(唐荣昌等,1993; Densmore et al.,2007;陈国光等,2007;贾营营等,2010;陈立春等,2013)。

2008 年汶川 Ms8.0 地震中沿北川-映秀断裂和灌县-江油断裂两条断裂发生地表破裂,表明了这两条断裂的最新活动性。

龙门山断裂带

龙门山断裂带

龙门山断裂带四川龙门山断裂自东北向西南沿着四川盆地的边缘分布,沿断裂带青藏高原推覆在四川盆地之上。

这是一条特别要命的裂缝。

它绵延长约500公里,宽达70公里,规模巨大,沿着四川盆地西北缘底部切过,位置十分特殊,地壳厚度在此陡然变化,在其以西为60-70km,以东则在50km以下。

它的东部仅100公里外就是人口密集、工业发达的成都平原地区和大城市群。

在一亿年前开始的喜马拉雅造山运动过程中,印度洋板块向北运动,挤压欧亚板块、造成青藏高原的隆升。

高原在隆升的同时,也同时向东运动,挤压四川盆地。

四川盆地是一个相对稳定的地块。

虽然龙门山主体看上去构造活动性不强,但是可能是处在应力的蓄积过程中,蓄积到了一定程度,地壳就会破裂,从而发生地震。

龙门山断裂带是由3条大断裂构成,自西向东分别是:龙门山后山大断裂汶川--茂县--平武--青川;龙门山主中央大断裂映秀--北川--关庄,属于逆—走滑断裂。

龙门山主山前边界大断裂都江堰--汉旺--安县,属于逆冲断裂。

公元2008年5月12日的汶川大地震,受灾严重的绵阳市北川县坐落在龙门山主中央断裂上,它就属于逆—走滑断裂。

同样受灾的都江堰市落在龙门山主边界断裂上,属于逆冲断裂。

2013年4月20日8时02分,四川省雅安市发生7.0级地震,震源深度13公里。

此次的地震同样是位于龙门山断裂带上。

断裂带(fault zone)亦称“断层带”。

地壳运动产生压力和张力,压力常见于汇聚型板块,如:印度洋板块(前端带着印度大陆)与欧亚板块间的碰撞。

张力常见于分离型板块,如海底扩张、红海裂谷、东非大裂谷等。

在地壳运动中压力和张力是相辅相成的。

例如:内陆很多断裂带的产生并不是分离型板块的张力所致,而恰恰是汇聚型板块,如大洋板块俯冲到大陆板块之下产生的压力使陆块隆起,而隆起必然使薄弱环节产生张裂。

如成都平原向青藏高原过度带,地壳从平均35千米向65千米过度(在材料力学上叫应力集中点)的龙门山断裂带。

2008年5月12日汶川地震

2008年5月12日汶川地震

2008年5月12日汶川地震(Ms8,0)地表破裂带的分布特征李海兵王宗秀付小方侯立玮司家亮邱祝礼李宁吴富峣提要:2008年5月12日14时28分,青藏高原东缘龙门山地区(四川汶川)发生了Ms8.0级地震,震后野外考查表明5.12汶川地震发生在NE走向的龙门山断裂带上,该断裂带晚新生代以来的逆冲速率小于1mm/a,GPS观察结果表明其缩短速率小于3mm/a。

这次5,12汶川地震造成了多条同震逆冲地表破裂带,总体长约275km,宽约15 km,发震断裂机制主要为逆冲作用(由NW向SE逆冲)伴随右旋走滑。

地表主破裂带沿龙门山断裂带的映秀一北川断裂发育,长约275km,笔者称为映秀一北川破裂带。

破裂带具有逆冲兼右旋走滑性质。

地表次级破裂带沿龙门山断裂带的前缘断裂安县一灌县断裂南段发育,长80km,笔者称为汉旺断裂带,破裂带基本为纯逆冲性质。

在这两条破裂带之间发育两条次一级的同震地表破裂带:一条长约20km呈NE走向的地表破裂带,笔者称为深溪沟破裂带,由于这条破裂带靠近主破裂带南段,并且与主破裂带变形特征一致,因此,笔者将深溪沟破裂带划归映秀一北川破裂带;另一条长约6km呈NW走向,由SW向NE逆冲并兼有左旋滑动的地表破裂带,笔者称为小鱼洞破裂带,它连接映秀一北川破裂带和汉旺破裂带,成为侧向断坡。

另外,在灌县一安县断裂东侧的四川盆地内,由都江堰的聚源到江油发育一条NE向的沙土液化带,它可能是四川盆地西部深部盲断裂活动的结果,同震地表破裂带的分布特征表明,龙门山断裂带活动断裂具有强烈的逆冲作用并伴随较大的右旋走滑,断裂向四川盆地扩展。

在龙门山断裂上类似2008年5月12日 Ms 8.0汶川大地震的强震复发周期为3000-6000a。

关键词:地震地表破裂;地震断层;发震构造;龙门山1、前言2008年5月12 日14时28分,在青藏高原东缘龙门山地区(四川汶川)发生了强烈地震(Ms8.0)(图1),地震导致大量房屋倒塌,并诱发了强烈的山崩、滑坡、塌方和泥石流等次生地质灾害,致使8万多人死亡,造成了巨大的经济损失和人员伤广。

龙门山断裂带地震研究

龙门山断裂带地震研究

龙门山断裂带地震研究龙门山断裂带,位于四川省中北部,呈现西南-东北走向,其断裂带西南起四川雅安,东北至四川青川县-陕西宁强县,经大邑县,都江堰,汶川,茂县,绵竹,北川,江油,平武,剑阁;在2008年5月12日汶川8级地震前该断裂带历史并无8级地震记录【有一个疑似8级地震记录,是1327年8月底至9月初四川雅安天全县附近发生强烈地震,那次地震震感最远传到湖北荆州,陕西汉中等地区,官方认为是在7级至8级之间。

】龙门山断裂带主要有3条平行的断裂带组成,分别是龙门山后山断裂【汶川-茂县-平武-青川】,龙门山中央断裂【映秀-北川-关庄】,龙门山主山前边界断裂【都江堰-汉旺-安县】。

下图是龙门山断裂带该断裂带全长500多千米【个人通过谷歌测距测到了是538千米左右】。

2008年5月12日四川省汶川县【实际上震中距离汶川县城接近70多千米,距离都江堰县城只有30多千米】发生8级地震【也有资料显示此次地震是一个连发的双震,汶川开始破裂发生了7.8级地震,随后当断裂带破裂到北川时北川再次发生破裂又发生了7.2级地震而两次地震相隔不到1分钟,这也就解释了为啥距离四川汶川地震震中100多千米外的北川比距离震中30多千米外的都江堰灾情更严重了。

】;地震属于逆冲-走滑行地震,地震属于巴颜喀拉山地块和扬子淮板块间的碰撞导致的。

此次地震将龙门山断裂带中段-北川这接近300多千米的断裂区域几百年甚至几千年累计的地壳挤压能量几乎全部释放了,不过要值得注意的是龙门山断裂带长度是达到500多千米呢,释放了300多千米应该还有接近200千米【地震局在汶川地震后勘探显示释放了320千米的断裂带的应力】;而至200多千米未释放能量的区域自2008年后也出现了活跃并且在2013年再次释放;2013年4月20日四川省雅安市芦山县龙门乡附近发生7级地震【USGS测定为6.6级】;此次地震位于龙门山断裂带的南段,地震释放了35千米至40千米断裂带的几百年累积的能量。

2008年5月12日汶川地震

2008年5月12日汶川地震

2008年5月12日汶川地震(Ms8,0)地表破裂带的分布特征李海兵王宗秀付小方侯立玮司家亮邱祝礼李宁吴富峣提要:2008年5月12日14时28分,青藏高原东缘龙门山地区(四川汶川)发生了Ms8.0级地震,震后野外考查表明5.12汶川地震发生在NE走向的龙门山断裂带上,该断裂带晚新生代以来的逆冲速率小于1mm/a,GPS观察结果表明其缩短速率小于3mm/a。

这次5,12汶川地震造成了多条同震逆冲地表破裂带,总体长约275km,宽约15 km,发震断裂机制主要为逆冲作用(由NW向SE逆冲)伴随右旋走滑。

地表主破裂带沿龙门山断裂带的映秀一北川断裂发育,长约275km,笔者称为映秀一北川破裂带。

破裂带具有逆冲兼右旋走滑性质。

地表次级破裂带沿龙门山断裂带的前缘断裂安县一灌县断裂南段发育,长80km,笔者称为汉旺断裂带,破裂带基本为纯逆冲性质。

在这两条破裂带之间发育两条次一级的同震地表破裂带:一条长约20km呈NE走向的地表破裂带,笔者称为深溪沟破裂带,由于这条破裂带靠近主破裂带南段,并且与主破裂带变形特征一致,因此,笔者将深溪沟破裂带划归映秀一北川破裂带;另一条长约6km呈NW走向,由SW向NE逆冲并兼有左旋滑动的地表破裂带,笔者称为小鱼洞破裂带,它连接映秀一北川破裂带和汉旺破裂带,成为侧向断坡。

另外,在灌县一安县断裂东侧的四川盆地内,由都江堰的聚源到江油发育一条NE向的沙土液化带,它可能是四川盆地西部深部盲断裂活动的结果,同震地表破裂带的分布特征表明,龙门山断裂带活动断裂具有强烈的逆冲作用并伴随较大的右旋走滑,断裂向四川盆地扩展。

在龙门山断裂上类似2008年5月12日 Ms 8.0汶川大地震的强震复发周期为3000-6000a。

关键词:地震地表破裂;地震断层;发震构造;龙门山1、前言2008年5月12 日14时28分,在青藏高原东缘龙门山地区(四川汶川)发生了强烈地震(Ms8.0)(图1),地震导致大量房屋倒塌,并诱发了强烈的山崩、滑坡、塌方和泥石流等次生地质灾害,致使8万多人死亡,造成了巨大的经济损失和人员伤广。

龙门山断裂映秀-北川断裂

龙门山断裂映秀-北川断裂

映秀-北川断裂2008年5月12日14时28分,在龙门山发生了8. 0级特大地震。

此次地震不仅在震中区及其附近地区造成灾难性的破坏,而且在四川省和邻近省市大范围造成破坏,其影响更是波及到全国绝大部分地区乃至境外,是新中国建立以来我国大陆发生的破坏性最为严重的地震之一。

汶川大地震发震断裂为龙门山断裂带的中央主断裂-映秀-北川断裂。

1映秀-北川断裂概况1.1地质背景映秀-北川断裂所在的龙门山是青藏高原东缘边界山脉,北起广元,南至天全,长约500 km,宽约30 km,呈北东-南西向展布,北东与大巴山相交,南西被鲜水河断裂相截。

龙门山式构造由一系列大致平行的叠瓦状冲断带构成,具典型的逆冲推覆构造特征,具有前展式发育模式,自西向东发育汉川-茂汉断裂、映秀-北川断裂和彭县一灌县断裂。

由于该地区地质过程仍处于活动状态,变形显著,露头极好,地貌和水系是青藏高原隆升过程的地质纪录,因此龙门山不仅是研究青藏高原与周边盆地动力学(盆原动力学)的典型地区,而且是验证青藏高原是以地壳加厚还是左行挤出来吸收印亚大陆碰撞后印度大陆向北挤入作用的关键部位,同时也是研究青藏高原东缘活动断层和潜在的地震灾害的关键地区。

2映秀-北川断裂特点及影响2.1映秀-北川断裂的断层类型、地表破裂、变形特征及活动方式龙门山映秀-北川断裂属于逆冲一走滑型地震。

结果表明映秀-北川断裂的地表破裂带从映秀向北东延伸达180- 190 km,走向介于NE30°-50°之间,倾向北西,地表平均垂向断距为2.9 m,平均水平断距为3.1 m;地表最大错动量的地点位于北川县擂鼓镇,垂直断错为6.2士0.1 m,水平断错为6.8士0.2 m,逆冲分量与右行走滑分量的比值为3:1-1:1,表明该断裂以逆冲-右行走滑为特点,逆冲运动分量略大于或等于右行走滑运动分量。

根据近南北向的分段断裂可将映秀-北川断层的地表破裂带划分为两个高值区和两个低值区,其中两个高值区分别位于南段的映秀-虹口一带和中北段的擂鼓-北川县城-邓家坝一带。

龙门山冲断带北段构造解析及有利区带预测

龙门山冲断带北段构造解析及有利区带预测

龙门山冲断带北段构造解析及有利区带预测王丽宁;陈竹新;李本亮;雷永良;闫淑玉【摘要】结合最新油气勘探资料,解剖龙门山冲断带北段的构造几何学形态及其形成过程,并在此基础上预测有利的油气勘探领域.龙门山北段地区经历中-新生代多期构造挤压的叠加改造作用:晚三叠世时期挤压逆冲作用形成主体冲断褶皱构造,强烈的褶皱和冲断变形在龙门山北段前缘均有发育;后期遭受以基底卷入的大型褶曲为特征的晚新生代构造改造.在两期构造变形作用下,龙门山冲断带北段形成东西分带、南北分段的构造格局,由造山带向盆地方向依次发育逆冲推覆体、准原地冲断、原地隐伏冲断等构造单元,并在南北走向上表现出不同的剖面组合.在多个构造单元中,浅层推覆体之下,晚期形成的原地或准原地断块和褶皱构造具有很大的油气勘探潜力.图8参30【期刊名称】《石油勘探与开发》【年(卷),期】2014(041)005【总页数】7页(P539-545)【关键词】龙门山;褶皱冲断带;构造解析;有利勘探目标【作者】王丽宁;陈竹新;李本亮;雷永良;闫淑玉【作者单位】中国石油勘探开发研究院;北京大学;中国石油勘探开发研究院;中国石油勘探开发研究院;中国石油勘探开发研究院;中国石油勘探开发研究院;北京大学【正文语种】中文【中图分类】TE122.1龙门山褶皱冲断带位于青藏高原和四川盆地交界处,被围限在华北、扬子和羌塘3大陆块之间,特殊的构造位置使其成为研究中国中—新生代大陆构造的重要地区[1-4]。

龙门山构造带的形成既受南秦岭造山带构造活动的控制,同时也受到青藏高原地区中—新生代板块碰撞的影响,构造上表现为由一系列运动方向为北西向南东的逆冲推覆体组成[2,5-10](见图1)。

近年来,汶川、芦山等地区地震地质灾害频繁发生,被认为是青藏高原挤压隆升效应造成龙门山断裂带活动所致[11-13],因此,龙门山构造带成为研究的焦点。

国内外地质学家围绕这一地区展开了越来越深入的研究,包括地表地质调查、活动断层研究、深部构造解析、三维可视化构造研究以及隆升机制研究等[11-15],贾东等[14,16]还详细讨论了龙门山冲断带构造演化过程和南北走向上的分段变形特征。

川滇地区主要活动断裂的活动特征及其近十年的地震活动性

川滇地区主要活动断裂的活动特征及其近十年的地震活动性

川滇地区主要活动断裂的活动特征及其近十年的地震活动性孙尧;吴中海;安美建;龙长兴【摘要】Vast active faults and their seismic activity in Yunnan-Sichuan area had been devel-oped since the Cenozoic.Based on the earthquake catalogue and existing data of active faults,we compared the actual seismic activity of major fault zones in the past ten years in Yunnan-Sichuan area with the forecast results made by GSHAP (Global Seismic Hazard Assessment Program), and then concluded the similarities and differences between them. <br> The comparison showed that seismic activities in Longmenshan fault zone were greatly un-derestimated in GSHAP,for most of the earthquakes along Longmenshan fault zone were after-shocks of the 2008 Wenchuan earthquake.Coulomb stress change caused by the mainshock of Wenchuan earthquake triggered the 2013 Lushan earthquake,and then reduced the seismic hazard of the southeastern segment of Xianshuihe fault.In the past decade,low seismic activities showed in outer arc belt of Yunnan-Sichuan area,mainly including Xianshuihe fault,Anninghe fault, Xiaojiang fault and other minorfaults,whose seismic hazard were greatly overestimated in GS-HAP.The similar situation appeared on Red River fault,Lancangjiang fault and Litang fault, part of the inner arc belt,which had the highest seismic hazard assessed by GSHAP.Otherwise, seismic activities of Yingjiang area in southwestern Yunnan started to enhance since 2008,while the seismic hazard in that area was neglected in GSHAP.Along Nujiang fault,only in thesouth segment and Baoshan area existed higher seismic activity,which was consistent with GSHAP.On the other side,eastern piedmont fault of the Haba-Yulong Snow Mountains,belonging to the middle part of the inner arc belt,showed higher seismic activities in recent years,which con-formed to the assessment of GSHAP.From the Zhaotong area to the east of Xiaojiang fault showed high seismic activities,consistent with GSHAP as well. <br> The above comparisons were based on the earthquake catalogue in the past ten years,while the time horizon of GSHAP would be fifty years in future,and cycle of one devastating earth-quake could be millennium,therefore large difference doesn't mean complete distortion of the esti-mates of GSHAP.%以近10几年的地震目录为基础,对川滇地区主要断裂带 GSHAP 地震危险性评估的预测结果与近十几年来的实际地震活动性进行了对比。

四川发生地震的原理是什么

四川发生地震的原理是什么

四川发生地震的原理是什么
四川发生地震的原理是地壳运动的结果。

地壳是地球最外层的固体壳层,由岩石和土壤组成。

地壳由地震带分隔成若干大块,这些大块通过板
块边界处的构造变动相对运动。

四川地区位于青藏高原东部,是中国地壳
运动最活跃的地区之一、以下是四川地震发生的详细原理:
1.构造构造的活跃性:四川地区处于青藏高原与华北地块的交界处,
其地壳由于被青藏高原向东推挤,同时受到青藏高原上升、东亚大陆板块
与菲律宾海板块碰撞等多种构造力的影响,从而形成了相对剧烈的地壳运动。

2.厚薄差异引起的压力积累:地壳的厚度不一,在四川地区,青藏高
原向东的推挤作用使得地壳在这一区域变厚。

由于地壳的差异厚度以及产
生的构造力,底部、边界周围及岩层中各种构造面上的应力留下了应变。

3.应变致力于释放:地壳运动和地下构造的差异会导致地壳中的巨大
应变。

长期以来,产生的应变积累在断裂面上聚集,当应变积累达到断裂
面的强度限制时,就会发生地震。

地震是应变释放的一种结果。

4.断层滑动引发地震:断层是地壳中已有的强度较弱的裂缝或断口,
地震通常由断层上的滑动所引发。

地震时,断层两侧的岩石在应变积累到
极限时会突然断裂,从而产生了地震波。

这些地震波在地壳内传播,造成
地震灾害。

综上所述,四川发生地震的原理主要是由于地壳运动和构造力的作用,导致地壳中的应变积累和释放,从而引发断层滑动产生地震波。

地震是地
球内部能量释放的一种表现,它对地壳和地表造成了破坏性的影响。

因此,
地震预测和防灾减灾工作对于降低地震灾害的发生和减轻损失具有重要意义。

龙门山褶皱冲断带扩展生长过程——基于低温热年代学模型证据

龙门山褶皱冲断带扩展生长过程——基于低温热年代学模型证据
引用本文:邓宾,何宇,黄家强,杨荣军,周政,赖冬,罗强,郑文鑫.李智武,刘树根.2019.龙门山褶皱冲断带扩展生长过程——基于蘇' 热年代学模型证据.地质学报,93(7):1588〜1600, doi: 10. 19762/j. cnki. dizhixuebao. 201906& Deng Bin, He Yu, Huang Jiaqiang, Yang Rongjun, Zhou Zheng, Lai Dong, Luo Qiang, Zheng Wenxin, Li Zhiwu, Liu Shugen. 2019. Eastward growth of the Longmenshan fold-and-thrust belt: evidence from the low-temperature ologica Sinica, 93(7) : 1588〜1600.
注:本文为国家自然科学基金项目(编号41572111,41402119和41472107)和四川省自然科学基金项目(编号2O17JQOO25)资助成果。 收稿日期:2018-09-10,改回日期:2019-03-11;网络发表日期:2019-04-08;责任编辑:周健。 作者简介:邓宾.男.1980年生。博士,教授,矿产普査与勘探专业,主要从事含油气盆地分析研究工作.Email: dengbinl3@mail. cdut. o
模型(Braun 2005 ; Barnes and Ehlers, 2009)、低温 热年代学与构造重建模型(Stockli, 2005; Deng Bin et al. , 2013a, 2014; Reiners et al. , 2015)等。
青藏高原以其复杂的地质构造作用过程、独 特的地貌景观及其对亚洲乃至全球气候的影响而 成为全球地学研究的热点,它不仅是研究大陆碰 撞与高原生长扩展过程的天然实验室,也是开展 构造-剥蚀-沉积-气候动态互馈过程研究的理想场 所。青藏高原东缘龙门山褶皱冲断带是整个青藏 高原周缘乃至世界上地形梯度最大的地区(图1), 使其成为解译青藏高原东向扩展生长的关键地 区,因而备受关注(Clark & Royden, 2000 ; Hubbard & Shaw, 2009 ; Wang et al. , 2012)。特 别是基于地表GPS位移监测(Chen et al. , 2000; Zhang et al. , 2004)和地质研究(Burchfiel et al., 2008)等揭示出的有限地壳缩短与龙门山晚中一 新生代前陆盆地的存在(Liu Shugen, 1993; Li

汶川地震的岩石圈深部结构与动力学背景

汶川地震的岩石圈深部结构与动力学背景

第35卷 第4期 成都理工大学学报(自然科学版) Vol.35No.4 2008年8月JOURNAL OF CHEN G DU UNIV ERSITY OF TECHNOLO GY (Science &Technology Edition )Aug.2008 [文章编号]167129727(2008)0420348209汶川地震的岩石圈深部结构与动力学背景[收稿日期]2008206230[作者简介]朱介寿(1936-),男,教授,博士生导师,从事地球物理学的教学与科研工作,E 2mail :zjs @ 。

朱介寿(成都理工大学地球物理系,成都610059)[摘要]中国西部地区由于受到印度板块向北推移挤压,青藏高原强烈变形,高原内部及其边缘的活断层上经常发生强烈地震,是大陆内部最活跃的地震区。

汶川8级地震就发生在青藏高原东缘的松潘-甘孜地块与扬子地块交界的龙门山主中央断裂带上。

作者利用面波层析成像、跨龙门山的被动源地震观测、爆破地震剖面的结果对震源附近的岩石圈结构和动力学特征进行研究,发现松潘-甘孜地块与扬子地块的岩石圈结构与性质有重大差异。

扬子地块岩石圈显示为高速、坚固和稳定特性,而松潘-甘孜地块为低速、软弱及易于破碎。

在松潘-甘孜地块中,中地壳内普遍存在一个低速层,它是引起中上地壳推覆运动的滑脱层,龙门山的推覆构造就是上部地壳仰冲的结果。

汶川地震震源深度为14km ,正好位于龙门山推覆体的映秀-北川主中央断裂带上。

[关键词]汶川地震;青藏高原东缘;龙门山;被动源地震剖面;爆破地震剖面;面波层析成像;推覆体与断裂带[分类号]P315.2 [文献标识码]A 中国西部地区由于受到印度板块向北推移挤压,青藏高原强烈变形,高原内部及其边缘的活断层上经常发生强烈地震,是大陆内部最活跃的地震区。

汶川8级地震发生在青藏高原东缘的松潘-甘孜地块与扬子地块交界的龙门山断裂带上。

龙门山断裂带共有三条主要断裂,最东边的一条为都江堰-安县-江油断裂,中间一条为映秀-北川断裂,靠西边一条为茂县-汶川断裂。

龙门山断裂带与强震

龙门山断裂带与强震

龙门山断裂带与强震嵇少丞2008年5月12日8.0级大地震发生在龙门山断裂带的中北段、今天雅安市芦山县发生的7.0级强震发生在龙门山断裂带的南段。

下面,我就科普一下龙门山断裂带。

在中国地图上有一条由著名地理学家胡焕庸(1901~1998)先生提出的“胡焕庸线”。

这条直线,北起黑龙江爱珲县、西南达云南腾冲,它把中国大陆分成西北和东南两部分,线的东南侧,土地只占整个国土面积的36%,人口却是全国的96%。

线的西北侧,情况恰恰相反。

在四川省的地图中,也有这样一条人口分布疏密的对比线,它就是龙门山脉。

龙门山以东是称之为“天府”的成都平原,“田肥美,民殷富……沃野千里,蓄积饶多,此谓天府。

”龙门山以西是中、高山、极高山和高原的世界,遍布湍急的河流、深切河谷,自然环境注定这里不能像川东一样养活众多的人口,而只能是游牧民的天下。

龙门山是青藏高原东缘边界山脉,横亘于青藏高原和四川盆地之间。

龙门山脉北东-南西向长约500 千米,北西-南东向宽约40~50 千米,从东到西分别是山前冲积平原(海拔约500 米)、高山地貌(海拔2000~5000 米)和高原地貌(海拔4000~5000 米),为当今世界上坡度最陡的高原边界。

龙门山地区的地形坡度比喜马拉雅山南坡的还大,这样的地貌特征本身就说明垂直龙门山方向上水平构造应力分量很大。

前人的野外地质考察和古地磁资料都证明龙门山脉晚新生代以来经受了强烈的右旋斜冲。

但是,横跨龙门山布设的GPS区域观测网在5.12之前的近十年的测量结果却显示基本上没有位移,有些人据此推断龙门山断裂带不是活动地震构造,把该地区从全国强震重点防范区的名单上剔除。

在5.12地震发生在前,当地政府和民众都认为龙门山地区不会有大地震发生,因此也就没有采取任何应对地震灾害的策略与措施,更没有为应对可能的地震灾害而储备救援物资。

事实上,在GPS观测的时间段内,龙门山断裂带处于闭锁状态,并不证明龙门山断裂带是不活动的构造。

龙门山断裂活动和川西高原隆升历史的裂变径迹测年

龙门山断裂活动和川西高原隆升历史的裂变径迹测年

后龙 门 山逆冲 推覆构 造 带在 中新世 晚期开始 快速 隆升 ,而 高原 内部 强烈隆 升发 生在
上 新世末 至 中更新世 。高 原隆 升导致 深切 河谷地 貌 的形 成和 发育 。
关 键 词 : 晚 新 生 代 ; 川 西 高 原 ; 龙 门 山断 裂 带 ; 隆 升 ; 裂 变径 迹 测 年 中 图 分 类 号 :P 4 . ;P 4 ;P 4 1 52 3 56 52 文 献 标 识 码 :A
龙 门山断裂 活动 和川 西 高原 隆升 历 史 的裂 变径 迹 测 年
医 , 岳桥 , 张
(. 国土 资 源 部 新 构 造 运 动 与 地 质 灾 害 重点 实验 室 ,北 京 10 8 ; 1 00 1 2 中国 地 质 科 学 院 地 质 力学 研 究 所 ,北 京 10 8 ) . 00 1
0 引 言
作 为青藏 高原 的组成 部分 ,川 西高原 耸立 于 四川 盆地 的西侧 ,龙 门 山构 造带 构成 了高原
的东界 。该带 向北东 延伸 与秦岭 构造 带相 连 ,向南西 与康滇 地轴相 接 ,著名 的南北 地震 带 由
此 通过 。
川西 高原隆 升过程 的研 究 受 到 国 内外 地 质 学者 的广 泛 重视 。唐 荣 昌等 … 从 构 造地 貌 学
摘 要 :通过 l 2个构 造 岩、 变质砂岩 和 花 岗岩样 品 的磷 灰石 裂 变 径迹 测 年年 龄 分 析 ,结合前人 研 究成果 ,初 步确定 了青 藏高原 东缘 龙 门山地 区晚新 生代 主要 断裂 活 动 时期 和 区域 隆升 历史 。结果 表 明,龙 门 山逆冲 推覆构 造 带 2条 主 断裂 :汶 川一 茂 县断 裂和映秀一 北 川 断裂 ,最 晚一 次 强 烈活 动 发 生在 早 更 新世 ( T年 龄 为 12~ F . 1 3Ma ,高 原 内部 北西 向米 亚罗 断裂在 中更 新世 ( 0 5Ma 发 生过 强 烈活 动; . ) 约 . )

青藏高原东缘北川和彭灌断层的活动构造

青藏高原东缘北川和彭灌断层的活动构造

2008年第2期世 界 地 震 译 丛1 论 文青藏高原东缘北川和彭灌断层的活动构造A1L1Densmore M1A1Elli s Y ong Li Rongjun ZhouG1S1Hancock N1Richa rdso n摘要 青藏高原东缘地区地形陡峭、起伏大,经历了新生代的快速冷却和剥蚀,却没有显示出该前陆盆地产生过大量级地壳缩短或调解过程的证据。

我们通过应用各种地貌观测结果对平行于该高原边缘的几条大断层的运动和滑动速率进行约束,来论述这一矛盾。

北川和彭灌断层主要是右旋滑动的活动构造,沿该高原边缘可连续追踪达200 km。

这两条断层都断错了河流填充阶地,得到的宇宙成因核素10Be经继承校正后,暴露物的年龄少于15ka,说明了晚更新世的活动。

彭灌断层沿走向的两个地点在全新世看来活动过。

两条断层晚第四纪的视下落速率沿走向是变化的,但一般都小于1mm/a。

走滑位移的速率很可能要高出几倍,可能约为1~10mm/a,但仍旧约束不好。

四川盆地西缘特别是山前带,在晚第四纪也发生了褶皱和右旋走滑活动。

这些观测证明了该高原东缘形成和保持的模式,没有发生大的上地壳缩短。

这些也表明,与青藏高原东缘平行的断层的活动可能预示着人口密集的四川盆地存在很大的地震危险性。

引言青藏高原东缘的龙门山地区,毗邻四川盆地(图1),海拔7500m,地形起伏在50 km的距离内就相差5km以上。

该高原边缘的地形坡度是现今世界上最陡的。

它受到长江支流和陡峭的基岩河道的深度切割侵蚀,局部河流落差超过3km(K irby et al, 2003)。

由各种热等时仪导出的热过程显示:晚新生代期间冷却速度快,沿该高原边缘的狭窄地带,无论是约20Ma(Arne et al,1997)还是9~13Ma(K irby et al,2002;Clark et al,5)开始,剥蚀均高达~。

这种极端地形起伏和快速晚新生代剥蚀的起源以及该高原边缘演化中上地壳断层的作用都是有争议的问题(Che n et a l,1994; K i rby et al,2000,2002,2003;Clar k et al, 2005;Richar dson et al,2007)。

龙门山地震断裂带

龙门山地震断裂带

龙门山地震断裂带龙门山断裂带也称龙门山断层,是中国西南部的一个逆冲断层。

位于青藏高原东缘,与四川盆地相交。

由龙门山后山断裂、龙门山主中央断裂、龙门山主边界断裂三条断裂带组成。

东北-西南走向,长约500公里,宽达70公里,规模巨大。

沿着四川盆地西北缘底部切过,地理位置十分特殊。

地壳厚度在此陡然变化,在其以西为60~70km,以东则在50km以下。

它的东部仅100公里外就是人口密集、工业发达的成都平原地区。

一、地理位置龙门山位于四川省四川盆地西北边缘,广元市、都江堰市之间,东北-西南走向。

包括龙门、茶坪、九顶等山。

东北接摩天岭,西南止岷江边。

绵延200多千米,海拔1000~1500米。

龙门山最高峰海拔2345米,海拔由盆地边缘2000米向西逐渐升高到3000米以上,主峰九顶山海拔高达4984米,山地垂直地带,气象万千。

而龙门山断裂带,自东北向西南沿着四川盆地的边缘分布,沿断裂带青藏高原推覆在四川盆地之上。

这是一条特别要命的裂缝。

该断裂带由3条深而大的断裂构成,自西向东其名称及经过的县分别是:1、龙门山后山大断裂,经过汶川、茂县、平武、青川;2、龙门山主中央大断裂,经过映秀、北川、关庄,属于逆—走滑断裂;3、龙门山主山前边界大断裂,经过都江堰、汉旺、安县,属于逆冲断裂。

2008年5月12日的汶川大地震,受灾严重的绵阳市北川县坐落在龙门山主中央断裂上,它就属于逆—走滑断裂。

同样受灾的都江堰市落在龙门山主边界断裂上,属于逆冲断裂。

二、形成原因大约两亿年前,随着印度洋板块中的印度板块不断向北推进,并向亚欧板块下俯冲,青藏高原开始抬升。

随后,喜马拉雅山脉诞生了。

而与此同时出现的还有位于青藏高原边缘的那些地质断裂带,从而形成了地中海—喜马拉雅地震带(亚欧地震带)的东段。

首先来了解一下山是怎么形成的。

山就是由于地壳受到挤压,而隆起生成的。

一方面,挤压使得隆起成山,另一方面挤压使地壳陷落产生断裂,形成湖泊,这是孪生的关系。

龙门山造山带演化与构造特征研究

龙门山造山带演化与构造特征研究

龙门山造山带演化与构造特征研究龙门山是中国四川省的一座著名山脉,也是一个备受关注的地质地貌景区。

它位于四川盆地和青藏高原之间,是一条重要的造山带,因其独特的地质构造特征而备受研究者的关注。

本文将探讨龙门山造山带的演化过程以及其独特的构造特征。

龙门山的地质演化历经了数亿年的过程。

最早的构造事件可以追溯到古元古代,当时的地壳运动使得原始地壳碎裂形成了一系列断层。

这些断层在后期构造活动中扮演了重要的角色,促进了龙门山的形成。

随后,古生代晚期至中生代早期的地壳挤压和折叠使得断层逐渐活动并形成了山脉。

在这个过程中,龙门山的地层经历了复杂的叠加、压扭和变形,形成了陡峭的山体和错综复杂的地质构造。

龙门山的构造特征主要表现在以下几个方面。

首先是断裂活动。

由于地壳运动的作用,龙门山地区形成了大量的断裂带,其中最著名的是龙门断裂带。

这一断裂带延伸数百千米,沿着山脉的走向贯穿整个龙门山地区。

断裂带的活动不仅改变了地层走向和倾角,也导致了地表的断崖陡壁和地震等自然灾害的形成。

其次是喀斯特地貌。

龙门山地区的地质构造特点决定了其独特的喀斯特地貌景观。

在侵蚀作用的影响下,地下溶蚀在龙门山地区形成了许多溶洞、地下河道和地下溶蚀槽。

此外,龙门山的山麓和峡谷地带分布着大量的喀斯特地貌景观,如石笋、石林、溶洞、溶敷地等。

这些奇特的景观吸引了众多游客和地理学家的关注。

另外一个重要的构造特征是火山活动。

龙门山地区地壳的继续运动和构造变动导致了火山活动的发生。

这里分布着数座火山,如龙门山、莲花山等。

火山活动不仅对地壳运动产生了重要影响,也为当地的地质研究和生态旅游提供了宝贵的资源。

最后,龙门山地区还有丰富的矿产资源。

作为一个重要的造山带,龙门山地区富含矿产资源,如煤炭、铁矿石、铅锌矿等。

这些矿产资源对当地经济和工业发展有着重要的意义。

综上所述,龙门山造山带是一个地质历史悠久、构造特征独特的地区。

其演化过程经历了数亿年的构造运动和地质变形,形成了丰富多样的地质景观和矿产资源。

龙门山断裂带最新地震活动特征及其意义

龙门山断裂带最新地震活动特征及其意义

龙门山断裂带最新地震活动特征及其意义刘小梅;吴晶;梁春涛;钱旗伟;杜培笑【摘要】综合最新布设的龙门山断裂带地震空段台阵(LmsSGA)与四川省地震局固定地震台网数据,对龙门山断裂带新近一年(2016年11月21日到2017年10月28日)的23479个地震事件开展双差定位工作,共获取包括汶川地震余震和芦山地震余震在内的6111个重定位地震事件.在此基础上,分别与汶川地震和芦山地震的早期余震空间分布特征进行比较.研究发现在汶川地震发生近十年后,其余震活动依旧活跃.汶川地震现今余震活动主要分布在10~25 km的深度区间,震源深度呈现西南段较东北段偏深的特征.此外,汶川近年余震分布相比早期余震偏深,破裂带西南段的余震活动有向深部迁移的趋势.对于芦山地震,其近期余震活动较弱,余震主要分布在10~15 km的深度区间,比早期余震的分布区间偏浅.龙门山断裂带最新余震活动分布特征表明,余震活动随着时间的推移有迁移的现象.考虑到距离主震事件已分别有5~10年的流逝时间,余震迁移现象可能由以流体扩散方式为主的准静态应力机制触发.【期刊名称】《地球物理学报》【年(卷),期】2019(062)004【总页数】11页(P1312-1322)【关键词】龙门山断裂带;震相识别;双差定位;汶川地震;芦山地震【作者】刘小梅;吴晶;梁春涛;钱旗伟;杜培笑【作者单位】中国科学院地质与地球物理研究所岩石圈演化国家重点实验室,北京100029;中国科学院大学,北京 100049;中国科学院地质与地球物理研究所岩石圈演化国家重点实验室,北京 100029;成都理工大学地质灾害防治与地质环境保护国家重点实验室,成都 610059;成都理工大学地球探测与信息技术教育部重点实验室,成都 610059;中国科学院地质与地球物理研究所岩石圈演化国家重点实验室,北京100029;中国科学院大学,北京 100049;中国科学院地质与地球物理研究所岩石圈演化国家重点实验室,北京 100029;中国科学院大学,北京 100049【正文语种】中文【中图分类】P3150 引言龙门山断裂带是青藏高原东部的一条边缘断裂带,走向为NE方向,总长约400 km,其西部为松潘—甘孜块体,东部为四川盆地.2008年汶川MW7.9地震即发生在这条断裂带上(图1),该地震造成巨大人员伤亡,而在此之后的2013年芦山MW6.6地震的发生引发了汶川地震与芦山地震相互关系,以及龙门山断裂带未来地震危险性等相关思考(陈立春等,2013;杜方等,2013;单斌等,2013;徐锡伟等,2013;郑勇等,2013;Shi et al., 2014;Lu et al., 2017;陈运泰等,2013;Pei et al., 2014;Li et al., 2014;Bai et al., 2018).从地震相互关系角度分析,有学者指出,芦山地震是一次独立的地震事件,但其有可能被汶川地震触发而产生(Li et al., 2014).从地震危险性分析方面,有研究表明汶川地震的发生对周缘断裂带有应力加载的作用,使得龙门山断裂带西南段宝兴—小金一带处于潜在强震区域(陈运泰等,2013).另外,芦山地震的发生,使得汶川与芦山地震之间的地震空段危险性增强(陈运泰等,2013;高原等,2013;Lei et al., 2014;Liu et al., 2014).然而,地震层析成像结果表明该地震空段为低速区域,难以积累达到相应强震的应力水平(Pei et al., 2014).紧邻龙门山断裂带的四川盆地,包括四川中东部和重庆大部及云南昭通大部,共11个人口超过400万的城市,对该区地震危险性的判定尤为重要.除地震危险性以外,龙门山断裂带的另一个显著特点是其陡峭的地形,横跨该断裂带的地形梯度可达青藏高原地区之最(Thompson et al.,2015).有关该区的隆升机制主要包括两个端元模型:中下地壳流与中上地壳缩短(Clark and Royden, 2000; Hubbard and Shaw, 2009).前者指出在印度板块北向运动的过程中,松潘—甘孜块体软弱的中下地壳物质逐渐东向运移,当遇到较为坚硬的四川盆地阻挡时,物质运移通道转为向上,导致该区地形陡增;而后者则认为逆冲地震的发生可导致中上地壳横向缩短、垂向生长、地形升高.汶川地震发生距今已近十年,近年来有关该断裂带地震活动分布的研究并不多见,制约了人们对该断裂带地震震源演化的认识.此外,龙门山断裂带地形陡峭且海拔较高,对该区的地震学监测有限(图1),尤其是对地震空段的监测较为薄弱.这束缚了人们对龙门山断裂带整体地震活动与结构的认识,因此,自2016年11月,中国科学院地质与地球物理研究所与成都理工大学合作在地震空段加密布设23个宽频带地震仪器(梁春涛等,2018),并命名为龙门山断裂带地震空段台阵(Longmenshan Seismic Gap Array,LmsSGA).本文主要基于LmsSGA台阵新数据,并综合固定台站资料,开展龙门山断裂带最新时段的地震事件识别与定位研究,分别揭示汶川与芦山地震的早期余震与现今余震在空间分布上的差异,并探讨其可能的机制.新获取的地震定位数据,将为龙门山断裂带地震危险性与动力学机制,提供新的地震学信息.图1 研究区域地质构造、断层及LmsSGA台站分布蓝色圆圈为1990年1月1日至2017年11月21日发生在研究区域内的ML≥2.0地震(数据来自四川省地震局),红色五角星代表汶川地震,黄色五角星代表芦山地震,蓝色五角星代表九寨沟地震,蓝色菱形为LmsSGA台站分布,绿色菱形为四川省地震局的固定台站,紫色方框代表地震空段的位置.粉色和绿色的丛集分别是重定位前的丛集2和丛集4.Fig.1 Tectonic structures, faults and stations in study areaThe blue circles show seismicity in the study area from January 1st, 1990 to November 21st, 2017 with ML≥2.0 (data from Sichuan Earthquake Admini stration). The red star shows Wenchuan mainshock, the yellow star shows Lushan mainshock, and the blue star shows Jiuzhaigou mainshock. The blue diamonds show stations of LmsSGA, the green diamonds show permanent stations from Sichuan Earthquake Administration, and the purple rectangle marks the seismic gap. The pink and green clusters shows cluster 2 and cluster 4 before relocation respectively.图2 LmsSGA数据预处理流程图Fig.2 Flowchart of data preprocessing from LmsSGA1 数据与方法LmsSGA台阵主要包括14台Guralp CMG-3ESPC地震计,4台Nanometrics Trilium-120PA地震计和5台eentec EP-300地震计,对应的数据采集器依次为REFTEK-130B,DR-4050P(dmx.gz格式)和Centaur(miniseed格式).本文采用数据时长约一年(2016年11月21日—2017年10月28日).野外采集的数据为连续波形且格式不同,因此在数据预处理过程中,首先进行数据格式转换,把上述三种数据格式转为标准SAC格式,并把时间转换至北京时.其次,从连续波形中截取事件波形,具体为根据四川省地震局提供的地震目录信息截取事件波形,最终获取23479个事件资料(图2).由于事件波形数量较大,在后续分析中,我们基于已经截取的事件波形,首先采取自动识别震相方法——PSIRpicker (Li and Peng, 2016)拾取P、S到时.另外,为保证自动识别结果的可靠性,把震中距小于120 km的地震事件的P、S到时进行人工检验校正.综合LmsSGA震相数据与四川省地震局的震相报告,基于HypoDD(Waldhauser and Ellsworth, 2000)方法,开展龙门山断裂带最新地震事件重定位分析,并与汶川地震与芦山地震的早期余震分布特征加以比较,探讨其可能的机制.1.1 震相拾取PSIRpicker(Li and Peng, 2016)是在传统特征函数方法基础上,结合研究区域的一维速度反演,该方法主要基于已有地震事件目录计算新数据体的体波理论到时信息,正适于LmsSGA台阵数据.该方法需要初始速度模型和地震位置作为输入信息,确定震相到时的可能区间,在此区间内,通过信噪比(SNR)的比对判定震相的准确到时.根据所得的震相到时更新初始速度模型,并用更新后的速度模型寻找更加准确的震相到时.如此迭代反复,直至震相到时和速度模型都足够稳定时,即可得到较为精准的区域速度模型和震相到时.在利用PSIRpicker拾取震相的准备过程中,赵珠和张润生(1987)关于四川地区地壳上地幔的P波速度模型I中的西区部分作为初始速度模型,其中VP/VS值取1.73.采取西部速度模型主要基于两点考虑:其一,LmsSGA台阵的主体位于川西高原;其二,在对台阵数据2017年4月份的数据体进行测试时,我们发现由东部速度模型进行重定位得到的丛集2的均方根残差从0.3838 s降到0.1182 s,降低了69.2%,而由西部速度模型进行重定位得到的丛集2的均方根残差由0.3860 s降到0.1124 s,降低了70.9%,因此我们认为西部速度模型比东部速度模型更加适合本文的数据体.在自动拾取震相之后,将震相到时写入地震波形头段信息中,得到含有P波和S波初至信息的波形.为使震相识别结果更为可靠,我们对震中距在120 km以内的所有事件波形进行人工检验校正,最终获取具有清晰震相的地震事件共2700个.图3a和图3b分别展示了自动识别震相准确度较高和不理想状态下,进一步进行人工检验校正的实例.这凸显了自动识别震相与人工检验相结合的必要性.1.2 地震重定位本文采用HypoDD(Waldhauser and Ellsworth,2000)对龙门山断裂带及其周缘的地震事件进行重定位.如果两个地震间的距离远小于震源距和速度不均匀尺度的话,那么对于同一个台站来说,这两个地震从震源区到该台站的射线路径是相近的.这种情况下,在同一个台站观测到的这两个地震事件的走时差之差(称为双差)主要由两个地震事件的空间分布差异所致.重定位过程中通过联合多个事件对到台站的双差组成矩阵,利用奇异值分解法(SVD)或共轭梯度法(LSQR)获得最小二乘解,并通过多次迭代得到准确的震源参数(Waldhauser and Ellsworth,2000).在对LmsSGA记录到的地震事件进行定位的过程中,与识别震相过程一致,采用赵珠和张润生(1987)关于四川地区地壳上地幔的P波速度模型I中的西区部分,VP/VS值取1.73.本文组成事件对的条件为:事件对之间的最大距离MAXSEP=8 km,事件对到台站的最远距离MAXDIST=350 km,事件对的最低链接数MINLINK=4.鉴于龙门山断裂带规模较大,设定用于重定位的丛集的质心到台站的最远距离为250 km,迭代3组,每组迭代4次.本文重定位过程中,共得到1097473对事件对,组成矩阵的规模较大,因此采用的是共轭梯度法(LSQR)求解震源参数.2 重定位结果采用双差定位方法,将组成204个丛集的8747个地震事件进行重定位,共得到6111个精定位的地震事件.以丛集4(九寨沟地震余震构成的丛集)为例,共658个地震事件参与重定位,得到620个重定位结果.重定位后的均方根残差从0.4334 s 减小到0.2910 s,水平向和垂直向的平均偏差分别为43.8 m和66.6 km,结果得到较为明显的改善.图3 PSIRpicker震相自动识别与人工震相检验校正的波形示例2~15 Hz带通滤波后的三分量地震记录,自上而下分别是E、N、Z分量.其中A和T0分别为PSIRpicker拾取的P波初至和S波初至;P和S分别为人工检验校正之后的P波和S波的初至.其中,(a)为震中距21.3 km,震源深度4 km,ML1.3的地震事件;(b)为震中距12.2 km,震源深度12 km,ML1.6的地震事件.Fig.3 Three-component waveform after automatic phase picking and manual checkingThree-component seismogram filtered by a butterworth filter in 2~15 Hz, E, N, Z components from upper to lower panels respectively. A is marked as P arrival picked by PSIRpicker while T0 is S arrival picked by PSIRpicker. P and S arrivals are manually adjusted by marking P and S. (a) shows an event with epicenter distance 21.3 km, depth 4 km, ML1.3, while (b) shows an event with epicenter distance 12.2 km, depth 12 km, ML1.6.图4 重定位前(a)、后(b)的震中位置分布图附图(c)、(d)为震源深度统计直方图,附图(e)为IRIS提供的该区域1970年2月24日至2018年2月18日的地震(MW≥3.0)震源深度分布图.Fig.4 Seismicity locations before (a) and after (b) relocationThe insets (c) and (d) are histograms of focal depth respectively, and the inset (e) is histogram of focal depth (MW≥3.0) from IRIS (from February 24th, 1970 to February 18th, 2018).图5 汶川余震活动沿断裂带走向投影图以汶川主震为中心沿龙门山断裂带走向投影,投影宽度为西向50 km至东向50 km. (a) 红色方框为本文结果,绿色方框为赵博等(2011)结果,蓝色方框为黄媛等(2008)结果,橙色五角星为汶川地震主震;(b) 红色圆圈为本文结果中震源深度沿断裂带的投影,黑色方框含义同图5a中红色方框,附图为重定位后震源深度统计直方图; (c)、(d) 中的绿色和蓝色圆圈分别为赵博等(2011)和黄媛等(2008)的结果中震源深度沿断裂带的投影,其他同图5b.Fig.5 The along-strike projections of Wenchuan aftershocksTheprojections are centered at Wenchuan mainshock spanning from 50 km in the west to 50 km in the east. (a) The red squares show our result. The green squares show the results of Zhao et al. (2011) and the blue ones show the results of Huang et al. (2008). The orange star represents Wenchuan mainshock. (b) The red circles mark along-strike projection of focal depth in this paper and the black squares are the same as red ones in Fig.5a. The inset figure is the histogram of focal depth after relocation. The green circles and blue circles in (c) and (d) mark along-strike projection of focal depth in Zhao et al. (2011) and Huang et al. (2008) respectively. Others are the same as in Fig.5b.图6 芦山余震活动沿断裂带走向投影图以芦山主震为中心沿龙门山断裂带走向投影,投影宽度为西向12 km至东向20 km.(a)红色方框为本文结果,绿色和蓝色方框分别为Fang等(2015)和赵博等(2013)的结果,橙色五角星为芦山地震主震;(b)红色圆圈为本文结果中震源深度沿断裂带的投影,黑色方框含义同图6a中红色方框,附图为重定位后震源深度统计直方图;(c)、(d)中的绿色和蓝色圆圈分别为Fang等(2015)和赵博等(2013)的结果中震源深度沿断裂带的投影,其他同图6b.Fig.6 The along-strike projections of Lushan aftershocksThe projections are centered at Lushan mainshock spanning from 12 km in the west to 20 km in the east. (a) The red squares show our result. The green squares and blue squares show the results of Fang et al. (2015) and Zhao et al. (2013) respectively. The orange star represents Lushan mainshock. (b) The red circles mark along-strike projection of focal depth in this paper and the black squares are the same as red ones in Fig.6a. The inset figure is the histogram of focal depth after relocation. The green circles and blue circlesin (c) and (d) mark along-strike projections of focal depth in Fang et al. (2015) and Zhao et al. (2013) respectively. Others are the same as in Fig.6b. 图7 汶川地震与芦山地震最新余震分布(a)、(b) 分别同图5b,6b; (c)、(d) 分别是在芦山地震段和汶川地震段沿断裂带走向的S波速度结构(梁春涛等,2018).Fig.7 Distribution of the most recent aftershocks of Wenchuan and Lushan earthquakes(a) The same as Fig.5b and (b) The same as Fig.6b. (c) and (d) are S wave velocity along strike of Longmenshan Fault Zone in Lushan and Wenchuan rupture sections respectively (Liang et al., 2018).对比重定位前后的震中位置分布图(图4),可以看出重定位前震中位置聚集于汶川地震余震带、芦山地震余震带、九寨沟地震余震带和鲜水河断裂带附近.由于研究区域中台网分布较为均匀,重定位后的地震事件在空间分布形态上没有太大变化,但是呈现事件集中或收敛到断裂带周缘的特征.对比重定位前后的震源深度分布发现,重定位之前,绝大部分地震集中在0~25 km的深度范围内,且分布较为零散.重定位后,54.7%的地震事件分布在10~20 km的深度范围内,且有了较为明显的优势发震层,整体的震源分布有变深的趋势.值得注意的是,重定位之后,有2.9%的地震分布在30 km以深,这与IRIS(Incorporated Research Institution for Seismology)的结果一致(图4e).3 讨论3.1 汶川地震最新余震与早期余震分布比较在汶川地震早期(2008年5月12日—2008年7月8日),地震主要分布在20 km以浅(黄媛等,2008),其中绝大部分集中在10~20 km范围内.该结果与赵博等(2011)依据2008年5月12日—2008年12月31日得到的精定位结果的分布特征一致(图5).在汶川地震发生后近十年,汶川最新余震主要分布在25 km以浅,集中在10~25 km范围内,但在30 km以深也有部分余震.依据Kato和Obara(2014)与Wu 等(2017)采用的震源深度统计方法,结合汶川地震余震带较长的特点,我们定义沿断裂带走向每5 km作为一个滑动窗口,并设置沿断裂带走向2 km为一个区间,随着断裂带走向统计每个区间内地震事件的平均深度,该深度在图5中以方框表示.观察震源平均深度统计的曲线图,可以看出汶川地震余震震源分布形态变化不大.将不同时期的汶川余震震源平均深度进行比较,发现在断裂带西南段,新近余震的震源平均深度分布较早期余震变深约5 km,东北段余震震源分布也向深部迁移约3 km(图5).3.2 芦山地震最新余震与早期余震分布比较芦山地震发生后,多位学者开展了不同时段余震的精定位工作(张广伟与雷建设,2013;赵博等,2013;Fang et al., 2015).在芦山地震发生后18天内,余震主要分布在20 km以浅,大部分集中在15~20 km范围内(赵博等,2013),这与芦山地震震后48 h的深度分布区间接近(张广伟与雷建设,2013).在芦山地震发生1年后,余震集中分布于20 km以浅,其中绝大部分集中在10~20 km范围内(Fang et al., 2015).同样,依据Kato和Obara(2014)与Wu等(2017)中采用的震源深度统计方法,我们定量计算地震深度分布形态.由于芦山地震余震带相对较短,我们定义沿断裂带走向上每2 km作为一个滑动窗口以提高空间分辨率,并设置沿断裂带走向2 km为一个区间,随着断裂带走向统计每个区间内地震事件的平均深度,该深度在图6中以方框表示.本文数据分析表明,芦山地震发生约五年后的余震集中分布在10~15 km的深度范围内.与早期余震相比,现今余震数量明显减少,余震分布几何形态与早期一致,但在深度分布方面则整体向浅部迁移约3 km(图6).3.3 龙门山断裂带新近余震的触发机制余震触发机制主要包括以下两个方面:其一为直接源于主震的静态应力与动态应力的触发;其二为由于主震破裂产生的准静态应力作用,其中准静态应力又包含震后余滑、黏弹性松弛、以及流体扩散等(Freed, 2005).考虑到芦山与汶川地震发生距今已近5~10年之久,因此静态应力与动态应力均难以解释新近的余震活动.此外,准静态应力机制中的震后余滑是揭示早期余震的主要方式(Peng and Zhao, 2009;Tang et al., 2014;Wu et al., 2017),亦不适用于已达数年之久的龙门山断裂带的最新余震活动.准静态应力中的黏弹性松弛与流体扩散机制可以解释长达数年的余震活动,因此较为适用于龙门山断裂带新近的余震活动.然而,汶川余震主要分布在10~25 km深度上,距离该区壳幔边界(40~60 km)(Zhang et al., 2009)仍有距离,与黏弹性松弛模式主要发生在壳幔边界处并不相符,因此汶川余震更有可能因流体扩散机制触发.芦山新近余震主要向中上地壳迁移,与汶川新近余震相近,流体扩散亦是其可能的余震触发机制.3.4 汶川地震与芦山地震最新余震分布比较由新近的汶川地震和芦山地震的余震分布可以看出(图7),芦山地震的余震深度较浅,大部分分布在主震以浅,且数量较少.汶川地震的余震较深,大部分分布在25 km以浅,比主震深度更深的余震比例达到37.9%.汶川与芦山地震虽同发生在龙门山断裂带上,但其深部分布存在明显差异.结合该区速度结构可知,芦山地震区域下方高速层不明显,汶川地震段20 km以下有两个明显的高速层,呈现沿断裂带走向方向的速度不均匀性(梁春涛等,2018).我们认为汶川与芦山余震的深度分布趋势的这种差异,除与主震破裂特征密切相关外,亦有可能是龙门山断裂带介质速度不均匀性的表现.Lei和Zhao(2009)根据层析成像结果,指出汶川地震余震之所以主要分布在龙门山断裂带北段,与龙门山断裂带北段存在多个小尺度介质不均匀体相关,与本文结论相近.更详尽的工作,需要我们后期基于LmsSGA与断裂带周缘固定台站数据开展精细结构成像加以完善.4 结论本文综合利用流动台阵LmsSGA与四川省地震局地震台网资料,对龙门山断裂带新近地震活动进行重定位.我们发现在汶川地震发生之后近十年,其余震活动依然活跃,震源深度主要分布在10~25 km区间内.汶川余震震源深度呈现西南段深而东北段浅的特征,西南段余震相比早期余震有向深部迁移的趋势.芦山余震活动性较弱,余震主要分布在10~15 km的深度区间内,相比早期余震有向浅部迁移的趋势.考虑到汶川与芦山两次强震发生距今已分别有5~10年的时间,综合最新余震空间分布特征,我们指出现今余震的触发有可能因流体扩散这一准静态应力方式触发.另外,余震迁移现象在龙门山断裂带不同区域存在差异,暗示该断裂带介质存在横向不均匀性特征.未来,我们计划依据LmsSGA台阵的震相与波形数据,开展地震空段内速度结构成像工作,为该区地壳结构特征与地震危险性提供新的地震学依据. 致谢中国地震局科学探测台阵提供仪器,中国地震局地球物理研究所提供技术支持.成都理工大学余洋洋、何富军、周鲁、刘志强、王朝亮、黄焱羚、曹飞煌、万子轩、江宁波等参与LmsSGA野外台阵布设工作.感谢中国地震局地球物理研究所王宝善研究员、许卫卫副研究员给予的野外工作指导.感谢中国科学院地质与地球物理研究所艾印双研究员、王一博研究员、田小波研究员、徐涛研究员、陈赟副研究员、四川省地震局易桂喜研究员、苏金蓉高级工程师、吴朋工程师、成都市防震减灾局郑松林工程师给予的协助.ReferencesBai M K, Chevalier M L, Pan J W, et al. 2018. Southeastward increase of the late quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth and Planetary Science Letters, 485: 19-31.Chen L C, Ran Y K, Wang H, et al. 2013. The Lushan MS7.0 earthquake andactivity of the southern segment of the Longmenshan fault zone. Chinese Science Bulletin, 58(28-29): 3475-3482, doi: 10.1007/s11434-013-6009-6. Chen Y T, Yang Z X, Zhang Y, et al. 2013. From 2008 Wenchuan earthquake to 2013 Lushan earthquake. Scientia Sinica Terrae (in Chinese), 43(6): 1064-1072.Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706.Du F, Long F, Ruan X, et al. 2013. The M7.0 Lushan earthquake and the relationship with the M8.0 Wenchuan earthquake in Sichuan, China. Chinese Journal of Geophysics (in Chinese), 56(5): 1772-1783, doi:10.6038/cjg20130535.Fang L H, Wu J P, Wang W L, et al. 2015. Aftershock observation and analysis of the 2013 MS7.0 Lushan earthquake. Seismological Research Letters, 86(4): 1135-1142.Freed A M. 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annual Review of Earth and Planetary Sciences, 33: 335-367, doi: 10.1146/annurev.earth.33.092203.122505.Gao Y, Wang Q, Zhao B, et al. 2013. A rupture blank zone in middle south part of Longmenshan Faults: Effect after Lushan MS7.0 earthquake of 20 April 2013 in Sichuan, China. Science China Earth Sciences, 57(9): 2036-2044, doi: 10.1007/s11430-014-4827-2.Huang Y, Wu J P, Zhang T Z, et al. 2008. Relocation of the MS8.0 Wenchuan earthquake and its aftershock sequence. Science in China Series D: Earth Sciences, 51(12): 1703-1711, doi: 10.1007/s11430-008-0135-z.Hubbard J, Shaw J H. 2009. Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M=7.9) earthquake. Nature, 458(7235): 194-197, doi: 10.1038/nature07837.Kato A, Obara K. 2014. Step-like migration of early aftershocks following the 2007 MW6.7 Noto-Hanto earthquake, Japan. Geophysical Research Letters, 41(11): 3864-3869.Lei J S, Zhao D P. 2009. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (MS8.0). Geochemistry, Geophysics, Geosystems, 10(10): Q10010, doi:10.1029/2009GC002590.Lei J S, Zhang G W, Xie F R. 2014. The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: Tectonic implications. Earthquake Science, 27(1): 15-25.Li Y Q, Jia D, Wang M M, et al. 2014. Structural geometry of the source region for the 2013 MW6.6 Lushan earthquake: Implication for earthquake hazard assessment along the Longmen Shan. Earth and Planetary Science Letters, 390: 275-286.Li Z F, Peng Z G. 2016. An automatic phase picker for local earthquakes with predetermined locations: Combining a signal-to-noise ratio detector with 1D velocity model inversion. Seismological Research Letters, 87(6): 1397-1405.Liang C T, Huang Y L, Wang C L, et al. 2018. Progress in the studies of the seismic gap between the 2008 Wenchuan and 2013 Lushan earthquakes. Chinese Journal of Geophysics (in Chinese), 61(5): 1996-2010, doi:10.6038/cjg2018M0254.Liu M, Luo G, Wang H. 2014. The 2013 Lushan earthquake in China tests hazard assessments. Seismological Research Letters, 85(1): 40-43, doi: 10.1785/022*******.Lu R Q, Xu X W, He D F, et al. 2017. Seismotectonics of the 2013 Lushan MW6.7 earthquake: Inversion tectonics in the eastern margin of the Tibetan Plateau. Geophysical Research Letters, 44(16): 8236-8243, doi: 10.1002/2017GL074296.Pei S P, Zhang H J, Su J R, et al. 2014. Ductile gap between the Wenchuan and Lushan earthquakes revealed from the two-dimensional Pg seismic tomography. Scientific Reports, 4: 6489, doi: 10.1038/srep06489.Peng Z G, Zhao P. 2009. Migration of early aftershocks following the 2004 Parkfield earthquake. Nature Geoscience, 2(12): 877-881, doi:10.1038/ngeo697.Shan B, Xiong X, Zheng Y, et al. 2013. Stress changes on major faults caused by 2013 Lushan earthquake and its relationship with 2008 Wenchuan earthquake. Science China Earth Sciences, 56(7): 1169-1176, doi: 10.1007/s11430-013-4642-1.Shi Z M, Wang G C, Wang C Y, et al. 2014. Comparison of hydrological responses to the Wenchuan and Lushan earthquakes. Earth and Planetary Science Letters, 391: 193-200.Tang C C, Lin C H, Peng Z G. 2014. Spatial-temporal evolution of early aftershocks following the 2010 ML6.4 Jiashian earthquake in southern Taiwan. Geophysical Journal International, 199(3): 1772-1783, doi:10.1093/gji/ggu361.Thompson T B, Plesch A, Shaw J H, et al. 2015. Rapid slip-deficit rates at the eastern margin of the Tibetan Plateau prior to the 2008 MW7.9 Wenchuan earthquake. Geophysical Research Letters, 42(6): 1677-1684, doi: 10.1002/2014GL062833.Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6): 1353-1368.Wu J, Yao D D, Meng X F, et al. 2017. Spatial-temporal evolutions of early aftershocks following the 2013 MW6.6 Lushan earthquake in Sichuan, China. Journal of Geophysical Research: Solid Earth, 122(4): 2873-2889, doi: 10.1002/2016JB013706.Xu X W, Chen G H, Yu G H, et al. 2013. Seismogenic structure of Lushan earthquake and its relationship with Wenchuan earthquake. Earth Science Frontiers (in Chinese), 20(3): 11-20.Zhang G W, Lei J S. 2013. Relocations of Lushan, Sichuan strong earthquake (MS7.0) and its aftershocks. Chinese Journal of Geophysics (in Chinese), 56(5): 1764-1771, doi: 10.6038/cjg20130534.Zhang Z J, Wang Y H, Chen Y, et al. 2009. Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophysical Research Letters, 36(17): L17310, 1397-1413, doi: 10.1029/2009GL039580. Zhao B, Shi Y T, Gao Y. 2011. Relocation of the Wenchuan MS8.0 Earthquake Sequence. Earthquake (in Chinese), 31(2): 1-10.Zhao B, Gao Y, Huang Z B, et al. 2013. Double difference relocation, focal mechanism and stress inversion of Lushan MS7.0 earthquake sequence. Chinese Journal of Geophysics (in Chinese), 56(10): 3385-3395, doi:10.6038/cjg20131014.Zhao Z, Zhang R S. 1987. Primary study of crustal and upper mantle velocity structure of Sichuan province. Acta Seismologica Sinica (in Chinese), 9(2): 154-166.Zheng Y, Ge C, Xie Z J, et al. 2013. Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake. Science China Earth Sciences, 56(7): 1158-1168, doi: 10.1007/s11430-013-4641-2.附中文参考文献陈立春, 冉勇康, 王虎等. 2013. 芦山地震与龙门山断裂带南段活动性. 科学通报, 58(20): 1925-1932.陈运泰, 杨智娴, 张勇等. 2013. 从汶川地震到芦山地震. 中国科学: 地球科学, 43(6): 1064-1072.杜方, 龙锋, 阮祥等. 2013. 四川芦山7.0级地震及其与汶川8.0级地震的关系. 地球物理学报, 56(5): 1772-1783, doi: 10.6038/cjg20130535.高原, 王琼, 赵博等. 2013. 龙门山断裂带中南段的一个破裂空段——芦山地震的震后效应. 中国科学: 地球科学, 43(6): 1038-1046.黄媛, 吴建平, 张天中等. 2008. 汶川8.0级大地震及其余震序列重定位研究. 中国科学 D辑: 地球科学, 38(10): 1242-1249.梁春涛, 黄焱羚, 王朝亮等. 2018. 汶川和芦山地震之间地震空区综合研究进展. 地球物理学报, 61(5): 1996-2010, doi: 10.6038/cjg2018M0254.。

再析512大地震——龙门山断裂带与成都平原

再析512大地震——龙门山断裂带与成都平原

再析512⼤地震——龙门⼭断裂带与成都平原该⽂是从⽹路上偶然看到的,觉得对地质分析⽐较透彻,可以作为参考。

在认识龙门⼭断裂带时,也让⼤家明⽩了为什么北川竟然⽐汶川损失⼤?也让⼤家明⽩了成都平原和川中丘陵之间的龙泉⼭,是⼀个弱的断裂带。

龙门⼭断裂与龙泉⼭断裂成都周围的四川盆地是属于扬⼦克拉通的⼀部分,⼀般来说克拉通是稳定的,但并不是说它永远是“铁板⼀块”。

在适当的条件下,稳定的克拉通也会重新活化,变得不稳定。

例如,龙门⼭脉就是由扬⼦克拉通的西缘在青藏⾼原向东强烈挤压下重新活化⽽形成的⾼⼭。

印度⼤陆就像⼀架巨型的推⼟机,往北使劲地推进,它推起了辽阔的青藏⾼原,当青藏⾼原平均海拔⾼度超过5000⽶之后地壳就很难再增厚了,⾼原内部热的、塑性的、甚⾄部分熔融的下地壳物质被迫东移,将热量、构造应⼒和热液流体传递给扬⼦克拉通的西缘,使那⾥的岩⽯软化变形(褶皱与冲断),形成⼀条南起泸定和天全,北达⼴元和陕西勉县⼀带,长近500公⾥、宽约40-50公⾥、北东⾛向的龙门⼭脉。

20公⾥深以下的龙门⼭地壳以缓慢的韧性变形为主,每年向北东⽅向前进约2毫⽶,也就说,每⼀百万年⾛2公⾥;从地表到15公⾥深度之间是脆性变形层,不地震时不变形,直到地震那⼀刹那才向前猛冲⼀步,以改变⾃已落后的状态,追上龙门⼭下地壳的韧性位移。

这⼀步的长短取决于地震的级别,5.12汶川8.0级⼤地震使龙门⼭断裂带以西的松潘-⽢孜地块向东边的四川盆地斜冲了近6⽶。

可见,这是⼀次每3000年才⼀遇的⼤地震。

龙门⼭下15-20公⾥深处是脆-韧性转变带,它的⼒学性质界于脆性和韧性之间,在地震休眠期作韧性或半脆性变形,但在地震时作脆性变形,破裂可以从震源扩传到这⼀层。

龙门⼭断裂带内有三条主⼲断层:西边⼀条叫龙门⼭后⼭断裂,沿汶川—茂县⼀线;东边⼀条叫龙门⼭⼭前主边界断裂,沿安县—都江堰—天全⼀线;中间那条叫龙门⼭主中央断裂,沿映秀—北川⼀线。

这次5.12主震发源于主中央断裂。

龙门山构造带南段向西南延伸的遥感影像证据及地震地质意义

龙门山构造带南段向西南延伸的遥感影像证据及地震地质意义

龙门山构造带南段向西南延伸的遥感影像证据及地震地质意义马晓雪;吴中海;李家存;周春景;李凯;王继龙【摘要】在系统总结活动断裂遥感影像解译标志的基础上,利用Landsat ETM、Google Earth及ASTER GDEM等影像资料,结合前人研究成果,重点分析了龙门山构造带南段主要活动断裂的空间展布及几何学与运动学特征.研究结果表明,龙门山构造带在向南延伸过程中发生了明显的断裂分散现象,整个断裂带逐渐展宽,主要包括5条断裂带且其中包含多条次级断裂,至最南端被北西向鲜水河左旋走滑断裂带阻挡.其中活动性较为明显的断裂自西向东主要有4条:泸定断裂、天全断裂、芦山断裂和大邑—名山断裂,前两者是北川—映秀断裂的南延分支,而后两者是安县—灌县断裂的南延部分.由于龙门山构造带南段的构造变形被分解至多条次级断裂上,导致单条断裂错断地表的活动迹象明显变弱,因此单条断裂的潜在发震频率和强度也将相应变小,但潜在震源区会更为分散.结合已有的地震地质资料认为,未来应注意泸定和雅安2个地区的地壳稳定性及未来强震危险性问题.【期刊名称】《地质力学学报》【年(卷),期】2016(022)003【总页数】20页(P548-567)【关键词】龙门山构造带;遥感解译;活动断裂;潜在震源区;芦山地震【作者】马晓雪;吴中海;李家存;周春景;李凯;王继龙【作者单位】首都师范大学资源环境与旅游学院,北京100048;中国地质科学院地质力学研究所,北京100081;资源环境与地理信息系统北京市重点实验室,北京100048;国土资源部新构造运动与地质灾害重点实验室,北京100081;中国地质科学院地质力学研究所,北京100081;国土资源部新构造运动与地质灾害重点实验室,北京100081;首都师范大学资源环境与旅游学院,北京100048;资源环境与地理信息系统北京市重点实验室,北京100048;中国地质科学院地质力学研究所,北京100081;国土资源部新构造运动与地质灾害重点实验室,北京100081;首都师范大学资源环境与旅游学院,北京100048;中国地质科学院地质力学研究所,北京100081;资源环境与地理信息系统北京市重点实验室,北京100048;国土资源部新构造运动与地质灾害重点实验室,北京100081;中国地质科学院地质力学研究所,北京100081;国土资源部新构造运动与地质灾害重点实验室,北京100081;中国地质大学地球科学与资源学院,北京100083【正文语种】中文【中图分类】P627;P315.2龙门山右旋走滑逆冲构造带构成了青藏高原东缘的主要边界,也是我国南北地震带的重要组成部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年1月地 质 科 学CH I N ESE JOURNAL OF GE OLOGY 42(1):31—44青藏高原东缘龙门山冲断带与四川盆地的现今构造表现:数字地形和地震活动证据3贾秋鹏1 贾 东1 朱艾斓2 陈竹新1 胡潜伟1罗 良1 张元元1 李一泉1(1.南京大学地球科学系南京 210093; 2.中国地震局地质研究所北京 100029)摘 要 龙门山冲断带位于四川盆地与青藏高原东缘之间,其现今地貌和构造活动表现对于理解青藏高原东缘和四川盆地晚新生代的演化具有非常重要的意义。

已有的认识多数是从“山”的角度得出的,我们尝试从“盆”这一角度,利用近20年来的地震活动资料和地震反射剖面,结合数字高程模型(DE M ),通过三维可视化分析软件来探讨四川盆地及龙门山的地貌特征和现代构造活动表现。

初步研究结果表明:1)龙门山的现今地貌和地震分布具有明显的南北分段性;2)青藏高原东缘活动块体边界表现为由龙门山南段北东向构造在安县附近转折为岷山的南北向构造;3)龙门山南段的现代地震活动已深入四川盆地内部,形成地壳规模的楔形逆冲构造,地震活动、现代地貌和地震反射剖面的证据揭示了龙门山及四川盆地存在晚新生代构造缩短的可能性。

关键词 地震 地形地貌 构造缩短 晚新生代 龙门山 四川盆地中图分类号:P542文献标识码:A 文章编号:0563-5020(2007)01-031-14 3国家自然科学基金资助项目(编号:40372091)。

贾秋鹏,1982年8月生,硕士研究生,构造地质学专业。

2006年1月15日在“构造地质学新理论与新方法学术研讨会”上的报告,2006-06-14改回。

青藏高原东缘的晚新生代变形模式是目前广泛争议的焦点问题之一。

从东向挤出模型(Avouac and Tapponnier,1993)到近年提出的下地壳流动模型(Royden et al .,1997),不同学者对青藏高原东缘特别是龙门山晚新生代的隆起存在着不同的认识(Royden et al .,1997;Clark and Royden,2000;Tapponnier et al .,2001;Kirby et al .,2002,2003;Burchfiel,2003;Clark et al .,2005;李勇等,2005)。

争论的首要问题之一在于晚新生代龙门山及四川盆地是否存在或者在多大程度上存在构造缩短变形。

四川盆地西部缺乏晚新生代的地层(Burchfiel et al .,1995;李勇等,2002),这无疑给区分这一地区的晚新生代的缩短变形和晚新生代之前的早期变形以及进一步确定晚新生代缩短变形量带来了困难和不利。

显然需要更多的地质证据来揭示龙门山晚新生代的构造变形特征,以期能够约束已有的模型或者为其它可能的解释提供证据。

地形地貌是构造活动与地表过程共同作用的直接结果。

Clark and Royden (2000)和Kirby et al .(2002)强调中新世以前,从松潘—甘孜地区到四川盆地的地形坡度较小,东缘地形起伏平缓,类似于现今青藏高原东南缘川滇地区地形。

现今的龙门山则构成了中国东、西部地形地貌的界限山脉,因23地 质 科 学2007年此,龙门山的现代地形地貌是晚新生代以来演化的结果,理解龙门山现代地貌特征和演化将有助于了解龙门山—岷山晚新生代动力学演化模式。

另一方面,现今地震活动代表了最新的地壳变动,我们通过地震三维分布来讨论龙门山及四川盆地现代地震活动,并试图建立地震活动和地貌之间的联系。

1 构造背景龙门山北起广元,南至雅安,大致呈北东—南西向延伸,长约500k m(图1)。

龙门山是中国典型的推覆构造发育地区之一,主要形成于中生代和早新生代,各构造岩片沿着汶川—茂汶断裂(F,也称后山断裂)、映秀—北川断裂(F2,也称中央断裂)和安县—灌县1断裂(F,也称山前断裂)呈叠瓦状向盆地内逆冲推覆(龙学明,1991;刘文均等,1999)。

3贾东等(2003)根据其构造变形和地层发育特征将龙门山以安县为界分为南、北两段;根据重磁资料推测的四川盆地西部一系列北西向基底走滑断裂可能是制约龙门山南、北两段构造变形和构造样式差异的关键因素之一(钟锴等,2004)。

龙门山北段主要出露古生代和中生代地层,可以划分出轿子顶推覆体和唐王寨推覆体等几个大的推覆构造单元;南段映秀—北川断裂和安县—灌县断裂之间大面积出露前震旦纪基底杂岩,可划分出彭灌推覆体、五龙推覆体和宝兴推覆体等构造单元。

晚中新世,受印度—欧亚板块碰撞事件的影响,龙门山及其以西的松潘—甘孜地区发生剧烈构造变动(Tapponnier et al.,2001),龙门山南段和岷山在这一时期快速隆升(A rne et al.,1997;Kirby et al.,2002)。

然而龙门山南段的强烈隆升并没有使四川盆地发生相应的强烈挠曲变形,晚新生代沉积物厚度有限且不连续地分布在龙门山南段的四川盆地(Burchfiel et al.,1995;李勇等,2002)。

与南段不同,安县以北的龙门山北段晚新生代以来构造活动较为平静。

龙门山北段最年轻的磷灰石裂变径迹年龄为33Ma±,暗示中新世以来这一地区可能没有显著的抬升(A rne et al.,1997;Kirby et al.,2002)。

虎牙断裂至江油之间的龙门山北段的涪江水系河道形态平缓,表明这里构造活动性较弱(赵小麟等,1994a,1994b;Kirby et al.,2003)。

李传友等(2004)对龙门山北段断裂带的热释光(T L)和电子自旋共振(ESR)的研究也表明龙门山北段晚更新世以来的活动性有限,现已不构成活动块体的边界。

2 地形地貌特征本文使用的DE M数据来自全美地质调查局(USGS)公布的Shuttle Radar Topography M issi on(SRT M)全球数据,栅格精度三弧秒(约合90m),垂直误差不超过16m。

选取以1000m高程差为间隔绘制的地形等高线图(图2)显示:四川盆地位于海拔1000m以下,从盆地向西,1000m等高线走向和龙门山南段构造带走向一致;等高线在安县以北的龙门山北段呈面状散开分布,表明地形高差变化不大,走向和龙门山北段主断裂一致。

2000m和3000m等高线走向大致相同,均沿北东向龙门山南段构造带至安县附近转为近南北走向。

因此,安县以北,地形等高线按走向分为两支,一支沿龙门山北段走向,另一支沿岷山山脉南北向延伸。

由南至北,我们选择了横切龙门山的7条北西—南东向地形剖面(图3,图4)。

剖面1期贾秋鹏等:青藏高原东缘龙门山冲断带与四川盆地的现今构造表现图1 龙门山构造纲要简图及四川盆地地形F 1.汶川—茂汶断裂 F 2.映秀—北川断裂 F 3.安县—灌县断裂 F 4.虎牙断裂Fig .1 Tect onic and t opographic map of the Long men thrust belt,Sichuan Basin and adjacent areas显示四川盆地平均海拔位于600m ±。

龙门山南段地形剖面(A 2A ′,B 2B ′,C 2C ′和D 2D ′)显示四川盆地和龙门山南段之间以安县—灌县断裂(F 3)为界存在截然的盆山界限,安县—灌县断裂(F 3)和映秀—北川断裂(F 2)之间部分海拔大致位于1000~2000m ,映秀—北川断裂(F 2)和汶川—茂汶断裂(F 1)之间部分海拔基本都在2000m 以上,特别是C 2C ′剖面穿过的彭灌杂岩体的高点海拔甚至逾4000m 。

龙门山北段的海拔普遍在1000~2000m ±,由南西至北东方向,龙门山北段与四川盆地盆山界限越来越模糊(E 2E ′,F 2F ′和G 2G ′剖面),G 2G ′剖面从地形上几乎已无法分辨龙门山与四川盆地界限。

显然,龙门山南、北两段在地貌表现上截然不同。

龙门山南段的海拔明显高于龙门山北段,从龙门山南段过渡到四川盆地的地形梯度大,盆山界限显著。

岷山是晚新生代以来快速隆起的区域(邓起东等,1994;Chen et al .,1994;Kirby et al .,2000),另一条穿过岷山—龙门山北段—四川盆地的联合地形剖面(E ″2E ′2E )明显表现出岷山—龙门山北段和龙门山北段—四川盆地两个地形边界,特别是虎牙断裂(F 4)两侧的岷山—龙门山的地貌边界特别显著。

3 现代地震活动本文使用的地震数据来自四川省地震局闻学泽提供的四川地震目录、I SC 全球共享33地 质 科 学2007年图2 龙门山—岷山及邻区地形等高线,以1000m 为间隔Fig .2 Topographic cont ours of the Long men 2M inshan Mountains and adjacent areas,with an interval being 1000m 目录和国家地震局地质研究所朱艾斓等(2005)提供的重新定位小震数据。

其中,经整理综合和重新定位后的川西高原地震水平误差平均为112k m ,垂直误差平均为118km ,四川盆地地震水平误差平均为2km ,垂直误差平均为117k m 。

龙门山及岷山位于我国南北地震带的中段,最大历史地震为715级,近年来较大的地震为1976年松潘和平武两次712级地震。

经重新定位后的地震明显沿龙门山南段—岷山主要断裂集中分布,龙门山北段地震密度向北东逐渐降低,分布弥散(图5)。

因此,地震带形态上表现为沿北东向龙门山南段至安县附近后折而向北沿南北向岷山延伸。

龙门山南段地震带地震活动主要以中2小地震居多,历史上只发生过4次6级地震,没有7级以上地震的纪录,近年来发生的最大地震为1999年绵竹地区的两次5级地震;龙门山北段现代断裂活动则相对微弱得多,北川(位于安县以北)以北历史上未发生过6级以上地震。

因此,龙门山南段—岷山构成了现今青藏高原东缘的活动边界(邓起东等,1994;Chen et al .,1994)。

本文在都江堰—安县和都江堰—雅安段分别选择了两个地震震源廊带剖面(图5,图6),通过震源位置恢复断裂带形态并讨论龙门山的现代活动断裂。

431期贾秋鹏等:青藏高原东缘龙门山冲断带与四川盆地的现今构造表现图3 龙门山及四川盆地地质、地形复合叠加图蓝线代表横穿龙门山的地形剖面,黄线代表横穿岷山的地形剖面;F 1、F 2、F 3和F 4同图1;Sa .轿子顶推覆体;Sb .唐王寨推覆体;Sc .彭灌推覆体;Sd .五龙推覆体;Se .宝兴推覆体Fig .3 Topographic 2geol ogical map of the Long men Mountains and the western Sichuan BasinCarena et al .(2001,2004)和Carena and Suppe (2002)对美国圣安得列斯断裂和中国台湾山脉等重要边界活动断裂的研究表明,经过精确定位的中2小地震震源位置不仅可以在平面上更集中沿断裂分布,还可以借助三维可视化软件通过震源位置和大震震源机制解恢复断层面,揭示断裂走向上的变化和断裂带的三维几何形态。

相关文档
最新文档