河南省上蔡县第一初级中学九年级数学上学期素质测试试题新人教版
河南省驻马店市上蔡一中九年级数学上学期期末试卷(含解析)-人教版初中九年级全册数学试题
2016-2017学年某某省某某市上蔡一中九年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.使二次根式有意义的x的取值X围是()A.x≠2 B.x>2 C.x≤2 D.x≥22.一副扑克牌,去掉大小王,从中任抽一X,抽到的牌是6的概率是()A.B.C.D.3.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)4.如图,在△ABC中,∠C=90°,AB=3,BC=2,则cosB的值是()A.B.C.D.5.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.D.6.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()A.(x﹣2)2=7 B.(x﹣4)2=19 C.(x+2)2=7 D.(x+4)2=197.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.8.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△BDE∽△DPE;②=;③DP2=PH•PB;④tan∠DBE=2﹣.其中正确的是()A.①②③④ B.①②④C.②③④D.①③④二.选择题:(每小题3分,共21分)9.已知:,则的值为.10.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为.11.已知二次函数y=﹣x2+ax﹣a+1的图象顶点在x轴上,则a=.12.如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=.13.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.14.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于cm.15.如图,平行四边形ABCD中,∠B=30°,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.若AB=2,∠AB′D=75°,则BC=.三、解答题(共75分)16.计算(1)(2).17.解方程(1)x2﹣4x﹣5=0(2)2(x﹣2)2=(x﹣2)18.已知二次函数y=﹣2x2+4x+6(1)求函数图象的顶点坐标及对称轴(2)求此抛物线与x轴的交点坐标.19.为弘扬“东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.(1)请直接写出第一位出场是女选手的概率;(2)请你用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.20.如图,图中的小方格都是边长为1的正方形,△ABC的A、B、C三点坐标为A(2,0)、B(2,2)、C(6,3).(1)请在图中画出一个△A′B′C′,使△A′B′C′与△ABC是以坐标原点为位似中心,相似比为2的位似图形.(2)求△A′B′C′的面积.21.如图,已知AD为△ABC的角平分线,∠ADE=∠B.(1)求证:△ABD∽△ADE.(2)若AB=9,AE=4,求AD的长.22.小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)23.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=﹣2x+240,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?24.如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB(1)求cos∠ABC的值.(2)若E为x轴上的点,且S△AOE=,求出点E的坐标,并判断△AOE与△DAO是否相似?请说明理由.2016-2017学年某某省某某市上蔡一中九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.使二次根式有意义的x的取值X围是()A.x≠2 B.x>2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【分析】利用当二次根式有意义时,被开方式为非负数,得到有关x的一元一次不等式,解之即可得到本题答案.【解答】解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选D.2.一副扑克牌,去掉大小王,从中任抽一X,抽到的牌是6的概率是()A.B.C.D.【考点】概率公式.【分析】先求出一副扑克牌,去掉大小王的X数,牌是6X数为4,再根据概率公式解答即可.【解答】解:因为一副扑克牌,去掉大小王,一共还有52X,6有四X,所以恰好抽到的牌是6的概率是,故选D.3.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)【考点】二次函数的性质.【分析】根据二次函数的顶点式一般形式的特点,可直接写出顶点坐标.【解答】解:二次函数y=﹣(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选B.4.如图,在△ABC中,∠C=90°,AB=3,BC=2,则cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,余弦为邻边比斜边,可得答案.【解答】解:△ABC中,∠C=90°,AB=3,BC=2,得cosB==,故选:C.5.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.D.【考点】相似三角形的判定.【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【解答】解:∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A 与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.6.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()A.(x﹣2)2=7 B.(x﹣4)2=19 C.(x+2)2=7 D.(x+4)2=19【考点】解一元二次方程﹣配方法.【分析】先将常数项移至等式右边,再两边配上一次项系数一半的平方即可.【解答】解:x2﹣4x=3,x2﹣4x+4=3+4,即(x﹣2)2=7,故选:A.7.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【考点】勾股定理;锐角三角函数的定义.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.8.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△BDE∽△DPE;②=;③DP2=PH•PB;④tan∠DBE=2﹣.其中正确的是()A.①②③④ B.①②④C.②③④D.①③④【考点】相似形综合题.【分析】根据等边三角形的性质和正方形的性质,得到∠PCD=30°,于是得到∠CPD=∠CDP=75°,证得∠EDP=∠PBD=15°,于是得到△BDE∽△DPE,故①正确由于∠FDP=∠PBD,∠DFP=∠BPC=60°,推出△DFP∽△BPH,得到==故②错误;由于∠PDH=∠PCD=30°,∠DPH=∠DPC,推出△DPH∽△CPD,得到,PB=CD,等量代换得到PD2=PH•PB,故③正确;过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,于是得到∠PBC=∠PCB=60°,PB=PC=BC=CD=4,求得∠PCD=30°,根据三角函数的定义得到CM=PN=PB•sin60°=4×=2,PM=PC•sin30°=2,由平行线的性质得到∠EDP=∠DPM,等量代换得到∠DBE=∠DPM,于是求得tan∠DBE=tan∠DPM===2﹣,故④正确.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴∠CPD=∠CDP=75°,∴∠PDE=15°,∵∠PBD=∠PBC﹣∠HBC=60°﹣45°=15°,∴∠EBD=∠EDP,∵∠DEP=∠DEB,∴△BDE∽△DPE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,∴===,故②错误;∵∠PDH=∠PCD=30°,∵∠DPH=∠DPC,∴△DPH∽△CDP,∴=,∴PD2=PH•CD,∵PB=CD,∴PD2=PH•PB,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴CM=PN=PB•sin60°=4×=2,PM=PC•sin30°=2,∵DE∥PM,∴∠EDP=∠DPM,∴∠DBE=∠DPM,∴tan∠DBE=tan∠DPM===2﹣,故④正确;故答案为:①③④.二.选择题:(每小题3分,共21分)9.已知:,则的值为.【考点】比例的性质.【分析】此类比例问题我们可以设一份为k,用k表示出各量即可求得.此题为设a=k,b=2k,代入即可.【解答】解:设a=k,则b=2k,∴.10.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为15 .【考点】概率公式.【分析】由在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,∴口袋中球的总个数为:3÷=15.故答案为:15.11.已知二次函数y=﹣x2+ax﹣a+1的图象顶点在x轴上,则a= 2 .【考点】抛物线与x轴的交点;根的判别式.【分析】根据顶点在x轴上,即顶点的纵坐标为0,据此作答.【解答】解:根据题意,得=0,将a=﹣1,b=a,c=﹣a+1代入,得=0,所以解得:a=2.故答案为:2.12.如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC= 5 .【考点】解直角三角形.【分析】根据题中所给的条件,在直角三角形中解题.根据角的正弦值与三角形边的关系,可求出AC.【解答】解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt△ABC中,∵tanB=,∴AC=×=5.13.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是③④.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.【考点】二次函数图象与几何变换;二次函数图象与系数的关系.【分析】①首先根据抛物线开口向上,可得a>0;然后根据对称轴为x=﹣>0,可得b <0,据此判断即可.②根据抛物线y=ax2+bx+c的图象,可得x=﹣1时,y>0,即a﹣b+c>0,据此判断即可.③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是,判断出c=﹣1时,a、b的关系即可.【解答】解:∵抛物线开口向上,∴a>0,又∵对称轴为x=﹣>0,∴b<0,∴结论①不正确;∵x=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax2+bx+c的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;∵,c=﹣1,∴b2=4a,∴结论④正确.综上,结论正确的是:③④.故答案为:③④.14.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于7 cm.【考点】翻折变换(折叠问题).【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等【解答】解:由折叠的性质知,AE=CE,∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故答案为:7.15.如图,平行四边形ABCD中,∠B=30°,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.若AB=2,∠AB′D=75°,则BC=.【考点】翻折变换(折叠问题);平行四边形的性质.【分析】根据对折的性质求得∠AB′C=30°,从而求得∠CB′D=45°,由于B′D∥AC,得出∠ACB′=∠CB′D=45°,进而即可求得∠ACB=45°;作AG⊥BC于G,解直角三角形即可求得BC.【解答】解:如图∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∠B=∠ADC,∵将△ABC沿AC翻折至△AB′C,∴AB′=AB,B′C=BC,∠AB′C=∠B,∴AB′=CD,B′C=AD,∠AB′C=∠ADC,在△AB′C和△CAD中,,∴△AB′C≌△CAD(SAS),∴∠ACB′=∠CAD,设AD、B′C相交于E,∴AE=CE,∴△ACE是等腰三角形,即△AB′C与▱ABCD重叠部分的图形是等腰三角形;∵B′C=AD,AE=CE,∴B′E=DE,∴∠CB′D=∠ADB′,∵∠AEC=∠B′ED,∠A CB′=∠CAD,∴∠ADB′=∠DAC,∴B′D∥AC;∵在▱ABCD中,∠B=30°,将△ABC沿AC翻折至△AB′C,∴∠AB′C=30°,∵∠AB′D=75°,∴∠CB′D=45°,∵B′D∥AC,∴∠ACB′=∠CB′D=45°,∵∠ACB=∠ACB′,∴∠ACB=45°;作AG⊥BC于G,∴AG=CG,∵∠B=30°,∴AG=AB=,∴CG=,BG=3,∴BC=BG+CG=3+.故答案为:.三、解答题(共75分)16.计算(1)(2).【考点】二次根式的混合运算;特殊角的三角函数值.【分析】(1)先进行二次根式的乘法运算,然后合并即可;(2)先把各二次根式化为最简二次根式和利用特殊角的三角函数值计算得到原式=2+﹣﹣,然后合并即可.【解答】解:(1)原式=+×﹣×=+﹣3=2﹣3;(2)原式=2+﹣﹣=.17.解方程(1)x2﹣4x﹣5=0(2)2(x﹣2)2=(x﹣2)【考点】解一元二次方程﹣因式分解法.【分析】(1)方程利用因式分解法求出解即可;(2)方程整理后,利用因式分解法求出解即可.【解答】解:(1)方程分解得:(x﹣5)(x+1)=0,可得x﹣5=0或x+1=0,解得:x1=5,x2=﹣1;(2)方程整理得:2(x﹣2)2﹣(x﹣2)=0,分解因式得:[2(x﹣2)﹣1](x﹣2)=0,即(2x﹣5)(x﹣2)=0,解得:x1=2,x2=.18.已知二次函数y=﹣2x2+4x+6(1)求函数图象的顶点坐标及对称轴(2)求此抛物线与x轴的交点坐标.【考点】二次函数的性质;抛物线与x轴的交点.【分析】(1)首先把已知函数解析式配方,然后利用抛物线的顶点坐标、对称轴的公式即可求解;(2)根据抛物线与x轴交点坐标特点和函数解析式即可求解.【解答】解:(1)∵y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴顶点坐标(1,8),对称轴:直线x=1;(2)令y=0,则﹣2x2+4x+6=0,解得x=﹣1,x=3.所以抛物线与x轴的交点坐标为(﹣1,0),(3,0).19.为弘扬“东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.(1)请直接写出第一位出场是女选手的概率;(2)请你用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.【考点】列表法与树状图法.【分析】(1)根据4位选手中女选手只有1位,求出第一位出场是女选手的概率即可;(2)列表得出所有等可能的情况数,找出第一、二位出场都为男选手的情况数,即可求出所求的概率.【解答】解:(1)P(第一位出场是女选手)=;(2)列表得:女男男男女﹣﹣﹣(男,女)(男,女)(男,女)男(女,男)﹣﹣﹣(男,男)(男,男)男(女,男)(男,男)﹣﹣﹣(男,男)男(女,男)(男,男)(男,男)﹣﹣﹣所有等可能的情况有12种,其中第一、二位出场都是男选手的情况有6种,则P(第一、二位出场都是男选手)==.20.如图,图中的小方格都是边长为1的正方形,△ABC的A、B、C三点坐标为A(2,0)、B(2,2)、C(6,3).(1)请在图中画出一个△A′B′C′,使△A′B′C′与△ABC是以坐标原点为位似中心,相似比为2的位似图形.(2)求△A′B′C′的面积.【考点】作图﹣位似变换.【分析】(1)首先由位似图形的性质,求得A′(4,0),B′(4,4),C′(12,6),继而画出图形;(2)结合图形,可求得△A′B′C′的底与高,则可求得答案.【解答】解:(1)∵A(2,0)、B(2,2)、C(6,3),△A′B′C′与△ABC是以坐标原点为位似中心,相似比为2的位似图形,∴A′(4,0),B′(4,4),C′(12,6),如图:(2)S△A′B′C′=×4×8=16.21.如图,已知AD为△ABC的角平分线,∠ADE=∠B.(1)求证:△ABD∽△ADE.(2)若AB=9,AE=4,求AD的长.【考点】相似三角形的判定与性质.【分析】(1)利用两组角对应相等的两个三角形相似;(2)由于△ABD∽△ADE,根据相似三角形的性质得到AD:AE=AB:AD,然后把AB=9,AE=4代入后利用比例性质可计算出AD的长.【解答】(1)证明:∵AD为△ABC的角平分线,∴∠BAD=∠EAD,∵∠ADE=∠B,∴△ABD∽△ADE;(2)解:∵△ABD∽△ADE,∴AD:AE=AB:AD,即AD:4=9:AD,∴AD=6.22.小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】延长AE交CD于点G,设CG=xm,在直角△CGE中利用x表示出EG,然后在直角△ACG中,利用x表示出AG,根据AE=AG﹣EG即可列方程求得x的值,进而求出CD的长.【解答】解:延长AE交CD于点G.设CG=xm,在直角△CGE中,∠CEG=45°,则EG=CG=xm.在直角△ACG中,AG==xm.∵AG﹣EG=AE,∴x﹣x=30,解得:x=15(+1)≈15×≈40.98(m).+1.5=42.48(m).答:这栋建筑物CD的高度约为42m.23.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=﹣2x+240,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?【考点】二次函数的应用.【分析】(1)利用每千克销售利润×销售量=总销售利润列出函数关系式,整理即可解答;(2)利用配方法可求最值;(3)把函数值代入,解一元二次方程解决问题.【解答】解:(1)y=(x﹣50)•w=(x﹣50)•(﹣2x+240)=﹣2x2+340x﹣12000,因此y与x的关系式为:y=﹣2x2+340x﹣12000.(2)y=﹣2x2+340x﹣12000=﹣2(x﹣85)2+2450,∴当x=85时,在50<x≤90内,y的值最大为2450.(3)当y=2250时,可得方程﹣2(x﹣85)2+2450=2250,解这个方程,得x1=75,x2=95;根据题意,x2=95不合题意应舍去.答:当销售单价为75元时,可获得销售利润2250元.24.如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB(1)求cos∠ABC的值.(2)若E为x轴上的点,且S△AOE=,求出点E的坐标,并判断△AOE与△DAO是否相似?请说明理由.【考点】四边形综合题;一元二次方程的解;相似三角形的判定与性质;解直角三角形.【分析】(1)用因式分解法解出一元二次方程,求出OA、OB的长,即可求得cos∠ABC的值;(2)设点E的坐标为(m,0),根据三角形的面积公式求出m的值,得到点E的坐标;再求出和的值,根据两组对应边成比例并且夹角相等的两个三角形相似证明结论.【解答】解:(1)x2﹣7x+12=0,(x﹣3)(x﹣4)=0,解得x1=3,x2=4,∴OA=4,OB=3,∴Rt△AOB中,AB==5,∴cos∠ABC==;(2)设点E的坐标为(m,0),则×|m|×4=,解得m=±,∴点E的坐标为:(,0)或(﹣,0);△AOE∽△DAO.理由:∵=,==,∴=,又∵∠AOE=∠DAO=90°,∴△AOE∽△DAO.。
河南省驻马店市上蔡一中学2025届九年级数学第一学期开学学业水平测试试题【含答案】
河南省驻马店市上蔡一中学2025届九年级数学第一学期开学学业水平测试试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)以下调查中,适宜全面调查的是()A .调查某批次汽车的抗撞击能力B .调查某班学生的身高情况C .调查春节联欢晚会的收视率D .调查济宁市居民日平均用水量2、(4分)已知在△ABC 中,AB =AC ,AB 的垂直平分线交线段AC 于D ,若△ABC 和△DBC 的周长分别是60cm 和38cm ,则△ABC 的腰长和底边BC 的长分别是()A .22cm 和16cm B .16cm 和22cm C .20cm 和16cm D .24cm 和12cm 3、(4分)下列各式不能用公式法分解因式的是()A .92-x B .2269a ab b -+-C .22x y --D .21x -4、(4分)下列数据特征量:平均数、中位数、众数、方差之中,反映集中趋势的量有()个.A .4B .3C .2D .15、(4分)如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为()A .5B .6C .8D .106、(4分)下列条件中,不能..判定四边形ABCD 是平行四边形的是()A .AB CD =,A B ∠=∠B .AB CD ∥,A C∠=∠C .AB CD ∥,AB CD =D .AB CD ∥,AD BC ∥7、(4分)已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是()A .1B .﹣1C .0D .无法确定8、(4分)是二次根式,那么x 应满足的条件是()A .x ≠2的实数B .x <2的实数C .x >2的实数D .x >0且x ≠2的实数二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)因式分解:m 2n +2mn 2+n 3=_____.10、(4分)公元9世纪,阿拉伯数学家阿尔•花拉子米在他的名著《代数学》中用图解一元二次方程,他把一元二次方程写成的形式,并将方程左边的看作是由一个正方形(边长为)和两个同样的矩形(一边长为,另一边长为)构成的矩尺形,它的面积为,如图所示。
2022-2023学年新人教版初中数学九年级上册期末综合素养评价测试卷(附参考答案)
2022-2023学年新人教版初中数学九年级上册期末综合素养评价测试卷一、选择题(共12小题,满分24分,每小题2分)1.(2分)(2022秋•盱眙县期中)下列方程中是一元二次方程的是( ) A .x +y =2B .2x 2+1=0C .x 2+2x +1=x 2D .xy ﹣9=02.(2分)(2022秋•新抚区期中)下列方程中,关于x 的一元二次方程是( ) A .x 2﹣x (x +3)=0 B .ax 2+bx +c =0 C .x 2﹣2y ﹣1=0D .x 2﹣2x +3=03.(2分)(2022秋•大田县期中)用公式法解方程x 2﹣2x =3时,求根公式中的a ,b ,c 的值分别是( ) A .a =1,b =﹣2,c =3 B .a =1,b =2,c =﹣3 C .a =1,b =2,c =3D .a =1,b =﹣2,c =﹣34.(2分)(2022秋•丹江口市期中)如果m 、n 是一元二次方程x 2﹣x =5的两个实数根,那么多项式m 2﹣mn +n +1的值是( ) A .12B .10C .7D .55.(2分)(2022秋•江夏区期中)抛物线y =12x 2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是( ) A .y =12(x +1)2﹣2 B .y =12(x +1)2+2 C .y =12(x ﹣1)2﹣2D .y =12(x ﹣1)2+26.(2分)(2022秋•西湖区校级期中)关于二次函数y =ax 2+bx +c ,自变量x 与函数y 的对应值如表,下列说法正确的是( )x … ﹣3 ﹣2 0 1 … y…7﹣2﹣27…A .图象与y 轴的交点坐标为(0,2)B .图象的对称轴是直线x =1C .y 的最小值为﹣5D.图象与x轴有且只有一个交点7.(2分)(2022秋•江夏区期中)在下列图案中,属于中心对称图形的是()A.B.C.D.8.(2分)(2022秋•法库县期中)以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率12D.小明做了3次掷均匀硬币的实验,其中有1次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是129.(2分)(2022秋•开福区校级期中)如图,圆锥的底面半径为5,高为12,则该圆锥的侧面积为()A.30πB.60πC.65πD.90π10.(2分)(2022秋•市中区期中)若点A(﹣2,1)在反比例函数y=kx的图象上,则k的值是()A.12B.−12C.2D.﹣211.(2分)(2022秋•肇源县期中)如图四个由小正方体拼成的立体图形中,从正面看是的是()A.B.C.D.12.(2分)(2022秋•奉贤区期中)已知在Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中正确的是()A.tan A=23B.cot A=23C.sin A=23D.cos A=23二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•招远市期中)在平面直角坐标系中,一次函数y=6x与反比例函数y=kx(k>0)的图象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是.14.(3分)(2022秋•新抚区期中)已知二次函数y=x2﹣2x+1,当﹣5≤x<3时,y的取值范围是.15.(3分)(2022秋•前郭县期中)如图所示的图形绕其中心至少旋转度就可以与原图形完全重合.16.(3分)(2022秋•源汇区校级月考)如图,在正五边形ABCDE中,在AB,BC边上分别取点M,N,使AM=BN,连接AN,EM交于点O,则∠EOA =.17.(3分)(2022秋•惠山区校级期中)如图,在平面直角坐标系xOy 中,点A 、B 、P 的坐标分别为(1,0),(2,3),(3,1).若点C 在第一象限内,且横坐标、纵坐标均为整数,P 是△ABC 的外心,则点C 的坐标为 .18.(3分)(2022秋•城阳区期中)在一个不透明的袋子中装有除颜色外其余均相同的n 个小球,其中15个黑球,从袋中随机摸出一球,记下其颜色,之后把它放回袋中,这称为一次摸球试验.搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表: 摸球试验次数 100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出n 的值是 . 三、解答题(共9小题,满分78分)19.(8分)(2022秋•大田县期中)解下列方程: (1)x 2﹣2x ﹣8=0; (2)(x ﹣1)2=2x (x ﹣1).20.(8分)(2022秋•漳州期中)已知关于x 的方程x 2﹣2x +m ﹣2=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若3x 1+3x 2﹣x 1x 2=5,求m 值.21.(9分)(2022秋•鄞州区校级期中)如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若BE是△AEC外接圆的切线,求∠C的大小;(2)当AB=4,BC=8时,求△DEC外接圆的半径.22.(9分)(2022秋•莱芜区期中)北京时间2022年6月5日10时44分,神舟十四号载人飞船在酒泉发射升空,为弘扬航天精神,某校在教学楼上从楼顶位置悬挂了一幅励志条幅GF.如图,已知楼顶到地面的距离GE为18.5米,当小亮站在楼前点B处,在点B正上方点A处测得条幅顶端G的仰角为37°,然后向教学楼方向前行15米到达点D处(楼底部点E与点B,D在一条直线上),在点D正上方点C处测得条幅底端F的仰角为42°,若AB,CD均为1.7米(即四边形ABDC为矩形),请你帮助小亮计算:(1)当小亮站在B处时离教学楼的距离BE;(2)求条幅GF的长度.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(8分)(2022秋•如东县期中)某汽车4S店销售A,B两种型号的轿车,具体信息如下表:每辆进价(万元)每辆售价(万元)每季度销量(辆)A60x﹣x+100B50y﹣2y+150(注:厂家要求4S店每季度B型轿车的销量是A型轿车销量的2倍.)根据以上信息解答下列问题:(1)用含x的代数式表示y;(2)今年第三季度该4S店销售A,B两种型号轿车的利润恰好相同(利润不为0),试求x的值;(3)求该4S店第四季度销售这两种轿车能获得的最大利润.24.(9分)(2022秋•李沧区期中)如图所示为某商场的一个可以自由转动的转盘,商场规定顾客购物满100元即可获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品,如表是活动进行中的统计数据:50100200500800100020005000转动转盘的次数227110931247361211933004落在“纸巾”区的次数根据以上信息,解析下列问题:(1)请估计转动该转盘一次,获得纸巾的概率是;(精确到0.1)(2)现有若干个除颜色外都相同的白球和黑球,根据(1)的结论,在保证获得纸巾和免洗洗手液概率不变的情况下,请你设计一个可行的摸球抽奖规则,详细说明步骤;(3)小明和小亮都购买了超过100元的商品,均获得一次转动转盘的机会,根据(2)中设计的规则,利用画树状图或列表的方法求两人都获得纸巾的概率.25.(9分)(2022秋•南召县期中)如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A 1为位似中心,请你帮小明在图中画出△A 1B 1C 1的位似图形△A 2B 2C 2,且△A 1B 1C 1与△A 2B 2C 2的位似比为2:1. (3)直接写出(2)中C 2点的坐标.26.(9分)(2022秋•宁波期中)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B . (1)求证:∠DF A =∠ECD ;(2)△ADF 与△DEC 相似吗?为什么?(3)若AB =4,AD =3√3,AE =3,求AF 的长.27.(9分)(2022秋•招远市期中)如图,一次函数y =kx +b 与反比例函数y =12x(x >0)的图象交于A (m ,6),B (n ,3)两点. (1)求一次函数的解析式;(2)若M 是x 轴上一点,S △MOB =S △AOB ,求点M 的坐标; (3)当x >0时,根据图象直接写出kx +b −12x>0时,x 的取值范围.参考答案一、选择题(共12小题,满分24分,每小题2分)1.B;2.D;3.D;4.A;5.B;6.C;7.A;8.D;9.C;10.D;11.C;12.B;二、填空题(共6小题,满分18分,每小题3分)13.014.0≤y≤1615.4516.72°17.(4,3)或(5,0)或(5,2)18.30;三、解答题(共9小题,满分78分)19.解:(1)∵x2﹣2x﹣8=0,∴(x+2)(x﹣4)=0,则x+2=0或x﹣4=0,解得x1=﹣2,x2=4;(2)∵(x﹣1)2=2x(x﹣1),∴(x﹣1)2﹣2x(x﹣1)=0,∴(x﹣1)(﹣x﹣1)=0,则x﹣1=0或﹣x﹣1=0,解得x1=1,x2=﹣1.20.解:(1)∵关于x的方程x2﹣2x+m﹣2=0有两个实数根x1、x2,∴Δ=(﹣2)2﹣4(m﹣2)=12﹣4m≥0,∴m≤3;(2)由题意得:x1+x2=2,x1•x2=m﹣2,∵3x1+3x2﹣x1x2=5,∴6﹣(m﹣2)=5,∴m=3.21.解:(1)设DC的中点为O,连接OE,∵DE垂直平分AC,∴∠DEC=90°,∴DC是△AEC外接圆的的直径,∵BE是⊙O的切线,∴∠OEB=90°,∴∠EBO+∠BOE=90°,在Rt△ABC中,E为斜边AC的中点,∴BE=EC=AE=12AC,∴∠EBO=∠C,由圆周角定理得:∠BOE=2∠C,∵∠EBO+∠BOE=90°,∠EBO=∠C,∴∠C+2∠C=90°,∴∠C=30°;(2)在Rt△ABC中,AC=√AB2+BC2=√42+82=4√5,则BE=12AC=2√5,∵∠CED=∠CBA=90°,∠ECD=∠BCA,∴△CED∽△CBA,∴CECB =CDCA,即2√58=4√5,解得:CD=5,则△DEC外接圆的半径为52.22.解:(1)延长AC交EG于H,则AB=CD=EH=1.7米,AC=BD,AH=BE,∵GE=18.5米,∴HG=EG﹣HE=18.5﹣1.7=16.8(米),在Rt△AGH中,∠GAH=37°,∴tan37°=GHAH =16.815+CH≈0.75,∴CH=7.4,∴BE=AH=15+7.4=22.4(米),答:小亮站在B处时离教学楼的距离BE为22.4米;(2)由(1)知CH=7.4米,在Rt△FCH中,∵∠FCH=42°,∴tan42°=FHCH =FH7.4≈0.90,∴FH=6.66,∴FG=GH﹣FH=16.8﹣6.66≈10.1(米),答:条幅GF的长度约为10.1米.23.解:(1)根据题意得:﹣2y+150=2(﹣x+100),整理得:y=x﹣25;(2)根据题意得:(x﹣60)(﹣x+100)=(y﹣50)(﹣2y+150),由(1)知,y=x﹣25,∴(x﹣60)(﹣x+100)=(x﹣75)(﹣2x+200),整理得:x2﹣190x+9000=0,解得x1=90,x2=100,∵x=100时利润为0,∴x的值为90;(3)设该4S店第四季度销售这两种轿车能获得的利润为w万元,则w=(x﹣60)(﹣x+100)+(y﹣50)(﹣2y+150)=(x﹣60)(﹣x+100)+(x﹣75)(﹣2x+200)=﹣3x2+510x﹣21000=﹣3(x﹣85)2+675,∵﹣3<0,∴当x=85时,w有最大值,最大值为675,答:该4S店第四季度销售这两种轿车能获得的最大利润为675万元.24.解:(1)估计转动该转盘一次,获得纸巾的概率约是0.6(精确到0.1);故答案为:0.6;(2)摸球抽奖规则:把3个白球和2个黑球放入一个不透明的袋子(5个球除颜色外都相同),顾客购物满100元即可获得一次摸球的机会,当摸到白球时奖品为纸巾,摸到黑球时奖品为免洗洗手液;(3)画树状图为:共有25种等可能的结果数,其中两人都获得纸巾的结果数为9,.所以两人都获得纸巾的概率为92525.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2即为所求;(3)C2(﹣4,2).26.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠ECD=180°,∵∠AFE =∠B ,∴∠AFE +∠ECD =180°,∵∠AFE +∠AFD =180°,∴∠DF A =∠ECD .(2)解:相似,理由如下:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,CD =AB =4,∴∠ADF =∠CED ,又∵∠DF A =∠ECD ,∴△ADF ∽△DEC .(3)解:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵AE ⊥BC ,∴AE ⊥AD ,在Rt △EAD 中,DE =√AE 2+AD 2=√32+(3√3)2=6, ∵△ADF ∽△DEC ,∴AD DE =AF DC ,即3√36=AF 4. ∴AF =2√3.27.解:(1)把点A 代入y =12x 得:6=12m , 解得m =2,把点A 代入y =12x 得3=12n , 解得n =4,∴A (2,6),B (4,3),设要求的一次函数的表达式为y =kx +b ,由题意得:{6=2k +b 3=4k +b, 解之得:{k =−32b =9,∴一次函数的表达式为y=−32x+9;(2)设直线AB交x轴于点P,则0=−32x+9,∴x=6,∴P(6,0),∴S△AOB =S△AOP﹣S△BOP=12×6×6−12×6×3=18−9=9,∴S△MOB=9,设点M的坐标为(m,0),∴OM=|m|,∴12×3×|m|=9,∴|m|=6,∴m=±6,∴点M的坐标为(6,0)或(﹣6,0);(3)观察图象可知,kx+b−12x>0时x的取值范围是2<x<4.。
河南省上蔡县第一初级中学九年级上学期期中考试数学试
一、选择题(8×3=24)1、下列式子中,属于最简二次根式的是( )A 、B 、C 、D 、2有意义,则X 取值范围是( ) A 、 B 、 D 、3、如图示点E 是平行四边形ABCD 的边BC 延长线上一点,AE 与CD 相交于点G 则图中相似三角形共有( )对A 、2对B 、3对C 、4对D 、5对4、不解方程判断下列方程①x 2-2x -1=0②x 2-3x=-7③2x 2+4x-11=0 ④ 有两个不相等实数的是( )A 、①②B 、①③C 、①②③D 、①②④5、如图示AC 是电杆AB 的一根拉线测得BC=6米,∠ACB=520,则拉线AC 的长( )A 、B 、C 、6 cos520米D 、6、两个相似多边形面积比为9:16,其中较小多边形周长为36cm ,则较大多边形周长为( )A 、48cmB 、54cmC 、56cmD 、64cm7、在平面直角坐标系中,△ABC 顶点A 的坐标为(2,3)若以原点0为位似中心画△ABC 相似图形△A ′B ′C ′使△ABC 与△A ′B ′C 相似比为 ,则A ′的坐标( )A 、(﹣4、﹣6)B 、(4、6)C 、(6、4)或(﹣2﹑-6)D 、(﹣4、﹣6)或(4、6)8、如图在Rt △ABC 中,∠ACB=900、∠ABC=600、BC=2、D 为BC2102x +=A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6)连接DE 、若△BDE 直角三角形时t 的值为( )A 、2B 、2.5或3.5C 、3.5或4.5D 、2或3.5或4.5二、填空题(7×3=21分)9、已知x=﹣1于x 的方程2x 2+ax-a 2=0一个根则a=10、已知11、计算12、若m 、n 的方程x 2+2006x-1=0两个实数根,则代数式m 2n+mn 2-mn 的值为13、如右图所示DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,且MN=8则BC=14、某旅游景点三月份共接待游客25万人次,五月份共接待游客634万人次,每月的平均增长率为x ;则x=15、如图在正方形ABCD 中,E 为BC 中点,F 是CD 上一点且下列结论①∠BAE=300②ABE ∽△AEF ③AE ⊥EF④△ADF ∽△ECF 其中正确个数为( )A 、1B 、2C 、3D 、4三、解答题(共75分)16、课堂上,李老师出了一道这样的题已知求代数式22213(1)11x x x x x -+-÷+-+的值,小明觉得直接代入计算太繁,请你帮他解决,并写出具体过程(8分)17、①2x 2-6x+1=0(用配方法解方程)(5分)01012)()4cos30|3-++-=18、现定义一种运算,对于任意实数a、b都有a*b=a2-3a+b,如3*5=32-3×3+5若(x-1)*2=6,求x的值(6分)20、已知△ABC中,AB=AC(1)设△ABC周长为7、BC=y、AB=x(2≤X≤3)写出y与x的函数关系式,并在坐标系中画出该函数图象。
2025届河南省上蔡县第一初级中学九年级数学第一学期开学达标测试试题【含答案】
2025届河南省上蔡县第一初级中学九年级数学第一学期开学达标测试试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,Rt △ABC 中,∠C =90°,AB =10,BC =8,将△ABC 折叠,使B 点与AC 的中点D 重合,折痕为EF ,则线段BF 的长是( )A .B .2C.D .2、(4分)顺次连接一个四边形的各边中点,得到了一个正方形,这个四边形最可能是( )A .正方形B .矩形C .菱形D .平行四边形3、(4分)把一元二次方程配方后,下列变形正确的是( )A .B .C .D .4、(4分)已知等腰三角形有两条边的长分别是3,7,则这个等腰三角形的周长为( )A .17B .13C .17或13D .105、(4分)体育课上,某班三名同学分别进行了6次短跑训练,要判断哪一名同学的短跑成绩比较稳定,通常需要比较三名同学短跑成绩的 ( )A .平均数B .频数C .方差D .中位数6、(4分)关于一次函数,下列结论正确的是( )A .图象过点B .图象与轴的交点是C .随的增大而增大D .函数图象不经过第三象限53166731623y x =-+()1,1-x ()0,3y x7、(4分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE 等于( ).A .3B .4C .5D .68、(4分)已知:|a|=3,=5,且|a+b|=a+b ,则a﹣b 的值为( )A .2或8 B .2或﹣8 C .﹣2或8 D .﹣2或﹣8二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若正比例函数y=kx 的图象经过点(1,2),则k=_______.10、(4分)已知关于x的分式方程有一个正数解,则k 的取值范围为________.11、(4分)如果将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为__________.12、(4分)定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为 ________.13、(4分)已知E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E 作AC 的垂线,交边CD 于点F ,那么∠FAD=________度.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在的方格纸中,每一个小正方形的边长均为,点在格点上,用无刻度直尺按下列要求作图,保留必要的作图痕迹.在图1中,以为边画一个正方形;在图2中,以为边画一个面积为的矩形(可以不在格点上).233x k x x -=--132y x =+y 66⨯1,A B ()1AB ABCD ()2AB 5ABCD ,C D15、(8分)如图:、是锐角的两条高,、分别是、的中点,若EF=6,.(1)证明:;(2)判断与的位置关系,并证明你的结论;(3)求的长.16、(8分)已知△ABC 是等边三角形,将一块含有30°角的直角三角尺DEF 按如图所示放置,让三角尺在BC 所在的直线上向右平移.如图①,当点E 与点B 重合时,点A 恰好落在三角尺的斜边DF 上.(1)利用图①证明:EF =2BC .(2)在三角尺的平移过程中,在图②中线段AH =BE 是否始终成立(假定AB ,AC 与三角尺的斜边的交点分别为G ,H)?如果成立,请证明;如果不成立,请说明理由.17、(10分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率BE CF ABC ∆M N BC EF 24BC =ABE ACF ∠=∠EF MN MN0<t≤220.042<t≤430.064<t≤6150.306<t≤8a 0.50t >85b 请根据图表信息回答下列问题:(1)频数分布表中的a= ,b= ;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?18、(10分)已知关于的一元二次方程.(1)求证:无论取何实数,该方程总有两个不相等的实数根;(2)若方程的一根为3,求另一个根.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在菱形中,在菱形所在平面内,以对角线为底边作顶角是的等腰则_________________.20、(4分)如图,AD ∥EF ∥GH ∥PQ ∥BC ,AE =EG =GP =PB ,AD =2,BC =10,则EF +PQ 长为__________.x 230x mx --=m ABCD 30,A ∠=︒BD 120 ,BDE EBC ∠=21、(4分)如图,已知直线、相交于点,平分,如果,那么__________度.22、(4分)直线y=﹣2x+m﹣3的图象经过x 轴的正半轴,则m 的取值范围为.23、(4分)如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.二、解答题(本大题共3个小题,共30分)24、(8分)某商场销售A,B 两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B 进价(万元/套) 1.51.2售价(万元/套) 1.651.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B 两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A 种设备的购进数量,增加B 种设备的购进数量,已知B 种设备增加的数量是A 种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A 种设备购进数量至多减少多少套?25、(10分)如图,在□ABCD 中,点E 是边BC 的中点,连接AE 并延长,交DC 的延长AB CD O OE BOC ∠50BOE ∠=︒AOC ∠=线于点F ,连接AC ,BF.(1)求证:△AB E≌△FCE;(2)当四边形ABFC 是矩形时,当∠AEC=80°,求∠D 的度数.26、(12分)已知:如图,在四边形中,,为对角线的中点,为的中点,为的中点.求证:ABCD AD BC =P BD M AB N DC PMN PNM∠=∠参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D 【解析】根据题意可得: ,在中,根据勾股定理可列出方程,解方程可得BF 的长.【详解】解: , D 是AC 中点 折叠 设 在 中, 故选D.本题考查了翻折问题,勾股定理的运用,关键是通过勾股定理列出方程.2、A【解析】利用连接四边形各边中点得到的四边形是正方形,则结合正方形的性质及三角形的中位线的性质进行分析,从而不难求解.【详解】解:如图点E ,F ,G ,H 分别是四边形ABCD 各边的中点,3CD =Rt DCF ∆C=90∠ 10,8AB BC ==∴6AC = ∴3AD CD == ∴DF BF =∴,8BF x CF x ==-Rt DCF ∆222DF CD CF =+∴()2298x x =+-∴7316x =∴7316BF =且四边形EFGH是正方形.∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是正方形.∴EF=EH,EF⊥EH,∵BD=2EF,AC=2EH,∴AC=BD,AC⊥BD,即四边形ABCD满足对角线相等且垂直,选项A满足题意.故选:A.本题考查了利用三角形中位线定理得到新四边形各边与相应线段之间的数量关系和位置.熟练掌握特殊四边形的判定是解题的关键.3、A【解析】先把-1移到右边,然后两边都加4,再把左边写成完全平方的形式即可.【详解】∵,∴,∴,∴.故选A.本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.4、A【解析】分3是腰长与底边两种情况讨论求解.解:①3是腰长时,三角形的三边分别为7、3、3,3+3=6<7,不能组成三角形;②3是底边长时,三角形的三边分别为7、7、3,能组成三角形,周长=7+7+3=17,综上所述,这个等腰三角形的周长是17,故选:A .本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.5、C 【解析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生6次短跑训练成绩的方差.【详解】由于方差能反映数据的稳定性,需要比较这两名学生6次短跑训练成绩的方差.故选C .本题考查了方差,关键是掌握方差所表示的意义,属于基础题,比较简单.6、D 【解析】A 、把点的坐标代入关系式,检验是否成立;B 、把y =0代入解析式求出x ,判断即可;C 、根据一次项系数判断;D 、根据系数和图象之间的关系判断.【详解】解:A 、当x =1时,y =1.所以图象不过(1,−1),故错误;B 、把y =0代入y =−2x +3,得x =,所以图象与x 轴的交点是(,0),故错误;C 、∵−2<0,∴y 随x 的增大而减小,故错误;D 、∵−2<0,3>0,∴图象过一、二、四象限,不经过第三象限,故正确.3232本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.7、A 【解析】由D 、E 分别是AB 、AC 的中点可知,DE 是△ABC 的中位线,利用三角形中位线定理可求出DE .【详解】∵D 、E 是AB 、AC 中点,∴DE 为△ABC 的中位线,∴ED=BC=1.故选A .本题考查了三角形的中位线定理,用到的知识点为:三角形的中位线等于三角形第三边的一半.8、D 【解析】试题分析:利用绝对值的代数意义,以及二次根式性质求出a 与b 的值,即可求出a﹣b 的值.解:根据题意得:a=3或﹣3,b=5或﹣5,∵|a+b|=a+b ,∴a=3,b=5;a=﹣3,b=5,则a﹣b=﹣2或﹣1.故选D .二、填空题(本大题共5个小题,每小题4分,共20分)9、2【解析】由点(2,2)在正比例函数图象上,根据函数图象上点的坐标特征即可得出关于k 的一元一次方程,解方程即可得出k 值.【详解】12∵正比例函数y=kx 的图象经过点(2,2),∴2=k×2,即k=2.故答案为2.本题考查了一次函数图象上点的坐标特征,解题的关键是得出2=k×2.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用一次函数图象上点的坐标特征求出一次函数的系数是关键.10、k <6且k≠1 【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.详解:,方程两边都乘以(x-1),得x=2(x-1)+k ,解得x=6-k≠1,关于x 的方程程有一个正数解,∴x=6-k >0,k <6,且k≠1,∴k 的取值范围是k <6且k≠1.故答案为k <6且k≠1.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.11、【解析】根据一次函数图象的平移规律:上加下减,左加右减进行平移即可得出答案.【详解】将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为,即,233x k x x -=--233x k x x -=--162y x =+132y x =+y 1332y x =++162y x =+故答案为:.本题主要考查一次函数图象的平移,掌握一次函数图象的平移规律是解题的关键.12、x >﹣1【解析】解:3⊕x <13,3(3-x )+1<13,解得:x >-1.故答案为:x >﹣1 本题考查一元一次不等式的应用,正确理解题意进行计算是本题的解题关键.13、【解析】如图,在Rt △ADF 和Rt △AEF 中,AD=AE ,AF=AF ,∴≌(),故,因为是正方形的对角线,故,故∠FAD=22.5°,故答案为22.5.三、解答题(本大题共5个小题,共48分)14、(1)详情见解析;(2)详情见解析【解析】(1)观察图中AB ,可知AB 为以三个方格组成的矩形的对角线,据此根据方格的特点结合矩形的性质及正方形的判定定理进一步画出图形即可;(2)首先根据题意按照(1)中作法画出正方形ABEF ,结合题意可知其面积为10,据此,162y x =+22.5ADF ∆AEF ∆HL 12FAD FAE DAE ∠=∠=∠AC 45DAE ∠=我们只要利用矩形对角线互相平分且相等的性质找到AF 与BC 的中点,然后连接起来即可得出答案.【详解】(1)如图1中,正方形ABCD 即为所求:(2)如图2中,矩形ABCD 即为所求:本题主要考查了根据矩形及正方形性质进行按要求作图,熟练掌握相关概念是解题关键.15、(1)证明见解析;(2)MN 垂直平分EF,证明见解析;(3)MN =.【解析】(1)依据BE 、CF 是锐角△ABC 的两条高,可得∠ABE +∠A =90°,∠ACF +∠A =90°,进而得出∠ABE =∠ACF ;(2)连接EM 、FM ,根据直角三角形斜边上的中线等于斜边的一半可得EM =FM =BC ,再根据等腰三角形三线合一的性质解答;(3)求出EM 、EN ,然后利用勾股定理列式计算即可得解.【详解】解:(1)∵BE 、CF 是锐角△ABC 的两条高,∴∠ABE +∠A =90°,∠ACF +∠A =90°,12∴∠ABE =∠ACF ;(2)MN 垂直平分EF .证明:如图,连接EM 、FM ,∵BE 、CF 是锐角△ABC 的两条高,M 是BC 的中点,∴EM =FM=BC ,∵N 是EF 的中点,∴MN 垂直平分EF ;(3)∵EF =6,BC =24,∴EM =BC =×24=12,EN =EF =×6=3,由勾股定理得,MN 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,勾股定理,熟记性质并作辅助线构造出等腰三角形是解题的关键.16、(1)详见解析;(2)成立,证明见解析.【解析】(1)根据等边三角形的性质,得∠ACB =60°,AC =BC .结合三角形外角的性质,得∠CAF =30°,则CF =AC ,从而证明结论;(2)根据(1)中的证明方法,得到CH =CF .根据(1)中的结论,知BE +CF =AC ,从而证明结论.【详解】(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC .∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC ,∴CF =AC =BC ,∴EF =2BC .(2)成立.证明如下:1212121212=∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC .∵∠F =30°,∴∠CHF =60°-30°=30°,∴∠CHF =∠F ,∴CH =CF .∵EF =2BC ,∴BE +CF =BC .又∵AH +CH =AC ,AC =BC ,∴AH =BE .本题考查了等边三角形的性质、三角形的外角性质以及等腰三角形的判定及性质.证明EF =2BC 是解题的关键.17、(1)25;0.10;(2)补图见解析;(3)200人.【解析】(1)由阅读时间为0<t ≤2的频数除以频率求出总人数,确定出a 与b 的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【详解】解:(1)根据题意得:2÷0.04=50(人),则a =50﹣(2+3+15+5)=25;b =5÷50=0.10;故答案为25;0.10;(2)阅读时间为6<t ≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.18、(1)见解析;(2)-1.【解析】(1)根据方程的系数结合根的判别式即可得出△=m 2+12≥12,由此即可得出结论.(2)将x=3代入原方程求出m 值,再将m 得值代入原方程利用十字相乘法即可求出方程的另一根,或者直接利用两根之积等于-3可得.【详解】解:(1)∵在方程x 2-mx-3=0中,△=(-m )2-4×1×(-3)=m 2+12≥12,∴对于任意实数m ,方程总有两个不相等的实数根.(2)方法一:将x=3代入x 2-mx-3=0中,得:9-3m-3=0,解得:m=2,当m=2时,原方程为x 2-2x-3=(x+1)(x-3)=0,解得:x 1=-1,x 2=3,∴方程的另一根为-1.方法二:设方程的另一个根为a ,则3a=-3,解得:a=-1,即方程的另一根为-1.本题考查了根的判别式及根与系数的关系,掌握x 1+x 2=-,x 1•x 2=与判别式的值与方程的解得个数的关系是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、105°或45°【解析】根据菱形的性质求出∠ABD=∠DBC=75°利用等腰三角形的性质求出∠EBD=∠EDB=30°,再分点E 在BD 右侧时,点E 在BD 左侧时,分别求出答案即可.【详解】∵四边形ABCD 是菱形,∴AB=AD=BC=CD ,∠C=∠ABC=∠ADC=150°,∴∠ABD=∠DBC=75°,∵EB=ED ,∠DEB=120°,∴∠EBD=∠EDB=30°,当点E 在DB 左侧时,∠EBC=∠EBD+∠CBD=105°,当点在DB 右侧时,∠BC=∠CBD-∠BD=45°,故答案为:105°或45°.b ac a 30,A ∠=︒E 'E 'E '此题考查菱形的性质,等腰三角形的性质,正确理解题意分情况求解是解题的关键.20、1【解析】由AD ∥EF ∥GH ∥PQ ∥BC ,AE =EG =GP =PB ,可得GH 是梯形ABCD 的中位线,EF 是梯形AGHD 的中位线,PQ 是梯形GBCH 的中位线,然后根据梯形中位线的性质求解即可求得答案.【详解】∵AD ∥EF ∥GH ∥PQ ∥BC ,AE =EG =GP =PB ∴GH 是梯形ABCD 的中位线,EF 是梯形AGHD 的中位线,PQ 是梯形GBCH 的中位线∵AD =2,BC =10∴∴∴故答案为:1.本题考查了梯形中位线的问题,掌握梯形中位线的性质是解题的关键.21、1【解析】先根据角平分线的定义,求出∠BOC 的度数,再根据邻补角的和等于11°求解即可.【详解】解:∵平分,,∴,∴,故答案为:1.本题考查了角平分线的定义以及邻补角的性质,属于基础题.()162GH AD BC =+=()()114,822EF AD GH PQ GH BC =+==+=12EF PQ +=OE BOC ∠50BOE ∠=︒2250100∠=∠=⨯︒=︒BOC BOE 180********∠=︒-∠=︒-︒=︒AOC BOC22、m >1【解析】试题分析:根据y=kx+b 的图象经过x 轴的正半轴则b >0即可求得m 的取值范围.解:∵直线y=﹣2x+m﹣1的图象经过x 轴的正半轴,∴m﹣1>0,解得:m >1,故答案为:m >1.23、【解析】根据折叠的性质,只要求出DN 就可以求出NE ,在直角△CEN 中,若设CN=x ,则DN=NE=8-x ,CE=4,根据勾股定理就可以列出方程,从而解出CN 的长.【详解】设CN=x ,则DN=8-x ,由折叠的性质知EN=DN=8-x ,而EC=BC=4,在Rt △ECN 中,由勾股定理可知,即 整理得16x=48,所以x=1.故答案为:1.本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.二、解答题(本大题共3个小题,共30分)24、 (1) A,B 两种品牌的教学设备分别为20套,30套; (2) 至多减少1套.【解析】(1)设A 品牌的教学设备x 套,B 品牌的教学设备y 套,根据题意可得方程组,解方程组即可求得商场计划购进A ,B 两种品牌的教学设备的套数;(2)设A 种设备购进数量减少a 套,则B 种设备购进数量增加1.5a 套,由题意得不等式1.5(20-a )+1.2(30+1.5a )≤69,解不等式即可求得答案.【详解】(1)设A 品牌的教学设备x 套,B 品牌的教学设备y 套,由题意,得,解得:.答:该商场计划购进A 品牌的教学设备20套,B 品牌的教学设备30套;(2)设A 种设备购进数量减少a 套,则B 种设备购进数量增加1.5a 套,由题意,得1.5(20-a )+1.2(30+1.5a )≤69,解得:a≤1.答:A 种设备购进数量至多减少1套.25、(1)见解析;(2)40°【解析】(1)根据矩形性质得出AB ∥DC ,推出∠1=∠2,根据AAS 证两三角形全等即可;(2)由四边形ABFC 是矩形可得AE =BE ,由外角额性质可求出∠ABE =∠BAE =40°,然后根据平行四边形的对角相等即可求出∠D 的度数.【详解】解:(1)如图.∵四边形ABCD 是平行四边形,∴AB∥DC 即 AB∥DF,∴∠1=∠2,∵点E 是BC 的中点,∴BE=CE .在△ABE 和△FCE 中,∠1=∠2, BE =CE,∠3=∠4,∴△ABE ≌△FCE (AAS ).(2)∵四边形ABFC 是矩形,1.5 1.2660.150.29x y x y +=⎧⎨+=⎩2030x y =⎧⎨=⎩∴AF=BC,AE=AF ,BE=BC ,∴AE=BE,∴∠ABE=∠BAE,∵∠AEC=80°,∴∠ABE=∠BAE=40°,∵四边形ABCD 是平行四边形,∴∠D=∠ABE=40°.点睛:本题考查了平行四边形的性质,平行线的性质,全等三角形的判定,矩形的性质,三角形外角的性质,熟练掌握平行四边形的性质和矩形的性质还是解答本题的关键.26、见解析.【解析】根据中位线定理和已知,易证明△NMP 是等腰三角形,根据等腰三角形的性质即可得到结论.【详解】解:证明:∵是中点,是中点,∴是的中位线,∴,∵是中点,是中点,∴是的中位线,∴,∵,∴,∴是等腰三角形,∴.此题主要考查了三角形中位线定理,以及等腰三角形的判定与性质,熟练掌握等腰三角形的性质是解题的关键.1212P BD M AB PM ABD ∆12PM AD =P BD N DC PN BCD ∆12PN BC =AD BC =PM PN =PMN ∆PMN PNM ∠=∠。
2025届河南省上蔡县第一初级中学九上数学期末达标检测试题含解析
2025届河南省上蔡县第一初级中学九上数学期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)1.如图,AB 是O 的直径,BC 是O 的弦,已知40ABC ∠=︒,则AOC ∠的度数为( )A .60︒B .70︒C .80︒D .90︒2.如图,四边形ABCD 内接于⊙O ,AB 是直径,OD ∥BC ,∠ABC =40°,则∠BCD 的度数为( )A .80°B .90°C .100°D .110°3.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为() A .120,2x x == B .122,4x x =-= C .120,4x x == D .122,2x x =-=4.若数据2,x ,4,8的平均数是4,则这组数据的中位数和众数是( )A .3和2B .4和2C .2和2D .2和45.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是( )A .15πB .20πC .24πD .30π6.若一个圆内接正多边形的内角是108︒,则这个多边形是( )A .正五边形B .正六边形C .正八边形D .正十边形7.如图,△ABC 的顶点均在⊙O 上,若∠A=36°,则∠OBC 的度数为( )A .18°B .36°C .60°D .54°8.在Rt △ABC 中,∠90C =︒,如果4AC =,3BC =,那么cos A 的值为( )A .45B .35C .43D .349.方程x 2+5x =0的适当解法是( )A .直接开平方法B .配方法C .因式分解法D .公式法10.抛物线y=(x+2)2﹣3可以由抛物线y=x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位二、填空题(每小题3分,共24分)11.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5m 的大视力表制作一个测试距离为3m 的小视力表.如图,如果大视力表中“E ”的高度是3.5cm ,那么小视力表中相应“E ”的高度是__________.12.已知直线y=kx (k≠0)经过点(12,﹣5),将直线向上平移m (m >0)个单位,若平移后得到的直线与半径为6的⊙O 相交(点O 为坐标原点),则m 的取值范围为_____.13.一元二次方程()22x x x -=-的根是_____.14.如图,AB 是O 的直径,点C 、D 在O 上,连结AD 、BC 、BD 、DC ,若BD CD =,20DBC ∠=︒,则ABC ∠的度数为________.15.如图,铁道口的栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m 时,长臂端点升高______16.如图,B (3,﹣3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.17.因式分解x 3-9x=__________.18.如图,在△ABC 中,AB =AC ,∠A =120°,BC =43,⊙A 与BC 相切于点D ,且交AB ,AC 于M ,N 两点,则图中阴影部分的面积是_____(保留π).三、解答题(共66分)19.(10分)如图,点A 、B 、C 在⊙O 上,用无刻度的直尺画图.(1)在图①中,画一个与∠B 互补的圆周角;(2)在图②中,画一个与∠B 互余的圆周角.以点P 为旋转中心转动三角板,并保证三角板的两直角边分别于边AB ,BC 所在的直线相交,交点分别为E ,F .(1)当PE ⊥AB ,PF ⊥BC 时,如图1,则PE PF 的值为 ; (2)现将三角板绕点P 逆时针旋转α(0°<α<60°)角,如图2,求PE PF的值; (3)在(2)的基础上继续旋转,当60°<α<90°,且使AP :PC=1:2时,如图3,PE PF 的值是否变化?证明你的结论.21.(6分)如图,AD 是ABC ∆的角平分线,过点D 分别作AC 、AB 的平行线,交AB 于点E ,交AC 于点F .(1)求证:四边形AEDF 是菱形.(2)若13AF =,24AD =.求四边形AEDF 的面积.22.(8分)为深化课改,落实立德树人目标,某学校设置了以下四门拓展性课程:A .数学思维,B .文学鉴赏,C .红船课程,D .3D 打印,规定每位学生选报一门.为了解学生的报名情况,随机抽取了部分学生进行调查,并制作成如下两幅不完整的统计图,请回答下列问题:(1)求这次被调查的学生人数;(2)请将条形统计图补充完整;(3)假如全校有学生1000人,请估计选报“红船课程”的学生人数.23.(8分)如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.(1)求证:BDE CAD ∆∆∽;(2)若13AB =,10BC =,求线段DE 的长.24.(8分)如图,点D 在⊙O 的直径AB 的延长线上,CD 切⊙O 于点C ,AE ⊥CD 于点E(1)求证:AC 平分∠DAE ;(2)若AB =6,BD =2,求CE 的长.25.(10分)已知抛物线y =ax 2+bx+3经过点A (﹣1,0)、B (3,0),且与y 轴交于点C ,抛物线的对称轴与x 轴交于点D .(1)求抛物线的解析式;(2)点P 是y 轴正半轴上的一个动点,连结DP ,将线段DP 绕着点D 顺时针旋转90°得到线段DE ,点P 的对应点E 恰好落在抛物线上,求出此时点P 的坐标;(3)点M (m ,n )是抛物线上的一个动点,连接MD ,把MD 2表示成自变量n 的函数,并求出MD 2取得最小值时点M 的坐标.26.(10分)如图,AB 是O 的直径,点C 在AB 上,BC 2AC =,FD 切O 于点B ,连接AC 并延长交FD 于点D ,点E 为OB 中点,连接CE 并延长交FD 于点F ,连接AF ,交O 于点G ,连接BG .(1)求证:3CD AC =;(2)若O 的半径为2,求BG 的长.参考答案一、选择题(每小题3分,共30分)1、C【分析】根据圆周角定理即可解决问题.【详解】∵AC AC =,∴224080AOC ABC ∠∠==⨯︒=︒.故选:C .【点睛】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.2、D【分析】根据平行线的性质求出∠AOD ,根据等腰三角形的性质求出∠OAD ,根据圆内接四边形的性质计算即可.【详解】∵OD ∥BC ,∴∠AOD=∠ABC=40°,∵OA=OD ,∴∠OAD=∠ODA=70°,∵四边形ABCD 内接于⊙O ,∴∠BCD=180°-∠OAD=110°,故选:D .【点睛】本题考查的是圆内接四边形的性质、平行线的性质,掌握圆内接四边形的对角互补是解题的关键.3、C【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论. 【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴关于t 的方程20at bt c ++=的解为11t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3解得:10x =,24x =,故选C .【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.4、A【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x 的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数. 【详解】这组数的平均数为2448x +++=4, 解得:x =2;所以这组数据是:2,2,4,8;中位数是(2+4)÷2=3,2在这组数据中出现2次,4出现一次,8出现一次,所以众数是2;故选:A .【点睛】本题考查平均数和中位数和众数的概念.5、A【解析】试题分析:∵圆锥的主视图是腰长为5,底边长为6的等腰三角形,∴这个圆锥的底面圆的半径为3,母线长为5.∴这个圆锥的侧面积=1523152ππ⋅⋅⋅=. 故选A .考点:1.简单几何体的三视图;2.圆锥的计算.6、A 【分析】根据正多边形的内角求得每个外角的度数,利用多边形外角和为360°即可求解.【详解】解:∵圆内接正多边形的内角是108︒,∴该正多边形每个外角的度数为18010872︒-︒=︒,∴该正多边形的边数为:360572︒=︒, 故选:A .【点睛】本题考查圆与正多边形,掌握多边形外角和为360°是解题的关键.7、D【解析】根据圆周角定理,由∠A=36°,可得∠O=2∠A =72°,然后根据OB=OC ,求得∠OBC=(180°-∠O )=(180°-72°)=54°. 故选:D点睛:此题主要考查了圆周角定理,解题时,根据同弧所对的圆周角等于圆心角的一半,求出圆心角,再根据等腰三角形的性质和三角形的内角和定理求解即可,解题关键是发现同弧所对的圆心角和圆周角,明确关系进行计算. 8、A【分析】先利用勾股定理求出AB 的长度,从而cos AC A AB =可求. 【详解】∵∠90C =︒,4AC =,3BC =∴2222435AB AC BC =++= ∴4cos 5AC A AB == 故选A【点睛】本题主要考查勾股定理及余弦的定义,掌握余弦的定义是解题的关键.9、C【分析】因为方程250x x +=中可以提取公因式x ,所以该方程适合用因式分解法.因式分解为x (x+5)=0,解得x=0或x=-5.用因式分解法解该方程会比较简单快速.【详解】解:∵x 2+5x =0,∴x (x +5)=0,则x =0或x +5=0,解得:x =0或x =﹣5,故选:C .【点睛】本题的考点是解一元二次方程.方法是熟记一元二次方程的几种解法,也可用选项的四种方法分别解题,选择最便捷的方法.10、B【解析】根据“左加右减,上加下减”的原则进行解答即可:∵23222y x y (x 2)y (x 2)3→+→+-向左平移个单位向下平移个单位===y =x 2, ∴平移过程为:先向左平移2个单位,再向下平移3个单位.故选B .二、填空题(每小题3分,共24分)11、2.1cm【分析】先利用平行线证明相似,再利用相似三角形的性质得到比例式,即可计算出结果.【详解】解:如图,由题意得:CD ∥AB ,∴ ECD EAB ∆∆,CD DE AB BE∴=, ∵AB=3.5cm ,BE=5m ,DE=3m , 33.55CD ∴=, ∴CD=2.1cm ,故答案是:2.1cm .本题考查了相似三角形的应用,比较简单;根据生活常识,墙与地面垂直,则两张视力表平行,根据平行得到相似列出比例式,可以计算出结果.12、0<m<【解析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【详解】把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m,在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•=×m×m,∵m>0,解得OD=m,由直线与圆的位置关系可知m <6,解得m<,故答案为0<m<.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.13、x1=1, x2=2.【分析】整体移项后,利用因式分解法进行求解即可得.【详解】x(x-2)-(x-2)=0,()()120x x--=,x-1=0或x-2=0,所以x1=1,x2=2,故答案为x1=1,x2=2.【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点熟练选择恰当的方法进行求解是关键.14、50°【分析】先由直径所对的圆周角为90°,可得:∠ADB=90°,根据同圆或等圆中,弦相等得到弧相等得到圆周角相等,得到∠A的度数,根据直角三角形的性质得到∠ABD的度数,即可得出结论.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵BD=CD,∴弧BD=弧CD,∴∠A=∠DBC=20°,∴∠ABD=90° -20°=70°,∴∠ABC=∠ABD-∠DBC=70°-20°=50°.故答案为:50°.【点睛】本题考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,直径所对的圆周角为90°.15、8m【分析】由题意证△ABO∽△CDO,可得AB BOCD DO=,即0.5116CD=,解之可得.【详解】如图,由题意知∠BAO=∠C=90°,∵∠AOB=∠COD,∴△ABO∽△CDO,∴AB BOCD DO=,即0.5116CD=,解得:CD=8,故答案为:8m.【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.16、6 yx =【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】设A坐标为(x,y),∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A(-2,-3),设过点A的反比例解析式为y=kx,把A(-2,-3)代入得:k=6,则过点A的反比例解析式为y=6x,故答案为y=6 x .【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.17、x(x+3)(x-3)【分析】先提取公因式x,再利用平方差公式进行分解.【详解】解:x3-9x,=x(x2-9),=x(x+3)(x-3).【点睛】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.18、43π.【分析】连接AD,分别求出△ABC和扇形AMN的面积,相减即可得出答案. 【详解】解:连接AD,∵⊙A与BC相切于点D,∴AD⊥BC,∵AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,BD=CD=123 2BC=∴AB=2AD,由勾股定理知BD2+AD2=AB2,即(23+AD2=(2AD)2解得AD=2,∴△ABC的面积=1143243 22BC AD⨯=⨯=扇形MAN得面积=2120243603ππ⨯=,∴阴影部分的面积=4433π.故答案为:4433π.【点睛】本题考查的是圆中求阴影部分的面积,解题关键在于知道阴影部分面积等于三角形ABC的面积减去扇形AMN的面积,要求牢记三角形面积和扇形面积的计算公式.三、解答题(共66分)19、(1)见解析;(2)见解析【解析】试题分析:()1圆内接四边形的对角互补.()2直径所对的圆周角是直角.试题解析:()1如图①,P∠即为所求.()2如图②,CBQ∠即为所求.点睛:圆内接四边形的对角互补. 直径所对的圆周角是直角.20、(1)3;(2)PE 3PF =;(3)变化.证明见解析. 【分析】(1)证明△APE ≌△PCF ,得PE=CF ;在Rt △PCF 中,解直角三角形求得PE PF的值即可; (2)如答图1所示,作辅助线,构造直角三角形,证明△PME ∽△PNF ,并利用(1)的结论,求得PE PF 的值; (3)如答图2所示,作辅助线,构造直角三角形,首先证明△APM ∽△PCN ,求得PM 3PN 2=;然后证明△PME ∽△PNF ,从而由PE PM PF PN =求得PE PF 的值.与(1)(2)问相比较,PE PF的值发生了变化. 【详解】(1)∵矩形ABCD ,∴AB ⊥BC ,PA=PC.∵PE ⊥AB ,BC ⊥AB ,∴PE ∥BC.∴∠APE=∠PCF.∵PF ⊥BC ,AB ⊥BC ,∴PF ∥AB.∴∠PAE=∠CPF.∵在△APE 与△PCF 中,∠PAE=∠CPF ,PA=PC ,∠APE=∠PCF ,∴△APE ≌△PCF (ASA ).∴PE=CF.在Rt △PCF 中,0PF PF 3tan 30CF PE 3===,∴PE 3PF =; (2)如答图1,过点P 作PM ⊥AB 于点M ,PN ⊥BC 于点N ,则PM ⊥PN.∵PM ⊥PN ,PE ⊥PF ,∴∠EPM=∠FPN.又∵∠PME=∠PNF=90°,∴△PME ∽△PNF.∴PM 3PN=由(1)知,PM 3PN 2=, ∴PE 3PF=. (3)变化.证明如下:如答图2,过点P 作PM ⊥AB 于点M ,PN ⊥BC 于点N ,则PM ⊥PN ,PM ∥BC ,PN ∥AB.∵PM ∥BC ,PN ∥AB , ∴∠APM=∠PCN ,∠PAM=∠CPN.∴△APM ∽△PCN.∴12PM AP CN PC ==,得CN=2PM. 在Rt △PCN 中,PN PN 3tan 30CN 2PM ︒===, ∴3PM PN =. ∵PM ⊥PN ,PE ⊥PF ,∴∠EPM=∠FPN.又∵∠PME=∠PNF=90°,∴△PME ∽△PNF.∴32PE PM PF PN ==. ∴PE PF的值发生变化. 21、(1)详见解析;(2)120.【分析】(1)先利用两组对边分别平行证明四边形AEDF 是平行四边形,然后利用角平分线和平行线的性质证明一组邻边相等,即可证明四边形AEDF 是菱形.(2)连接EF 交AD 于点O ,利用菱形的性质及勾股定理求出OE,OF 的长度,则菱形的面积可求.【详解】(1)证明://AB DF ,//AC DE∴四边形AEDF 是平行四边形AD 是ABC ∆的角平分线BAD DAC ∴∠=∠又//AC DEADE DAC ∴∠=∠ADE BAD ∴∠=∠EA ED ∴=∴四边形AEDF 是菱形(2)连接EF 交AD 于点O四边形AEDF 是菱形2EF FO ∴=,1122AO AD ==,AD EF ⊥ 在Rt AOF ∆中,由勾股定理得222213125OF AF AO --=5OE OF ∴==11112452451202222AEDF S AD OF AD OE ∴=⨯+⨯=⨯⨯+⨯⨯=四边形 【点睛】本题主要考查菱形的判定及性质,掌握菱形的性质和勾股定理是解题的关键.22、(1)80人 (2)见解析 (3)375【分析】(1)根据条形统计图和扇形统计图可知,选择文学鉴赏的学生16人,占总体的20%,从而可以求得调查的学生总人数;(2)根据 3D 打印的百分比和(1)中求得的调查的学生数,可以求得选择3D 打印的有多少人,进而可以求得选择数学思维的多少人,从而可以将条形统计图补充完整;(3)根据调查的选择红船课程的学生所占的百分比,即可估算出全校选择体育类的学生人数.【详解】解:(1)16÷20%=80人; (2)如图所示;(3)30100080⨯=375(人). 【点睛】本题考查了条形统计图、样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.23、(1)见解析;(2)6013DE =. 【分析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明;对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC =,∴B C ∠=∠.又∵AD 为BC 边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得2212AD AB BD =-=. 由(1)得BDE CAD ∆∆∽,∴BD DE CA AD=, 即51312DE =, ∴6013DE =. 【点睛】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.24、(1)见解析;(2)【解析】(1)连接OC.只要证明AE∥OC即可解决问题;(2)根据角平分线的性质定理可知CE=CF,利用面积法求出CF即可;【详解】(1)证明:连接O C.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC•CD=•OD•CF,∴CF=,∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.【点睛】本题主要考查平行线的判定、角平分线的性质,熟练掌握这些知识点是解答的关键.25、(2)y=﹣x2+2x+2;(2)点P的坐标为(0,32)MD2=n2﹣n+3;点M的坐标为(2142,12)或(2142,12).【分析】(2)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)过点E作EF⊥x轴于点F,根据旋转的性质及同角的余角相等,可证出△ODP≌△FED(AAS),由抛物线的解析式可得出点D的坐标,进而可得出OD的长度,利用全等三角形的性质可得出EF的长度,再利用二次函数图象上点的坐标特征可求出DF,OP的长,结合点P在y轴正半轴即可得出点P的坐标;(2)利用二次函数图象上点的坐标特征可得出m2﹣2m=2﹣n,根据点D,M的坐标,利用两点间的距离公式可得出MD2=n2﹣n+3,利用配方法可得出当MD2取得最小值时n的值,再利用二次函数图象上点的坐标特征即可求出当MD2取得最小值时点M的坐标.【详解】(2)将A(﹣2,0),B(2,0)代入y=ax2+bx+2,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+2.(2)过点E作EF⊥x轴于点F,如图所示.∵∠OPD+∠ODP=90°,∠ODP+∠FDE=90°,∴∠OPD=∠FDE.在△ODP和△FED中,,∴△ODP≌△FED(AAS),∴DF=OP,EF=DO.∵抛物线的解析式为y=﹣x2+2x+2=﹣(x﹣2)2+3,∴点D的坐标为(2,0),∴EF=DO=2.当y=2时,﹣x2+2x+2=2,解得:x2=2﹣(舍去),x2=2+,∴DF=OP=2+,∴点P的坐标为(0,2+).(2)∵点M(m,n)是抛物线上的一个动点,∴n=﹣m2+2m+2,∴m 2﹣2m =2﹣n .∵点D 的坐标为(2,0),∴MD 2=(m ﹣2)2+(n ﹣0)2=m 2﹣2m+2+n 2=2﹣n+2+n 2=n 2﹣n+3.∵n 2﹣n+3=(n ﹣)2+, ∴当n =时,MD 2取得最小值,此时﹣m 2+2m+2=,解得:m 2=,m 2=.∴MD 2=n 2﹣n+3, 当MD 2取得最小值时,点M 的坐标为(,)或(,).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、全等三角形的判定与性质、二次函数的最值以及两点间的距离公式,解题的关键是:(2)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用全等三角形的性质及二次函数图象上点的坐标特征求出OP 的长;(2)利用两点间的距离公式结合二次函数图象上点的坐标特征,找出MD 2=n 2﹣n+3.26、(1)证明见解析;(2)4201BG = 【分析】(1)利用圆周角定理及2BC AC =,求得∠ABC=30°,利用切线的性质求得∠D=30°,根据直角三角形30度角的性质从而证出3CD AC =;(2)先证得△OAC 为等边三角形,求得CM 的长,过点C 作CM ⊥AO 于点M ,证出△CME ∽△FBE ,求出32BF =,利用勾股定理求出67AF =,利用面积法即可求出4201BG =. 【详解】(1) 连接BC ,∵AB 是⊙O 的直径,2BC AC =,∴∠ACB=90°,∠ABC=30°,∠BAC=60°, ∴12AC AB =, ∵BD 切O 于点B ,∴AB ⊥DB ,∴∠D=90︒-∠BAD=90︒-60°=30°,∴AD=2AB , ∴AD=4AC ,∴3CD AC =;(2) 连接OC ,过点C 作CM ⊥AO 于点M ,∵∠BAC=60°,OA=OC ,∴△OAC 为等边三角形,∴AC=OA=OC=2,OM=MA=1,∵CM ⊥AO ,∴OM=MA=1OA 2=1, 在Rt ACM 中, 2AC =,EAC 60∠=︒,∴sin EAC 2sin 602CM AC ∠==︒==, ∵点E 为OB 中点,∴1BE EO ==,∴OM 2EM EO =+=,∵BF 切O 于点B ,∴AB ⊥FB ,∴∠FBE=90︒,∵∠FEB=∠CEM ,∴Rt FBE Rt CME ∽, ∴FB BECM ME=12=,∴FB =在Rt ABF 中,2FB =,4AB =,90ABF ∠=︒,∴AF ===, ∵AB 是⊙O 的直径∴∠AGB=90°,∴BG ⊥AF , ∵1122ABF S BF AB AF BG ==,6742BG =,∴BG =【点睛】本题是圆的综合题,考查了切线的性质、相似三角形的判定与性质、圆周角定理、勾股定理以及三角形面积的计算,学会添加常用辅助线,熟练掌握圆周角定理,并能进行推理计算是解决问题的关键.。
河南省驻马店市上蔡县2024届九年级上学期期中教学质量测试数学试卷(含答案)
2022—2023学年上学期期中教学质量测试题九年级数学试题卷一、选择题(每小题3分,共计30分)1.若二次根式有意义,则x的取值范围为()A.x≥1B.x≠1C.x>1D.x≤12.方程x2+2x-3=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.无法判断3.若方程2x2+6x-1=0的两根为x1和x2,则x1+x2等于()A.6B.-6C.3D.-34.某工厂今年7月的营业额为2500万元,按计划第三季度的总营业额要达到9100万元。
设该工厂8、9两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+2x)=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100 5.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC.若,下列结论正确的是()A.B.C.D.6.如图,点O是△ABC内任一点,点D,E,F分别为OA,OB,OC的中点,则图中的相似三角形有()A.1对B.2对C.3对D.4对7.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有这样一段文字:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意为:如图,有一根不知道长度的竹竿,量出在太阳下的影子长为一丈五尺,同时立一根一尺五寸的小标杆,它在太阳下的影子长为五寸(提示:丈、尺和寸是古代的长度单位,1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺8.如图,线段AB两个端点的坐标分别是A(6,6),B(8,2).以原点O为位似中心,在第一象限内将线段AB缩小为原来的一半后得到线段CD,则点C的坐标为()A.(3,3)B.(4,3)C.(3,1)D.(4,1)9.如图,在△ABC中,AB>AC,以点A为圆心,AC长为半径作弧,交AB于点D,连接DC;再以点D为圆心,DC长为半径画弧,交CB的延长线于点E.若BE=BD,∠E=15°,AD=1,则下列结论正确的是()A.∠ACD=30°B.AB=2ACC.△EBD∽△EDC D.10.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长为()A.2.5B.C.D.2二、填空题(每小题3分,共计15分)11.请你写出一个有一个根为1的一元二次方程:_________.12.若,则________.13.若最简二次根式与是同类二次根式,则x=_________.14.如图,AB∥GH∥DC,点H在BC上,AC与BD交于点G,若,则________.15.如图,准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路.四条小路围成的中间部分(不包含小路)恰好是一个正方形,且该正方形的边长是小路宽度的4倍.若四条小路所占面积为80平方米,则小路的宽度为_________米.三、解答题(共计75分)16.(5×2=10分)计算:(1)(2)17.(5×2=10分)解方程:(1)2x2-4x-1=0(配方法)(2)3(x-2)2=4-2x18.(9分)(1)如图,△ABC中,∠BAC=2∠C.在图中作出△ABC的内角平分线AD(要求:尺规作图,保留作图痕迹,不写证明),并在已作出的图形中写出一对相似三角形.(2)如图,大小4×4的正方形方格中,△ABC的顶点A,B,C都在小正方形的顶点上,请在图中画出与△ABC相似且面积不相等的一个三角形.(要求:画出的三角形的顶点在格点上)19.(9分)已知关于x的一元二次方程有两个实数根.(1)求m的取值范围;(2)设方程的两个根为x1,x2,且满足,求m的值.20.(9分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,每千克核桃的售价每降低1元,则平均每天的售量可增加20千克.设每千克核桃应降价x元,则:(1)降价后,每千克核桃获利_________元,平均每天可售出_________千克核桃(用含x 的代数式表示):(2)该专卖店打算尽快降低这种核桃库存的同时,平均每天仍获利2880元,那么每千克核桃应降价多少元?21.(9分)如图,△ABC中,AB=AC,AD为BC边的中线,DE⊥AB于点E.(1)证明:△BDE∽△CAD;(2)若AB=13,AD=12,求的值.22.(9分)2022年9月16日,第九批在韩中国人民志愿军烈士遗骸归国,离家还是少年身,归来已是报国躯.七十多年前,超过19万名志愿军战士在异国疆场悲壮地倒下,义无反顾地用血肉之躯把祖国护卫在身后,把炮火挡在了国门之外。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015—2016学年度上期素质测试九年级数学试题
( 本试卷满分120分,考试时间90分钟)
一、选择题(每小题3分,共24分)
1.下列命题中正确的是 【 】 A.有一组邻边相等的四边形是菱形 B.有一个角是直角的平行四边形是矩形 C.对角线垂直的平行四边形是正方形 D.一组对边平行的四边形是平行四边形
2.用配方法解一元二次方程x 2
-4x-1=0,配方后得到的方程是 【 】 A .(x-2)2
=1 B .(x-2)2
=4 C .(x-2)2
=5 D .(x-2)2
=3
3.广州亚运会期间,某纪念品原价160元,连续两次降价%a 后售价为128元,下列所列方程正确的是 【 】 A .128%)1(1602=+a B.128%)1(1602
=-a C.128%)21(160=-a D.128%)1(160=-a
4.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是
【 】
A .
B .
C .
D . 5.如右图,下列条件不能判定△ADB ∽△ABC 的是 【 】 A .∠ABD=∠ACB B .∠ADB=∠ABC C .AB 2
=AD•AC D.
AD AB
AB BC
= 6.若2-=x 是关于x 的一元二次方程02
5
22=+-
a ax x 的一个根,则a 的值为【 】 A.1或4 B.-1或-4 C.-1或4 D.1或-4
7.如右图,菱形ABCD 中,AB=4,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,则的△AEF 的面积是 【 】 A .43 B.33 C.23 D.3
8.有一张矩形纸片ABCD ,AB =2.5,AD =1.5,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将
△AED 以DE 为折痕向右折叠,AC 与BC 交于点F (如下图),则CF 的长为 【 】
A .0.5
B .0.75
C .1
D .1.25 二.填空题(每小题3分,共21分)
9.已知2-=x 是一元二次方程052
=+-mx x 的一个解,则=m _________ 10.已知菱形的面积为242
cm ,一条对角线长为6cm ,则这个菱形的周长是 cm 。
11.已知(x 2
+y 2
)(x 2
-1+y 2
)-12=0,则x 2
+y 2
的值是_________。
12.在比例尺为1:5 000 000的地图上,量得甲、乙两地的距离约为25厘米,则甲、乙两地的实际距离约为 ______千米。
13.小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是________ 14.如右图所示,正方形ABCD 的
面积为12,△ABE 是等边三 角形,点E 在正方形ABCD 内, 在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为 ___ 15.如右图,在矩形ABCD 中,E 是AD 边的
中点,BE ⊥AC 于点F ,连接DF ,分析 下列五个结论:①△AEF ∽△CAB ; ②CF=2AF ;③DF=DC ;④S 四边形CDEF =5
2
S △ABF , 其中正确的结论有 个。
三.解答题(共75分)
16.解下列方程(每小题6分,共12分) (1) (2)
17.(8分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘分成4等份,3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定。
游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜。
如果指针落在分割线上,则需要重新转动转盘。
(1)试用列表或画树状图的方法,求甲获胜的概率; (2)请问这个游戏规则对甲、乙双方公平吗?试说明理由。
18.(7分)若关于x 的一元二次方程x 2
+4x+2k=0有两个实数根,求k 的取值范围及k 的非负整数值。
19.(8分)如图,正方形ABCD 中,E 为CD 上一点,F 为BC 延长线上一点,CE=CF,若∠BEC=600
,求∠EFD 的度数。
1 2
3
4
4
5
3
20.(10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,
尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.若商场平均每天赢利1200元,每件衬衫应降价多少元?
21.(9分)如图,四边形ABCD 中,AC 平分DAB ∠,2
AC AB AD =g ,
90ADC ∠=︒,E 为AB 中点。
(1)求证:ADC ∆∽ACB ∆;
(2)CE 与AD 有怎样的位置关系?试说明理由。
22.(10分)如图,在△ABC 中,D,E 分别是AB,AC 的中点,过点E 作EF ∥AB ,交BC 于点F 。
(1)求证:四边形DBFE 是平行四边形;
(2)当△ABC 满足什么条件时,四边形DBFE 是菱形,为什么?
A
B
D
C
E
23.(11分)将一副三角尺如图①摆放(在Rt △ABC 中,∠ACB =90°,∠B =60°;在Rt △DEF 中,∠
EDF =90°,∠E =45°)点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C 。
(1)求∠ADE 的度数;
(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△
DE ′F ′,DE ′交AC 于点M ,DF ′交BC 于点N ,试判断PM
CN
的值是否随着α的变化而变化?如
果不变,请求出PM
CN
的值;反之,请说明理由。
九年级数学参考答案
一.
1-8 B B B C D B B C 二. 9.9
2
m =- 10.20 11.4 12.1250 13.
1
3
14.23 15.4 三. 16.(1)1231
24
y y =
=-、 (2)X 1=22 X 2=﹣18 17、(1)
13 (2)不公平 ∵P (乙胜) =14 (1
=3
P 甲胜)
∵(P P ≠乙胜)(甲胜) ∵不公平
18、k ≤2,k 的非负整数值为:2、1、0 19、300
20、解:设每件应降价x 元。
由题意得
(20+2x)(40-x)=1200 解得x 1=15、x 2=20
为了扩大销售,尽快减少库存,所以应取x=20 答每件应降价20元 21(1)略 (2)CE ∥AD 由(1)知∠ACB =∠ADC=900
∵E 为AB 中点 ∵CE=
1
2
AB AE = ∵∠ECA=∠EAC=∠DAC ∴CE ∥AD
22.(1)证明:∵D,E分别是AB ,AC 的中点,即DE 是△ABC 的中位线,
∴DE ∥BC .
又∵ EF //AB ,∴ 四边形DBFE 是平行四边形.
(2)解:本题答案不唯一,下列解法供参考.
当AB =BC 时,四边形DBFE 是菱形.
∵ D 是AB 的中点, 1
2
BD AB ∴=.
∵ DE 是△ABC 的中位线,1
2
DE BC ∴=.
AB BC =Q ,BD DE ∴=.
又∵ 四边形DBFE 是平行四边形,∴ 四边形DBFE 是菱形.
23.解:(1)由题意知:CD 是Rt △ABC 中斜边AB 上的中线,∴AD =BD =CD ,∵在△BCD 中,BD =CD 且∠B =60°,∴△BCD 是等边三角形, ∴∠BCD =∠BDC =60°,
∴∠ADE =180°-∠BDC -∠EDF =180°-60°-90°=30° (2)PM
CN
的值不会随着α的变化而变化,理由如下:∵△APD 的外角∠MPD =∠A +∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°,∵在△MPD 和△NCD 中,∠MPD =∠NCD =60°,∠PDM =∠CDN
=α,∴△MPD ∽△NCD ,PM CN =PD
CD ,又∵由(1)知AD =CD ,∴∠ACD =∠A =30°,即∠PCD =30°.
在Rt △PCD 中,∠PCD =30°,∴PD CD =13=33
,∴PM CN =PD CD =3
3。