2014长春市高中毕业班第三次调研测试数学数学(理)Word版全解全析
吉林省长春市2013-2014学年高二上学期期末调研测试数学理试题 Word版含答案.pdf

长春市2013~2014学年度第一学期期末调研测试 高二数学(理科) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分. 考试时间为100分钟. 注意事项: 答题前,考生必须将自己的姓名、班级、考号填写清楚. 选择题必须用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀. 第Ⅰ卷(选择题,共48分) 一、选择题(本大题包括12小题,每小题4分,共48分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上). 1. 在中,,则最短边的长 A. B. C. D. 2. 已知,则是的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 3. 如图,在直三棱柱的底面中,,,,点是的中点,则异面直线与所成角的余弦值为 A. B. C. D. 4. 设数列为等差数列,若,则 A. B. C. D. 5. 中心在原点,焦点在轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是 B. C. D. 6. 等比数列的前n项和为,若,则 B. C. D. 7. 经过双曲线的右焦点,倾斜角为直线与双曲线的右支有且只有一个交点,则此双曲线的离心率为 B. C. D. 8. 已知,则的最小值是 B. C. D. 9. 中,角的对边分别为,若,则的形状一定为A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形 10. 已知正方体棱长为1,截面与平面相交于直线,则点到直线的距离为 B. C. D. 11. 抛物线与直线交于两点,则线段中点的坐标为 B. C. D. 12. 设过点的直线分别与轴的正半轴和轴的正半轴相交于两点,点Q与点P关于y轴对称,O为坐标原点,若且,则点P的轨迹方程为 B. C. D.第Ⅱ卷(非选择题,共72分) 二、填空题(本大题包括4小题,每小题4分,共16分,把正确答案填在答题卡中的横线上). 13. 若实数满足,则的最大值为________________14. 给出命题,则为_____________15. 已知是抛物线的焦点,过点且斜率为1的直线交抛物线于两点,,则________________16. 已知数列中,,则=________. 三、解答题(本大题包括5小题,共56分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分10分) 已知等比数列的各项均为正数, 求数列的通项公式; 设,求数列的前项和18.(本小题满分10分) 如图,如果你在海边沿着海岸线直线前行,请设计一种测量海中两个小岛A,B之间距离的方法. 19.(本小题满分12分) 如图,在四棱锥中,底面是直角梯形, ,侧棱底面, 点为侧棱的中点,且. 求证:; 求面与面所成锐二面角的余弦值. 20.(本小题满分12分) 如图,已知直线与抛物线交于两点, 为坐标原点,且求直线和抛物线的方程; 抛物线上一点从点运动到点时,求面积的最大值. 21.(本小题满分12分) 如图,在平面直角坐标系中,点是轴上的两个定点,,为坐标平面上的动点,,是的中点,点在线段上,且求点的轨迹方程; 若直线与点的轨迹有两个不同的交点,且,求实数的取值范围. 2013~20141. A 2. B 3. D4. B5. C6. A 7. C 8. C 9. B 10. D 11. B 12. D 简答与提示:1. A 因为角B最小,由正弦定理2. B 根据条件可求得,易知是的必要不充分条件3. D 以点为坐标原点,以所在直线分别作为轴建立空间直角坐标系,则可确定,于是,设所求角为,则4. B 由等差数列的性质,,所以由条件可得5.C 由已知可有,. 故6. A 根据等比数列的性质,设为其前n项和,时,仍成等比数列即可求解7. C 根据双曲线的几何性质,所给直线应与双曲线的一条渐近线平行,故有进而,可解得于是离心率8. C 根据基本不等式,可有9. B 由代入条件可得,,再根据正弦定理代换可有,于是10.D 因为∥,所以点到直线的距离是与之间距离,因为是等腰三角形,设点是的中点,则,所以为所求,(本题也可用空间向量求解) 11. B 将所给直线方程与抛物线方程联立有,由此可整理得: ,设,则,故线段中点的横坐标为,将其再代入直线方程即可得所求中点的坐标为12. D 由,可得,所以,代入可求得点的轨迹方程二、填空题(本大题共4小题,每小题4分,共16分) 13. 14. 15. 16. 简答与提示: 13. 2 根据线性规划的知识易求解14. . 15. ,设,由得,求得,,故由抛物线的定义可得16. ,由得,以及,所以, ① ②,由①②联立求得通项公式. 17.()由已知,解得,所以5分()根据条件易得, 7分于是… …,以上二式相减,可得, +…,所以10分18.如图,设,是两个观测点,到的距离为m,在处测出,在处测出, ,据正弦定理,在中,可求得, 4分同理,在中,可求得8分在中,由余弦定理可得:10分19.建立如图所示空间直角坐标系,根据已知条件可有: 于是2分()因为,所以故6分()由已知,是平面的一个法向量,可设平面的法向量为 ,由,可得,根据这个方程组,可取 8分设所求二面角的平面角为,则,故所求二面角的余弦值为12分19.()由得,设,则有 ,因为 ,所以,解得所以直线的方程为,抛物线的方程为6分()由,得,于是,8分设,,于是当点到直线的距离最大时,所求三角形面积最大,这里 10分由,可得当时,,此时,故面积的最大值为. 12分.(1)因为,所以,又为中点,故,于是 ,所以点的轨迹是以为焦点的椭圆, ,,故点的轨迹方程为 6分(2)由整理得,设,则有①,且,8分若,则,即,整理得,再将①代入可有: ,整理得, 10分又因为,故,所以或12分。
长春市2014届高中毕业班第三次调研测试理科数学试题(含答案解析)(word版)

第 1 页 共 15 页长春市2014届高中毕业班第三次调研测试数学试题(理科) 2014.4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分 150分,考试时间为120分钟,其中第Ⅱ卷22题—24题为选考题,其它题为必考题。
考试结束后,将试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只.有一项...是符合题目要求的,请将正确选项填涂在答题卡上). 1.复数z 满足(1i)2i z +=,则复数z 在复平面内对应的点在A .第一象限B .第二象限C .第三象限D .第四象限2.设集合}421{,,=A ,集合},,|{A b A a b a x x B ∈∈+==,则集合B 中有___个元素 A .4 B .5 C .6 D .73.下列函数中,在(0,)+∞上单调递减,并且是偶函数的是A .2y x =B .3y x =-C .lg ||y x =-D .2x y = 4.观察下面频率等高条形图,其中两个分类变量x y ,之间关系最强的是A .B .C .D .5.如图所示的程序框图,该算法的功能是A .计算012(12)(22)(32)++++++…(12)n n +++的值B .计算123(12)(22)(32)++++++…(2)n n ++的值第5题图。
2014届高三第三次大联考(新课标卷) 数学理试题 Word版含答案

2014届高三第三次大联考(新课标卷)理科数学试卷考试范围:高考全部内容;考试时间:120分钟;命题人:大联考命题中心注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分。
满分150分,考试时间120分钟.2.答题前考生务必用0.5毫米黑色墨水签字笔填写好自己的姓名、班级、考号等信息. 3.考试作答时,请将答案正确填写在答题卡上。
第一卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;第Ⅱ卷请用直径0.5毫米的黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案...........无效,在试题卷、草稿纸...........上作答无效...... 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{}22|log (2)A x y x x ==-+,{}|1B y y x ==+,那么U AB =ð( )A .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.在复平面内,复数z 满足(1)13z i i +=+,则z 的共轭复数对应的点位于( )A .第一象限 B.第二象限 C .第三象限 D.第四象限3.已知函数2()ln f x x x =+,则下列各式一定成立的是( )A .(7)(6)f f -< B.(3)(2)f f -> C.(1)(3)f f -> D.()(2)f e f -<-4.函数1()sin 2f x x x =-的零点个数为( )A .1B .2C .3D .45.执行如图所示的程序框图,输出的S 值为4-时,则输入的0S 的值为( )A.7B.8C.9D.10i =1,S =S 0i <4?开始结束是否i =i +1 输出S S =S 2i-(第5题图)6. 已知实数x ,y 满足3010x y x y x k +-≥⎧⎪-+≥⎨⎪≤⎩若22z x y =+,则z 的最大值为13时,k 的值为( )A . 1B .2C .3D .47.在AB C ∆中,已知向量)72cos ,18(cos =AB ,)27cos 2,63cos 2( =BC ,则ABC ∆的面积等于( ) A .22 B .42 C .23D .2 8. 某几何体的三视图如图所示,则该几何体的表面积为( ) A . 23+2B.63+2C.263++22D.26+229.在ABC ∆,三个内角A 、B 、C 所对的边分别为a 、b 、c ,若内角A 、B 、C 依次成等差数列,且不等式0862>-+-x x 的解集为}|{c x a x <<,则边AC 上的高等于( )A.3 B.2 C.33 D.410.已知F 是双曲线2221x a b2y -=(a >0,b >0)的左焦点,E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A 、B 两点,点E 在以AB 为直径的圆内,则该双曲线的离心率e 的取值范围为( )A .(1,+∞)B .(1,2)C .(1,1+2)D .)2+∞(, 11.如图,在四面体A BCD -中,BCD ∆是正三角形,侧棱AB AC AD 、、两两垂直且相等,设P 为四面体A BCD -表面(含棱)上的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )A. 4个B.6个C.8个D.14个12.已知椭圆2221(0)x a b a b>>2y +=的左顶点为E ,过原点O 的直线交椭圆于,A B 两点,若2AB BE ==,3cos 4ABE ∠=,则椭圆方程为( ) A .212x 2+y = B .21214x 213y += C .21214x 215y += D .21257x 228y += 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设n S 是等比数列}{n a 的前n 项和,若,13221=+a a 433a a =,则=+n n a S 2 . 14.为了落实大学生村官下乡建设社会主义新农村政策,将5名大学生村官分配到某个镇的3个村就职,每镇至少1名,最多2名,则不同的分配方案有 种.15.设443322104111121⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-x a x a x a x a a x , 则42a a +的值是16.已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是线段A 1C 1上的动点,则四棱锥P-ABCD 的外接球半径R 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分) 已知向量2(2sin(),2)3x πω=+a ,(2cos ,0)x ω=b (0)ω>,函数()f x =⋅a b 的图象与直线23y =-+的相邻两个交点之间的距离为π. (1)求函数()f x 在[0,2]π上的单调递增区间; (2)将函数)(x f 的图象向右平移12π个单位,得到函数()y g x =的图象.若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.18.(本小题满分12分)某家电生产企业市场营销部对本厂生产的某种电器进行了市场调查,发现每台的销售利润BADC. P与该电器的无故障使用时间T (单位:年)有关.若2T ≤,则销售利润为0元;若23T <≤,则销售利润为100元;若3T >,则销售利润为200元,设每台该种电器的无故障使用时间2T≤,23T <≤,3T >这三种情况发生的概率分别是123P P P ,,,又知12P P ,是方程225150xx a -+=的两个根,且23P P =.(1)求123P P P ,,的值;(2)记X 表示销售两台该种电器的销售利润总和,求X 的分布列及期望. 19.(本小题满分12分)如图,平面ABEF ⊥平面ABC ,四边形ABEF 为矩形,AC BC =.O 为AB 的中点,OF EC ⊥.(Ⅰ)求证:OE FC ⊥;(Ⅱ)若二面角F CE B --的余弦值为13-时,求ACAB的值. 20.(本小题满分12分)已知点M 是椭圆C :22221x y a b+=(0)a b >>上一点,12,F F 分别为C 的左右焦点,12||23F F =,01260F MF ∠=,12F MF ∆的面积为33. (1)求椭圆C 的方程;(2)设过椭圆右焦点2F 的直线l 和椭圆交于两点,A B ,是否存在直线l ,使得△2OAF 与 △2OBF 的面积比值为2?若存在,求出直线l 的方程;若不存在,说明理由. 21.(本小题满分12分) 已知函数21()2ln 2f x ax x =-,a ∈R . OEABCF第19题图EDCBANM(1)求函数()f x 的单调区间;(2)已知点(0,1)P 和函数()f x 图象上动点(,())M m f m ,对任意[1,]m e ∈,直线PM 倾斜角都是钝角,求a的取值范围.22.(本小题满分10分)选修4-1:几何证明选讲如图,ΔABC 是内接于O ,AB AC =,直线MN 切O 于点C ,弦//BD MN ,AC 与BD 相交于点E .(1)求证:ABE ∆≌ACD ∆; (2)若,6=AB 4=BC ,求AE .23.(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆O 的参数方程为2cos 22sin 2x r y r θθ⎧=-+⎪⎨⎪=-+⎩,(θ为参数,0r >).以O 为极点,x 轴正半轴为极轴,并取相同的单位长度建立极坐标系,直线l 的极坐标方程为()2sin 42πρθ+=.写出圆心的极坐标,并求当r 为何值时,圆O 上的点到直线l 的最大距离为3. 24.(本小题满分10分)选修4-5:不等式选讲设,,a b c 均为正数,证明:222a b c a b c b c a++++≥.参考答案1-5 AABCD 6-10 BACBD 11-12 CC 13.1 14.90 15.40.16.17.18.19.20.21.22.23.24.。
2014年长春地区高三三模(理)Microsoft Word 文档

长春三模理科数学参考答案及评分参考1.【答案】A【解析】由(1i)2i z +=得,2i 2i(1i)2i+21i 1i (1i)(1i)2z -====+++-,则复数z 在复平 面内对应的点为(1,1)Z ,该点在第一象限,故选A .2.【答案】C【解析】∵,,a A b B x a b ∈∈=+,所以2,3,4,5,6,8x =,∴B 中有6个元素,故选C .3.【答案】C【解析】四个函数中,是偶函数的有A C ,,又2y x =在(0,)+∞内单调递增,故选C . 4.【答案】D【解析】在频率等高条形图中,a a b +与c c d+相差很大时,我们认为两个分类变量 有关系,四个选项中,即等高的条形图中12,x x 所占比例相差越大,则分类 变量,x y 关系越强,故选D .5.【答案】C【解析】初始值1,0k S ==,第1次进入循环体:012S =+,2k =;当第2次进入循环体时:011222S =+++,3k =,…,给定正整数n ,当k n =时, 最后一次进入循环体,则有:011222S =++++…12n n -++,1k n =+, 退出循环体,输出S =(123+++…)n +012(222++++…12)n -+,故选C . 6.【答案】D【解析】双曲线焦点到渐近线的距离为2c ,即2c b =,又222b c a =-,代入得2243a c =,解得243e =,即3e =,故选D . 7.【答案】A【解析】由1b c a c a b +≥++得:()()()()b a b c a c a c a b +++≥++,化简得: 222b c a bc +-≥,同除以2bc 得,222122b c a bc +-≥,即 1cos 2A ≥(0)A π<<,所以03A π<≤,故选A .8.【答案】A【解析】函数()sin(2)f x x ϕ=+向左平移6π个单位得 sin[2()]sin(2)63y x x ππϕϕ=++=++,又其为奇函数,故则3k πϕπ+=, Z k ∈,解得=3k πϕπ-,又||2πϕ<,令0k =,得3πϕ=-,∴()sin(2)3f x x π=-,又∵[0,]2x π∈,∴ sin(2)[3x π-∈,即当0x =时,min ()f x =,故选A . 9.【答案】C【解析】画出,x y 约束条件限定的可行域为如图阴影区域,令221u x y =--,则12u y x +=-, 先画出直线y x =,再平移直线y x =,当经过点(2,1)A -,12(,)33B 时,代入u ,可知 553u -≤<,∴||[0,5)z u =∈,故选C . 10.【答案】B【解析】设圆柱的底面半径为r ,高为h ,则22r h h rπ=,则2h =S 侧=2r h π⋅4r π=S 全242r r ππ=,故圆柱的侧面积与=,故选B . 11.【答案】D【解析】由题,221122(,),(,)A x x B x x ,()2f x x '=,则过,A B 两点的切线斜率112k x =,222k x =,又切线互相垂直,所以121k k =-,即1214x x =-.两 条切线方程分别为22111222:2,:2l y x x x l y x x x =-=-,联立得 1212()[2()]0x x x x x --+=,∵12x x ≠,∴122x x x +=,代入1l ,解得 1214y x x ==-,故选D . 12.【答案】B 【解析1】设00(,)Q x y ,中点(,)M x y ,则00(2,2)P x x y y --代入229x y +=,得20(2)x x -+20(2)9y y -=,化简得:22009()()224x y x y -+-=,又220025x y += 表示以原点为圆心半径为5的圆,故易知M 轨迹是在以0022x y (,)为圆心以32为半径的圆 绕原点一周所形成的图形,即在以原点为圆心,宽度为3的圆环带上,即应有222(14)x y r r +=≤≤,那么在2C 内部任取一点落在M 内的概率 为163255πππ-=,故选B . 【解析2】设(3cos ,3sin )P θθ,(5cos ,5sin )Q ϕϕ,(,)M x y ,则23cos 5cos x θϕ=+,①23sin 5sin y θϕ=+,②,①2+②2得:221715cos()22x y θϕ+=+-2r =,所以M 的轨迹是以原点为圆心, 以(14)r r ≤≤为半径的圆环,那么在2C 内部任取一点落在M 内的概率 为163255πππ-=,故选B . 13.【答案】34- 【解析】31sin()sin()sin cos 22x x x x ππ+++=--=,∴1sin cos 2x x +=-,平方 得:11sin 24x +=,∴3sin 24x =-. 14.【答案】5 【解析】∵()()f x f x +-=12222sin sin 221212112x x x x x x x +-++-=+=++++,且 (0)1f =,∴(2)(1)(0)(1)(2)5f f f f f -+-+++=.15.【答案】3π【解析】过圆锥的旋转轴作轴截面,得△ABC 及其内切圆1O 和外切圆2O ,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意1O 的半径为1r =,∴△ABC 的边长为高为3,∴13333V ππ=⨯⨯⨯=. 16.【答案】15【解析】(1)AP OP OA OA λ=-=-,即OP OA λ=,则,,O P A 三点共线,72OA OP ⋅=,所以OA 与OP 同向,∴||||72OA OP =,设OP 与x 轴夹 角为θ,设A 点坐标为(,)x y ,B 为点A 在x 轴的投影,则OP 在x 轴上的投影长度为||cos OP θ⋅=2||72||||||||OB OB OP OA OA ⋅= 222||||1727272161699||2525||x x x y x x x =⋅=⋅=⋅+++ 7215≤=.当且仅当15||4x =时等号成立. 则线段OP 在x 轴上的投影长度的最大值为15.17.【解析】(1)当1n =时,114a S == ………………………2分由12n n S +=,得12n n S -=(2)n ³,∴11222n n n n n n a S S +-=-=-=(2)n ³∴4,12,2n n n a n ì=ïï=íï³ïî………………………6分 (2)当1n =时,121512log 44b =+=,∴154T = …………………7分 当2n ³时, 21111(1)log 2(1)1n n b n n n n n n n n =+=+=-++++ ……9分 5111111(4233445n T =+-+-+-+…+11)(2341n n -+++++…)n + 1111111(4233445=+-+-+-+…+11)(12341n n -++++++…)n + 31(1)412n n n +=-++ ………11分上式对于1n =也成立,所以31(1)412n n n T n +=-++. ………12分 18.【解析】(1)设事件“4个家庭中恰好有两个家庭是…低碳家庭‟”为A , ………1分则有以下三种情况:“低碳家庭”均来自东城小区,“低碳家庭”分别来自东城、西城两个小区,“低碳家庭”均来自西城小区. ∴100335454212151542121451512121)(=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=A P .…6分 (2)因为东城小区每周有20%的人加入“低碳家庭”行列,经过两周后,两 类家庭占东城小区总家庭数的比例如下:………8分由题意,两周后东城小区5个家庭中的“低碳家庭”的个数ξ服从二项分布, 即17(5,)25B ξ ………10分 ∴17175255E ξ=⨯= , ………11分 17813652525125D ξ=⨯⨯=. ………12分 19.【解析】『法一』(1)取BC 中点为N ,连结1,MN C N ,………1分∵,M N 分别为,AB CB 中点∴MN ∥AC ∥11AC ,∴11,,,A M N C 四点共面, ………3分且平面11BCC B I 平面11A MNC 1C N =又DE Ì平面11BCC B ,且DE ∥平面11A MC∴DE ∥1C N∵D 为1CC 的中点,∴E 是CN 的中点, ………5分∴13CE EB =. ………6分 (2)连结1B M , ………7分因为三棱柱111ABC A B C -为直三棱柱,∴1AA ^平面ABC ∴1AA AB ^,即四边形11ABB A 为矩形,且12AB AA = ∵M 是AB 的中点,∴11B M A M ^, 又11AC ^平面11ABB A ,∴111AC B M ^,从而1B M ^平面11AMC ………9分 ∴1MC 是11B C 在平面11A MC 内的射影∴11B C 与平面11A MC 所成的角为∠11B C M 又11B C ∥BC ,∴直线BC 和平面11A MC 所成的角即11B C 与平面11A MC 所成的角…10分 设122AB AA ==,且三角形11A MC 是等腰三角形∴111AM AC ==,则12MC =,11B C =∴11111cos 3MC B C M B C ?= ∴直线BC 和平面11A MC所成的角的余弦值为3 ………12分 『法二』(1)因为三棱柱111ABC A B C -为直三棱柱,∴1AA ^平面ABC ,又AC AB ⊥∴以A 为坐标原点,分别以1,,AB AA AC 所在直线为,,x y z 轴,建立如图空间直角坐标系. ………1分 设122AB AA ==,又三角形11A MC 是等腰三角形,所以111AM AC ==易得1(0,1,0)A ,(1,0,0)M,1(0,1C , 所以有1(1,1,0)A M =-uuuu r,11AC =uuu u r设平面11A MC 的一个法向量为(,,)n x y z =r ,则有11100n A M n AC ìï?ïíï?ïïîr uuuu r r uuu u r ,即00x y ì-=ïïíï=ïî,令1x =,有(1,1,0)n =r ………4分 (也可直接证明1B M 为平面11A MC 法向量) 设CE EB λ=,2(,0,)11E λλλ++,又1(0,2D ,∴21(,,121DE λλλ=-++ 若DE ∥平面11A MC ,则n r ^DE uuu r ,所以有21012λλ-=+, 解得13λ=,∴13CE EB = ………6分 (2)由(1)可知平面11A MC 的一个法向量是(1,1,0)n =r , (2,0,0)B,C,求得(BC =-设直线BC 和平面11A MC 所成的角为θ,[0,]2πθ∈,则||sin ||||2n BC n BC θ⋅===⋅,………11分所以cos q = ∴直线BC 和平面11A MC 所成的角的余弦值为3 ………12分 20.【解析】(1)由已知得:1(1,0)F ,2(0,)2p F ,∴12(1,)2p F F =- ………1分 联立2242y x x py ⎧=⎨=⎩解得00x y =⎧⎨=⎩或x y ⎧=⎪⎨=⎪⎩(0,0)O,A , ∴3(16OA = ………3分∵12F F OA ⊥,∴12F F 0OA ⋅= ,即=,解得2p =,∴2C 的方程为24x y =. ………5分『法二』设111(,)(0)A x y x >,有21121142y x x py ⎧=⎨=⎩①,由题意知,1(1,0)F ,2(0,)2p F ,∴12(1,)2p F F =- ………1分 ∵12F F OA ⊥,∴12F F 0OA ⋅= ,有1102p x y -+=, 解得112py x =, ………3分 将其代入①式解得114,4x y ==,从而求得2p =,所以2C 的方程为24x y =. ………5分(2)设过O 的直线方程为y kx =(0)k <联立24y kx y x =⎧⎨=⎩得244(,)M k k ,联立24y kx y x=⎧⎨=⎩得2(4,4)N k k ………7分 (1,1)P --在直线y x =上,设点M 到直线y x =的距离为1d ,点N 到直线y x =的距离为2d 则121()2PMN S OP d d =⋅⋅+ ………8分2244||12-= 22112(||||)k k k k=-+- 22112()k k k k =--++………10分8≥= 当且仅当1k =-时,“=”成立,即当过原点直线为y x =-时,…11分△PMN 面积取得最小值8. ………12分『法二』联立24y kx y x=⎧⎨=⎩得244(,)M k k , 联立24y kx y x=⎧⎨=⎩得2(4,4)(0)N k k k <, ………7分从而2244||4|(4)MN k k k k=-=-,点(1,1)P --到直线MN 的距离d =,进而214(4)2PMN S k k∆=- ………9分 32222(1)(1)2(1)(1)1122(2)(1)k k k k k k k k k k k---++===+-++令1(2)t k t k=+≤-,有2(2)(1)PMN S t t ∆=-+, ………11分 当2t =-,即1k =-时,即当过原点直线为y x =-时,△PMN 面积取得最小值8. ………12分21.【解析】(1)()2()x f x e x a '=-+ ………2分因为()y f x =在0x =处切线与x 轴平行,即在0x =切线斜率为0即(0)2(1)0f a '=+=,∴1a =-. ………5分(2)()2()x f x e x a '=-+, 令()2()x g x e x a =-+,则()2(1)0xg x e '=-≥, 所以()2()x g x e x a =-+在[)0,+∞内单调递增,(0)2(1)g a =+(i )当2(1)0a +≥即1a ≥-时,()2()(0)0x f x e x a f ''=-+≥≥,()f x 在 [)0,+∞内单调递增,要想()0f x ≥只需要2(0)50f a =-≥,解得a ≤1a -≤≤ ………8分 (ii )当2(1)0a +<即1a <-时,由()2()x g x e x a =-+在[)0,+∞内单调递增知,存在唯一0x 使得000()2()0x g x e x a =-+=,有00x e x a =-,令()0f x '>解 得0x x >,令()0f x '<解得00x x ≤<,从而对于()f x 在0x x =处取最小值, 0200()2()3x f x e x a =--+,又00x x e a =+0()f x 000022()3(1)(3)x x x x e e e e =-+=-+-,从而应有0()0f x ≥,即030x e -≤,解得00ln3x <≤,由00x e x a =-可得00x a x e =-,有ln 331a -≤<-,综上所述,ln33a -≤≤ ………12分22.【解析】(1)根据弦切角定理,知BAC BDA ∠=∠,ACB DAB ∠=∠,∴△ABC ∽△DBA ,则AB BC DB BA=,故250,AB BC BD AB =⋅==…5分 (2)根据切割线定理,知2CA CB CF =⋅, 2DA DB DE =⋅,两式相除,得22CA CB CF DA DB DE=⋅(*). 由△ABC ∽△DBA ,得102AC AB DA DB ===,2212CA DA =,又51102CB DB ==,由(*) 得1CF DE=. ………10分 23. 【解析】(1)将3cos 2sin x y θθ=⎧⎨=⎩ 代入1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩ ,得C '的参数方程为cos sin x y θθ=⎧⎨=⎩ ∴曲线C '的普通方程为221x y +=. ………5分(2)设(,)P x y ,00(,)A x y ,又(3,0)B ,且AB 中点为P所以有:00232x x y y =-⎧⎨=⎩ 又点A 在曲线C '上,∴代入C '的普通方程22001x y +=得22(23)(2)1x y -+= ∴动点P 的轨迹方程为2231()24x y -+=. ………10分 24.【解析】(1)()f x =|3||4|x x ==-++∴()(4)f x f ≥即|3||4|x x -++9≥∴4349x x x ≤-⎧⎨---≥⎩① 或43349x x x -<<⎧⎨-++≥⎩② 或3349x x x ≥⎧⎨-++≥⎩③ 解得不等式①:5x ≤-;②:无解 ③:4x ≥所以()(4)f x f ≥的解集为{|5x x ≤-或4}x ≥. ………5分(2)()()f x g x >即()|3||4|f x x x =-++的图象恒在()(3)g x k x =-图象的上方21,4()|3||4|7,4321,3x x f x x x x x x --≤-⎧⎪=-++=-<<⎨⎪+≥⎩()(3)g x k x =-图象为恒过定点P (3,0),且斜率k 变化的一条直线作函数(),()y f x y g x ==图象如图,其中2PB k =,(4,7)A -,∴1PA k =-由图可知,要使得()f x 的图象恒在()g x 图象的上方∴实数k 的取值范围为12k -<≤. ………10分。
高三数学月考试题及答案-长春市十一中2014届高三上学期期初考试(理)4

长春市十一高中2013-2014学年度高三上学期期初考试数 学 试 题(理科)一、选择题(每小题5分,共60分)1. 已知集合{}{}()00,1log 2><<=<=c c x x B x x A ,若B B A =U ,则 c 的取值范围是( )A.(]1,0B.[)+∞,1C.(]2,0D.[)+∞,22.已知函数()x f 是定义在R 上的奇函数,且当0>x 时,(),32-=x x f 则()=-2f ( )A.1B.1-C.41D.411- 3.已知角α的终边经过点()2,93+-a a ,且,0sin ,0cos >≤αα则实数a 的取值范围是( )A.(]3,2-B.()3,2-C.[)3,2-D.[]3,2-4.设,21=a 数列{}n a 21+是公比为2的等比数列,则=6a ( )A.5.31B.160C.5.79D.5.1595.函数()()()3log 1log 5.05.0-++=x x x f 的单调递减区间是( )A.()+∞,3B.()+∞,1C.()1,∞-D. ()1,-∞-6.数列{}n a 中,(),2121,111≥+==-n a a a n n 则=n a ( ) A.1212-⎪⎭⎫ ⎝⎛-n B.2211-⎪⎭⎫ ⎝⎛-n C.122--n D.12-n7.已知等差数列{}n a 的前n 项和为n S ,且满足,12323=-S S 则数列{}n a 的公差是( ) A.21 B.1 C.2 D.3 8.已知函数()⎩⎨⎧>≤+=,0,log 0,12x x x x x f 则函数()[]1+=x f f y 的零点个数是( ) A.4 B.3 C.2 D.1 9. 已知{}n a 为等差数列,若,11011-<a a 且它的前n 项和n S 有最大值,那么当n S 取得最小正值时,=n ( )A.11B.20C.19D.2110.已知数列{}n a 的通项公式()a n a n a n 26932+++-=(a 为常数),若6a 与7a 两项中至少有一项是n a 的最小值,则a 的取值范围是( )A.[]36,24B.[]33,27C.{}*∈≤≤N a a a ,3327D. {}*∈≤≤N a a a ,362411.已知,2,31125cos παπαπ-<<-=⎪⎭⎫ ⎝⎛+则=⎪⎭⎫ ⎝⎛-απ12cos ( ) A.322 B.31 C. 31- D. 322- 12.已知定义在R 上的函数()x f y =满足()()(),3x f x f x f -=-=-且(),01=f 给出下列命题①()x f 是周期函数②()x f 的图象关于直线5.1=x 对称③()x f 的图象关于点()0,5.1对称④方程()0=x f 在区间[]5,0内至少有8个根,其中正确的是( )A.①②B.①③C.①②④D.①③④二、填空题(每小题5分,共30分)13.设等比数列{}n a 的前n 项和为n S ,若,4,1361S S a ==则=4a14.若奇函数()x f 在(]0,∞-上单调递减,则不等式()()01lg >+f x f 的解集是15.设等差数列{}n a 的前n 项和为n S ,若,729=S 则=++942a a a16.已知,5sin cos 3cos 3sin =-+αααα则=-αααcos sin sin 2 17. 已知()(),2log 2-=x x f 若实数n m ,满足()(),32=+n f m f 则n m +的最小值是18. 如果对于任意实数x x ,表示不小于x 的最小整数,例如,21.1=11.1-=-,那么"1"<-y x 是""y x =的 条件三.解答题:(本大题共5小题,共60分)19.( 本小题满分12分) 已知{}n a 是公差不为零的等差数列,,11=a 且931,,a a a 成等比数列。
2014年吉林省长春市高中毕业班第一次调研测试数学试题(含答案)(高清扫描版)

在 中, ,
∴ .
故在线段 上存在一点 ,使得二面角 为 ,且 .………………………………………12分
【解法二】依题意,以 为坐标原点, 、 、 所在直线分别为 轴、 轴、 轴建立空间直角坐标系,因为 ,则 , , , ,所以 , .
易知 为平面 的法向量,设 ,所以 ,
最大值,代入 ,即 ,所以
,故选 .
8.【试题答案】
【试题解析】A选项,直线 可能在平面 内;B选项,如果直线 不在平面 内,不能得到 ;C选项,直线 与 可能平行,可能异面,还可能相交;故选 .
9.【试题答案】
【试题解析】由 得 ,又 , ,
则 , ,所以有 ,即 ,从而
解得 ,又 ,所以 ,故选 .
个单位, 即将 向右平移 个单位,∴ , ,
又函数 的零点均在区间 内,且 ,故当 ,
时,即 的最小值为 ,故选
第Ⅱ卷(非选择题,共90分)
二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上)
13.【试题答案】
【试题解析】 .
14.【试题答案】
【试题解析】设球半径 ,上下底面中心设为 , ,由题意,外接球心为 的中点,设为 ,则 ,由 ,得 ,又易得 ,由勾股定理可知, ,所以 ,即棱柱的高 ,所以该三棱柱的体积为 .
(2)由(1)知 ,当 时, .
由正弦函数图象可知,当 时, 取得最大值 ,又 为锐角
所以 .……………………8分
由余弦定理 得 ,所以 或
经检验均符合题意.……………………10分
从而当 时,△ 的面积 ;……………11分
.……………………12分
19.【试题解析】
2014年长春市高中毕业班第一次调研试题理科数学试题及参考答案与评分标准

【解法二】依题意,以 为坐标原点, 、 、 所在直线分别为 轴、 轴、 轴建立空间直角坐标系,因为 ,则 , , , ,所以 , .
易知 为平面 的法向量,设 ,所以 ,
设平面 的法向量为 ,所以 ,即 ,
所以 ,取 ,
【试题解析】由抛物线标准方程 中 的几何意义为:抛物线的焦点到准线的距离,又 ,故选 .
5.【试题答案】
【试题解析】 ,设公比为 ,又 ,则 ,即 ,解得 或 ,故选 .
6.【试题答案】
【试题解析】由题意可知,程序框图的运算原理可视为函数 ,
所以 , ,
,故选 .
7.【试题答案】
【试题解析】由 ,得 ,则 表示该
【试题解析】不等式 表示的平面区域如图
所示,函数 具有性质 ,则函
数图像必须完全分布在阴影区域①
和②部分, 分布在区
域①和③内, 分布
在区域②和④内, 图像
分布在区域①和②内,
在每个区域都有图像,故选
12.【试题答案】
【试题解析】验证 ,
易知 时, ; 时,
所以 在 上恒成立,故 在 上是增函数,又 ,
则 ,又二面角 的大小为 ,
所以 ,
即 ,解得 .
又因为 ,所以 .
故在线段 上是存在点 ,使二面角 的大小为 ,且 .
……………………………………………12分
20.【试题解析】
(1)设半焦距为 .由题意 的中垂线方程分别为 ,
于是圆心坐标为 .所以 ,
整理得 ,……………………………………………4分
1.复数Z=1-i的虚部是( )
(A).1 (B) -1 (C)i (D)-i
【2014长春三调】吉林省长春市2014届高三第三次调研测试 理综答案

长春三模理综化学参考答案及评分参考7.【参考答案】A【命题立意】考查有机物的基本性质。
【试题解析】A 项中葡萄糖不能水解,且人体内也没有纤维素水解所需的酶,故纤维素也不能在人体内发生水解。
8.【参考答案】D【命题立意】考查阿伏加德罗常数。
【试题解析】A 项2mol 铝转移6mol 电子则有6mol 水分子被还原。
B 项氨水体积未知。
C 项胶体粒子中含有多个Al (OH )3且表面要吸附Al 3+,故小于N A 。
9.【参考答案】C【命题立意】通过元素周期律知识,考查考生的理解能力、判断能力和思维发散能力。
【试题解析】由题给关系图,推出X 为O ,Y 为F ,Z 为Na ,R 为S ,W 为Cl 。
A 项,O 和S 不在同一周期,错误;B 项,同一周期主族元素原子半径从左到右依次减小,一般情况下电子层数多的元素原子半径大,S >Cl >O ,错误;C 项,非金属性越强,气态氢化物越稳定,HF >H 2O ,正确;D 项,X 、Z 形成的Na 2O 2含有共价键,错误。
10.【参考答案】B【命题立意】本题考查反应的自发性,溶液的离子平衡等相关知识。
【试题解析】 A 项生成物有气体,熵增,错误;B 项室温下饱和溶液,浓度不变,正确;C 项,K w 只与温度有关,错误;D 项,要考虑溶液稀释时水会电离出氢离子,错误。
11.【参考答案】D【命题立意】本题考查同分异构体的数目判断及推理能力。
【试题解析】根据题干要求,在考虑苯环上二元取代邻、间、对异构的情况下把握支链异构的各种情况。
12.【参考答案】C【命题立意】考查离子方程式正确书写。
【试题解析】A 项应是1∶1反应,B 项中生成物还能继续发生氧化还原反应;由D 项方程式可看出NO 3-有剩余,故此反应是SO 2少量的情况,不符合题意。
13.【参考答案】D【命题立意】考查化学实验及原理的基本能力。
【试题解析】 C 项没有加碱中和酸,不能说明是否水解,不符合题意;D 选项Fe 3+水解显酸性,加入Mg(OH)2、MgO 等物质能促使Fe 3+的水解转化为Fe(OH)3沉淀,从而除去可以FeCl 3,同时也不会引进新杂质,正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试题(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分 150分,考试时间为120分钟,其中第Ⅱ卷22题—24题为选考题,其它题为必考题。
考试结束后,将试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿 纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有..一项..是符合题目要求的,请将正确选项填涂在答题卡上). 1.复数z 满足(1i)2i z +=,则复数z 在复平面内对应的点在 A .第一象限B .第二象限C .第三象限D .第四象限2.设集合}421{,,=A ,集合},,|{A b A a b a x xB ∈∈+==,则集合B 中有___个元素 A .4B .5C .6D . 73.下列函数中,在(0,)+∞上单调递减,并且是偶函数的是 A .2y x =B .3y x =-C .lg ||y x =-D .2x y =4.观察下面频率等高条形图,其中两个分类变量x y ,之间关系最强的是A .B .C .D . 5.如图所示的程序框图,该算法的功能是A .计算012(12)(22)(32)++++++…(12)nn +++的值 B .计算123(12)(22)(32)++++++…(2)nn ++的值C .计算(123+++...)n +012(222++++ (1)2)n -+的值D .计算[123+++…(1)]n +-012(222++++…2)n+的值 第5题图6.已知双曲线C :22221x y a b-=(0,0)a b >>的焦距为2c ,焦点到双曲线C 的渐近线的距离为2c,则双曲线C 的离心率为 A .2BC.2D.37.△ABC 各角的对应边分别为c b a ,,,满足 b c a c a b +++1,则角A 的范围是 A .(0,]3πB .(0,]6πC .[,)3ππD .[,)6ππ8.函数)2|)(|2sin()(πϕϕ<+=x x f 的图象向左平移6π个单位后关于原点对称,则函数()f x 在[0,]2π上的最小值为A.2-B .12-C .12D.29.已知实数,x y 满足:210210x y x x y -+ ⎧⎪<⎨⎪+- ⎩,221z x y =--,则z 的取值范围是A .5[,5]3B .[]0,5C .[)0,5D .5[,5)310.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与全面积之比为 ABCD11.已知函数2()f x x =的图象在点11(,())A x f x 与点22(,())B x f x 处的切线互相垂直,并交于点P ,则点P 的坐标可能是A .3(,3)2-B . (0,4)-C .(2,3)D .1(1,)4-12.P 为圆1C :229x y +=上任意一点,Q 为圆2C :2225x y +=上任意一点,PQ 中点组成的区域为M ,在2C 内部任取一点,则该点落在区域M 上的概率为 A .1325B .35C .1325πD .35π第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分。
第13题~21题为必考题,每个试题考生都必须作 答。
第22题~24题为选考题,考生根据要求作答。
二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).≥≥ ≥13.若21)23sin()sin(=+++x x ππ,则=x 2sin . 14.已知函数2()sin 21xf x x =++,则(2)(1)(0)(1)(2)f f f f f -+-+++= . 15.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为 .16.在平面直角坐标系xOy 中,已知点A 在椭圆221259x y +=上,点P 满足(1)()A P O A λλ=-∈R ,且72OA OP ⋅= ,则线段OP 在x 轴上的投影长度的最大值为 .三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分12分)设数列{}n a 的前n 项和12n n S +=,数列{}n b 满足21(1)log n nb n n a =++.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T . 18.(本小题满分12分)低碳生活,从“衣食住行”开始.在国内一些网站中出现了“碳足迹”的应用,人们可以由此计算出自己每天的碳排放量,如家居用电的二氧化碳排放量(千克)=耗电度数0.785⨯,家用天然气的二氧化碳排放量(千克)=天然气使用立方数0.19⨯等.某校开展“节能减排,保护环境,从我做起!”的活动,该校高一、六班同学利用假期在东城、西城两个小区进行了逐户的关于“生活习惯是否符合低碳排放标准”的调查.生活习惯符合低碳观念的称为“低碳家庭”,否则称为“非低碳家庭”.经统计,这两类家庭是“低碳家庭”的概率;(2)该班同学在东城小区经过大力宣传节能减排的重要意义,每周“非低碳家庭”中有20%的家庭能加入到“低碳家庭”的行列中.宣传两周后随机地从东城小区中任选5个家庭,记ξ表示5个家庭中“低碳家庭”的个数,求E ξ和D ξ.19.(本小题满分12分)如图,直三棱柱111A B C A B C-中,AC AB ⊥ ,12AB AA =,M 是AB 的中点,△11A MC 是等腰三角形,D 为1CC 的中点,E 为BC 上一点.(1)若DE∥平面11A MC ,求CEEB; (2)求直线BC 和平面11A MC 所成角的余弦值.20.(本小题满分12分)已知抛物线1C :24y x =和2C :22x py =(0)p >的焦点分别为12,F F ,12,C C 交于,O A 两点(O 为坐标原点),且12F F OA ⊥.(1)求抛物线2C 的方程;(2)过点O 的直线交1C 的下半部分于点M ,交2C 的左半部分于点N ,点P 坐标为第19题图(1,1)--,求△PMN 面积的最小值.21.(本小题满分12分)已知函数2()2()3x f x e x a =--+,a ∈R .(1)若函数()y f x =的图象在0x =处的切线与x 轴平行,求a 的值; (2)若x 0,()f x 0恒成立,求a 的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4─1:几何证明选讲.如图,圆M 与圆N 交于,A B 两点,以A 为切点作两圆的切线分别交圆M 和圆N 于,C D 两点,延长DB 交圆M 于点E ,延长CB 交圆N 于点F .已知5,10BC DB ==. (1)求AB 的长; (2)求CFDE. 23.(本小题满分10分)选修4─4:坐标系与参数方程选讲.已知曲线C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩得到曲线C '.(1)求曲线C '的普通方程;(2)若点A 在曲线C '上,点B (3,0),当点A 在曲线C '上运动时,求AB 中点P 的轨迹方程.24.(本小题满分10已知函数()f x = (1)求()f x f 的解集;(2)设函数()(3),g x k x =-k ∈R ,若()()f x g x >对任意的x ∈R 都成立,求k 的取值范围.第22题图≥ ≥ ≥长春三模理科数学参考答案及评分参考1.【答案】A【解析】由(1i)2i z +=得,2i 2i(1i)2i+21i 1i (1i)(1i)2z -====+++-,则复数z 在复平 面内对应的点为(1,1)Z ,该点在第一象限,故选A .2.【答案】C【解析】∵,,a A b B x a b ∈∈=+,所以2,3,4,5,6,8x =,∴B 中有6个元素,故 选C .3.【答案】C【解析】四个函数中,是偶函数的有A C ,,又2y x =在(0,)+∞内单调递增,故选C . 4.【答案】D【解析】在频率等高条形图中,aa b +与c c d+相差很大时,我们认为两个分类变量 有关系,四个选项中,即等高的条形图中12,x x 所占比例相差越大,则分类变量,x y 关系越强,故选D .5.【答案】C【解析】初始值1,0k S ==,第1次进入循环体:012S =+,2k =;当第2次进入循环体时:011222S =+++,3k =,…,给定正整数n ,当k n =时, 最后一次进入循环体,则有:011222S =++++…12n n -++,1k n =+, 退出循环体,输出S =(123+++…)n +012(222++++…12)n -+,故选C .6.【答案】D【解析】双曲线焦点到渐近线的距离为2c ,即2cb =,又222bc a =-,代入得2243a c =,解得243e =,即3e =,故选D . 7.【答案】A 【解析】由1b ca c a b+≥++得:()()()()b a b c a c a c a b +++≥++,化简得: 222b c a bc +-≥,同除以2bc 得,222122b c a bc +-≥,即 1cos 2A ≥(0)A π<<,所以03A π<≤,故选A .8.【答案】A【解析】函数()sin(2)f x x ϕ=+向左平移6π个单位得 sin[2()]sin(2)63y x x ππϕϕ=++=++,又其为奇函数,故则3k πϕπ+=,Z k ∈,解得=3k πϕπ-,又||2πϕ<,令0k =,得3πϕ=-,∴()sin(2)3f x x π=-,又∵[0,]2x π∈,∴ sin(2)[3x π-∈,即当0x =时,min ()f x =,故选A . 9.【答案】C【解析】画出,x y 约束条件限定的可行域为如图阴影区域,令221u x y =--,则12u y x +=-, 先画出直线y x =,再平移直线y x =,当经 过点(2,1)A -,12(,)33B 时,代入u ,可知553u -≤<,∴||[0,5)z u =∈,故选C . 10.【答案】B【解析】设圆柱的底面半径为r ,高为h ,则22r h h rπ=,则2h =S 侧=2r h π⋅4r π=S 全242r r ππ=,故圆柱的侧面积与=,故选B . 11.【答案】D【解析】由题,221122(,),(,)A x x B x x ,()2f x x '=,则过,A B 两点的切线斜率112k x =,222k x =,又切线互相垂直,所以121k k =-,即1214x x =-.两条切线方程分别为22111222:2,:2l y x x x l y x x x =-=-,联立得1212()[2()]0x x x x x --+=,∵12x x ≠,∴122x x x +=,代入1l ,解得 1214y x x ==-,故选D .12.【答案】B【解析1】设00(,)Q x y ,中点(,)M x y ,则00(2,2)P x x y y --代入229x y +=,得20(2)x x -+20(2)9y y -=,化简得:22009()()224x y x y -+-=,又220025x y += 表示以原点为圆心半径为5的圆,故易知M轨迹是在以0022x y (,)为圆心以32为半径的圆 绕原点一周所形成的图形,即在以原点为圆心,宽度为3的圆环带上, 即应有222(14)x y r r +=≤≤,那么在2C 内部任取一点落在M 内的概率 为163255πππ-=,故选B .【解析2】设(3cos ,3sin )P θθ,(5cos ,5sin )Q ϕϕ,(,)M x y ,则23cos 5cos x θϕ=+,①23sin 5sin y θϕ=+,②,①2+②2得: 221715cos()22x y θϕ+=+-2r =,所以M 的轨迹是以原点为圆心, 以(14)r r ≤≤为半径的圆环,那么在2C 内部任取一点落在M 内的概率 为163255πππ-=,故选B .13.【答案】34-【解析】31sin()sin()sin cos 22x x x x ππ+++=--=,∴1sin cos 2x x +=-,平方 得:11sin 24x +=,∴3sin 24x =-.14.【答案】5【解析】∵()()f x f x +-=12222sin sin 221212112x x x x xx x +-++-=+=++++,且 (0)1f =,∴(2)(1)(0)(1)(2)5f f f f f -+-+++=.15.【答案】3π【解析】过圆锥的旋转轴作轴截面,得△ABC 及其内切圆1O 和外切圆2O ,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意1O 的半径为1r =,∴△ABC 的边长为 高为3,∴13333V ππ=⨯⨯⨯=. 16.【答案】15【解析】(1)AP OP OA OA λ=-=-,即OP OA λ= ,则,,O P A 三点共线,72OA OP ⋅= ,所以OA 与OP同向,∴||||72OA OP = ,设OP 与x 轴夹角为θ,设A 点坐标为(,)x y ,B 为点A 在x 轴的投影, 则OP 在x 轴上的投影长度为||cos OP θ⋅ =2||72||||||||OB OB OP OA OA ⋅=222||||1727272161699||2525||x x x y x x x =⋅=⋅=⋅+++7215≤=.当且仅当15||4x =时等号成立.则线段OP 在x 轴上的投影长度的最大值为15.17.【解析】(1)当1n =时,114a S == ………………………2分由12n n S +=,得12n n S -=(2)n ³,∴11222n n n n n n a S S +-=-=-=(2)n ³∴4,12,2n nn a n ì=ïï=íï³ïî………………………6分 (2)当1n =时,121512log 44b =+=,∴154T = …………………7分当2n ³时,21111(1)log 2(1)1n nb n n n n n n n n =+=+=-++++ ……9分 5111111(4233445n T =+-+-+-+…+11)(2341n n -+++++…)n +1111111(4233445=+-+-+-+…+11)(12341n n -++++++…)n +31(1)412n n n +=-++ ………11分上式对于1n =也成立,所以31(1)412n n n T n +=-++. ………12分18.【解析】(1)设事件“4个家庭中恰好有两个家庭是‘低碳家庭’”为A , ………1分则有以下三种情况:“低碳家庭”均来自东城小区,“低碳家庭”分别来自 东城、西城两个小区,“低碳家庭”均来自西城小区.∴100335454212151542121451512121)(=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=A P .…6分 (2)因为东城小区每周有20%的人加入“低碳家庭”行列,经过两周后,两类家庭占东城小区总家庭数的比例如下:………8分 由题意,两周后东城小区5个家庭中的“低碳家庭”的个数ξ服从二项分布,即17(5,)25B ξ ………10分 ∴17175255E ξ=⨯= , ………11分 17813652525125D ξ=⨯⨯=. ………12分19.【解析】『法一』(1)取BC 中点为N ,连结1,MN C N ,………1分 ∵,M N 分别为,AB CB 中点 ∴MN ∥AC ∥11AC ,∴11,,,A M N C 四点共面, ………3分 且平面11BCC B I 平面11A MNC 1C N = 又DE Ì平面11BCC B , 且DE ∥平面11A MC ∴DE ∥1C N∵D 为1CC 的中点,∴E 是CN 的中点, ………5分 ∴13CE EB =. ………6分 (2)连结1B M , ………7分因为三棱柱111ABC A B C -为直三棱柱,∴1AA ^平面ABC ∴1AA AB ^,即四边形11ABB A 为矩形,且12AB AA = ∵M 是AB 的中点,∴11B M A M ^, 又11AC ^平面11ABB A ,∴111AC B M ^,从而1B M ^平面11A MC ………9分 ∴1MC 是11B C 在平面11A MC 内的射影 ∴11B C 与平面11A MC 所成的角为∠11B C M 又11B C ∥BC ,∴直线BC 和平面11A MC 所成的角即11B C 与平面11A MC 所成的角…10分 设122AB AA ==,且三角形11A MC 是等腰三角形∴111AM AC ==,则12MC =,11B C =∴11111cos 3MC B C MB C ?=∴直线BC 和平面11A MC所成的角的余弦值为3………12分 『法二』(1)因为三棱柱111ABC A B C -为直三棱柱,∴1AA ^平面ABC ,又AC AB ⊥ ∴以A 为坐标原点,分别以1,,AB AA AC 所在直线为,,x y z 轴,建立如图空间直角坐标系. ………1分 设122AB AA ==,又三角形11A MC 是等腰三角形,所以111AM AC ==易得1(0,1,0)A ,(1,0,0)M,1(0,1C , 所以有1(1,1,0)A M =-uuuu r,11AC =uuu u r设平面11A MC 的一个法向量为(,,)n x y z =r ,则有11100n A M n AC ìï?ïíï?ïïîr uuuu r r uuu u r ,即00x y ì-=ïïíï=ïî,令1x =,有(1,1,0)n =r ………4分 (也可直接证明1B M 为平面11A MC 法向量) 设CE EB λ=,2(,0,)11E λλλ++,又1(0,2D ,∴21(,,121DE λλλ=-++ 若DE ∥平面11A MC ,则n r ^DE uuu r ,所以有21012λλ-=+, 解得13λ=,∴13CE EB = ………6分 (2)由(1)可知平面11A MC 的一个法向量是(1,1,0)n =r ,(2,0,0)B,C,求得(BC =-设直线BC 和平面11A MC 所成的角为θ,[0,]2πθ∈,则||sin ||||n BC n BC θ⋅===⋅ , ………11分所以cos q = ∴直线BC 和平面11A MC所成的角的余弦值为3 ………12分 20.【解析】(1)由已知得:1(1,0)F ,2(0,)2p F ,∴12(1,)2p F F =- ………1分 联立2242y x x py ⎧=⎨=⎩解得00x y =⎧⎨=⎩或x y ⎧=⎪⎨=⎪⎩(0,0)O,A ,∴OA = ………3分∵12F F OA ⊥,∴12F F 0OA ⋅= ,即=,解得2p =,∴2C 的方程为24x y =. ………5分『法二』设111(,)(0)A x y x >,有21121142y x x py ⎧=⎨=⎩①,由题意知,1(1,0)F ,2(0,)2p F ,∴12(1,)2p F F =- ………1分 ∵12F F OA ⊥,∴12F F 0OA ⋅= ,有1102p x y -+=, 解得112py x =, ………3分 将其代入①式解得114,4x y ==,从而求得2p =,所以2C 的方程为24x y =. ………5分(2)设过O 的直线方程为y kx =(0)k <联立24y kx y x =⎧⎨=⎩得244(,)M k k ,联立24y kx y x=⎧⎨=⎩得2(4,4)N k k ………7分 (1,1)P --在直线y x =上,设点M 到直线y x =的距离为1d ,点N 到直线y x =的距离为2d 则121()2PMN S OP d d =⋅⋅+ ………8分2244||12-= 22112(||||)k k k k=-+- 22112()k k k k =--++………10分8≥= 当且仅当1k =-时,“=”成立,即当过原点直线为y x =-时,…11分△PMN 面积取得最小值8. ………12分『法二』联立24y kx y x=⎧⎨=⎩得244(,)M k k , 联立24y kx y x=⎧⎨=⎩得2(4,4)(0)N k k k <, ………7分从而2244||4|(4)MN k k k k=-=-,点(1,1)P --到直线MN 的距离d =,进而214(4)2PMN S k k∆=- ………9分 32222(1)(1)2(1)(1)1122(2)(1)k k k k k k k k k k k---++===+-++令1(2)t k t k=+≤-,有2(2)(1)PMN S t t ∆=-+, ………11分 当2t =-,即1k =-时,即当过原点直线为y x =-时,△PMN 面积取得最小值8. ………12分21.【解析】(1)()2()x f x e x a '=-+ ………2分因为()y f x =在0x =处切线与x 轴平行,即在0x =切线斜率为0即(0)2(1)0f a '=+=,∴1a =-. ………5分(2)()2()x f x e x a '=-+, 令()2()x g x e x a =-+,则()2(1)0xg x e '=-≥, 所以()2()x g x e x a =-+在[)0,+∞内单调递增,(0)2(1)g a =+(i )当2(1)0a +≥即1a ≥-时,()2()(0)0x f x e x a f ''=-+≥≥,()f x 在 [)0,+∞内单调递增,要想()0f x ≥只需要2(0)50f a =-≥,解得a ≤1a -≤≤ ………8分 (ii )当2(1)0a +<即1a <-时,由()2()x g x e x a =-+在[)0,+∞内单调递增知,存在唯一0x 使得000()2()0x g x e x a =-+=,有00x e x a =-,令()0f x '>解 得0x x >,令()0f x '<解得00x x ≤<,从而对于()f x 在0x x =处取最小值, 0200()2()3x f x e x a =--+,又00x x e a =+0()f x 000022()3(1)(3)x x x x e e e e =-+=-+-,从而应有0()0f x ≥,即030x e -≤,解得00ln3x <≤,由00x e x a =-可得00x a x e =-,有ln 331a -≤<-,综上所述,ln33a -≤≤ ………12分22.【解析】(1)根据弦切角定理,知BAC BDA ∠=∠,ACB DAB ∠=∠,∴△ABC ∽△DBA ,则AB BC DB BA=,故250,AB BC BD AB =⋅==…5分 (2)根据切割线定理,知2CA CB CF =⋅, 2DA DB DE =⋅,两式相除,得22CA CB CF DA DB DE=⋅(*). 由△ABC ∽△DBA ,得102AC AB DA DB ===,2212CA DA =,又51102CB DB ==,由(*) 得1CF DE=. ………10分 23. 【解析】(1)将3cos 2sin x y θθ=⎧⎨=⎩ 代入1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩ ,得C '的参数方程为cos sin x y θθ=⎧⎨=⎩ ∴曲线C '的普通方程为221x y +=. ………5分(2)设(,)P x y ,00(,)A x y ,又(3,0)B ,且AB 中点为P所以有:00232x x y y =-⎧⎨=⎩ 又点A 在曲线C '上,∴代入C '的普通方程22001x y +=得22(23)(2)1x y -+= ∴动点P 的轨迹方程为2231()24x y -+=. ………10分 24.【解析】(1)()f x =|3||4|x x ==-++∴()(4)f x f ≥即|3||4|x x -++9≥∴4349x x x ≤-⎧⎨---≥⎩① 或43349x x x -<<⎧⎨-++≥⎩② 或3349x x x ≥⎧⎨-++≥⎩③ 解得不等式①:5x ≤-;②:无解 ③:4x ≥所以()(4)f x f ≥的解集为{|5x x ≤-或4}x ≥. ………5分(2)()()f x g x >即()|3||4|f x x x =-++的图象恒在()(3)g x k x =-图象的上方21,4()|3||4|7,4321,3x x f x x x x x x --≤-⎧⎪=-++=-<<⎨⎪+≥⎩()(3)g x k x =-图象为恒过定点P (3,0),且斜率k 变化的一条直线作函数(),()y f x y g x ==图象如图,其中2PB k =,(4,7)A -,∴1PA k =-由图可知,要使得()f x 的图象恒在()g x 图象的上方∴实数k 的取值范围为12k -<≤. ………10分。