2019版高考数学一轮复习第5章数列第2讲等差数列及其前n项和增分练

合集下载

2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n项和课时跟踪检测理

2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n项和课时跟踪检测理

2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n 项和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. 答案:C2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D .558解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.答案:A3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.答案:A4.(xx 届太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.答案:B5.(xx 届莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017解析:由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.答案:D6.(xx 届海口市调研测试)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( )A.12 B .1716 C .2D .17解析:设{a n }的公比为q ,依题意得a 5a 2=18=q 3,因此q =12.注意到a 5+a 6+a 7+a 8=q 4(a 1+a 2+a 3+a 4),即有S 8-S 4=q 4S 4,因此S 8=(q 4+1)S 4,S 8S 4=q 4+1=1716,选B.答案:B7.(xx 届衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2 B .3n C .2nD .3n-1解析:因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n+2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.答案:C8.(xx 届广州市五校联考)已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n,若b 10b 11=2,则a 21=( )A .29B .210C .211D .212解析:由b n =a n +1a n ,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211. 答案:C9.由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. 解析:log 2a 1+log 2a 2+…+log 2a 10=log 2(a 1a 10)·(a 2a 9)·…·(a 5a 6)=log 2(a 3a 8)5=log 2225=25.答案:2510.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 解析:因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.答案:3n -111.(xx 届南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n+2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .解:(1)因为a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 因为q ≠1, 所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n ,T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.12.设数列{a n }的前n 项和为S n (n ∈N *).已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=81+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2).∵4a 3+a 1=4×54+1=6=4a 2符合上式,∴4a n +2+a n =4a n +1(n ≥1), ∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 22a n +1-a n =12,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.[能 力 提 升]1.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________.解析:T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.答案:152.(xx 届山西吕梁质检)已知数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,则这个数列的前2 018项之积T 2 018等于________.解析:数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,这个数列的前8项分别为2,8,4,12,18,14,2,8,易得从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项积为2×8×4×12×18×14=1.又因为2 018=336×6+2,所以这个数列的前2 018项之积T 2 018=1336×2×8=16. 答案:163.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). ∵a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n,则a n +1=-2a n +5×3n, ∴a n +1-3n +1=-2(a n -3n).又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n}是以2为首项,-2为公比的等比数列. ∴a n -3n=2×(-2)n -1,即a n =2×(-2)n -1+3n.2019-2020年高考数学一轮总复习第五章数列5.4数列求和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2 014=( )A .2 015B .-2 015C .3 021D .-3 022解析:由题知a 1=tan(180°+45°)=1,∴a 5=13 ∴d =a 5-a 15-1=124=3. ∴a n =1+3(n -1)=3n -2. 设b n =(-1)na n =(-1)n(3n -2),∴S 2 014=(-1+4)+(-7+10)+…+(-6 037+6 040)=3×1 007=3 021.故选C. 答案:C2.设{a n }是公差不为零的等差数列,a 2=2,且a 1,a 3,a 9成等比数列,则数列{a n }的前n 项和S n =( )A.n 24+7n 4 B .n 22+3n 2C.n 24+3n4D .n 22+n2解析:设等差数列{a n }的公差为d ,则 由a 23=a 1a 9得(a 2+d )2=(a 2-d )(a 2+7d ), 代入a 2=2,解得d =1或d =0(舍). ∴a n =2+(n -2)×1=n , ∴S n =a 1+a n n2=1+n n 2=n 22+n 2.故选D. 答案:D3.等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36解析:设等比数列{a n }的公比为q 则a 21q 3=2a 1,①a 1q 3+2a 1q 6=52,②解得a 1=16,q =12,∴S 5=a 11-q 51-q=31,故选B.答案:B4.已知等比数列{a n }的各项均为正数,a 1=1,公比为q ;等差数列{b n }中,b 1=3,且{b n }的前n 项和为S n ,a 3+S 3=27,q =S 2a 2.(1)求{a n }与{b n }的通项公式;(2)设数列{c n }满足c n =32S n ,求{c n }的前n 项和T n .解:(1)设数列{b n }的公差为d , ∵a 3+S 3=27,q =S 2a 2,∴⎩⎪⎨⎪⎧q 2+3d =18,6+d =q 2.求得q =3,d =3,∴a n =3n -1,b n =3n .(2)由题意得S n =n 3+3n2,c n =32S n =32×23×1n n +1=1n -1n +1. ∴T n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1.5.(xx 届广州综合测试)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n . 解:(1)设数列{a n }的公比为q , 因为a 2=4,所以a 3=4q ,a 4=4q 2. 因为a 3+2是a 2和a 4的等差中项, 所以2(a 3+2)=a 2+a 4, 化简得q 2-2q =0. 因为公比q ≠0,所以q =2. 所以a n =a 2qn -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n,所以b n =2log 2a n -1=2n -1, 所以a n b n =(2n -1)2n,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n,①2T n =1×22+3×23+5×24+…+(2n -3)2n+(2n -1)·2n +1.②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×41-2n -11-2-(2n -1)2n +1=-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.6.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3. 所以{a n }是首项为3,公差为2的等差数列, 通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n32n +3.7.已知数列{a n }与{b n }满足a n +1-a n =2(b n +1-b n )(n ∈N *). (1)若a 1=1,b n =3n +5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n(n ∈N *)且λa n >2n +n +2λ对一切n ∈N *恒成立, 求实数λ的取值范围.解:(1)因为a n +1-a n =2(b n +1-b n ),b n =3n +5, 所以a n +1-a n =2(b n +1-b n )=2(3n +8-3n -5)=6, 所以{a n }是等差数列,首项为1,公差为6, 即a n =6n -5. (2)因为b n =2n, 所以a n +1-a n =2(2n +1-2n )=2n +1,当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n +2n -1+…+22+6=2n +1+2,当n =1时,a 1=6,符合上式,所以a n =2n +1+2,由λa n >2n+n +2λ得λ>2n+n 2n +1=12+n 2n +1,令f (n )=12+n 2n +1,因为f (n +1)-f (n )=n +12n +2-n 2n +1=1-n 2n +2≤0, 所以12+n2n +1在n ≥1时单调递减,所以当n =1,2时,2n+n 2n +1取最大值34,故λ的取值范围为⎝ ⎛⎭⎪⎫34,+∞. [能 力 提 升]1.已知数列{a n }的首项为a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)由已知得S n n=1+(n -1)×2=2n -1, 所以S n =2n 2-n , 当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. a 1=1=4×1-3,所以a n =4n -3,n ∈N *.(2)由(1)可得b n =(-1)na n =(-1)n(4n -3). 当n 为偶数时,T n =(-1+5)+(-9+13)+…+[-(4n -7)+(4n -3)]=4×n2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1,综上,T n =⎩⎪⎨⎪⎧2n ,n =2k ,k ∈N *,-2n +1,n =2k -1,k ∈N *.2.在数列{a n }中,已知a n >1,a 1=1+3,且a n +1-a n =2a n +1+a n -2,记b n =(a n -1)2,n ∈N *.(1)求数列{b n }的通项公式;(2)设数列{b n }的前n 项和为S n ,证明:13≤1S 1+1S 2+1S 3+…+1S n <34.解:(1)因为a n +1-a n =2a n +1+a n -2,所以a 2n +1-a 2n -2a n +1+2a n =2, 即(a n +1-1)2-(a n -1)2=2. 又b n =(a n -1)2,n ∈N *,所以b n +1-b n =2,数列{b n }是以b 1=(1+3-1)2=3为首项,2为公差的等差数列, 故b n =2n +1,n ∈N *. (2)证明:由(1)得S n =n 3+2n +12=n (n +2),所以1S n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2,n ∈N *, 所以1S 1+1S 2+1S 3+…+1S n=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2<34.记T n =1S 1+1S 2+1S 3+…+1S n,因为1S n>0,n ∈N *,所以T n 单调递增.故T n ≥T 1=1S 1=13.综上13≤1S 1+1S 2+…+1S n <34.3.已知各项均为正数的数列{a n }的前n 项和为S n ,且满足a 2n +a n =2S n . (1)求数列{a n }的通项公式; (2)求证:S n2<S 1+S 2+…+S n <S n +1-12.解:(1)因为当n ∈N *时,a 2n +a n =2S n , 故当n >1时,a 2n -1+a n -1=2S n -1,两式相减得,a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n , 即(a n +a n -1)(a n -a n -1)=a n +a n -1.因为a n >0,所以a n +a n -1>0,所以当n >1时,a n -a n -1=1.又当n =1时,a 21+a 1=2S 1=2a 1,得a 1=1, 所以数列{a n }是以1为首项,1为公差的等差数列, 所以a n =n .(2)证明:由(1)及等差数列的前n 项和公式知S n =n n +12,所以S n = n n +12>n 22=n2, 所以S 1+S 2+…+S n >12+22+…+n 2= 1+2+…+n 2=S n 2. 又S n = n n +12<n +122=n +12, 所以S 1+S 2+…+S n <22+32+…+n +12=1+2+…+n +12-12=S n +1-12, 所以S n2<S 1+S 2+…+S n <S n +1-12.。

2021高考数学一轮复习第五章数列第2节等差数列及其前n项和练习

2021高考数学一轮复习第五章数列第2节等差数列及其前n项和练习

第2节 等差数列及其前n 项和[A 级 基础巩固]1.(一题多解)(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:法一 设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,解得d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8, 所以d =4,故选C. 答案:C2.(2020·安阳联考)在等差数列{a n }中,若a 2+a 8=8,则(a 3+a 7)2-a 5=( ) A .60 B .56 C .12D .4解析:因为在等差数列{a n }中,a 2+a 8=8,所以a 2+a 8=2a 5=8,解得a 5=4,(a 3+a 7)2-a 5=(2a 5)2-a 5=64-4=60.答案:A3.已知等差数列{a n }的前n 项和为S n ,S 2=3,S 3=6,则S 2n +1=( ) A .(2n +1)(n +1) B .(2n +1)(n -1) C .(2n -1)(n +1)D .(2n +1)(n +2)解析:设等差数列{a n }的公差为d , 则2a 1+d =3,3a 1+3d =6,所以a 1=d =1,则a n =1+(n -1)×1=n .因此S 2n +1=(2n +1)(1+2n +1)2=(2n +1)(n +1).答案:A4.(2020·宜昌一模)等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( )A .a 7=0B .|a 7|=|a 8|C .|a 7|>|a 8|D .|a 7|<|a 8|解析:因为公差d >0,(S 8-S 5)(S 9-S 5)<0, 所以S 9>S 8,所以S 8<S 5<S 9,所以a 6+a 7+a 8<0,a 6+a 7+a 8+a 9>0, 所以a 7<0,a 7+a 8>0,|a 7|<|a 8|. 答案:D5.中国古诗词中,有一道“八子分棉”的数学名题:“九百九十六斤棉,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤棉分给8个儿子作盘缠,按照年龄从大到小的顺序依次分棉,年龄小的比年龄大的多17斤棉,那么第8个儿子分到的棉是( )A .174斤B .184斤C .191斤D .201斤解析:用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的棉数, 由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996, 所以8a 1+8×72×17=996,解得a 1=65.所以a 8=65+7×17=184,即第8个儿子分到的棉是184斤. 答案:B6.(2019·江苏卷)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:设数列{a n }的公差为d , 则⎩⎪⎨⎪⎧(a 1+d )(a 1+4d )+a 1+7d =0,9a 1+9×82d =27, 解得a 1=-5,d =2,所以S 8=8×(-5)+8×72×2=16.答案:167.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:2008.在等差数列{a n }中,若a 7=π2,则sin 2a 1+cos a 1+sin 2a 13+cos a 13=________.解析:根据题意可得a 1+a 13=2a 7=π, 2a 1+2a 13=4a 7=2π,所以有sin 2a 1+cos a 1+sin 2a 13+cos a 13= sin 2a 1+sin(2π-2a 1)+cos a 1+cos(π-a 1)=0. 答案:09.各项均不为0的数列{a n }满足a n +1(a n +a n +2)2=a n +2a n ,且a 3=2a 8=15.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n2n +6,求数列{b n }的前n 项和S n .(1)证明:依题意得,a n +1a n +a n +2a n +1=2a n +2a n ,两边同时除以a n a n +1a n +2,可得1a n +2+1a n=2a n +1,故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列.设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d .因为a 3=2a 8=15,所以1a 3=5,1a 8=10,所以1a 8-1a 3=5=5d ,即d =1,故1a n =1a 3+(n -3)d =5+(n -3)×1=n +2,故a n =1n +2. (2)解:由(1)可知b n =a n 2n +6=12·1(n +2)(n +3)=12⎝ ⎛⎭⎪⎫1n +2-1n +3,故S n =12⎝ ⎛⎭⎪⎫13-14+14-15+…+1n +2-1n +3=n 6(n +3). 10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n,证明:数列{b n }是等差数列,并求其前n 项和T n . (1)解:设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.[B 级 能力提升]11.(2020·珠海联考)已知数列{a n }中,a 1=1,S n +1S n =n +1n,则数列{a n }( ) A .既非等差数列,又非等比数列 B .既是等差数列,又是等比数列 C .仅为等差数列 D .仅为等比数列 解析:数列{a n }中,S n +1S n =n +1n ,则S n S n -1=nn -1(n ≥2), 则S n =S n S n -1×S n -1S n -2×…×S 2S 1×S 1=n n -1×n -1n -2×…×21×1=n (n ≥2),当n =1时,S 1=a 1=1符合,则当n ≥2时,a n =S n -S n -1=n -(n -1)=1,当n =1时,a 1=1符合,故a n =1(n ∈N *),则数列{a n }为非零的常数列,它既是等差数列,又是等比数列. 答案:B12.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.解析:设等差数列{a n }的公差为d ,因为a 2=-3,S 5=-10,所以⎩⎪⎨⎪⎧a 1+d =-3,5a 1+5×42d =-10, 即⎩⎪⎨⎪⎧a 1+d =-3,a 1+2d =-2,得⎩⎪⎨⎪⎧a 1=-4,d =1,所以a 5=a 1+4d =0,S n =na 1+n (n -1)2d =-4n +n 2-n 2=12(n 2-9n )=12⎝ ⎛⎭⎪⎫n -922-818,因为n ∈N *,所以n =4或n =5时,S n 取最小值,最小值为-10. 答案:0 -1013.已知{a n }是各项均为正数的等差数列,公差为d .对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列; (2)设a 1=d ,T n =∑k =02n(-1)k b 2k,n ∈N *,求证:∑k =0n1T k <12d 2.证明:(1)由题意得b 2n =a n a n +1,有c n =b 2n +1-b 2n =a n +1·a n +2-a n a n +1=2da n +1,因此c n +1-c n =2d (a n +2-a n +1)=2d 2,所以{c n }是等差数列.(2)T n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n ) =2d (a 2+a 4+…+a 2n ) =2d ·n (a 2+a 2n )2=2d 2n (n +1).所以∑k =0n1T k =12d 2∑k =0n 1k (k +1)=12d 2∑k =0n ⎝ ⎛⎭⎪⎫1k -1k +1=12d 2·⎝ ⎛⎭⎪⎫1-1n +1<12d2. [C 级 素养升华]14.(多选题)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则( ) A .a 6+a 7=4 B .a 6+a 7=12 C .a 6a 7≥4D .a 6a 7≤4解析:在等差数列{a n }中,因为S 12=6(a 6+a 7)=24, 所以a 6+a 7=4.又a 6>0,a 7>0,所以a 6a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.故选AD. 答案:AD。

数学一轮复习第五章数列第二讲等差数列及其前n项和学案含解析

数学一轮复习第五章数列第二讲等差数列及其前n项和学案含解析

第二讲等差数列及其前n项和知识梳理·双基自测错误!错误!错误!错误!知识点一等差数列的有关概念(1)等差数列的定义如果一个数列从第__2__项起,每一项与它的前一项的差等于__同一个常数__,那么这个数列就叫做等差数列,这个常数叫做等差数列的__公差__,通常用字母__d__表示,定义的表达式为__a n+1-a n=d(n∈N*)__.(2)等差中项如果a,A,b成等差数列,那么__A__叫做a与b的等差中项且__A=错误!__.(3)通项公式如果等差数列{a n}的首项为a1,公差为d,那么通项公式为a n =__a1+(n-1)d__=a m+(n-m)d(n,m∈N*).(4)前n项和公式:S n=__na1+错误!d__=__错误!__。

知识点二等差数列的性质已知数列{a n}是等差数列,S n是其前n项和.(1)若m1+m2+…+m k=n1+n2+…+n k,则am1+am2+…+am k=an1+an2+…+an k。

特别地,若m+n=p+q,则a m+a n=__a p +a q __。

(2)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为__kd __.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(4)⎩⎪⎨⎪⎧}S n n 为等差数列.(5)n 为奇数时,S n =na 中,S 奇=__错误!__a 中,S 偶=__错误!__a 中,∴S 奇-S 偶=__a 中__。

n 为偶数时,S 偶-S 奇=错误!。

(6)数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2. 归错误!错误!错误!1.等差数列前n 项和公式的推证方法__倒序相加法__。

【金版教程】2021届高考数学大一轮总温习 5-2(2)等差数列及其前n项和限时标准训练 理(1)

【金版教程】2021届高考数学大一轮总温习 5-2(2)等差数列及其前n项和限时标准训练 理(1)

05限时标准特训A 级 基础达标1.假设等差数列的第一、二、三项依次是1x +1、56x 、1x ,那么数列的公差d 是( ) A.112 B.16 C.14D.12解析:依题意得2×56x =1x +1+1x ,解得x =2,因此d =512-13=112.选A.答案:A2.在等差数列{a n }中,已知a 4=7,a 3+a 6=16,a n =31,那么n 为( ) A .13 B .14 C .15D .16解析:由已知可得a 4+a 5=7+a 5=a 3+a 6=16,得a 5=16-7=9,故公差d =a 5-a 4=9-7=2,同时解得a 1=1,由1+(n -1)×2=31,解得n =16,选D.答案:D3.[2021·安庆模拟]已知等差数列{a n }的前n 项和为S n ,假设2a 6=a 8+6,那么S 7=( ) A .49 B .42 C .35D .28解析:2a 6=a 8+6⇒a 1+3d =6⇒a 4=6,故S 7=7a 1+a 72=7a 4=42,应选B.答案:B4.[2021·湖南四市联考]数列{a n }中,a 2=2,a 6=0且数列{1a n +1}是等差数列,那么a 4=( )A.12B.13C.14D.16解析:设数列{1a n +1}的公差为d ,那么4d =1a 6+1-1a 2+1得d =16,∴1a 4+1=12+1+2×16,解得a 4=12. 答案:A5.[2021·金版]在各项均不为零的等差数列{a n }中,假设a 2n -a n +1=a n -1(n ≥2,n ∈N *),那么S 2021的值为( )A .2021B .2021C .4026D .4028解析:由a 2n -a n +1=a n -1(n ≥2,n ∈N *)可得a 2n =a n +1+a n -1=2a n ,因为a n ≠0,因此a n =2,故S 2021=2×2021=4028.选D.答案:D6.等差数列{a n }的前n 项和是S n ,且a 1=10,a 5=6,那么以下不等式中不成立的是( ) A .a 10+a 11>0 B .S 21<0C .a 11+a 12<0D .当n =10时,S n 最大解析:设等差数列{a n }的公差为d ,由a 1=10,a 5=6,得6=10+4d ,即d =-1,因此a n =11-n .a 10+a 11=1+0>0,A 成立;a 11+a 12=-1<0,C 成立;S n =-12n 2+212n =-12(n -212)2+4418,故当n =10时,S n 最大,D 成立;S 21=-12×212+21×212=0,故B 不成立. 答案:B7.[2021·漳州模拟]已知正项数列{a n }的前n 项和为S n ,且a 1=1,a n =S n +S n -1(n ≥2),那么数列{a n }的通项公式为a n =( )A .n -1B .nC .2n -1D .2n解析:由已知可得S n -S n -1=S n +S n -1(n ≥2),又S n +S n -1>0,故S n -S n -1=1,因此数列{S n }是等差数列,其公差为1,首项S 1=1,故S n =n ,即S n =n 2,当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,当n =1时也适合上式,故数列{a n }的通项公式为a n =2n -1,选C.答案:C8.[2021·黄山模拟]设等差数列{a n }的前n 项和为S n ,假设S 4=8,S 8=20,那么a 11+a 12+a 13+a 14=________.解析:由⎩⎪⎨⎪⎧S 44=2S 88=52,即⎩⎪⎨⎪⎧a 1+32d =2a 1+72d =52,解得d =14,a 1=138,∴a 11+a 12+a 13+a 14=4a 1+46d =18. 答案:189.[2021·天津模考]已知数列{a n }为等差数列,假设a 7a 6<-1,且它们的前n 项和S n 有最大值,那么使S n >0的n 的最大值为________.解析:∵a 7a 6<-1,且S n 有最大值,∴a 6>0,a 7<0且a 6+a 7<0,∴S 11=11a 1+a 112=11a 6>0,S 12=12a 1+a 122=6(a 6+a 7)<0,∴使S n >0的n 的最大值为11.答案:1110.[2021·衡水月考]已知数列{a n }的各项均为正数,前n 项和为S n ,且知足2S n =a 2n +n -4. (1)求证{a n }为等差数列; (2)求{a n }的通项公式. 解:(1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,那么a n +a n -1=1, 而a 1=3,因此a 2=-2,这与数列{a n }的各项均为正数相矛盾, 因此a n -1=a n -1,即a n -a n -1=1, 因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,因此数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2. 11.[2021·河北统考]已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解:(1)设数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧a 5=a 1+4d =12a 20=a 1+19d =-18,解得⎩⎪⎨⎪⎧a 1=20d =-2,∴a n =20+(n -1)×(-2)=-2n +22.(2)由(1)知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤112n -22,n >11,∴当n ≤11时,S n =20+18+…+(-2n +22)=n 20-2n +222=(21-n )n ; 当n >11时,S n =S 11+2+4+…+(2n -22)=110+n -112+2n -222=n 2-21n +220.综上所述,S n =⎩⎪⎨⎪⎧21-n n ,n ≤11n 2-21n +220,n >11.12.[2021·金华调研]已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项别离为等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n },{b n }的通项公式; (2)设数列{c n }对n ∈N *,均有c 1b 1+c 2b 2+…+c nb n=a n +1成立,求c 1+c 2+c 3+…+c 2021的值.解:(1)∵a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ),解得d =2(∵d >0). 则a n =1+(n -1)×2=2n -1. 又b 2=a 2=3,b 3=a 5=9, ∴等比数列{b n }的公比q =b 3b 2=93=3.∴b n =b 2q n -2=3×3n -2=3n -1. (2)由c 1b 1+c 2b 2+…+c nb n=a n +1得当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n ,两式相减,得c nb n=a n +1-a n =2,∴c n =2b n =2×3n -1(n ≥2). 而当n =1时,c 1b 1=a 2,∴c 1=3.∴c n =⎩⎪⎨⎪⎧3,n =1,2×3n -1,n ≥2.∴c 1+c 2+c 3+…+c 2021=3+2×31+2×32+…+2×32021 =3+6-6×320131-3=3-3+32021 =32021.B 级 知能提升1.已知数列{a n },{b n }都是公差为1的等差数列,其首项别离为a 1,b 1,且a 1+b 1=5,a 1,b 1∈N *.设c n =ab n (n ∈N *),那么数列{c n }的前10项和等于( )A .55B .70C .85D .100解析:由题知a 1+b 1=5,a 1,b 1∈N *.设c n =ab n (n ∈N *),那么数列{c n }的前10项和等于ab 1+ab 2+…+ab 10=ab 1+ab 1+1+...+ab 1+9,ab 1=a 1+(b 1-1)=4,∴ab 1+ab 1+1+...+ab 1+9=4+5+6+ (13)85,选C.答案:C2.等差数列{a n }、{b n }的前n 项和别离为S n 、T n ,且S n T n=4n +7n,那么使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:a n b n =2a n2b n =a 1+a 2n -1b 1+b 2n -1=a 1+a 2n -1×2n -12b 1+b 2n -1×2n -12=S 2n -1T 2n -1=4×2n -1+72n -1=4+72n -1,可得a 1b 1=11,a 4b 4=5,有2个正整数值,选A.答案:A3.[2021·云南师大附中模拟]已知数列{a n }中a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n +S 1)都成立,那么S 15=________.解析:由S n +1+S n -1=2(S n +S 1)得(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),数列{a n }从第二项起组成等差数列,S 15=1+2+4+6+8+…+28=211.答案:2114.[2021·南昌模拟]在数列{a n }中,a n +1+a n =2n -44(n ∈N *),a 1=-23. (1)求a n ;(2)设S n 为{a n }的前n 项和,求S n 的最小值.解:(1)∵a n +1+a n =2n -44,a n +2+a n +1=2(n +1)-44,∴a n +2-a n =2.∴a 2+a 1=-42,a 1=-23,∴a 2=-19. 同理得a 3=-21,a 4=-17,故a 1,a 3,a 5,…是以a 1为首项、2为公差的等差数列,a 2,a 4,a 6,…是以a 2为首项、2为公差的等差数列,从而a n =⎩⎪⎨⎪⎧n -24,n 为奇数n -21,n 为偶数.(2)当n 为偶数时,S n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=(2×1-44)+(2×3-44)+(2×5-44)+…+[2×(n -1)-44]=2[1+3+…+(n -1)]-n 2·44=n 22-22n ,故当n =22时,S n 取得最小值-242.当n 为奇数时,S n =a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=a 1+(2×2-44)+(2×4-44)+…+[2×(n -1)-44]=a 1+2[2+4+…+(n -1)]+n -12·(-44)=-23+n +1n -12-22(n -1)=n 22-22n -32,故当n =21或n =23时,S n 取得最小值-243. 综上所述,S n 的最小值为-243.。

2020版高考数学一轮复习教案:第5章 第2节_等差数列及其前n项和

2020版高考数学一轮复习教案:第5章 第2节_等差数列及其前n项和

第二节 等差数列及其前n 项和[考纲传真] 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.用符号表示为a n +1-a n =d(n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b 2,其中A 叫做a ,b 的等差中项.2.等差数列的通项公式与前n 项和公式(1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }和{a 2n +1}也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(7)等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n . [常用结论]1.等差数列前n 项和的最值在等差数列{a n }中,若a 1>0,d <0,则S n 有最大值,即所有正项之和最大,若a 1<0,d >0,则S n 有最小值,即所有负项之和最小.2.两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,则有a n b n =S 2n -1T 2n -1. 3.等差数列{a n }的前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列. [基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的. ( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0的二次函数. ( )[答案] (1)√ (2)√ (3)× (4)×2.(教材改编)等差数列11,8,5,…,中-49是它的第几项( )A .第19项B .第20项C .第21项D .第22项C [由题意知a n =11+(n -1)×(-3)=-3n +14,令-3n +14=-49得n =21,故选C.]3.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( )A .-1B .0C .1D .6B [a 2,a 4,a 6成等差数列,则a 6=0,故选B.]4.小于20的所有正奇数的和为________.100 [小于20的正奇数组成首项为1,末项为19的等差数列,共有10项,因此它们的和S 10=10(1+19)2=100.] 5.(教材改编)设S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=________.-1 [由S 2=S 6得a 3+a 4+a 5+a 6=0,即a 4+a 5=0,又a 4=1,则a 5=-1.]1.已知等差数列{a n }的前n 项和为S n ,a 6+a 18=54,S 19=437,则a 2 018的值是( )A .4 039B .4 038C .2 019D .2 038A [设等差数列{a n }的公差为d ,由题意可知⎩⎨⎧ 2a 1+22d =54,19a 1+171d =437,解得⎩⎨⎧a 1=5,d =2,所以a 2 018=5+2017×2=4 039,故选A.]2.(2019·武汉模拟)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于( )A .-1B .-2C .-3D .-4 C [由题意知⎩⎨⎧ a 1+a 7=2a 1+6d =-8,a 2=a 1+d =2. 解得⎩⎨⎧d =-3,a 1=5,故选C.] 3.《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有一女子擅长织布,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一个月(按30天计)共织390尺布.则该女子最后一天织布的尺数为( )A .18B .20C .21D .25 C [用a n 表示第n 天织布的尺数,由题意知,数列{a n }是首项为5,项数为30的等差数列.所以30(a 1+a 30)2=390, 即30(5+a 30)2=390,解得a 30=21,故选C.] 4.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________. -72 [设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧ a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9, 解得⎩⎨⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.]【例1】 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.[解] (1)证明:因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1⎝ ⎛⎭⎪⎫2-1a n -1-1a n -1 =a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列.(2)由(1)知b n =n -72,则a n =1+1b n =1+22n -7. 设f (x )=1+22x -7, 则f (x )在区间⎝ ⎛⎭⎪⎫-∞,72和⎝ ⎛⎭⎪⎫72,+∞上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.[拓展探究] 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.[解] 由已知可得a n +1n +1=a n n+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n .n 1n +1n2n 2+2n .(1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式. [解] (1)由已知,得a 2-2a 1=4,则a 2=2a 1+4,又a 1=1,所以a 2=6.由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)由已知na n +1-(n +1)a n =2n (n +1),得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a n n=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差d =2的等差数列.则a n n =1+2(n -1)=2n -1,所以a n =2n 2-n .►考法1 等差数列项的性质的应用【例2】 (1)(2019·长沙模拟)数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2+a 4+a 6=12,则a 3+a 4+a 5等于( )A .9B .10C .11D .12(2)(2019·银川模拟)已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(1)D (2)A [(1)数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列,利用等差数列的性质可知,a 3+a 4+a 5=a 2+a 4+a 6=12.(2)由a 3+a 6+a 10+a 13=32得4a 8=32,即a 8=8.又d ≠0,所以等差数列{a n }是单调数列,由a m =8,知m =8,故选A.] ►考法2 等差数列前n 项和的性质【例3】 (1)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 019=________.(1)B (2)8 076 [(1)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,即a 7+a 8+a 9=45,故选B.(2)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0142 014-S 2 0082 008=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 014+2 018=4,∴S 2 019=8 076.]n n 1020S 30=________.(2)等差数列{a n }的前n 项和为S n ,若a m =10,S 2m -1=110,则m =________.(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7=________.(1)60 (2)6 (3)3727[(1)由题意知,S 10,S 20-S 10,S 30-S 20成等差数列. 则2(S 20-S 10)=S 10+(S 30-S 20),即40=10+(S 30-30),解得S 30=60.(2)S 2m -1=(2m -1)(a 1+a 2m -1)2=2(2m -1)a m 2=110,解得m =6.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=132(a 1+a 13)132(b 1+b 13)=S 13T 13=3×13-22×13+1=3727.]【例4】 (1)等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( )A .5B .6C .7D .8C [(1)法一:由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0.根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大.法二:由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n .根据二次函数的性质,知当n =7时S n 最大.法三:根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和是先递增后递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,可得只有当n =3+112=7时,S n 取得最大值.](2)已知等差数列{a n }的前三项和为-3,前三项的积为8.①求等差数列{a n }的通项公式;②若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和T n .[解] ①设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎨⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎨⎧ a 1=2,d =-3或⎩⎨⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7.故a n =-3n +5或a n =3n -7.②当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎨⎧ -3n +7,n =1,2,3n -7,n ≥3.记数列{3n -7}的前n 项和为S n ,则S n =n [(-4)+(3n -7)]2=32n 2-112n . 当n ≤2时,T n =|a 1|+|a 2|+…+|a n |=-(a 1+a 2+…+a n )=-32n 2+112n ,当n ≥3时,T n =|a 1|+|a 2|+|a 3|+…+|a n |=-(a 1+a 2)+(a 3+a 4+…+a n )=S n -2S 2=32n 2-112n +10, 综上知:T n =⎩⎪⎨⎪⎧ -32n 2+112n ,n ≤2,32n 2-112n +10,n ≥3.n 135246n表示{a n }的前n 项和,则使S n 达到最大值的n 是( )A .21B .20C .19D .18 (2)设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.(1)B (2)130 [(1)因为a 1+a 3+a 5=3a 3=105,a 2+a 4+a 6=3a 4=99,所以a 3=35,a 4=33,所以d =-2,a 1=39.由a n =a 1+(n -1)d =39-2(n -1)=41-2n ≥0,解得n ≤412,所以当n =20时S n 达到最大值,故选B.(2)由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,所以n ≤5时,a n ≤0,当n >5时,a n >0,所以|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4+a 5)+(a 6+…+a 15)=S 15-2S 5=130.]1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8C [设{a n }的公差为d ,则由⎩⎨⎧ a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧ (a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,解得d =4.故选C.]2.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 B [∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.故选B.]3.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11 A [a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5(a 1+a 5)2=5a 3=5.]4.(2018·全国卷Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.[解](1)设{a n}的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以{a n}的通项公式为a n=2n-9.(2)由(1)得S n=n2-8n=(n-4)2-16.所以当n=4时,S n取得最小值,最小值为-16.。

数学一轮复习第五章数列第2讲等差数列及其前n项和学案含解析

数学一轮复习第五章数列第2讲等差数列及其前n项和学案含解析

第2讲等差数列及其前n项和[考纲解读]1。

理解等差数列的概念及等差数列与一次函数的关系.(重点)2.掌握等差数列的通项公式与前n项和公式,并熟练掌握其推导方法,能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.(重点、难点)[考向预测]从近三年高考情况来看,本讲一直是高考的热点.预测2021年高考将会以等差数列的通项公式及其性质、等差数列的前n项和为考查重点,也可能将等差数列的通项、前n项和及性质综合考查,题型以客观题或解答题的形式呈现,试题难度一般不大,属中档题型.1.等差数列的有关概念(1)定义:一般地,如果一个数列从错误!第2项起,每一项与它前一项的错误!差都等于错误!同一个常数,那么这个数列就叫做等错误!公差,通常用字母d表示.数学语言表示为错误!a n+1-a n=d(n∈N*),d为常数.(2)等差中项:若a,A,b成等差数列,则A叫做a和b的等差中项,且A=错误!错误!.2.等差数列的通项公式与前n项和公式(1)若等差数列{a n}的首项是a1,公差是d,则其通项公式为a n=错误!a1+(n-1)d,可推广为a n=a m+错误!(n-m)d(n,m∈N*).(2)等差数列的前n项和公式S n=n a1+a n2=错误!na1+错误!d(其中n∈N*).3.等差数列的相关性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)等差数列{a n}中,当m+n=p+q时,错误!a m+a n=a p+a q (m,n,p,q∈N*).特别地,若m+n=2p,则错误!2a p=a m+a n(m,n,p∈N*).(2)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为错误!md(k,m∈N*).(3)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为错误!n2d。

(4)错误!也成等差数列,其首项与{a n}首项相同,公差为错误!错误! d。

高考数学一轮复习第五章数列推理与证明第2讲等差数列课件理

高考数学一轮复习第五章数列推理与证明第2讲等差数列课件理
第十页,共四十三页。
考点(kǎo di等ǎn)差1数列的基本(jīběn)运算 例 1:(1)(2017 年新课标Ⅰ)记 Sn为等差数列(děnɡ chā shù liè){an}的前n项 和.若a4+a5=24,S6=48,则{an}的公差为( )
第十一页,共四十三页。
解析:方法一,设公差为 d,a4+a5=a1+3d+a1+4d=2a1 +7d=列{an}的前 n 项和为 Sn,a1=15,且满足2ann-+13=
2na-n 5+1,已知 n,m∈N*,n>m,则 Sn-Sm 的最小值为(
第2讲 等差数列(děnɡ chā shù liè)
第一页,共四十三页。
1.理解(lǐjiě)等差数列的概念.
2.掌握等差数列的通项公式与前n项和公式. 3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解
决相应的问题.
4.了解等差数列与一次函数的关系.
第二页,共四十三页。
1.等差数列的定义
7.等差数列的最值
在等差数列{an}中,若a1>0,d<0,则Sn存在最大值;若
a1<0,d>0,则Sn存在(cúnzài)最_小_____值.
第六页,共四十三页。
1.(2015 年重庆(zhònɡ qìnɡ))在等差数列{an}中,若a2=4,a4=2,则a6 =( B )
A.-1
第七页,共四十三页。
第十六页,共四十三页。
考点(kǎo diǎ等n) 差2 数列的基本性质(xìngzhì)及应用 例2:(1)已知等差数列{an}的前n项和为Sn,若S10=1,S30=5,则S40 =( ) A. 思路点拨:思路1,设等差数列{an}的首项为a1,公差为d,根据 (gēnjù)题意列方程组求得a1,d,进而可用等差数列前n项和公式求S40; 思路2,设{an}的前n项和Sn=An2+Bn,由题意列出方程组求得A, B,从而得Sn,进而得S40;

2020届高考数学(文)总复习试题:第五章 第二节 等差数列及其前n项和

2020届高考数学(文)总复习试题:第五章 第二节 等差数列及其前n项和

课时规范练A 组 基础对点练1.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14 D.12解析:由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0.答案:B2.等差数列{a n }中,a 1=1,a n =100(n ≥3).若{a n }的公差为某一自然数,则n 的所有可能取值为( )A .3,7,9,15,100B .4,10,12,34,100C .5,11,16,30,100D .4,10,13,43,100解析:由等差数列的通项公式得,公差d =a n -a 1n -1=99n -1.又因为d ∈N ,n ≥3,所以n -1可能为3,9,11,33,99,n 的所有可能取值为4,10,12,34,100,故选B. 答案:B3.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11解析:因为{a n }是等差数列,∴a 1+a 5=2a 3,即a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5,故选A. 答案:A4.等差数列{a n }的前n 项和为S n ,若S 8-S 4=36,a 6=2a 4,则a 1=( )A .-2B .0C .2D .4 解析:设等差数列{a n }的公差为d ,∵S 8-S 4=36,a 6=2a 4,∴⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫8a 1+8×72d -⎝ ⎛⎭⎪⎫4a 1+4×32d =36,a 1+5d =2a 1+6d ,解得⎩⎨⎧a 1=-2,d =2.故选A. 答案:A 5.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( )A .12B .13C .14D .15解析:由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.答案:B6.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97解析:由题意可知,⎩⎨⎧a 1+4d =3,a 1+9d =8,解得a 1=-1,d =1,所以a 100=-1+99×1=98.答案:C7.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于__________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38, 解得n =10.答案:108.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析:设数列首项为a 1,则a 1+2 0152=1 010,故a 1=5.答案:59.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值.(2)已知数列{b n }满足b n =S n n ,证明数列{b n }是等差数列,并求其前n 项和T n .解析:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a=8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2. 10.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *). (1)求证:数列{b n }为等差数列;(2)求数列{a n }的通项公式.解析:(1)证明:∵b n =1a n,且a n =a n -12a n -1+1, ∴b n +1=1a n +1=1a n 2a n +1=2a n +1a n, ∴b n +1-b n =2a n +1a n -1a n=2. 又∵b 1=1a 1=1,∴数列{b n }是以1为首项,2为公差的等差数列. (2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n,∴a n =1b n =12n -1.∴数列{a n }的通项公式为a n =12n -1. B 组 能力提升练11.(2019·唐山统考)已知等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( )A .18B .12C .9D .6解析:设等差数列{a n }的公差为d ,由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D.答案:D12.已知数列{a n }是等差数列,数列{b n }是等比数列,公比为q ,数列{c n }中,c n=a n b n ,S n 是数列{c n }的前n 项和.若S m =11,S 2m =7,S 3m =-201(m 为正偶数),则S 4m 的值为( )A .-1 601B .-1 801C .-2 001D .-2 201解析:令A =S m =11,B =S 2m -S m =-4,C =S 3m -S 2m =-208, 则q m ·A =(a 1b 1+a 2b 2+…+a m b m )q m =a 1b m +1+…+a m b 2m .故B -q m ·A =(a m +1-a 1)b m +1+…+(a 2m -a m )b 2m =md (b m +1+…+b 2m ),其中,d 是数列{a n }的公差,q 是数列{b n }的公比.同理C -q m ·B =md (b 2m +1+…+b 3m )=md (b m +1+…+b 2m )·q m ,故C -q m ·B =q m (B -q m ·A ).代入已知条件,可得11(q m )2+8q m -208=0,解得q m =4或q m =-5211(因m 为正偶数,舍去).又S 4m -S 3m =(a 1b 1+a 2b 2+…+a m b m )q 3m +3md (b m +1+…+b 2m )q 2m =11×43+3(B -q m ·A )×42=11×43-3×12×43=-1 600.故S 4m =S 3m -1 600=-1 801.答案:B13.(2019·长春质检)设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n 取最大值时,n 的值为( )A .9B .10C .11D .12解析:由题意,不妨设a 6=9t ,a 5=11t ,则公差d =-2t ,其中t >0,因此a 10=t ,a 11=-t ,即当n =10时,S n 取得最大值,故选B.答案:B14.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n=2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:因为{a n },{b n }为等差数列,所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6, 因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941. 所以a 6b 6=1941. 答案:194115.(2019·银川模拟)在等差数列{a n }中,已知a 3=7,a 6=16,依次将等差数列的各项排成如图所示的三角形数阵,则此数阵中,第10行从左到右的第5个数是________.解析:由题知公差d =a 6-a 36-3=16-73=3,所以a n =7+(n -3)d =3n -2,第10行从左到右的第5个数是原等差数列中第1+2+…+9+5=50项,即为 a 50=3×50-2=148.答案:14816.(2019·太原模拟)设等差数列{a n }的前n 项和为S n ,若a 1<0,S 2 015=0.(1)求S n 的最小值及此时n 的值.(2)求n 的取值集合,使其满足a n ≥S n .解析:(1)设公差为d ,则由S 2 015=a 1+2 015×2 0142d =a 1+1 007d =0,d =-11 007a 1,a 1+a n =2 015-n 1 007a 1,所以S n =n 2(a 1+a n )=n 2·20 15-n 1 007a 1=a 12 014(2 015n -n 2 ).因为a 1<0,n ∈N *,所以当n =1 007或1 008时,S n 取最小值504a 1.(2)a n =1 008-n 1 007a 1,S n ≤a n a 12 014(2 015n -n 2)≤1 008-n 1 007a 1.因为a 1<0,所以n 2-2 017n +2 016≤0, 即(n -1)(n -2 016)≤0,解得1≤n ≤2 016.故所求n 的取值集合为{n |1≤n ≤2 016,n ∈N *}.。

高考数学总复习 第5章 第2讲 等差数列及其前n项和课件 理 新人教A版

高考数学总复习 第5章 第2讲 等差数列及其前n项和课件 理 新人教A版
3 个必知问题 1. 知三求二:已知 a1、d、n、an、Sn 中的任意三个,即可求 得其余两个,这体现了方程思想. 2. Sn=d2n2+(a1-d2)n=An2+Bn⇒d=2A.
第五页,共53页。
3. 利用Sn的图象(túxiànɡ)确定其最值时,最高点不一定是最 大值,最低点不一定是最小值.
[解析] (1)本题考查等差数列的基础量运算. 设{an}的公差为 d,由 S2=a3 可得 d=a1=12,故 a2=a1 +d=1,Sn=na1+nn-2 1d=14n(n+1). (2)设等差数列的公差为 d,由于数列是递增数列,所以 d>0,a3=a1+2d=1+2d,a2=a1+d=1+d,代入已知条件: a3=a22-4 得:1+2d=(1+d)2-4,解得 d2=4,所以 d=2(d =-2 舍去),所以 an=1+(n-1)×2=2n-1. [答案] (1)1 14n(n+1) (2)2n-1
第十二页,共53页。
(3)d>0⇔{an}是递增数列,Sn 有最小值;d<0⇔{an}是递 减数列,Sn 有最大值;d=0⇔{an}是常数数列.
(4)am,am+k,am+2k,am+3k,…仍是等差数列,公差为 kd. (5)数列 Sm,S2m-Sm,S3m-S2m,…也是等差数列. (6)S2n-1=(2n-1)an. (7)若 n 为偶数,则 S 偶-S 奇=n2d. 若 n 为奇数,则 S 奇-S 偶=a 中(中间项).
常数. [解]
证明:由题设知 an+1= aan+2n+bbnn2=
1+bann = 1+bann2
bn+1 ,所以bn+1=
1+abnn2
an+1
1+bann2,从而abnn++112-bann2=1(n

2021届高考数学一轮知能训练第五章数列第2讲等差数列含解析

2021届高考数学一轮知能训练第五章数列第2讲等差数列含解析

第2讲等差数列1.设等差数列{a n}的前n项和为S n,若a2+a5+a8=30,则下列一定为定值的是( )A.S6 B.S7 C.S8 D.S92.(2014年天津)设{a n}是首项为a1,公差为-1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1=( )A.2 B.-2C。

12D.-错误!3.(2017年新课标Ⅲ)等差数列{a n}的首项为1,公差不为0。

若a2,a3,a6成等比数列,则数列{a n}的前6项和为( )A.-24 B.-3 C.3 D.84.(2019年陕西西安八校联考)设数列{a n}是等差数列,且a2=-6,a6=6,S n是数列{a n}的前n项和,则( )A.S4<S3 B.S4=S3C.S4>S1 D.S4=S15.(2019年河南洛阳统考)设等差数列{a n}的前n项和为S n,且a1〉0,a3+a10>0,a6a7〈0,则满足S n〉0的最大自然数n的值为( )A.6 B.7 C.12 D.136.已知数列{a n}满足a n+1-a n=2,a1=-5,则|a1|+|a2|+…+|a6|=( )A.9 B.15 C.18 D.307.(多选)设{a n}是等差数列,S n为其前n项和,且S7<S8,S8=S9>S10,则下列结论正确的是()A.d〈0B.a9=0C.S11>S7D.S8、S9均为S n的最大值8.(多选)已知两个等差数列{a n}和错误!的前n项和分别为S n和T n,且错误!=错误!,则使得错误!为整数的正整数n的值为()A.2 B.3 C.4 D.149.(2019年江苏)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a 2a5+a8=0,S9=27,则S8的值是________.10.(2019年北京)设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.11.(2018年新课标Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15。

2020届高考数学(理)大一轮复习增分练: 等差数列及其前n项和 含解析

2020届高考数学(理)大一轮复习增分练: 等差数列及其前n项和 含解析
4.(2019·广东广州联考)设等差数列{an}的前n项和为Sn,若am=4,Sm=0,Sm+2=14(m≥2,且m∈N*),则a2 017的值为()
A.2 018B.4 028
C.5 037D.3 019
解析:选B.由题意得
解得 所以an=-4+(n-1)×2=2n-6,
所以a2 017=2×2 017-6=4 028.故选B.
由m,k∈N*知2m+k-1≥k+1>1,
故 解得
即所求m的值为5,k的值为4.
[综合题组练]
1.若{an}是等差数列,首项a1>0,a2 016+a2 017>0,a2 016·a2 017<0,则使前n项和Sn>0成立的最大正整数n是()
A.2 016B.2 017
C.4 032D.4 033
解析:选C.因为a1>0,a2 016+a2 017>0,a2 016·a2 017<0,所以d<0,a2 016>0,a2 017<0,所以S4 032= = >0,S4 033= =4 033a2 017<0,所以使前n项和Sn>0成立的最大正整数n是4 032.
(1)求d及Sn;
(2)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
解:(1)由题意知(2a1+d)(3a1+3d)=36,
将a1=1代入上式解得d=2或d=-5.
因为d>0,所以d=2.
从而an=2n-1,Sn=n2(n∈N*).
(2)由(1)得am+am+1+am+2+…+am+k=(2m+k-1)(k+1),所以(2m+k-1)(k+1)=65.
答案:10
8.在单调递增的等差数列{an}中,若a3=1,a2a4= ,则a1=________.

2019版高考一轮复习文数(人教版A版)练习:第五章 第一节 数列的概念与简单表示法

2019版高考一轮复习文数(人教版A版)练习:第五章 第一节 数列的概念与简单表示法

课时规范练 A 组 基础对点练1.设数列{a n }的前n 项和S n =n 2+n ,则a 4的值为( ) A .4 B .6 C .8D .10解析:a 4=S 4-S 3=20-12=8. 答案:C2.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n=⎝⎛⎭⎫32n -1,故选B. 答案:B3.已知数列{a n }的前n 项和为S n ,若S n =2a n -4,n ∈N *,则a n =( ) A .2n +1B .2nC .2n -1D .2n -2解析:∵a n +1=S n +1-S n =2a n +1-4-(2a n -4),∴a n +1=2a n ,∵a 1=2a 1-4,∴a 1=4,∴数列{a n }是以4为首项,2为公比的等比数列,∴a n =4·2n -1=2n +1,故选A.答案:A4.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.38解析:由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.答案:C5.(2018·唐山模拟)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=__________.解析:∵S n =a 1(4n -1)3,a 4=32,∴255a 13-63a 13=32,∴a 1=12.答案:126.已知数列{a n }的前n 项和S n =2n ,则a 3+a 4=________. 解析:当n ≥2时,a n =2n -2n -1=2n -1,所以a 3+a 4=22+23=12.答案:127.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解析:(1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1, 整理得a n =n +1n -1a n -1.于是a 1=1,a 2=31a 1,a 3=42a 2,…,a n -1=nn -2a n -2,a n =n +1n -1a n -1.将以上n 个等式两端分别相乘, 整理得a n =n (n +1)2.显然,当n =1时也满足上式. 综上可知,{a n }的通项公式a n =n (n +1)2.8.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解析:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由对于n ∈N *,都有a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞).B 组 能力提升练1.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:由3a n +1=3a n -2得a n +1=a n -23,则{a n }是等差数列,又a 1=15,∴a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ·⎝⎛⎭⎫453-23k <0,∴452<k <472,∴k =23.故选C. 答案:C2.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( ) A.1210 B.129 C.15D.110解析:∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,即a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又∵d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15.答案:C3.设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n =( ) A.13n -1 B.2n (n +1) C.6(n +1)(n +2)D.5-2n 3解析:由题意知,S n +na n =2,当n ≥2时,S n -1+(n -1)a n -1=2,∴(n +1)a n =(n -1)a n -1,从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1,则a n =2n (n +1),当n =1时上式成立,所以a n =2n (n +1),故选B. 答案:B4.(2018·临沂联考)观察下列各图,并阅读图形下面的文字,则10条直线相交,交点的个数最多是()A .40B .45C .50D .55解析:设n 条直线的交点个数为a n (n ≥2),则⎩⎪⎨⎪⎧a 3-a 2=2,a 4-a 3=3,……a 10-a 9=9.累加得a 10-a 2=2+3+…+9, a 10=1+2+3+…+9=45. 答案:B5.现定义a n =5n +⎝⎛⎭⎫15n ,其中n ∈⎩⎨⎧⎭⎬⎫110,15,12,1,则a n 取最小值时,n 的值为__________. 解析:令5n =t >0,考虑函数y =t +1t ,易知其在(0,1]上单调递减,在(1,+∞)上单调递增,且当t =1时,y 的值最小,再考虑函数t =5x ,当0<x ≤1时,t ∈(1,5],则可知a n =5n +⎝⎛⎭⎫15n在(0,1]上单调递增,所以当n =110时,a n 取得最小值.答案:1106.已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是__________. 解析:∵a n =2a n -1+1,∴a n +1=2(a n -1+1),∴a n +1a n -1+1=2,又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,即a n +1=2×2n-1=2n ,∴a 5+1=25,即a 5=31.答案:317.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=4S n -1(n ∈N *). (1)证明:a n +2-a n =4; (2)求{a n }的通项公式.解析:(1)证明:∵a n a n +1=4S n -1,∴a n +1a n +2=4S n +1-1,∴a n +1(a n +2-a n )=4a n +1,又a n ≠0,∴a n +2-a n =4. (2)由a n a n +1=4S n -1,a 1=1,求得a 2=3,由a n+2-a n=4知,数列{a2n}和{a2n-1}都是公差为4的等差数列,∴a2n=3+4(n-1)=2(2n)-1,a2n-1=1+4(n-1)=2(2n-1)-1,∴a n=2n-1.8.已知数列{a n}中,a1=3,a2=5,其前n项和S n满足S n+S n-2=2S n-1+2n-1(n≥3).(1)求数列{a n}的通项公式;(2)若b n=log2256a2n-1,n∈N*,设数列{b n}的前n项和为S n,当n为何值时,S n有最大值?并求最大值.解析:(1)由题意知S n-S n-1=S n-1-S n-2+2n-1(n≥3),即a n=a n-1+2n-1(n≥3),∴a n=(a n -a n-1)+…+(a3-a2)+a2=2n-1+2n-2+…+22+5=2n-1+2n-2+…+22+2+1+2=2n+1(n≥3),经检验,知n=1,2时,结论也成立,故a n=2n+1.(2)b n=log2256a2n-1=log22822n=log228-2n=8-2n,n∈N*,当1≤n≤3时,b n=8-2n>0;当n=4时,b n=8-2n=0;当n≥5时,b n=8-2n<0.故n=3或n=4时,S n有最大值,且最大值为S3=S4=12.。

三年高考两年模拟(浙江版)高考数学一轮复习第五章数列5.2等差数列及其前n项和知能训练

三年高考两年模拟(浙江版)高考数学一轮复习第五章数列5.2等差数列及其前n项和知能训练

§5.2等差数列及其前n项和A组基础题组1.(2015课标Ⅰ,7,5分)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10=( )A. B. C.10 D.122.(2015浙江五校一联,2,5分)在等差数列{a n}中,a4=2-a3,则数列{a n}的前6项和为( )A.12B.3C.36D.63.(2016超级中学原创预测卷五,3,5分)已知等差数列{a n}的前n项和为S n,且S10=12,则a5+a6=( )A. B.12 C.6 D.5.(2015浙江宁波十校联考,3)已知等差数列{a n}的公差为2,项数为偶数,所有奇数项的和为15,所有偶数项的和为25,则这个数列的项数为( )A.10B.20C.30D.406.(2015浙江测试卷,2,5分)设等差数列{a n}的前n项和为S n.若公差d<0,且|a7|=|a8|,则使S n>0的最大正整数n是( )A.12B.13C.14D.157.(2015金华十校高三模拟文,4,5分)设等差数列{a n}的前n项和为S n,且满足S19>0,S20<0,则使S n取得最大值的n为( )A.8B.9C.10D.118.(2015绍兴一中回头考,6,5分)设等差数列{a n}的前n项和为S n,且满足S15>0,S16<0,则,,…,中最大的项为( )A. B. C. D.9.(2015浙江杭州塘栖中学月考)已知S n为等差数列{a n}的前n项和,若S1=1,=4,则的值为( )A. B. C. D.410.(2015浙江,3,5分)已知{a n}是等差数列,公差d不为零,前n项和是S n.若a3,a4,a8成等比数列,则( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>011.(2016上海普陀调研测试,17,5分)设等差数列{a n}的前n项和为S n.在同一个坐标系中,a n=f(n)及S n=g(n)的部分图象如图所示(图中的三个点).根据图中所提供的信息,下列结论正确的是( )A.当n=3时,S n取得最大值B.当n=4时,S n取得最大值C.当n=3时,S n取得最小值D.当n=4时,S n取得最小值12.(2015安徽,13,5分)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.13.(2015浙江测试卷,10,6分)设等差数列{a n}的公差为6,且a4为a2和a3的等比中项.则a1= ,数列{a n}的前n项和S n= .14.(2015稽阳联考,10,6分)在等差数列{a n}中,若a4+a10=10,a6+a12=14,a k=13,则k= ;数列{a n}的前n项和S n= .15.(2015嘉兴一模,11,4分)已知等差数列{a n}的前n项和为S n,且a7=-2,S9=18,则S11= .16.(2015浙江萧山中学摸底测试)正项数列{a n}满足:a1=1,a2=2,2=+(n∈N*,n≥2),则a7= .17.(2015嘉兴测试一,12,6分)设等差数列{a n}的前n项和为S n,若a2+a4+a9=24,则S9= ;·的最大值为.18.(2015浙江五校一联,15,4分)设a1,a2,…,a n,…是按先后顺序排列的一列向量,若a1=(-2014,13),且a n-a n-1=(1,1),则其中模最小的一个向量的序号n= .19.(2014浙江,19,14分)已知等差数列{a n}的公差d>0.设{a n}的前n项和为S n,a1=1,S2·S3=36.(1)求d及S n;(2)求m,k(m,k∈N*)的值,使得a m+a m+1+a m+2+…+a m+k=65.20.(2016台州中学第三次月考文,17,15分)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=-4n-1,n∈N*,且a1=1.(1)求数列{a n}的通项公式;(2)证明:对一切正整数n,有++…+<.B组提升题组1.(2014课标Ⅱ,5,5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=( )A.n(n+1)B.n(n-1)C. D.2.(2016超级中学原创预测卷八,6,5分)已知等差数列{a n}的前n项和为S n,若a n+a n+1+a n+2=18,S2n+1=54,则n的值为( )A.2B.3C.4D.63.(2016温州高三联考,6,5分)等差数列{a n}的前n项和为S n,其中n∈N*,则下列命题错误的是( )A.若a n>0,则S n>0B.若S n>0,则a n>0C.若a n>0,则{S n}是单调递增数列D.若{S n}是单调递增数列,则a n>04.(2015浙江杭州学军中学第五次月考,7)设等差数列{a n}满足<-1,且其前n项的和S n有最大值,则当数列{S n}的前n项的和取得最大值时,正整数n的值是( )A.12B.11C.23D.225.(2015浙江名校(衢州二中)交流卷二,4)等差数列{a n}中,a1>0,3a8=5a13,则前n项的和S n中最大的是( )A.S10B.S11C.S20D.S216.(2015浙江温州十校期中,7)设等差数列{a n}的前n项和为S n,若S6>S7>S5,则满足S n S n+1<0的正整数n的值为( )A.13B.12C.11D.107.(2015诸暨高中毕业班检测,5,5分)已知数列{a n}、{b n}都是公差为1的等差数列,b1是正整数,若a1+b1=10,则++…+=( )A.81B.99C.108D.1178.(2015杭州学军中学仿真考,11,6分)已知{a n}为等差数列,若a1+a5+a9=8π,则前9项的和S9= ,cos(a3+a7)的值为.9.(2015江苏淮安调研)在等差数列{a n}中,已知a2+a8=11,则3a3+a11的值为.10.(2015宁波高考模拟,12,6分)设S n为数列{a n}的前n项和,a1=1,a2=3,S k+2+S k-2S k+1=2对任意正整数k成立,则a n= ,S n= .11.(2015浙江镇海中学阶段测试,15,4分)已知数列{a n}满足:a1=,a n+1=1-,且a n≠0(n∈N*),则数列{a n}的通项为a n= .12.(2016宁波效实中学期中,11,6分)数列{a n}的前n项和S n=n2-6n,则a2= ,数列{|a n|}的前10项和|a1|+|a2|+…+|a10|= .13.(2015浙江名校(杭州二中)交流卷六,12)已知等差数列{a n}的前n项和为S n,等差数列{b n}的前n项和为T n,若=,则= ;若S n+T n=an2+2n,且a7+b7=15,则实数a= .14.已知正项等比数列{a n}的前n项和为S n,若-1,S5,S10成等差数列,则S10-2S5= ,S15-S10的最小值为.15.(2016台州中学第三次月考,13,4分)设等差数列{a n}的前n项和为S n,且满足S2014>0,S2015<0,对任意正整数n,都有|a n|≥|a k|,则k的值为.16.(2013安徽,14,5分)如图,互不相同的点A1,A2,…,A n,…和B1,B2,…,B n,…分别在角O的两条边上,所有A n B n相互平行,且所有梯形A n B n B n+1A n+1的面积均相等.设OA n=a n.若a1=1,a2=2,则数列{a n}的通项公式是.17.(2014大纲全国,17,10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1-a n+2.(1)设b n=a n+1-a n,证明{b n}是等差数列;(2)求{a n}的通项公式.18.(2015浙江丽水一模,17)已知等差数列{a n},首项a1和公差d均为整数,其前n项和为S n.(1)若a1=1,且a2,a4,a9成等比数列,求公差d;(2)当n≠5时,恒有S n<S5,求a1的最小值.19.(2015浙江杭州七校联考,19)已知数列{a n}满足a n=3a n-1+3n-1(n∈N*,n≥2)且a3=95.(1)求a1,a2的值;(2)是否存在一个实数t,使得b n=(a n+t)(n∈N*)且{b n}为等差数列?若存在,求出t的值;若不存在,请说明理由;(3)求数列{a n}的前n项和T n.A组基础题组1.B 由S8=4S4得8a1+×1=4×,解得a1=,∴a10=a1+9d=,故选B.2.D 由等差数列性质可知a3+a4=2=a1+a6,故S6==3(a1+a6)=6,故选D.3.A 由于S10==5(a5+a6)=12,所以a5+a6=,故选A.4.D S9-S6=a7+a8+a9=27,得a8=9,所以d==,a1=a3-2d=,故选D.5.A 设项数为2k,则由(a2+a4+…+a2k)-(a1+a3+…+a2k-1)=k×2=25-15,得k=5,故这个数列的项数为10.故选A.6.B 由d=a8-a7<0及|a7|=|a8|,得a8=-a7且a8<0,a7>0.则S13=×13=13a7>0,S15=×15=15a8<0,又S14=×14=7(a7+a8)=0,则使S n>0的最大正整数n是13.7.C 因为{a n}是等差数列,所以S19=19a10>0,S20=10(a10+a11)<0,则a10>0,a11<0,即(S n)max=S10,故选C.8.C因为S15>0,故15a8>0,即a8>0.因为S16<0,故<0,即a9<0,故该等差数列中a1>a2>…>a8>0>a9>…,0<S1<S2<…<S8>S9>…>S15>0,故,,…,中,最大项为,故选C.9.A 由=4得=3,即S4-S2=3S2,S4=4S2,由等差数列的性质可知S2,S4-S2,S6-S4成等差数列,得S6-S4=5S2,所以S6=9S2,所以=.10.B由=a3a8,得(a1+2d)(a1+7d)=(a1+3d)2,整理得d(5d+3a1)=0,又d≠0,∴a1=-d,则a1d=-d2<0,又∵S4=4a1+6d=-d,∴dS4=-d2<0,故选B.11.B 不妨记A(7,0.7),B(7,-0.8),C(8,-0.4),a n=f(n)是关于n的一次函数;S n=g(n)是关于n的二次函数且常数项为0.若A,C或B,C为a n=f(n)的图象上两点,计算可知S n=g(n)的图象不过第三点.若S n=g(n)的图象过B,C两点也不满足题意.若S n=g(n)的图象过A,C两点,即S7=0.7,S8=-0.4,则计算可知a1=1,d=-0.3,a n=1.3-0.3n,a7=-0.8,符合题意,且a4>0,a5<0,故选B.12.答案27解析由题意得{an}为等差数列,且公差d=,∵a1=1,∴S9=9×1+×=27.13.答案-14;3n2-17n解析依条件有(a1+6)(a1+12)=,得a1=-14,则S n=-14n+n(n-1)×6=3n2-17n.14.答案15;解析因为a4+a10=2a7=10,所以a7=5,同理得a9=7,所以a n=n-2,则a k=k-2=13,得k=15.a1=1-2=-1,所以S n===.15.答案0解析设等差数列的首项和公差分别为a1,d,则有解得d=-2,a1=10,故S11=11×10+×(-2)=0.16.答案解析因为2=+(n∈N*,n≥2),所以数列{}是以=1为首项,d=-=4-1=3为公差的等差数列,所以=1+3(n-1)=3n-2,所以a n=,所以a7==.17.答案72;64解析设等差数列的公差为d,则a2+a4+a9=3a1+12d=24,即a1+4d=8,所以S9=9a1+36d=9×8=72.==a1+d=8-4d+d,则=8-4d+d=8-,=8-4d+d=8+,·==64-≤64,当且仅当d=0时取等号,所以·的最大值为64.18.答案1001或1002解析因为故a n=(n-2015,n+12),故|a n|==.由二次函数性质可知当n==1001时,|a n|有最小值,又n∈N*,故n=1001或n=1002.19.解析(1)由题意知(2a 1+d)(3a1+3d)=36,将a1=1代入上式解得d=2或d=-5.因为d>0,所以d=2.从而a n=2n-1,S n=n2(n∈N*).(2)由(1)得a m+a m+1+a m+2+…+a m+k=(2m+k-1)(k+1),所以(2m+k-1)(k+1)=65.由m,k∈N*知2m+k-1≥k+1>1,故所以20.解析(1)由a1=1,a n>0,4S n=-4n-1,n∈N *,得a2=3.当n≥2时,4S n-1=-4(n-1)-1,则4a n=4S n-4S n-1=--4,=+4a n+4=(a n+2)2,∵a n>0,∴a n+1=a n+2,∴当n≥2时,{a n}是公差d=2的等差数列. ∴{a n}是首项a1=1,公差d=2的等差数列.∴数列{a n}的通项公式为a n=2n-1.(2)证明:++…+=+++…+=·+++…+-=·<.B组提升题组1.A ∵a2,a4,a8成等比数列,∴=a2·a8,即(a1+3d)2=(a1+d)(a1+7d),将d=2代入上式,解得a1=2,∴S n=2n+=n(n+1),故选A.2.C设{a n}的公差为d,由已知可得a1+(n-1)d+a1+nd+a1+(n+1)d=18,可得a1+nd=6,又S2n+1==54,即=54,得2n+1=9,故n=4,选C.3.D 易判断A、B、C均正确.D中,可取a1<0,公差d>0.4.D ∵等差数列{a n}前n项的和S n有最大值,∴{a n}的公差是负数.∵<-1,∴a12<0,∴a11>-a12,即a11+a12>0,∴S22==>0,S23==23a12<0.∴前22项的和最大.故选D.5.C 设{a n}的公差为d,3a8=5a13⇒3(a1+7d)=5(a1+12d)⇒d=-a1,又a1>0,所以d<0.所以{a n}是单调递减数列.由a n=a1+(n-1)= a1>0⇒n≤20.由此可得当n=20时,S n最大.故选C.6.B 由S6>S7>S5,得a7=S7-S6<0,a6=S6-S5>0,a6+a7=S7-S5>0.从而有S13=×13=13a7<0,S11=×11=11a6>0,S12=×12=6(a6+a7)>0,所以n≤12时,S n>0;n≥13时,S n<0,故S12S13<0,故选B.7.D设{a n}的公差为d1,{b n}的公差为d2.因为a n=a1+(n-1)×d1=a1+n-1,b n=b1+(n-1)×d2=b1+n-1,所以-=a1+b n-1-(a1+b n-1-1)=b n-b n-1=1,所以{}是以a1+b1-1=9为首项,公差为1的等差数列,所以++…+=9×9+×1=117,故选D.8.答案24π;-解析因为{an}是等差数列,所以a1+a5+a9=3a5=8π,所以a5=π,所以S9===9×π=24π,cos(a3+a7)=cos2a5=cosπ=cosπ=-.9.答案22解析由等差数列的性质知3a3+a11=2a3+a3+a11=2a3+2a7=2(a2+a8)=22.10.答案2n-1;n2解析因为Sk+2+S k-2S k+1=2,所以a k+2-a k+1=2,又a2-a1=2,故数列{a n}为等差数列.又a1=1,故a n=2n-1,故S n==n2.11.答案解析∵an+1=1-=,且a n≠0,∴-=1,故数列是首项为4,公差为1的等差数列.则=4+(n-1)×1=n+3,即a n=.12.答案-3;58解析 a2=S 2-S 1=-3.由S n =n 2-6n 可得a n =2n-7,所以a 1<a 2<a 3<0<a 4<…<a 10,所以|a 1|+|a 2|+…+|a 10|=S 10-2S 3=58. 13.答案 ;1解析 ====;a7+b 7=S 7+T 7-(S 6+T 6)=72a+2×7-(62a+2×6)=13a+2=15⇒a=1. 14.答案 1;4解析 由题意知2S5=-1+S 10,所以S 10-2S 5=1,由{a n }为等比数列可知S 5,S 10-S 5,S 15-S 10成等比数列,所以(S 10-S 5)2=S 5(S 15-S 10),S 15-S 10===+S 5+2≥4,当且仅当S 5=1时,等号成立. 15.答案 1008解析 因为S2014>0,所以a 1+a 2014=a 1007+a 1008>0.因为S 2015<0,所以a 1+a 2015=2a 1008<0,因此d<0,且a 1>a 2>…>a 1007>0>a 1008>a 1009>…,显然|a 1009|>|a 1008|,|a 1007|>|a 1008|,所以k=1008. 16.答案 a n =解析 记△OA1B 1的面积为S,则△OA 2B 2的面积为4S. 从而四边形A n B n B n+1A n+1的面积均为3S. 可得△OA n B n 的面积为S+3(n-1)S=(3n-2)S. ∴=3n-2,即a n =.17.解析 (1)证明:由a n+2=2a n+1-a n +2得, a n+2-a n+1=a n+1-a n +2,即b n+1=b n +2. 又b 1=a 2-a 1=1.所以{b n }是首项为1,公差为2的等差数列.(5分) (2)由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.(8分) 于是所以a n+1-a 1=n 2,即a n+1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n+2.(10分) 18.解析 (1)由题意得=a 2·a 9, 所以(1+3d)2=(1+d)·(1+8d),(4分) 解得d=0或d=3.(6分) (2)∵当n ≠5时,S n <S 5恒成立, ∴S 5最大且d<0,由⇒ ∴⇒-4d<a 1<-5d.(10分) 又∵a 1,d ∈Z,d<0,∴当d=-1时,4<a 1<5,此时a 1不存在;(12分) 当d=-2时,8<a 1<10,则a 1=9;当d=-3时,12<a 1<15,则a 1=13或a 1=14; ……易知当d ≤-3时,a 1>9.(14分) 综上,a 1的最小值为9.(15分) 19.解析 (1)当n=2时,a 2=3a 1+8. 当n=3时,a 3=3a 2+26=95, ∴a 2=23,∴23=3a 1+8,∴a 1=5.(2)存在.当n≥2时,b n-b n-1=(a n+t)-(a n-1+t)=(a n+t-3a n-1-3t)=(3n-1-2t)=1-.要使{b n}为等差数列,则必须使1+2t=0,解得t=-,∴存在t=-,使得{b n}为等差数列.(3)因为当t=-时,{b n}为等差数列,且b n-b n-1=1(n≥2),b1=, 所以b n=+(n-1)×1=n+,所以a n=·3n+=n·3n+×3n+,所以a1=1×3+×3+,a2=2×32+×32+,a3=3×33+×33+,……所以T n=+=.。

2013届高考数学一轮复习课时检测 第五章 第二节 等差数列及其前n项和 理

2013届高考数学一轮复习课时检测 第五章 第二节 等差数列及其前n项和 理

第五章 第二节 等差数列及其前n 项和一、选择题1.设等差数列{a n }的前 n 项和为S n ,若S 3=9,S 5=20,则a 7+a 8+a 9=( ) A .63 B .45 C .36D .27解析:由S 3=9,S 5=20,得d =1,a 1=2,∴a 7+a 8+a 9=3a 8=3(a 1+7d )=3×9=27. 答案:D2.(2012·西南大学附中模拟)设等差数列{a n }的前n 项和为S n ,若a 2+a 8=15-a 5,则S 9等于( )A .18B .36C .45D .60解析:∵{a n }为等差数列,a 2+a 8=15-a 5 ∴3a 5=15,即a 5=5. ∴S 9=9a 1+a 929a 5=45.答案:C3.在等差数列{a n }中,a n <0,a 23+a 28+2a 3a 8=9,那么S 10等于( )A .-9B .-11C .-13D .-15解析:由a 23+a 28+2a 3a 8=9,得(a 3+a 8)2=9,∵a n <0, ∴a 3+a 8=-3,∴S 10=10a 1+a 102=5(a 3+a 8)=5×(-3)=-15.答案:D4.一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差为( )A .-2B .-3C .-4D .-6解析:a n =23+(n -1)d ,由题意知,⎩⎪⎨⎪⎧a 6>0a 7<0,即⎩⎪⎨⎪⎧23+5d >023+6d <0,解得-235<d <-236,又d 为整数,所以d =-4. 答案:C5.(2011·大纲全国卷)设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( )A .8B .7C .6D .5解析:依题意得S k +2-S k =a k +1+a k +2=2a 1+(2k +1)d =2(2k +1)+2=24,解得k =5. 答案:D6.(2011·四川高考)数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12--210-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8,所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.答案:B 二、填空题7.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 解析:依题意得a 2+a 4+a 6+a 8=(a 2+a 8)+(a 4+a 6)=2(a 3+a 7)=74. 答案:748.(2011·广东高考)等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.解析:设{a n }的公差为d ,由S 9=S 4及a 1=1, 得9×1+9×82d =4×1+4×32d , 所以d =-16.又a k +a 4=0,所以[1+(k -1)×(-16)]+[1+(4-1)×(-16)]=0.即k =10. 答案:109.在等差数列{a n }中,a 1=2,a 2+a 5=13,则a 5+a 6+a 7=________. 解析:由a 1+a 6=a 2+a 5得a 6=11. 则a 5+a 6+a 7=3a 6=33.答案:33 三、解答题10.已知等差数列{a n }的前n 项和为S n ,且满足:a 2+a 4=14,S 7=70. (1)求数列{a n }的通项公式;(2)设b n =2S n +48n{b n }的最小项是第几项?并求出该项的值.解:(1)设公差为d ,则有⎩⎪⎨⎪⎧2a 1+4d =147a 1+21d =70,即⎩⎪⎨⎪⎧a 1+2d =7,a 1+3d =10.解得⎩⎪⎨⎪⎧a 1=1,d =3..所以a n =3n -2.(2)S n =n2[1+(3n -2)]=3n 2-n2所以b n =3n 2-n +48n =3n +48n-1≥23n ·48n-1=23.当且仅当3n =48n,即n =4时取等号,故数列{b n }的最小项是第4项,该项的值为23.11.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.解:(1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5.所以a 6=-3-5=-8, 所以⎩⎪⎨⎪⎧5a 1+10d =5a 1+5d =-8,解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9a 1d +10d 2+1=0.两边同乘以8,得16a 21+72a 1d +80d 2+8=0,化简得(4a 1+9d )2=d 2-8. 所以d 2≥8.故d 的取值范围为d ≤-22或d ≥2 2.12.已知S n 是数列{a n }的前n 项和,S n 满足关系式2S n =S n -1-(12)n -1+2(n ≥2,n 为正整数),a 1=12.(1)令b n =2n a n ,求证数列{b n }是等差数列,并求数列{a n }的通项公式; (2)在(1)的条件下,求S n 的取值范围.解:(1)由2S n =S n -1-(12)n -1+2,得2S n +1=S n -(12)n +2,两式相减得2a n +1=a n +(12)n,上式两边同乘以2n 得2n +1a n +1=2n a n +1,即b n +1=b n +1,所以b n +1-b n =1,故数列{b n }是等差数列,且公差为1,又因为b 1=2a 1=1,所以b n =1+(n -1)×1=n ,因此2n a n =n ,从而a n =n ·(12)n .(2)由于2S n =S n -1-(12)n -1+2,所以2S n -S n -1=2-(12n -1,即S n +a n =2-(12)n -1,S n =2-(12)n -1-a n ,而a n =n ·(12)n ,所以S n =2-(12)n -1-n ·(12)n =2-(n +2)·(12)n . 所以S n +1=2-(n +3)·(12)n +1,且S n +1-S n =n +12n +1>0,所以S n ≥S 1=12,又因为在S n =2-(n +2)·(12)n 中,(n +2)·(12)n >0,故S n <2,即S n 的取值范围是[12,2)。

2019届高考数学(理)一轮复习讲练测:专题6.2 等差数列及其前n项和(测)(解析版)

2019届高考数学(理)一轮复习讲练测:专题6.2 等差数列及其前n项和(测)(解析版)

班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【浙江省高三第一次五校联考】在等差数列{}n a 中,53a =,62a =-,则348a a a ++等于( )A. 1B. 2C. 3D. 4 【答案】C. 【解析】试题分析:∵等差数列{}n a ,∴3847561a a a a a a +=+=+=,∴3483a a a ++=.2.【辽宁省沈阳市东北育才学校高三八模】等差数列{}n a 中,564a a +=,则10122log (222)a a a ⋅= ( )A.10B.20C.40D.22log 5+ 【答案】B 【解析】 试题分析:因为10121056125()54222222a a a a a a a a ++++⨯⋅⋅⋅===,所以10125422log (222)log 220.a a a ⨯⋅⋅⋅==选B.3. 数列{}n a 为等差数列,满足242010a a a +++=,则数列{}n a 前21项的和等于( )A .212B .21C .42D .84 【答案】B 【解析】4.各项均为正数的等差数列}{n a 中,4936a a =,则前12项和12S 的最小值为( ) (A )78 (B )48 (C )60 (D )72 【答案】D 【解析】试题分析:因为112124912()6()722a a S a a +==+≥=,当且仅当496a a ==时取等号,所以12S 的最小值为72,选D.5.【改编题】已知n S 是等差数列{}n a 的前n 项和,则=-nnn S S S 32( ) A. 30 B. 3 C. 300 D. 31 【答案】D【解析】因为)(2)(231212n n n n n a a n a a n S S +=+=-+,)(23313n n a a nS +=,所以3132=-n n n S S S .6.【改编题】已知n S 是公差d 不为零的等差数列}{n a 的前n 项和,且83S S =,k S S =7(7≠k ),则k 的值为( )A. 3B.4C.5D.6 【答案】B【解析】依题意,83S S =可知d a d a 2883311+=+,即d a 51-=,由k S S =7得d k k ka d a 2)1(2)17(7711-+=-⨯+,将d a 51-=代入化简得028112=+-k k , 解得4=k 或7-=k (舍去),选B.7.【2019新课标I 学易大联考二】已知数列{}n a 的前n 项和n S 满足21(1)22n n nS n S n n +-+=+*()n N ∈,13a =,则数列{}n a 的通项n a =( )A .41n -B .21n +C .3nD .2n +【命题意图】本题考查数列前n 项和n S 与通项n a 间的关系、等差数列通项公式等基础知识,意在考查学生的逻辑思维能力、运算求解能力,以及转化思想的应用. 【答案】A8.【2019新课标II 学易大联考一】《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日、第五日、第八日所织之和为十五尺,问第十日所织尺数为( ) A .6 B .9 C .12 D .15【命题意图】本题主要考查等差数列的通项公式与前n 项和公式,是基础题. 【答案】D【解析】由题知该女每天所织尺数等差数列,设为{}n a ,n S 是其前n 项和,则7S =177()2a a +=47a =21,所以4a =3,因为258a a a ++=53a =15,所以5a =5,所以公差54d a a =-=2,所以10a =55a d +=15,故选D.9.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( ) A.4 B.5 C.6 D.7 【答案】A【解析】设该设备第()n n N *∈的营运费用为n a 万元,则数列{}n a 是以2为首项,以2为公差的等差数列,则2n a n =,则该设备到第()n n N *∈年的营运费用总和为12242n a a a n +++=+++=()2222n n n n +=+,设第()n n N *∈的盈利总额为nS 万元,则()22119109n S n n n n n =-+-=-+-()2516n =--+,因此,当5n =时,n S 取最大值16,故选B.10.【原创题】已知等差数列}{n a 中,59914,90a a S +==, 则12a 的值是( ) A . 15 B .12-C .32-D .32【答案】B11.【原创题】已知等差数列765)1()1()1(53}{x x x n a a n n +++++-=,则,的展开式中4x 项的系数是数列}{n a 中的 ( )A .第9项B .第10项C .第19项D .第20项 【答案】D .【解析】由二项式定理得567(1)(1)(1)x x x +++++的展开式中4x 项的系数为44456776551555123C C C ⨯⨯++=++=⨯⨯,由3555n -=,得20n =,故选D .12.【2019浙江理6】如图所示,点列{}{},n n A B 分别在某锐角的两边上,且1n n A A +=12n n A A ++,2n n A A +≠,n ∈*N ,112n n n n B B B B +++=,2n n B B +≠,n ∈*N (P Q≠表示点P 与点Q 不重合).若n n n d A B =,n S 为1n n n A B B +△的面积,则( ).S nB 1B 2B nB 3B n+1A n+1A 3A nS 1S 2A 2A 1••••••••••••••••••A. {}n S 是等差数列B.2{}n S 是等差数列 C.{}n d 是等差数列 D.2{}n d 是等差数列【答案】A .【解析】设点n A 到对面直线的距离为n h ,则112n n n n+S h B B =. 由题目中条件可知1n n B B +的长度为定值,则1212n n S h B B =.那么我们需要知道n h 的关系式,过点1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了直角梯形,那11tan n n h h A A θ=+⋅,其中θ为两条线的夹角,那么11121(tan )2n n S h A A B B θ=+⋅.由题目中条件知112n n n n A A A A +++=,则()1121n A A n A A =-.所以()1121211tan 2n S h n A A B B θ=⎡+-⋅⎤⎣⎦,其中θ为定值,所以n S 为等差数列.故选A. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【2019江苏8】已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 .【答案】20【解析】设公差为d ,则由题意可得()2111351010a a d a d ⎧++=-⎪⎨+=⎪⎩,解得143a d =-⎧⎨=⎩,则948320a =-+⨯=.14.【2019北京理12】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6S =__________.【答案】615.如图,有一个形如六边形的点阵,它的中心是一个点(算第..1.层.),第2层每边有两个点,第3层每边有三个点,依次类推.(1) 试问第n 层()2n N n *∈≥且的点数为___________个; (2) 如果一个六边形点阵共有169个点,那么它一共有_____层.【答案】(1)()61n -;(2)8.16.【2019届江苏省盐城市高三第三次模拟考试】设n S 是等差数列{}n a 的前n 项和,若数列{}n a 满足2n n a S An Bn C +=++且0A >,则1B C A+-的最小值为 .【答案】【解析】试题分析:令1(1)n a a n d =+-,则1(1)2n n n S na d -=+, 又2n n a S An Bn C +=++ 所以2211(1)22d da n d na n n An Bn C +-++-=++ 即得2d A =,12dB a =+,1C a d =- 所以11122322d d B C a a d A d d +-=++-+=+因为0A >,所以0d >232d d +≥=232d d =即d =所以1B C A+-的最小值为故答案为三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2019届广东省惠州市高三第一次调研考试】(本题10分)已知{}n a 为等差数列,且满足138a a +=,2412a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,若31,,k k a a S +成等比数列,求正整数k 的值. 【答案】(Ⅰ)2n a n =;(Ⅱ)2k = 【解析】18.【2019届宁夏银川一中高三上学期第一次月考】等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b = (1)求n a 与n b ;(2)求nS S S 11121+++ . 【答案】(1)n n a n 3)1(33=-+=,13-=n n b (2)23(1)n nS n =+【解析】19.【2019全国甲理17】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过的最大整数,如[]0.90=,[]lg991=. (1)求1b ,11b ,101b ;(2)求数列{}n b 的前1000项和. 【答案】(1)0,1,2;(2)1893. 【解析】20.【江苏省盐城市高三第三次模拟考试】设函数21()1+f x px qx=+(其中220p q +≠),且存在无穷数列{}n a ,使得函数在其定义域内还可以表示为212()1n n f x a x a x a x =+++++.(1)求2a (用,p q 表示); (2)当1,1p q =-=-时,令12n n n n a b a a ++=,设数列{}n b 的前n 项和为n S ,求证:32n S <;(3)若数列{}n a 是公差不为零的等差数列,求{}n a 的通项公式. 【答案】(1)22a p q =-;(2)证明见解析;(3)1n a n =+. 【解析】试题分析:(1) 由21()1+f x px qx=+,得2212(1)(1)1n n px qx a x a x a x +++++++=,可利用展开式含未知量的系数为0,求得2a ;(2)由已知求出数列前两项,再由(3)nx n ≥的系数为0得到数列的递推式,代入12n n n n a b a a ++=后利用裂项相消法求得数列{}n b 的前n 项和为n S ,放大后证得32n S <; (3)由(2)120n n n a pa qa --++=,因数列{}n a 是等差数列,所以1220n n n a a a ---+=,所以12(2+)(1)n n p a q a --=-对一切3n ≥都成立,然后排出数列为常数列的情况,再结合数列的前两项即可得数列{}n a 的通项公式.21.【2019年山西高三四校联考】(本小题满分12分)在等差数列}{n a 中,11,552==a a ,数列}{n b 的前n 项和n n a n S +=2. (Ⅰ)求数列}{n a ,}{n b 的通项公式;(Ⅱ)求数列⎩⎨⎧⎭⎬⎫+11n n b b 的前n 项和n T .【答案】(I )12+=n a n ,⎩⎨⎧≥+==)2(,12)1(,4n n n b n ;(II ))32(2016+-=n n T n .(2)n=1时,2011211==b b T , n ≥2时,)321121(21)32)(12(111+-+=++=+n n n n b b n n , 所以 )32(201615101201)32151(21201)32112191717151(21201+-=+-+=+-+=+-+++-+-+=n n n n n n n T n n=1仍然适合上式, …………(10分) 综上,)32(201615101201+-=+-+=n n n n T n ………… (12分) 22.【2019年江西师大附中高三二模】(本小题满分12分)在公比为2的等比数列{}n a 中,2a 与5a 的等差中项是.(Ⅰ)求1a 的值;(Ⅱ)若函数1sin 4y a x πφ⎛⎫=+ ⎪⎝⎭,φπ<,的一部分图像如图所示,()11,M a -,()13,N a -为图像上的两点,设MPN β∠=,其中P 与坐标原点O 重合,πβ<<0,求()tan φβ-的值.【答案】(I );(II)32-+.【解析】 (Ⅱ)∵点在函数的图像上,∴,又∵,∴ -------------7分 如图,连接MN ,在中,由余弦定理得1a ()11,M a -1sin 4y a x πφ⎛⎫=+ ⎪⎝⎭sin 14πφ⎛⎫-+= ⎪⎝⎭φπ<34φπ=MPN ∆。

【红对勾】高考新课标数学(文)大一轮复习课时练:5-2等差数列及其前n项和(含答案解析)

【红对勾】高考新课标数学(文)大一轮复习课时练:5-2等差数列及其前n项和(含答案解析)

课时作业29 等差数列及其前n 项和一、选择题1.(2016·陕西八校联考)在等差数列{a n }中,a 1=0,公差d≠0,若a m =a 1+a 2+…+a 9,则m 的值为( )A .37B .36C .20D .19解析:a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,∴m =37.故选A.答案:A2.已知等差数列{a n }中,S n 是它的前n 项和,若S 16>0,且S 17<0,则当S n 最大时n 的值为( )A .16B .8C .9D .10解析:∵S 16=16 a 1+a 162=8(a 8+a 9)>0,S 17=17 a 1+a 172=17a 9<0,∴a 8>0,a 9<0,且d<0,∴S 8最大. 答案:B3.(2016·广东湛江模拟)在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17解析:设公差为d ,∵a 4+a 6+a 8+a 10+a 12=120,∴5a 8=120,a 8=24,∴a 9-13a 11=(a 8+d)-13(a 8+3d)=23a 8=16.答案:C4.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10解析:因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146, 所以a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180.又因为a 1+a n =a 2+a n -1=a 3+a n -2, 所以3(a 1+a n )=180,从而a 1+a n =60. 所以S n =n a 1+a n2=n·602=390,即n =13.答案:A5.(2016·黑龙江佳木斯月考)若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( )A .22B .21C .24D .23解析:因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n<23.5,所以使a k ·a k+1<0的k 值为23. 答案:D6.(2016·湖南箴言中学调研)若S n 是等差数列{a n }的前n 项和,且S 8-S 3=10,则S 11的值为( )A .12B .18C .22D .44解析:∵数列{a n }是等差数列,且S 8-S 3=10,∴S 8-S 3=a 4+a 5+a 6+a 7+a 8=10,∴5a 6=10,a 6=2,∴S 11=a 1+a 112×11=11a 6=22.答案:C7.(2016·北京海淀模拟)已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n≥2),则a 6等于( )A .16B .8C .2 2D .4解析:由2a 2n =a 2n +1+a 2n -1(n≥2)可知数列{a 2n }是等差数列,且首项为a 21=1,公差d =a 22-a 21=4-1=3,所以数列{a 2n }的通项公式为a 2n =1+3(n -1)=3n -2,所以a 26=3×6-2=16,又因为a 6>0,所以a 6=4.选D.答案:D8.(2016·高考调研原创题)已知函数f(x)=cosx ,x ∈(0,2π)有两个不同的零点x 1,x 2,且方程f(x)=m 有两个不同的实根x 3,x 4,若把这四个数按从小到大排列构成等差数列,则实数m =( )A.12 B .-12C.32D .-32解析:若m>0,则公差d =3π2-π2=π,显然不成立,所以m<0,则公差d =3π2-π23=π3.所以m =cos(π2+π3)=-32,故选D.答案:D9.(2016·吉林长春质量监测)设数列{a n }的前n 项和为S n ,且a 1=a 2=1,{nS n +(n +2)a n }为等差数列,则a n =( )A.n2n -1 B.n +12n -1+1 C.2n -12n -1D.n +12n +1 解析:设b n =nS n +(n +2)a n ,则b 1=4,b 2=8,{b n }为等差数列,所以b n =4n ,即nS n +(n +2)a n =4n ,S n +⎝⎛⎭⎫1+2n a n =4. 当n≥2时,S n -S n -1+⎝⎛⎭⎫1+2n a n -⎝⎛⎭⎫1+2n -1a n -1=0,所以2 n +1 n a n =n +1n -1a n -1,即2·a nn =a n -1n -1,又因为a 11=1,所以⎩⎨⎧⎭⎬⎫a n n 是首项为1,公比为12的等比数列,所以a n n =⎝⎛⎭⎫12n -1(n ∈N *),a n =n2n -1(n ∈N*),故选A.答案:A10.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 013等于( )A .2 013B .-2 013C .-4 026D .4 026解析:由等差数列的性质可得{S nn }也为等差数列,又∵S 2 0142 014-S 2 0082 008=6d =6,∴d =1.故S 2 0132 013=S 11+2 012d =-2 014+2 012=-2. ∴S 2 013=-2×2 013=-4 026. 答案:C 二、填空题11.(2016·江苏无锡一模)已知数列{a n }中,a 1=1,a 2=2,当整数n>1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15=________.解析:由S n +1+S n -1=2(S n +S 1)(n≥2)得(S n +1-S n )-(S n -S n -1)=2S 1=2(n≥2),即a n +1-a n =2(n≥2),所以数列{a n }从第二项起构成等差数列,则S 15=1+2+4+6+8+…+28=211.答案:21112.已知在数列{a n }中,a 3=2,a 5=1,若⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于________.解析:记b n =11+a n,则b 3=13,b 5=12,数列{b n }的公差为12×(12-13)=112,b 1=16,∴b n=n +112,即11+a n =n +112.∴a n =11-n n +1,故a 11=0. 答案:013.已知A n ={x|2n <x<2n+1且x =7m +1,m ,n ∈N},则A 6中各元素的和为________.解析:∵A 6={x|26<x<27且x =7m +1,m ∈N},∴A 6的元素x =.组成一首项为71,公差为7的等差数列. ∴71+78+…+127=71×9+9×82×7=891. 答案:89114.已知S n 是等差数列{a n }的前n 项和,且a 4=15,S 5=55,则过点P(3,a 3),Q(4,a 4)的直线的斜率是________.解析:设数列{a n }的公差为d ,则依题意,得⎩⎪⎨⎪⎧a 4=a 1+3d =15,S 5=5a 1+10d =55,得⎩⎪⎨⎪⎧a 1=3,d =4.故直线PQ 的斜率为a 4-a 34-3=d1=4.答案:4 三、解答题15.(2016·辽宁协作体模拟)已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式. 解:(1)证明:1a n +1-1-1a n -1=a n -a n +1 a n +1-1 a n -1 =13,∴b n +1-b n =13,∴{b n }是等差数列.(2)由(1)及b 1=1a 1-1=12-1=1,知b n =13n +23,∴a n -1=3n +2,∴a n =n +5n +2.16.(2016·河南商丘一模)已知正项等差数列{a n }的前n 项和为S n ,且满足a 1+a 5=27a 23,S 7=63.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=a 1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .解:(1)方法1:设正项等差数列{a n }的公差为d , 则由题意得⎩⎪⎨⎪⎧a 1+a 1+4d =27 a 1+2d 2,7a 1+21d =63,即⎩⎪⎨⎪⎧a 1+2d =17 a 1+2d 2,a 1+3d =9,又∵a n >0,∴a 3=a 1+2d>0,∴⎩⎪⎨⎪⎧a 1+2d =7,a 1+3d =9, ∴⎩⎪⎨⎪⎧a 1=3,d =2, ∴a n =3+(n -1)×2=2n +1(n ∈N *).方法2:设正项等差数列{a n }的公差为d. ∵{a n }是等差数列,且a 1+a 5=27a 23,∴2a 3=27a 23,又a n >0,∴a 3=7.∵S 7=7 a 1+a 7 2=7a 4=63,∴a 4=9.∴d =a 4-a 3=2,∴a n =a 3+(n -3)d =2n +1(n ∈N *). (2)∵b n +1-b n =a n +1,且a n =2n +1, ∴b n +1-b n =2n +3.当n≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =(2n +1)+(2n -1)+…+5+3=n(n +2), 又当n =1时,b 1=3满足上式, ∴b n =n(n +2)(n ∈N *). ∴1b n =1n n +2 =12⎝⎛⎭⎫1n -1n +2. ∴T n =1b 1+1b 2+…+1b n -1+1b n=12⎣⎡⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1-1n +1+⎦⎤⎝⎛⎭⎫1n -1n +2=12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-2n +32 n 2+3n +2 .。

2022届高考数学一轮复习第五章第二节等差数列及

2022届高考数学一轮复习第五章第二节等差数列及

2022届高考数学一轮复习第五章第二节等差数列及第二节等差数列及其前n项和[全盘巩固]1.已知等差数列{an}的前n项和为Sn,a4=15,S5=55,则数列{an}的公差是()1A.B.4C.-4D.-34解析:选B∵{an}是等差数列,a4=15,S5=55,∴a1+a5=22,∴2a3=22,a3=11,∴公差d=a4-a3=4.2.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.27S3=3a1+3d=9,解析:选B设等差数列{an}的公差为d,依题意得6某5S=36,6=6a1+2=1,d=2,则a7+a8+a9=3a8=3(a1+7d)=45.3.(2022·辽宁高考)下面是关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;anp3:数列是递增数列;np4:数列{an+3nd}是递增数列.解得a1其中的真命题为()A.p1,p2B.p3,p4C.p2,p3D.p1,p4解析:选D∵{an}是等差数列,∴设an=a1+(n-1)d.∵d>0,∴{an}是递增数列,故a1-da1-d3p1是真命题;nan=dn2+(a1-d)n的对称轴方程为n=-当-时,由二次函数2d2d2anana1-d的对称性知a1>2a2,{nan}不是递增数列,p2=d+,当a1-d>0时,是nnn递减数列,p3是假命题;an+3nd=4nd+a1-d,4d>0,{an+3nd}是递增数列,p4是真命题.故p1,p4是真命题.4.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99.用Sn表示{an}的前n项和,则使得Sn达到最大值的n是()A.21B.20C.19D.18解析:选B∵a1+a3+a5=105,a2+a4+a6=99,∴3a3=105,3a4=99,即a3=35,a4=33.∴a1=39,d=-2,得an=41-2n.某令an≥0且an+1≤0,n∈N,则有n=20.5.已知Sn为等差数列{an}的前n项和,若S1=1=4,则的值为()935 A.B..4423解析:选A由等差数列的性质可知S2,S4-S2,S6-S44,得S4S2S6S4S4S2S4-S2S2S69=3,则S6-S4=5S2,所以S4=4S2,S6=9S2,=.S44某6.数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N).若b3=-2,b10=12,则a8=()A.0B.3C.8D.11解析:选B因为{bn}是等差数列,且b3=-2,b10=12,12--某故公差d==2.于是b1=-6,且bn=2n-8(n∈N),即an+1-an=2n-8.10-3所以a8=a7+6=a6+4+6=a5+2+4+6=…=a1+(-6)+(-4)+(-2)+0+2+4+6=3.7.在等差数列{an}中,首项a1=0,公差d≠0,若ak=a1+a2+a3+…+a7,则k=________.-d解析:a1+a2+…+a7=7a1+=21d,2而ak=a1+(k-1)d=(k-1)d,所以(k-1)d=21d,d≠0,故k=22.答案:228.在等差数列{an}中,an>0,且a1+a2+…+a10=30,则a5·a6的最大值为________.解析:∵a1+a2+…+a10=30,a1+a10即30,a1+a10=6,∴a5+a6=6,2a5+a62=9.∴a5·a6≤2答案:929.已知等差数列{an}中,an≠0,若n>1且an-1+an+1-an=0,S2n-1=38,则n=________.2解析:∵2an=an-1+an+1,an-1+an+1-an=0,2∴2an-an=0,即an(2-an)=0.∵an≠0,∴an=2.∴S2n-1=2(2n-1)=38,解得n=10.答案:10 1213某10.设Sn是数列{an}的前n项和且n∈N,所有项an>0,且Snn+an -.424(1)证明:{an}是等差数列;(2)求数列{an}的通项公式.1213解:(1)证明:当n=1时,a1=S1=a11-,424解得a1=3或a1=-1(舍去).当n≥2时,112an=Sn-Sn-1(a2n+2an-3)an-1+2an-1-3).4422∴4an=an-an-1+2an-2an-1.即(an+an-1)(an-an-1-2)=0.∵an+an-1>0,∴an-an-1=2(n≥2).∴数列{an}是以3为首项,2为公差的等差数列.(2)由(1)知an=3+2(n-1)=2n+1.11.已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3·a4=117,a2+a5=22.(1)求通项公式an;(2)求Sn的最小值;(3)若数列{bn}是等差数列,且bn=,求非零常数c.n+c解:(1)∵数列{an}为等差数列,∴a3+a4=a2+a5=22.又a3·a4=117,2∴a3,a4是方程某-22某+117=0的两实根,又公差d>0,∴a3<a4,∴a3=9,a4=13,Sna1+2d=9,∴a1+3d=13,a1=1,∴d=4.∴通项公式an=4n-3.(2)由(1)知a1=1,d=4,nn-1212∴Sn=na1+d=2n-n=2n-,248∴当n=1时,Sn最小,最小值为S1=a1=1.2Sn2n-n2(3)由(2)知Sn=2n-n,∴bn=n+cn+c1615∴b1=b2=b3.1+c2+c3+c∵数列{bn}是等差数列,∴2b2=b1+b3,61152即2c+c=0,2+c1+c3+c11∴c=-或c=0(舍去),故c=-222212.已知数列{an}是等差数列,bn=an-an+1.(1)证明:数列{bn}是等差数列;(2)若a1+a3+a5+…+a25=130,a2+a4+a6+…+a26=143-13k(k为常数),求数列{bn}的通项公式;(3)在(2)的条件下,若数列{bn}的前n项和为Sn,是否存在实数k,使Sn当且仅当n=12时取得最大值?若存在,求出k的取值范围;若不存在,请说明理由.22222解:(1)证明:设{an}的公差为d,则bn+1-bn=(an+1-an+2)-(an-an+1)=2an+1-(an+1222-d)-(an+1+d)=-2d,2(2)∵a1+a3+a5+…+a25=130,a2+a4+a6+…+a26=143-13k,∴13d=13-13k,∴d=1-k,-又13a1+某2d=130,∴a1=-2+12k,2∴an=a1+(n-1)d=(-2+12k)+(n-1)(1-k)=(1-k)n+13k-3,2222∴bn=an-an+1=(an+an+1)(an-an+1)=-2(1-k)n+25k-30k+5.(3)存在满足题意的实数k.由题意可知,当且仅当n=12时Sn最大,则b12>0,b13<0,22-k+25k-30k+5>0,-即22--k+25k-30k+5<0,k+18k-19>0,∴2k-22k+21>0,2解得k<-19或k>21.故k的取值范围为(-∞,-19)∪(21,+∞).[冲击名校]a11a12a13a32a33等差数列,若a22=8,则这9个数的和为()A.16B.32C.36D.72解析:选D依题意得a11+a12+a13+a21+a22+a23+a31+a32+a33=3a12+3a22+3a32=9a22=72.2.(2022·新课标全国卷Ⅱ)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为________.311.已知数阵aa21a22a23中,每行的3个数依次成等差数列,每列的3个数也依次成10a1+45d=0,,得15a1+105d=25,解析:由Sn=na1nn-22解得a1=-3,d=,3nn-212则Sn=-3n+n-10n),233132所以nSn=(n-10n),3132令f(某)=(某-10某),320222则f′(某)=某-=某某,3320当某∈1,时,f(某)单调递减;320当某∈时,f(某)单调递增,320又,f(6)=-48,f(7)=-49,3所以nSn的最小值为-49.答案:-49[高频滚动]21.已知数列{an}的前n项和Sn=-n+3n,若an+1an+2=80,则n的值为()A.5B.4C.3D.22解析:选A由Sn=-n+3n,可得an=4-2n,因此an+1·an+2=[4-2(n+1)][4-2(n+2)]=80,即n(n-1)=20,解得n=-4(舍去)或n=5.2n2.已知数列{an},{bn}满足a1=1,且an,an+1是函数f(某)=某-bn某+2的两个零点,则b10=________.nn+1解析:∵an+an+1=bn,an·an+1=2,∴an+1·an+2=2,∴an +2=2an.nn-1某又∵a1=1,a1·a2=2,∴a2=2,∴a2n=2,a2n-1=2(n∈N),∴b10=a10+a11=64.答案:64。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 等差数列及其前n 项和板块四 模拟演练·提能增分[A 级 基础达标]1.已知数列{a n }为等差数列,其前n 项和为S n ,若a 3=6,S 3=12,则公差d 等于( ) A .1 B.53 C .2 D .3答案 C解析 由已知得S 3=3a 2=12,即a 2=4,∴d =a 3-a 2=6-4=2.故选C.2.[2018·宁德模拟]等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值是( ) A .20 B .22 C .24 D .-8 答案 C解析 因为a 1+3a 8+a 15=5a 8=120,所以a 8=24,所以2a 9-a 10=a 10+a 8-a 10=a 8=24.故选C.3.设S n 为等差数列{a n }的前n 项和,若S 8=4a 3,a 7=-2,则a 9等于( ) A .-6 B .-4 C .-2 D .2 答案 A 解析 S 8=a 1+a 82=4(a 3+a 6).因为S 8=4a 3,所以a 6=0.又a 7=-2,所以d =a 7-a 6=-2,所以a 8=-4,a 9=-6.故选A.4.[2018·北京海淀期末]在等差数列{a n }中,若a 1+a 7+a 8+a 12=12,则此数列的前13项之和为( )A .39B .52C .78D .104 答案 A解析 设数列的公差为d ,则由a 1+a 7+a 8+a 12=12可得4a 1+24d =12,即a 1+6d =3,即a 7=3,故前13项之和为a 1+a 132=13a 7=39.故选A.5.[2018·郑州预测]已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=10,且5S 1S 5=15,则a 2=( ) A .2 B .3 C .4 D .5 答案 A解析 依题意得55a 1a 3=15,a 1a 3=5,a 2=10a 1a 3=2.故选A.6.已知S n 表示等差数列{a n }的前n 项和,且S 5S 10=13,那么S 5S 20等于( ) A.110 B.19 C.18 D.13 答案 A解析 因为该数列是等差数列,所以S 5,S 10-S 5,S 15-S 10,S 20-S 15成等差数列,又因为S 5S 10=13,所以S 10=3S 5,所以S 10-S 5=2S 5,所以S 15-S 10=3S 5,所以S 15=6S 5,同理可求S 20=10S 5,所以S 5S 20=110.故选A. 7.已知数列{a n }是等差数列,a 4=15,a 7=27,则过点P (3,a 3),Q (5,a 5)的直线斜率为( )A .4 B.14 C .-4 D .-14答案 A解析 由数列{a n }是等差数列,知a n 是关于n 的“一次函数”,其图象是一条直线上的等间隔的点(n ,a n ),因此过点P (3,a 3),Q (5,a 5)的直线斜率即过点(4,15),(7,27)的直线斜率,所以直线的斜率k =27-157-4=4.故选A. 8.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 ∵{a n }为等差数列,∴a 7+a 9=2a 8,∴a 7+a 8+a 9=3a 8>0,即a 8>0,又a 7+a 10=a 8+a 9<0. ∴a 9<0,∴{a n }为递减数列.又∵ S 9=S 8+a 9<S 8,S 8=S 7+a 8>S 7, ∴当n =8时,{a n }的前n 项和最大.9.[2018·金版创新题]已知数列{a n }中,a 3=7,a 7=3,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 10=________.答案 73解析 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d , 则1a 3-1=16,1a 7-1=12. ∵⎩⎨⎧⎭⎬⎫1a n -1是等差数列, ∴1a 7-1=1a 3-1+4d ,即12=16+4d ,解得d =112, 故1a 10-1=1a 3-1+7d =16+7×112=34,解得a 10=73. 10.一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.答案 5解析 设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.[B 级 知能提升]1.[2018·唐山统考]已知等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( ) A .18 B .12 C .9 D .6 答案 D解析 设等差数列{a n }的公差为d ,由题意得S 11=a 1+a 112=a 1+10d2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6.故选D.2.[2018·洛阳统考]设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13 答案 C解析 ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.故选C.3.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________. 答案 10解析 ∵2a n =a n -1+a n +1,又a n -1+a n +1-a 2n =0, ∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=2(2n -1)=38, 解得n =10.4.[2018·云南模拟]设数列{a n }的前n 项积为T n ,且T n +2a n =2(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1T n 是等差数列;(2)设b n =(1-a n )(1-a n +1),求数列{b n }的前n 项和S n . 解 (1)证明:∵T n +2a n =2,∴当n =1时,T 1+2a 1=2, ∴T 1=23,即1T 1=32.又当n ≥2时,T n =2-2×T nT n -1, 得T n ·T n -1=2T n -1-2T n , ∴1T n -1T n -1=12, ∴数列⎩⎨⎧⎭⎬⎫1T n 是以32为首项,12为公差的等差数列.(2)由(1)知,数列⎩⎨⎧⎭⎬⎫1T n 为等差数列,∴1T n =32+12(n -1)=n +22,∴a n =2-T n 2=n +1n +2, ∴b n =(1-a n )(1-a n +1)=1n +n +=1n +2-1n +3, ∴S n =⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+…+( 1n +2-1n +3 )=13-1n +3=n 3n +9. 5.已知数列{a n }的前n 项和S n =2a n -2n +1.(1)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(2)若不等式2n 2-n -3<(5-λ)a n 对任意的n ∈N *恒成立,求λ的取值范围. 解 (1)证明:当n =1时,S 1=2a 1-22,得a 1=4.S n =2a n -2n +1,当n ≥2时,S n -1=2a n -1-2n,两式相减得a n =2a n -2a n -1-2n ,即a n =2a n -1+2n ,所以a n 2n -a n -12n -1=2a n -1+2n 2n-a n -12n -1=a n -12n -1+1-a n -12n -1=1,又a 121=2,所以数列⎩⎨⎧⎭⎬⎫a n 2n 是以2为首项,1为公差的等差数列.(2)由(1)知a n2n =n +1,即a n =n ·2n +2n.因为a n >0,所以不等式2n 2-n -3<(5-λ)a n ,即(n +1)(2n -3)<(5-λ)·2n(n +1)等价于5-λ>2n -32n .记b n =2n -32n ,b 1=-12,b 2=14,当n ≥2时,b n +1b n =2n -12n +12n -32n =2n -14n -6,则b 3b 2=32,即b 3>b 2,所以当n ≥3时,b n +1b n <1,所以(b n )max =b 3=38,所以λ<378.。

相关文档
最新文档