带电粒下落进入电场磁场问题
总结带电粒子在电场磁场中的运动问题分析
动量定理在电磁场中的应用
动量定理是描述物体动量化的规律,在电磁场中,带电粒子受到电场力和洛伦兹 力的作用,通过分析这两个力的冲量关系,可以确定粒子的动量变化。
当带电粒子在电场中运动时,电场力对粒子做功,通过动量定理可以求出粒子的速 度变化。
详细描述
当带电粒子以一定速度垂直射入电场时,由于受到恒定的电场力作用,粒子将偏离原来的直线运动轨迹并做类平 抛运动。其偏转角度和偏转量的大小取决于粒子的质量和初速度以及电场强度。
02
带电粒子在磁场中的运动
匀强磁场中带电粒子的匀速圆周运动
总结词
在均匀磁场中,带电粒子受到洛伦兹 力作用,将做匀速圆周运动。
非匀强电场中带电粒子的运动
总结词
在非匀强电场中,带电粒子受到的电场力是变化的,运动轨迹一般为曲线。
详细描述
带电粒子在非匀强电场中受到的电场力是变化的,根据牛顿第二定律,粒子的 加速度也在变化。因此,带电粒子的运动轨迹一般为曲线,如抛物线、圆弧等。
带电粒子在电场中的偏转
总结词
带电粒子以一定速度垂直射入电场时,将发生偏转并做类平抛运动。
03
带电粒子在复合场中的运动
匀强电场与匀强磁场复合场中带电粒子的运动
要点一
总结词
要点二
详细描述
在匀强电场与匀强磁场复合场中,带电粒子会受到电场力 和洛伦兹力的作用,运动轨迹为复杂的曲线。
带电粒子在复合场中的运动取决于电场力和洛伦兹力的平 衡状态。当电场力和洛伦兹力的方向相同时,粒子将做加 速运动;当电场力和洛伦兹力的方向相反时,粒子将做减 速运动。在某些情况下,带电粒子可能沿着复合场的边界 做圆周运动或螺旋运动。
高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)
高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求: (1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:0442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m= 222mL mt L qE q ϕ== 22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=3.如图所示,竖直面内有水平线MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d ,一质量为m 、电量为q 的带正电粒子,从O 处以大小为v 0、方向与水平线夹角为θ=60º的速度,进入大小为E 1的匀强电场中,电场方向与竖直方向夹角为θ=60º,粒子到达PQ 线上的A 点时,其动能为在O 处时动能的4倍.当粒子到达A 点时,突然将电场改为大小为E 2,方向与竖直方向夹角也为θ=60º的匀强电场,然后粒子能到达PQ 线上的B 点.电场方向均平行于MN 、PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。
带电粒子在电场磁场中的运动研究报告
带电粒子在电场磁场中的运动研究报告
本文将围绕带电粒子在电场磁场中的运动进行研究。
带电粒子在电场磁场中的运动是物理学中的重要课题,它涉及到原子、分子、离子等微粒子的研究,有广泛应用于半导体器件、加速器、等离子体等领域。
首先,我们要了解一下带电粒子在电场中的运动。
在电场中,由于电场力的作用,带电粒子会产生加速度。
具体而言,如果一个电子处于电场中,那么它会受到一个电场力的作用,这个电场力的方向与电子所处的电场方向相同,大小和电子带电量以及电场的强度有关。
如果电子的带电量为q,电场强度为E,那么电场力F=qE。
带电粒子在电场中的运动与其被加速的情况有关,如果它在某一时刻停下来了,那么它将不再受到电场力的作用。
带电粒子在磁场中运动的多解问题
内) 侧中点处有一质量为m,电荷量为e的静止电子,经
过M、N间电压为U的电场加速后射入圆筒,在圆筒壁
上碰撞n次后,恰好沿原路返回到出发点。(不考虑重
力,设碰撞过程中无动能损失)求:
⑴电子到达小孔S时的速度大小;
⑵电子第一次到达S所需要的时间; ⑶电子第一次返回出发点所需的时间。
OR
NS M me
解:⑴ 设加速后获得的速度为v ,根据
当粒子从左边射出时, 若运动轨迹半径最大,
则其圆心为图中O1点, 半径 r1=d/4。 因由此于粒r子从mq左Bv0边,射所出以必v须0 满r足Bmqr≤,r1。Or11
Bdq 即 v0 4m
l
d/2 v0 乙
当粒子从右边射出时,若运动轨迹半径最小,则其圆
心为图中O2点,半径为r2。由几何关系可得
当减速到v1时,若qv1B=mg f1=0则以v1作匀速运动
Wf=1/2mv02 - 1/2mv12 < I2/2m 所以选项A C D正确。
qv0B qv1B f
mg mg
4. 运动的重复性形成多解 带电粒子在部分是磁场,部分是电场的空间运动时,
运动往往具有重复性,因而形成多解。
例6. 如图所示,在x轴上方有一匀强电场,场强为E,
r22
(r2
d)2 2
l 2,
d l2 r2 4 d
因此粒子从右边射出必须满足的条件是r≥r2
( d 2 4l 2 )qB
即 v0
4dm
所以当
v0
Bdq 4m
O2
r2-d/2 r2
l
或
v0
(dΒιβλιοθήκη 24l 2 4dm
)qB
时,
带点粒子在周期性变化的电场磁场中的运动规律
带点例子在周期性的电场,磁场中的运动带电粒子在交变电场或磁场中运动的情况较复杂,运动情况不仅取决于场的变化规律,还与粒子进入场的的时候的时刻有关,一定要从粒子的受力情况着手,分析出粒子在不同时间间隔内的运动情况,若交变电压的变化周期远大于粒子穿越电场的时间,那么粒子在穿越电场的过程中,可看做匀强电场。
注意:空间存在的电场或磁场是随时间周期性变化的,一般呈现“矩形波”的特点。
交替变化的电场及磁场会使带电粒子顺次经过不同特点的电场,磁场或叠加的场,从而表现出多过程现象,其特点较为隐蔽。
(1)仔细确定各场的变化特点及相应时间,其变化周期一般与粒子在磁场中的运动周期关联。
(2)把粒子的运动过程用直观的草图进行分析。
如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ两极板中心各有一小孔S<!、S2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U0,周期为T0。
在t 0时刻将一个质量为m、电量为q (q0 )的粒子由S i静止释放,粒子在电场力的作用(不计粒子重力,不考下向右运动,在t 0时刻通过S2垂直于边界进入右侧磁场区。
2虑极板外的电场)(1)求粒子到达S2时德速度大小v和极板距离d。
(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。
(3)若已保证了粒子未与极板相撞,为使粒子在t 3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感强度的大小如图甲所示,一对平行放置的金属板M、N的中心各有一小孔P、Q, PQ的连线垂直于金属板,两板间距为d o(1)如果在板M、N之间加上垂直于纸面方向的磁场,磁感应强度随时间变化如图乙所示。
T=0时刻,质量为m、电量为一q的粒子沿PQ方向以速度O u射入磁场,正好垂直于N板从Q孔射出磁场。
已知粒子在磁场中做匀速圆周运动的时间恰为一个周期,且与磁感应强度变化的周期相同,求O u的大小。
高考物理带电粒子在磁场中的运动解题技巧及练习题及解析
高考物理带电粒子在磁场中的运动解题技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】22B qLE m=;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有20v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m=且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=3.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm = 又:1mv R Be=解得:00U t B dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=4.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g所以()(00tan 22H x x x y y θ=-=g 由数学知识可知,当(022x y y = 4.5y cm =时H 有最大值,所以max 9H cm =5.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-6.如图所示,虚线OL与y轴的夹角θ=450,在OL上侧有平行于OL向下的匀强电场,在OL下侧有垂直纸面向外的匀强磁场,一质量为m、电荷量为q(q>0)的粒子以速率v0从y轴上的M(OM=d)点垂直于y轴射入匀强电场,该粒子恰好能够垂直于OL进入匀强磁场,不计粒子重力。
带电粒子在电场磁场中的运动分析解读
重点、难点分析1.带电粒子和质点在三场中运动时,所受重力、电场力和洛仑兹力的特点.2.带电粒子和质点在三场中运动时,重力、电场力和洛仑兹力做功的特点以及能量变化的特点.3.对复杂运动过程的分析,以及如何从实际问题中建立物理模型.一、带电粒子在电场和磁场中运动1.带电粒子通常指电子、质子、氚核和α粒子等微观粒子,一般可不计重力.2.处理带电粒子在电场和磁场中运动问题的方法.(1)带电粒子在匀强电场和匀强磁场共存区域内运动时,往往既要受到电场力作用,又要受到洛仑兹力作用.这两个力的特点是,电场力是恒力,而洛仑兹力的大小、方向随速度变化.若二力平衡,则粒子做匀速直线运动.若二力不平衡,则带电粒子所受合外力不可能为恒力,因此带电粒子将做复杂曲线运动.解决粒子做复杂曲线运动问题时,必须用动能定理或能量关系处理.这里要抓住场力做功和能量变化的特点,即电场力做功与电势能变化的特点,以及洛仑兹力永远不做功.(2)若匀强电场和匀强磁场是分开的独立的区域,则带电粒子在其中运动时,分别遵守在电场和磁场中运动规律运动,处理这类问题时要注意分阶段求解.[例1]空间存在相互垂直的匀强电场E和匀强磁场B,其方向如图3-7-1所示.一带电粒子+q以初速度v0垂直于电场和磁场射入,则粒子在场中的运动情况可能是A.沿初速度方向做匀速运动B.在纸平面内沿逆时针方向做匀速圆周运动C.在纸平面内做轨迹向下弯曲的匀变速曲线运动D.初始一段在纸平面内做轨迹向上(或向下)弯曲的非匀变速曲线运动问题:1.应根据哪些物理量的关系来判定粒子的运动情况?2.分析粒子的受力及其特点.判断选择并说明理由.3.若欲使带电粒子在此合场中做匀速运动,对该粒子的电性、带电量多少、质量大小、入射初速度大小有无限制?分析:粒子在场中要受到电场力和洛仑兹力作用.其中电场力为方向竖直向下的恒力;洛仑兹力方向与速度方向垂直且在垂直磁场的纸面内,初态时其方向为竖直向上,随速度大小和方向的变化,洛仑兹力也发生变化.若初态时,电场力和洛仑兹力相等,即qE=Bqv0,则粒子所受合外力为零,粒子做匀速运动.若初态时,电场力和洛仑兹力不相等,则粒子所受合外力不为零,方向与初速度方向垂直(竖直向上或竖直向下),粒子必做曲线运动.比如粒子向下偏转,其速度方向变化,所受洛仑兹力方向改变;同时电场力做正功,粒子动能增加,速度增大,洛仑兹力大小也变化.此时粒子所受合外力大小、方向均变化,则粒子所做曲线运动为非匀变速曲线运动.解:选项A、D正确.讨论与小结:1.判断带电粒子在电场和磁场共存区域内的运动形式,要根据其所受合外力的情况和合外力方向与初速度方向的关系来确定.2.若带电粒子在该合场中做匀速运动,根据qE=Bqv0可知,只要入射粒子的初速度v0=E/B,就可以做匀速运动.与粒子的电性、带电量的多少、质量的大小无关.这一点很重要,很多电学仪器的工作原理都涉及到这方面知识,比如离子速度选择器、质谱仪、电磁流量计等.[例2]如图3-7-2所示为一电磁流量计的示意图,截面为正方形的非磁性管,其边长为d,内有导电液体流动,在垂直液体流动方向加一指向纸里的匀强磁场,磁感应强度为B.现测得液体a、b两点间的电势差为U,求管内导电液体的流量Q为多少?问题:1.液体中的离子在磁场中怎样运动;为什么液体a、b两点间存在电势差?2.简述电磁流量计的工作原理.分析:流量是指单位时间内流过某一横截面的液体的体积.导电液体是指液体内含有正、负离子.在匀强磁场中,导电液体内的正、负离子在洛仑兹力作用下分别向下、上偏转,使管中上部聚积负电荷,下部聚积正电荷.从而在管内建立起一个方向向上的匀强电场,其场强随聚积电荷的增高而加强.后面流入的离子同时受到方向相反的洛仑兹力和电场力作用.当电场增强到使离子所受二力平衡时,此后的离子不再偏移,管上、下聚积电荷不再增加a、b两点电势差达到稳定值U,可以计算出流量Q.解:设液体中离子的带电量为q,因为[例3]如图3-7-3所示,两块平行放置的金属板,上板带正电,下板带等量负电.在两板间有一垂直纸面向里的匀强磁场.一电子从两板左侧以速度v0沿金属板方向射入,当两板间磁场的磁感应强度为B1时,电子从a点射出两板,射出时的速度为2v.当两板间磁场的磁感应强度变子从b点射出时的速率.问题:1.依据力和运动关系,分析电子在合场中为什么会偏转,电子所做的运动是匀变速曲线运动吗?2.因为电子所做运动为非匀变速曲线运动,无法用牛顿运动定律解决,应该考虑用什么方法解决?3.若用动能定理解决,则各场力做功有什么特点?若用能量守恒定律解决,各场的能量有什么特点?分析:电子在合场中受到电场力和洛仑兹力,初态时电子所受二力不平衡,电子将发生偏转.因为洛仑兹力的大小、方向均变化,电子所受合力为变力,做非匀变速曲线运动.若用动能定理处理问题,则需知:电场力做功与路径无关,与带电量和初、末两位置的电势差有关.洛仑兹力永远不做功.若用能量守恒定律处理问题,则需知:电子在磁场中只有动能,没有势能;电子在电场中不仅有动能,而且还有势能,因此要规定零电势面.解一:设aO两点电势差为U,电子电量为e,质量m.依据动能定理可知:解二:设O点所在等势面为零电势面,其余同上.依据能量守恒定律可知:电子从a点射出,其守恒方程为:电子从b点射出,其守恒方程为:小结:1.处理带电粒子在电场和磁场共存区域内运动的另一种方法是应用动能定量,或能量守恒定律.2.应用动能定理时要注意,洛仑兹力永远不做功;应用能量守恒定律时注意,若只有电场力做功,粒子的动能加电势能总和不变,计算时需设定零电势面,同时注意电势能的正、负.[例4]如图3-7-4所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B,在X轴下方有沿y轴负方向的匀强电场,场强为E.一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出.射出之后,第三次到达X轴时,它与点O的距离为L.求此粒子射出时的速度V和运动的总路程(重力不计).问题:带电粒子在电场和磁场中分别做什么运动?你能画出它的轨迹示意图吗?分析:本题与前两个例题不同,它的电场和磁场区域是分开的.带电粒子在x轴上方运动只受洛仑兹力作用,做匀速圆周运动,又因为x轴是磁场的边界,粒子入射速度方向与磁场垂直,所以粒子的轨迹为半圆.带电粒子在x轴下方运动只受电场力作用,速度方向与力在一条直线上,粒子做匀变速直线运动.即当粒子从磁场中以速度v垂直于x轴向下射出时,因电场力作用先匀减速到0,再反向加速至v,并垂直射入磁场(粒子在电场中做类平抛运动).因为只要求讨论到粒子第三次到达x轴,所以粒子运动轨迹如图3-7-5所示.解:如图所示,有L=4R设粒子进入电场做减速运动的最大路程为l,加速度为a,则由前面分析知,粒子运动的总路程为S=2rR+2l小结:本题带电粒子的运动比较复杂,要根据粒子运动形式的不同分阶段处理.这是解决同类问题常用的方法.在动笔计算之前,一定要依据力和运动关系认真分析运动规律,分阶段后再个个击破.二、带电质点在电场和磁场中运动1.带电质点是指重力不能忽略,但又可视为质点的带电体.2.处理带电质点在匀强电场和匀强磁场中运动问题的方法(1)讨论带电质点在复合场中运动问题时,要先弄清重力、电场力、洛仑兹力的特点.根据质点受力情况和初速度情况判定运动形式.请学生回答(2)讨论带电质点在复合场中运动问题时,还须清楚重力、电场力做功和重力势能、电势能变化关系.注意洛仑兹力不做功的特点.若带电质点只受场力作用,则它具有的动能、重力势能和电势能总和不变.请学生回答.[例5]如图3-7-6所示,在匀强电场和匀强磁场共存的区域内,场强E的方向竖直向下,磁感应强度B的方向垂直纸面向里.有三个带有等量同种电荷的油滴M、N、P在该区域中运动,其中M向有做匀速直线运动,N在竖直平面内做匀速圆周运动,P向左做匀速直线运动,不计空气阻力,则三个油滴的质量关系是A.m M>m N>m PB.m P>m N>m MC.m N>m P>m MD.m P>m M>m N问题:1.物体做匀速圆周运动的条件是什么?油滴N在场中的受力情况怎样?其电性如何?2.请对油滴P、M进行受力分析,并选出正确答案.分析:油滴在合场中要同时受到重力、电场力和洛图3-7-6仑兹力作用,其中重力、电场力是恒力,洛仑兹力随速度的变化而变化.若油滴N欲做匀速圆周运动,则其所受重力和电场力必然等大、反向,所受合力表现为洛仑兹力.这样才能满足合外力大小不变,方向时刻与速度方向垂直的运动条件.油滴一定带负电.三油滴的受力分析如图3-7-7所示.因它们所受的电场力和洛仑兹力大小分别相同,所以可知油滴P的质量最大,油滴M的质量最小.解:选项B正确.小结:1.若带电质点在三场共存区域内运动,一般会同时受到重力、电场力、洛仑兹力作用,若电场和磁场又为匀强场,则重力、电场力为恒力,洛仑兹力与速度有关,可为恒力也可为变力.2.若电场和磁场均是匀强场,且带电质点仅受三场力作用.则:(1)若重力与电场力等大、反向,初速度为零,带电质点必静止不动.(2)若重力与电场力等大、反向,初速度不为零,带电质点必做匀速圆周运动,洛仑兹力提供向心力.(3)若初速度不为零,且三力合力为零,带电质点必做匀速直线运动.(4)若初速度不为零,初态洛仑兹力与重力(或电场力)等大、反向,合外力不为零,带电质点必做复杂曲线运动.[例6]如图3-7-8所示,在xOy平面内,有场强E=12N/C,方向沿x轴正方向的匀强电场和磁感应强度大小为B=2T、方向垂直xOy平面指向纸里的匀强磁场.一个质量m=4×10-5kg,电量q=2.5×10-5C带正电的微粒,在xOy平面内做匀速直线运动,运动到原点O时,撤去磁场,经一段时间后,带电微粒运动到了x轴上的P点.求:(1)P 点到原点O的距离;(2)带电微粒由原点O运动到P点的时间.问题:1.微粒运动到O点之前都受到哪些力的作用?在这段时间内微粒为什么能做匀速直线运动?2.微粒运动到O点之后都受到哪些力的作用?在这段时间内微粒做什么运动?说明原因.分析:(1)微粒运动到O点之前要受到重力、电场力和洛仑兹力作用,如图3-7-9所示.在这段时间内微粒做匀速直线运动,说明三力合力为零.由此可得出微粒运动到O点时速度的大小和方向.(2)微粒运动到O点之后,撤去磁场,微粒只受到重力、电场力作用,其合力为一恒力,与初速度有一夹角,因此微粒将做匀变速曲线运动,如图3-7-9所示.可利用运动合成和分解的方法去求解.解:因为mg=4×10-4NF=Eq=3×1O-4N(Bqv)2=(Eq)2+(mg)2所以 v=10m/s所以θ=37°因为重力和电场力的合力是恒力,且方向与微粒在O点的速度方向垂直,所以微粒在后一段时间内的运动为类平抛运动.可沿初速度方向和合力方向进行分解.设沿初速度方向的位移为s1,沿合力方向的位移为s2,则因为s l=vt所以 P点到原点O的距离为15m; O点到P点运动时间为1. 2s.[例7]如图3-7-10所示,一对竖直放置的平行金属板长为L,板间距离为d,接在电压为U的电源上,板间有一与电场方向垂直的匀强磁场,磁场方向垂直纸面向里,磁感强度为B,有一质量为m,带电量为+q的油滴,从离平行板上端h高处由静止开始自由下落,由两板正中央P点处进入电场和磁场空间,油滴在P点所受电场力和磁场力恰好平衡,最后油滴从一块极板的边缘D处离开电场和磁场空间.求:(1)h=?(2)油滴在D点时的速度大小?问题:油滴的运动可分为几个阶段?每个阶段油滴做什么运动?每个阶段应该用什么方法来求解?分析:油滴的运动可分为两个阶段:从静止始至P点,油滴做自由落体运动;油滴进入P点以后,要受到重力、电场力和洛仑兹力作用,且合力不为零,由前面的小结知,油滴将做复杂曲线运动并从D点离开.第一个阶段的运动,可以用牛顿运动定律和运动学公式求解,也可以用能量关系求解.第二个阶段的运动只能依据能量关系求解,即重力、电场力做功之和等于油滴动能变化.或油滴具有的重力势能、电势能、动能总和不变.当然这一能量关系对整个运动过程也适用.解:(1)对第一个运动过程,依据动能定理和在P点的受力情况可知:(2)对整个运动过程,依据动能定理可知:小结:由例6、例7可以看出,处理带电质点在三场中运动的问题,首先应该对质点进行受力分析,依据力和运动的关系确定运动的形式.若质点做匀变速运动,往往既可以用牛顿运动定律和运动学公式求解,也可以用能量关系求解.若质点做非匀变速运动,往往需要用能量关系求解.应用能量关系求解时,要特别注意各力做功的特点以及重力、电场力做功分别与重力势能和电势能变化的关系.。
物理专题三带电粒子在复合场(电场磁场)中的运动解读
物理专题三 带电粒子在复合场(电场磁场)中的运动解决这类问题时一定要重视画示意图的重要作用。
⑴带电粒子在匀强电场中做类平抛运动。
这类题的解题关键是画出示意图,要点是末速度的反向延长线跟初速度延长线的交点在水平位移的中点。
⑵带电粒子在匀强磁场中做匀速圆周运动。
这类题的解题关键是画好示意图,画示意图的要点是找圆心、找半径和用对称。
例1 右图是示波管内部构造示意图。
竖直偏转电极的板长为l =4cm ,板间距离为d =1cm ,板右端到荧光屏L =18cm ,(本题不研究水平偏转)。
电子沿中心轴线进入偏转电极时的速度为v 0=1.6×107m/s ,电子电荷e =1.6×10-19C ,质量为0.91×10-30kg 。
为了使电子束不会打在偏转电极的极板上,加在偏转电极上的电压不能超过多少?电子打在荧光屏上的点偏离中心点O 的最大距离是多少?[解:设电子刚好打在偏转极板右端时对应的电压为U ,根据侧移公式不难求出U (当时对应的侧移恰好为d /2):2212⎪⎭⎫ ⎝⎛⋅=v l dm Ue d ,得U =91V ;然后由图中相似形对应边成比例可以求得最大偏离量h =5cm 。
]例2 如图甲所示,在真空中,足够大的平行金属板M 、N 相距为d ,水平放置。
它们的中心有小孔A 、B ,A 、B 及O 在同一条竖直线上,两板的左端连有如图所示的电路,交流电源的内阻忽略不计,电动势为U ,U 的方向如图甲所示,U 随时间变化如图乙所示,它的峰值为ε。
今将S 接b 一段足够长时间后又断开,并在A 孔正上方距A 为h (已知d h <)的O 点释放一个带电微粒P ,P 在AB 之间刚好做匀速运动,再将S 接到a 后让P 从O 点自由下落,在t=0时刻刚好进入A 孔,为了使P 一直向下运动,求h 与T 的关系式?[解析:当S 接b 一段足够长的时间后又断开,而带电微粒进入A 孔后刚好做匀速运动,说明它受到的重力与电场力相等,有d q mg ε= 若将S 接a 后,刚从t=0开始,M 、N 两板间的电压为,2ε,故带电粒子进入电场后,所受到的电场力为mg d q F 22==ε,也就是以大小为g 、方向向上的加速度作减速运动。
高考物理带电粒子在磁场中的运动知识点汇总
高考物理带电粒子在磁场中的运动知识点汇总一、带电粒子在磁场中的运动压轴题1.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mvEqR=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S = 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2EqmdE B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.【答案】(1) (2) (3) (n=1,2,3…)(n=1,2,3…) 【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y =v 0tanθ=v 0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.5.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;(3)场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d~.【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.6.如图,第一象限内存在沿y轴负方向的匀强电场,电场强度大小为E,第二、三、四象限存在方向垂直xOy平面向外的匀强磁场,其中第二象限的磁感应强度大小为B,第三、四象限磁感应强度大小相等,一带正电的粒子,从P(-d,0)点沿与x轴正方向成α=60°角平行xOy平面入射,经第二象限后恰好由y轴上的Q点(图中未画出)垂直y轴进入第一象限,之后经第四、三象限重新回到P点,回到P点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603d d dr sin sin α===︒ 根据200mv qv B r =得0233qBdv m=粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α===由几何知识可得 y=r-rcosα= 1323r d = 则得23x d =所以粒子在第三、四象限圆周运动的半径为1253239d d R d sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度004323v qBdv v cos mα===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动7.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷9110qm=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:(1)粒子源发射的粒子进入磁场时的速度大小;(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤ 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2v qvB m R=求解速度;(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,由2v qvB mR= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s(2)粒子在磁场中运动的时间61121044R t s v ππ-=⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间62 1.010xt s v-==⨯ 总时间6612110 1.8104t t t s s π--⎛⎫=+=+⨯=⨯⎪⎝⎭(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qEa m s m==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫==⨯⨯⨯= ⎪⨯⎝⎭打在屏上的纵坐标为0.75;经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75≤y ≤1.75.8.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为.现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.【答案】2145qRB E m=【解析】 【分析】 【详解】解答本题注意带电粒子先在匀强磁场运动,后在匀强电场运动.带电粒子在磁场中做圆周运动.粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得2v qvB m r=①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.因此ac bc r ==② 设,cd x =有几何关系得45ac R x =+③ 2235bc R R x =+- 联立②③④式得75r R =再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE="m a" ⑥ 粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得212r at =⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2145qRB E m=⑨【点睛】带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的几何关系来帮助解题.值得注意是圆形磁场的半径与运动轨道的圆弧半径要区别开来.9.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s 发出质量为m 、电量为q 的粒子沿垂直磁场方向进入磁感应强度为B 的匀强磁场,被限束光栏Q 限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P 上.(重力影响不计)(1)若能量在E ~E +ΔE (ΔE >0,且ΔE <<E )范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围Δx 1.(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围Δx 2 【答案】见解析 【解析】 【详解】(1)设α粒子以速度v 进入磁场,打在胶片上的位置距s 的距离为x 圆周运动2q B mRυυ=α粒子的动能212E m υ=2x R =由以上三式可得22mEx qB= 所以()12222m E E mEx qBqB+∆∆=-化简可得122mEx E qBE∆≈∆; (2)动能为E 的α粒子沿φ±角入射,轨道半径相同,设为R ,粒子做圆周运动2q B mRυυ=α粒子的动能212E m υ=由几何关系得()22224222cos 1cos sin 2mE mE φx R R φφqB qB ∆=-=-=10.如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.【答案】当α=30°时,粒子在磁场中运动的时间为π126T mt qB== 当α=90°时,粒子在磁场中运动的时间为π42T m t qB== 【解析】根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL 于A 点,圆心在y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴的P 点,设AP 与x 轴的夹角为β,如图所示.有(判断出圆心在y 轴上得1分)2v qvB m R=(1分)周期为2πmT qB=(1分) 过A 点作x 、y 轴的垂线,垂足分别为B 、D .由几何知识得sin αAD R =,cot 60OD AD =︒,,OP AD BP =+α=β (2分) 联立得到sin αα13+=(2分) 解得α=30°,或α=90° (各2分) 设M 点到O 点的距离为h ,有sin αAD R =h R OC =-,3cos αOC CD OD R AD =-=联立得到h=R 3cos(α+30°) (1分) 解得h=3R (α=30°) (2分) h=3R (α=90°) (2分) 当α=30°时,粒子在磁场中运动的时间为π126T m t qB ==(2分) 当α=90°时,粒子在磁场中运动的时间为π42T m t qB==(2分) 【考点定位】考查带电粒子在匀强磁场中的运动及其相关知识.。
带电粒子在电场和磁场中的运动轨迹讨论
带电粒子在电场和磁场中的运动轨迹讨论摘要:在电场和磁场中带电粒子运动轨迹分析的情况下,不能只从一个茄子方面开始,但必须综合地结合带电粒子轨迹的发生、发展变化的整个过程来理解和分析。
要学生有效地结合所学的相关知识,这也是设置初中物理的知识点,而且在考试中设定这种考试问题的宗旨是探讨学生理解能力、分析,在此基础上结合实际问题,对电场和磁场中带电的粒子轨迹进行深入分析。
关键词:带电粒子;电场;磁场;运动轨迹一、相关理论概述带电粒子在物理学科中指的是带有电荷的小型微粒。
电场是围绕电荷并传递电荷和电荷之间相互作用的物理场。
磁场不是由原子和分子组成的有形物体,而是看不见但客观存在的物质,磁铁周围可以形成磁场,磁铁产生的相互作用通过磁场作为传播介质。
变化的磁场可以产生电场,同时磁场是通过运动的电荷或电场变化而产生的,这表明两者有密切的关系。
进入有电的粒子牙齿磁场和电场时,受电力、磁力等的影响,进行生成或直线或曲线等运动,这就是对于带电粒子在电场和磁场中运动轨迹方面分析的基础与依据。
二、带电粒子在电场、磁场运动的几种情况(一)电场中的运动。
在此种的情况下,会出现直线运动、偏转、圆周运动等多种形式。
如果是加速或减速的带电粒子,就会发生直线运动。
偏转运动会形成类似于平面投掷运动的轨迹形态,通常分为两个分运动来解决。
圆周运动是以点电荷为中心形成圆形态的运动轨迹或约束状态的圆周运动。
(二)磁场中的运动。
磁场中带电粒子运动的磁场力影响是洛伦兹力的,磁场中的运动分为V//B和V-B两种形式,根据半径公式和周期公式得到运动轨迹。
(三)在复合场中的运动。
在复合场中,会出现运动轨迹,如直线运动、圆周运动和常规曲线运动。
其中,直线运动在垂直运动方向接收的力必须始终保持平衡。
在圆周运动情况下,重力和电场力达到一定平衡,同时洛伦兹力可以提供带电粒子向心力,以形成圆周运动轨迹。
综上所述,在电场、磁场中带电的粒子运动轨迹分析中,首先要判断属于什么情况,其本质可以看作是物理力学问题。
总结带电粒子在电场磁场中的运动问题分析
图.一带电粒子沿x轴正方向进入此
区域,在穿过此区域的过程中运动
方向始终不发生偏转.不计重力的影响,电场强度E和磁
感强度B的方向可能是
(
)
图4
02
A.E和B都沿x轴方向
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已 经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精 髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望改变世界,希望给别人带去光明,但更多时候我 们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容到达这 个限度时,或许已经不纯粹作用于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作, 内容的详尽固然重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容 确实非常重要又难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样会使逻辑框架相对清晰。
粒子由bc边离开电场时,E=
单击此处添加小标题
若粒子由cd边离开电场,由动能定理得 qEL=Ek′-Ek
单击此处添加小标题
答案 (1)
5Ek
2 E单k击(E此k处添E加k)小 标 题
qL
E E k
k粒 子 由 c d 边 离 开 电 场 时 , E =
qL
1. 专题二 带电粒子在磁场中的运动分析
C.E沿z轴正向,B沿y轴正向
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已 经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精 髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望改变世界,希望给别人带去光明,但更多时候我 们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容到达这 个限度时,或许已经不纯粹作用于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作, 内容的详尽固然重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容 确实非常重要又难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样会使逻辑框架相对清晰。
带电粒子在电场和磁场中的运动
带电粒子在电场和磁场中的运动要点归纳一、不计重力的带电粒子在电场中的运动1.带电粒子在电场中加速当电荷量为q 、质量为m 、初速度为v 0的带电粒子经电压U 加速后,速度变为v t ,由动能定理得:qU =12m v t 2-12m v 02.若v 0=0,则有v t =2qU m,这个关系式对任意静电场都是适用的. 对于带电粒子在电场中的加速问题,应突出动能定理的应用.2.带电粒子在匀强电场中的偏转电荷量为q 、质量为m 的带电粒子由静止开始经电压U 1加速后,以速度v 1垂直进入由两带电平行金属板产生的匀强电场中,则带电粒子在匀强电场中做类平抛运动,其轨迹是一条抛物线(如图4-1所示).图4-1 qU 1=12m v 12 设两平行金属板间的电压为U 2,板间距离为d ,板长为L .(1)带电粒子进入两板间后粒子在垂直于电场的方向上做匀速直线运动,有:v x =v 1,L =v 1t粒子在平行于电场的方向上做初速度为零的匀加速直线运动,有:v y =at ,y =12at 2,a =qE m =qU 2md. (2)带电粒子离开极板时侧移距离y =12at 2=qU 2L 22md v 12=U 2L 24dU 1轨迹方程为:y =U 2x 24dU 1(与m 、q 无关) 偏转角度φ的正切值tan φ=at v 1=qU 2L md v 12=U 2L 2dU 1若在偏转极板右侧D 距离处有一竖立的屏,在求电子射到屏上的侧移距离时有一个很有用的推论,即:所有离开偏转电场的运动电荷好像都是从极板的中心沿中心与射出点的连线射出的.这样很容易得到电荷在屏上的侧移距离y ′=(D +L 2)tan φ. 以上公式要求在能够证明的前提下熟记,并能通过以上式子分析、讨论侧移距离和偏转角度与带电粒子的速度、动能、比荷等物理量的关系.二、不计重力的带电粒子在磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m 、电荷量为q 的带电粒子以初速度v 垂直进入匀强磁场B 中做匀速圆周运动,其角速度为ω,轨道半径为R ,运动的周期为T ,则有:q v B =m v 2R =mRω2=m v ω=mR (2πT)2=mR (2πf )2 R =m v qBT =2πm qB (与v 、R 无关),f =1T =qB 2πm. 3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定①若已知粒子在圆周运动中的两个具体位置及通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向及圆轨迹的半径R ,可在该位置上作速度的垂线,垂线上距该位置R 处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2 图4-3 图4-4(2)粒子圆轨迹的半径的确定①可直接运用公式R =m v qB来确定. ②画出几何图形,利用半径R 与题中已知长度的几何关系来确定.在利用几何关系时,要注意一个重要的几何特点,即:粒子速度的偏向角φ等于对应轨迹圆弧的圆心角α,并等于弦切角θ的2倍,如图4-5所示.图4-5 (3)粒子做圆周运动的周期的确定①可直接运用公式T =2πm qB来确定. ②利用周期T 与题中已知时间t 的关系来确定.若粒子在时间t 内通过的圆弧所对应的圆心角为α,则有:t =α360°·T (或t =α2π·T ). (4)圆周运动中有关对称的规律①从磁场的直边界射入的粒子,若再从此边界射出,则速度方向与边界的夹角相等,如图4-6所示. ②在圆形磁场区域内,沿径向射入的粒子必沿径向射出,如图4-7所示.图4-6 图4-7(5)带电粒子在有界磁场中运动的极值问题刚好穿出磁场边界的条件通常是带电粒子在磁场中运动的轨迹与边界相切.三、带电粒子在复合场中的运动1.高中阶段所涉及的复合场有四种组合形式,即:①电场与磁场的复合场;②磁场与重力场的复合场;③电场与重力场的复合场;④电场、磁场与重力场的复合场.2.带电粒子在复合场中的运动性质取决于带电粒子所受的合外力及初速度,因此应把带电粒子的运动情况和受力情况结合起来进行分析.当带电粒子在复合场中所受的合外力为零时,带电粒子做匀速直线运动(如速度选择器);当带电粒子所受的重力与电场力等值、反向,由洛伦兹力提供向心力时,带电粒子在垂直磁场的平面内做匀速圆周运动;当带电粒子所受的合外力是变力,且与初速度的方向不在一条直线上时,粒子做非匀变速曲线运动,运动轨迹也随之不规范地变化.因此,要确定粒子的运动情况,必须明确有几种场,粒子受几种力,重力是否可以忽略.3.带电粒子所受三种场力的特征(1)洛伦兹力的大小跟速度方向与磁场方向的夹角有关.当带电粒子的速度方向与磁场方向平行时,f 洛=0;当带电粒子的速度方向与磁场方向垂直时,f 洛=q v B .当洛伦兹力的方向垂直于速度v 和磁感应强度B 所决定的平面时,无论带电粒子做什么运动,洛伦兹力都不做功.(2)电场力的大小为qE ,方向与电场强度E 的方向及带电粒子所带电荷的性质有关.电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与其始末位置的电势差有关.(3)重力的大小为mg ,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与其始末位置的高度差有关.注意:①微观粒子(如电子、质子、离子)一般都不计重力;②对带电小球、液滴、金属块等实际的物体没有特殊交代时,应当考虑其重力;③对未知名的、题中又未明确交代的带电粒子,是否考虑其重力,则应根据题给的物理过程及隐含条件具体分析后作出符合实际的决定.4.带电粒子在复合场中的运动的分析方法(1)当带电粒子在复合场中做匀速运动时,应根据平衡条件列方程求解.(2)当带电粒子在复合场中做匀速圆周运动时,往往应用牛顿第二定律和平衡条件列方程联立求解.(3)当带电粒子在复合场中做非匀速曲线运动时,应选用动能定理或动量守恒定律列方程求解.注意:如果涉及两个带电粒子的碰撞问题,要根据动量守恒定律列方程,再与其他方程联立求解. 由于带电粒子在复合场中的受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,并根据临界条件列出辅助方程,再与其他方程联立求解.热点、重点、难点一、根据带电粒子的运动轨迹进行分析推理图4-8●例1 如图4-8所示,MN 是一正点电荷产生的电场中的一条电场线.一个带负电的粒子(不计重力)从a 到b 穿越这条电场线的轨迹如图中虚线所示.下列结论正确的是( )A .带电粒子从a 到b 的过程中动能逐渐减小B .正点电荷一定位于M 点的左侧C .带电粒子在a 点时具有的电势能大于在b 点时具有的电势能D .带电粒子在a 点的加速度大于在b 点的加速度【解析】由做曲线运动的物体的受力特点知带负电的粒子受到的电场力指向曲线的内侧,故电场线MN 的方向为N →M ,正点电荷位于N 的右侧,选项B 错误;由a 、b 两点的位置关系知b 点更靠近场源电荷,故带电粒子在a 点受到的库仑力小于在b 点受到的库仑力,粒子在b 点的加速度大,选项D 错误;由上述电场力的方向知带电粒子由a 运动到b 的过程中电场力做正功,动能增大,电势能减小,故选项A 错误、C 正确.[答案] C【点评】本专题内容除了在高考中以常见的计算题形式出现外,有时候也以选择题形式出现,通过带电粒子在非匀强电场中(只受电场力)的运动轨迹来分析电场力和能的特性是一种重要题型,解析这类问题时要注意以下三点:①电场力一定沿电场线曲线的切线方向且一定指向轨迹曲线的内侧;②W 电=qU a b =E k b -E k a ;③当电场线为曲线时,电荷的运动轨迹不会与之重合.二、带电粒子在电场中的加速与偏转图4-9●例2 喷墨打印机的结构简图如图4-9所示,其中墨盒可以发出墨汁微滴,其半径约为1×10-5 m ,此微滴经过带电室时被带上负电,带电荷量的多少由计算机按字体笔画的高低位置输入信号加以控制.带电后的微滴以一定的初速度进入偏转电场,带电微滴经过偏转电场发生偏转后打到纸上,显示出字体.无信号输入时,墨汁微滴不带电,径直通过偏转板而注入回流槽流回墨盒.偏转板长1.6 cm ,两板间的距离为0.50 cm ,偏转板的右端距纸3.2 cm .若墨汁微滴的质量为1.6×10-10 kg ,以20 m/s 的初速度垂直于电场方向进入偏转电场,两偏转板间的电压是8.0×103 V ,其打到纸上的点距原射入方向的距离是2.0 mm .求这个墨汁微滴通过带电室所带的电荷量的多少.(不计空气阻力和重力,可以认为偏转电场只局限于平行板电容器的内部,忽略边缘电场的不均匀性)为了使纸上的字放大10%,请你分析并提出一个可行的方法.【解析】设墨汁微滴所带的电荷量为q ,它进入偏转电场后做类平抛运动,离开电场后做直线运动打到纸上,则距原入射方向的距离为:y =12at 2+L tan φ又a =qU md ,t =l v 0,tan φ=at v 0解得:y =qUl md v 02(l 2+L ) 代入数据得:q =1.25×10-13 C要将字体放大10%,只要使y 增大为原来的 1.1倍,可采用的措施为将两偏转板间的电压增大到8.8×103 V ,或将偏转板右端与纸的间距增大到3.6 cm .[答案] 1.25×10-13 C 将两偏转板间的电压增大到8.8×103 V ,或将偏转板右端与纸的间距增大到3.6 cm【点评】①本题也可直接根据推论公式y =(l 2+L )tan φ=(l 2+L )qUl md v 02进行计算. ②和平抛运动问题一样,这类题型中偏转角度的正切表达式在解题中往往较为关键,且有tan θ=2tan α(α为射出点的位移方向与入射方向的夹角)的特点.★同类拓展1 如图4-10甲所示,在真空中,有一半径为R 的圆形区域内存在匀强磁场,磁场方向垂直纸面向外.在磁场右侧有一对平行金属板M 和N ,两板间距为R ,板长为2R ,板间的中心线O 1O 2与磁场的圆心O 在同一直线上.有一电荷量为q 、质量为m 的带正电的粒子以速度v 0从圆周上的a 点沿垂直于半径OO 1并指向圆心O 的方向进入磁场,当从圆周上的O 1点水平飞出磁场时,给M 、N 两板加上如图4-10乙所示的电压,最后粒子刚好以平行于N 板的速度从N 板的边缘飞出.(不计粒子所受到的重力、两板正对面之间为匀强电场,边缘电场不计)图4-10 (1)求磁场的磁感应强度B .(2)求交变电压的周期T 和电压U 0的值.(3)当t =T 2时,该粒子从M 、N 板右侧沿板的中心线仍以速度v 0射入M 、N 之间,求粒子从磁场中射出的点到a 点的距离.【解析】(1)粒子自a 点进入磁场,从O 1点水平飞出磁场,则其运动的轨道半径为R .由q v 0B =m v 02R ,解得:B =m v 0qR. (2)粒子自O 1点进入电场后恰好从N 板的边缘平行极板飞出,设运动时间为t ,根据类平抛运动规律有:2R=v 0tR 2=2n ·qU 02mR (T 2)2 又t =nT (n =1,2,3…)解得:T =2R n v 0(n =1,2,3…) U 0=nm v 022q(n =1,2,3…).图4-10丙(3)当t =T 2时,粒子以速度v 0沿O 2O 1射入电场,该粒子恰好从M 板边缘以平行于极板的速度射入磁场,进入磁场的速度仍为v 0,运动的轨迹半径为R .设进入磁场时的点为b ,离开磁场时的点为c ,圆心为O 3,如图4-10丙所示,四边形ObO 3c 是菱形,所以Oc ∥O 3b ,故c 、O 、a 三点共线,ca 即为圆的直径,则c 、a 间的距离d =2R .[答案] (1)m v 0qR(2)2R n v 0 (n =1,2,3…) nm v 022q(n =1,2,3…) (3)2R 【点评】带电粒子在匀强电场中偏转的运动是类平抛运动,解此类题目的关键是将运动分解成两个简单的直线运动,题中沿电场方向的分运动就是“受力周期性变化的加速运动”.三、带电粒子在有界磁场中(只受洛伦兹力)的运动1.带电粒子在磁场中的运动大体包含五种常见情境,即:无边界磁场、单边界磁场、双边界磁场、矩形边界磁场、圆形边界磁场.带电粒子在磁场中的运动问题综合性较强,解这类问题往往要用到圆周运动的知识、洛伦兹力,还要牵涉到数学中的平面几何、解析几何等知识.因此,解此类试题,除了运用常规的解题思路(画草图、找“圆心”、定“半径”等)之外,更应侧重于运用数学知识进行分析.2.带电粒子在有界匀强磁场中运动时,其轨迹为不完整的圆周,解决这类问题的关键有以下三点. ①确定圆周的圆心.若已知入射点、出射点及入射方向、出射方向,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两直线的交点即为圆周的圆心;若已知入射点、出射点及入射方向,可通过入射点作入射线的垂线,连接入射点和出射点,作此连线的垂直平分线,两垂线的交点即为圆周的圆心.②确定圆的半径.一般在圆上作图,由几何关系求出圆的半径.③求运动时间.找到运动的圆弧所对应的圆心角θ,由公式t =θ2πT 求出运动时间. 3.解析带电粒子穿过圆形区域磁场问题常可用到以下推论:①沿半径方向入射的粒子一定沿另一半径方向射出.②同种带电粒子以相同的速率从同一点垂直射入圆形区域的匀强磁场时,若射出方向与射入方向在同一直径上,则轨迹的弧长最长,偏转角有最大值且为α=2arcsin R r =2arcsin RBq m v. ③在圆形区域边缘的某点向各方向以相同速率射出的某种带电粒子,如果粒子的轨迹半径与区域圆的半径相同,则穿过磁场后粒子的射出方向均平行(反之,平行入射的粒子也将汇聚于边缘一点).●例3 如图4-11甲所示,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (0,h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点,不计重力,求:图4-11甲(1)粒子到达x =R 0平面时的速度方向与x 轴的夹角以及粒子到x 轴的距离.(2)M 点的横坐标x M .【解析】(1)粒子做直线运动时,有:qE =qB v 0做圆周运动时,有:qB v 0=m v 02R 0只有电场时,粒子做类平抛运动,则有:qE =maR 0=v 0tv y =at解得:v y =v 0粒子的速度大小为:v =v 02+v y 2=2v 0速度方向与x 轴的夹角为:θ=π4粒子与x 轴的距离为:H =h +12at 2=h +R 02. (2)撤去电场加上磁场后,有:qB v =m v 2R解得:R =2R 0此时粒子的运动轨迹如图4-11乙所示.圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y轴的夹角均为π4.由几何关系可得C 点的坐标为:图4-11乙x C =2R 0y C =H -R 0=h -R 02 过C 点作x 轴的垂线,在△CDM 中,有:l CM =R =2R 0,l CD =y C =h -R 02解得:l DM =l CM 2-l CD 2=74R 02+R 0h -h 2 M 点的横坐标为:x M =2R 0+74R 02+R 0h -h 2. [答案] (1)π2 h +R 02 (2)2R 0+74R 02+R 0h -h 2 【点评】无论带电粒子在匀强电场中的偏转还是在匀强磁场中的偏转,偏转角往往是个较关键的量. ●例4 如图4-12甲所示,质量为m 、电荷量为e 的电子从坐标原点O 处沿xOy 平面射入第一象限内,射入时的速度方向不同,但大小均为v 0.现在某一区域内加一方向向外且垂直于xOy 平面的匀强磁场,磁感应强度大小为B ,若这些电子穿过磁场后都能垂直地射到与y 轴平行的荧光屏MN 上,求:图4-12甲 (1)荧光屏上光斑的长度.(2)所加磁场范围的最小面积.【解析】(1)如图4-12乙所示,要求光斑的长度,只要找到两个边界点即可.初速度沿x 轴正方向的电子沿弧OA 运动到荧光屏MN 上的P 点;初速度沿y 轴正方向的电子沿弧OC 运动到荧光屏MN 上的Q 点.图4-12乙设粒子在磁场中运动的半径为R ,由牛顿第二定律得:e v 0B =m v 02R ,即R =m v 0Be由几何知识可得:PQ =R =m v 0Be. (2)取与x 轴正方向成θ角的方向射入的电子为研究对象,其射出磁场的点为E (x ,y ),因其射出后能垂直打到屏MN 上,故有:x =-R sin θy =R +R cos θ即x 2+(y -R )2=R 2又因为电子沿x 轴正方向射入时,射出的边界点为A 点;沿y 轴正方向射入时,射出的边界点为C 点,故所加最小面积的磁场的边界是以(0,R )为圆心、R 为半径的圆的一部分,如图乙中实线圆弧所围区域,所以磁场范围的最小面积为:S =34πR 2+R 2-14πR 2=(π2+1)(m v 0Be)2. [答案] (1)m v 0Be (2)(π2+1)(m v 0Be)2 【点评】带电粒子在匀强磁场中偏转的试题基本上是年年考,大概为了求新求变,在2009年高考中海南物理卷(第16题)、浙江理综卷(第25题)中都出现了应用这一推论的题型.★同类拓展2 如图4-13甲所示,ABCD 是边长为a 的正方形.质量为m 、电荷量为e 的电子以大小为v 0的初速度沿纸面垂直于BC 边射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC 边上的任意点入射,都只能从A 点射出磁场.不计重力,求:图4-13甲(1)此匀强磁场区域中磁感应强度的方向和大小.(2)此匀强磁场区域的最小面积.[2009年高考·海南物理卷]【解析】(1)若要使由C 点入射的电子从A 点射出,则在C 处必须有磁场,设匀强磁场的磁感应强度的大小为B ,令圆弧AEC 是自C 点垂直于BC 入射的电子在磁场中的运行轨道,电子所受到的磁场的作用力f =e v 0B ,方向应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外.圆弧AEC 的圆心在CB 边或其延长线上.依题意,圆心在A 、C 连线的中垂线上,故B 点即为圆心,圆半径为a .按照牛顿定律有: f =m v 02a联立解得:B =m v 0ea. (2)由(1)中决定的磁感应强度的方向和大小,可知自C 点垂直于BC 入射的电子在A 点沿DA 方向射出,且自BC 边上其他点垂直于入射的电子的运动轨道只能在BAEC 区域中,因而,圆弧AEC 是所求的最小磁场区域的一个边界.为了决定该磁场区域的另一边界,我们来考察射中A 点的电子的速度方向与BA 的延长线交角为θ(不妨设0≤θ<π2)的情形.该电子的运动轨迹QP A 如图4-13乙所示.图中,圆弧 AP 的圆心为O ,PQ 垂直于BC 边,由上式知,圆弧 AP 的半径仍为a .过P 点作DC 的垂线交DC 于G ,由几何关系可知∠DPG=θ,在以D 为原点、DC 为x 轴、DA 为y 轴的坐标系中,P 点的坐标(x ,y )为:x =a sin θ,y =a cos θ图4-13乙 这意味着,在范围0≤θ≤π2内,P 点形成以D 为圆心、a 为半径的四分之一圆周 AFC ,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界.因此,所求的最小匀强磁场区域是分别以B 和D 为圆心、a 为半径的两个四分之一圆周AEC 和 AFC 所围成的,其面积为: S =2(14πa 2-12a 2)=π-22a 2. [答案] (1)m v 0ea 方向垂直于纸面向外 (2)π-22a 2 四、带电粒子在复合场、组合场中的运动问题●例5 在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如图4-14甲所示.磁场的磁感应强度B 随时间t 的变化情况如图4-14乙所示.该区域中有一条水平直线MN ,D 是MN 上的一点.在t =0时刻,有一个质量为m 、电荷量为+q 的小球(可看做质点),从M 点开始沿着水平直线以速度v 0做匀速直线运动,t 0时刻恰好到达N 点.经观测发现,小球在t =2t 0至t =3t 0时间内的某一时刻,又竖直向下经过直线MN 上的D 点,并且以后小球多次水平向右或竖直向下经过D 点.求:图4-14(1)电场强度E 的大小.(2)小球从M 点开始运动到第二次经过D 点所用的时间.(3)小球运动的周期,并画出运动轨迹(只画一个周期).【解析】(1)小球从M 点运动到N 点时,有:qE =mg解得:E =mg q. (2)小球从M 点到达N 点所用时间t 1=t 0小球从N 点经过34个圆周,到达P 点,所以t 2=t 0小球从P 点运动到D 点的位移x =R =m v 0B 0q小球从P 点运动到D 点的时间t 3=R v 0=m B 0q所以时间t =t 1+t 2+t 3=2t 0+m B 0q[或t =m qB 0(3π+1),t =2t 0(13π+1)]. (3)小球运动一个周期的轨迹如图4-14丙所示.图4-14丙 小球的运动周期为:T =8t 0(或T =12πm qB 0). [答案] (1)mg q (2)2t 0+m B 0q(3)T =8t 0 运动轨迹如图4-14丙所示【点评】带电粒子在复合场或组合场中运动的轨迹形成一闭合的对称图形的试题在高考中屡有出现.五、常见的、在科学技术中的应用带电粒子在电场、磁场中的运动规律在科学技术中有广泛的应用,高中物理中常碰到的有:示波器(显像管)、速度选择器、质谱仪、回旋加速器、霍耳效应传感器、电磁流量计等.●例6 一导体材料的样品的体积为a ×b ×c ,A ′、C 、A 、C ′为其四个侧面,如图4-15所示.已知导体样品中载流子是自由电子,且单位体积中的自由电子数为n ,电阻率为ρ,电子的电荷量为e ,沿x 方向通有电流I .图4-15(1)导体样品A ′、A 两个侧面之间的电压是________,导体样品中自由电子定向移动的速率是________.(2)将该导体样品放在匀强磁场中,磁场方向沿z 轴正方向,则导体侧面C 的电势________(填“高于”、“低于”或“等于”)侧面C ′的电势.(3)在(2)中,达到稳定状态时,沿x 方向的电流仍为I ,若测得C 、C ′两侧面的电势差为U ,试计算匀强磁场的磁感应强度B 的大小.【解析】(1)由题意知,样品的电阻R =ρ·c ab根据欧姆定律:U 0=I ·R =ρcI ab分析t 时间定向移动通过端面的自由电子,由电流的定义式I =n ·ab ·v ·t ·e t可得v =I nabe.(2)由左手定则知,定向移动的自由电子向C ′侧面偏转,故C 侧的电势高于C ′侧面.(3)达到稳定状态时,自由电子受到电场力与洛伦兹力的作用而平衡,则有:q Ub=q v B解得:B =neaUI .[答案] (1)ρcI ab I nabe (2)高于 (3)neaUI【点评】本例实际上为利用霍耳效应测磁感应强度的方法,而电磁流量计、磁流体发电机的原理及相关问题的解析都与此例相似.★同类拓展3 如图4-16甲所示,离子源A 产生的初速度为零、带电荷量均为e 、质量不同的正离子被电压为U 0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直于边界MN 进入磁感应强度为B 的匀强磁场.已知HO =d ,HS =2d ,∠MNQ =90°.(忽略离子所受重力)图4-16甲(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ. (2)求质量为m 的离子在磁场中做圆周运动的半径.(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上的正离子的质量范围.[2009年高考·重庆理综卷]【解析】(1)设正离子经电压为U 0的电场加速后速度为v 1,应用动能定理有:图4-16乙eU 0=12m v 12-0正离子垂直射入匀强偏转电场,受到的电场力F =eE 0产生的加速度a =F m ,即a =eE 0m垂直电场方向做匀速运动,有:2d =v 1t沿电场方向,有:d =12at 2联立解得:E 0=U 0d又tan φ=v 1at解得:φ=45°.(2)正离子进入磁场时的速度大小为: v =v 12+v ⊥2=v 12+(at )2正离子在匀强磁场中做匀速圆周运动,由洛伦兹力提供向心力,则有:e v B =m v 2R联立解得:正离子在磁场中做圆周运动的半径R =2mU 0eB 2.(3)将4m 和16m 代入R ,得R 1=24mU 0eB 2、R 2=216mU 0eB 2图4-16丙由几何关系可知S 1和S 2之间的距离Δs =R 22-(R 2-R 1)2-R 1联立解得:Δs =4(3-1)mU 0eB 2由R ′2=(2R 1)2+(R ′-R 1)2得:R ′=52R 1由12R 1<R <52R 1 得:m <m 正<25m .[答案] (1)45° (2)2mU 0eB 2(3)m <m 正<25m经典考题带电粒子在电场、磁场以及复合场、组合场中的运动问题是每年各地高考的必考内容,留下大量的经典题型,认真地总结归纳这些试题会发现以下特点:①重这些理论在科学技术上的应用; ②需要较强的空间想象能力. 1.图示是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹.云室放置在匀强磁场中,磁场方向垂直照片向里,云室中横放的金属板对粒子的运动起阻碍作用.分析此径迹可知粒子[2009年高考·安徽理综卷]( )。
带电粒子在电场和磁场中的运动(带解答)
带电粒子在电场和磁场中的运动(带解答)1.(2013北京朝阳区期末)如图所示,一个静止的质量为m 、电荷量为q 的粒子(重力忽略不计),经加速电压U 加速后,垂直进入磁感应强度为B 的匀强磁场中,粒子打到P 点,OP =x ,能正确反映x 与U 之间关系的是A .x 与U 成正比B .x 与U 成反比C .x 成正比D .x 成反比答案:C解析:由x=2R=2mv/qB ,qU=12mv 2,可得x 成正比,选项C 正确。
2.(18分) (2013甘肃省张掖市一诊)如图所示,在xoy 坐标系中,y>0的范围内存在着沿y 轴正方向的匀强电场,在y<0的范围内存在着垂直纸面的匀强磁场(方向未画出)。
已知oa=oc=cd=L, ob=L/4。
现有一群带电粒子,质量为m ,电荷量大小为q (重力不计),分布在y 轴的a 、b 之间。
t=0时刻,这群带电粒子以相同的初速度v 0沿x 轴正方向开始运动。
观察到从a 点出发的带电粒子恰好从d 点第一次进入磁场,然后从O 点第—次离开磁场。
试回答:(1) 判断匀强磁场的方向;(2) 带电粒子第一次进入磁场的位置坐标x 与出发点的位置坐标y 的关系式;(3) 带电粒子第一次离开磁场的位置坐标x 1与出发点的位置坐标y 的关系式。
3.(18分)(2013湖南省娄底市期末)如图所示,磁感应强度大小B =0.15T、方向垂直纸面向里的匀强磁场分布在半径R =0.10m的圆形区域内,圆的左端跟y轴相切于直角坐标系原点O,右端跟很大的荧光屏MN相切于度射出带正电的粒子流,粒子的重力不计,比荷q/m=1.0×108C/kg。
(1)请判断当粒子分别以v1=1.53×106m/s和v=0.53×106m/s的速度射入磁场时,能否打到荧光屏上?2(2)要使粒子能打在荧光屏上,求粒子流的速度v0的大小应满足的条件。
(3)若粒子流的速度v0=3.0×106m/s,且以过O点并垂直于纸面的直线为轴,将圆形磁场逆时针缓慢旋转90°,求此过程中粒子打在荧光屏上离A的最远距离。
高考物理带电粒子在磁场中的运动解题技巧(超强)及练习题(含答案)及解析
⾼考物理带电粒⼦在磁场中的运动解题技巧(超强)及练习题(含答案)及解析⾼考物理带电粒⼦在磁场中的运动解题技巧(超强)及练习题(含答案)及解析⼀、带电粒⼦在磁场中的运动专项训练1.如图所⽰为电⼦发射器原理图,M 处是电⼦出射⼝,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的⾦属圆柱A 可沿半径向外均匀发射速率为v 的电⼦;与A 同轴放置的⾦属⽹C 的半径为2a.不考虑A 、C 的静电感应电荷对电⼦的作⽤和电⼦之间的相互作⽤,忽略电⼦所受重⼒和相对论效应,已知电⼦质量为m ,电荷量为e.(1)若A 、C 间加速电压为U ,求电⼦通过⾦属⽹C 发射出来的速度⼤⼩v C ;(2)若在A 、C 间不加磁场和电场时,检测到电⼦从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电⼦的数量N.(忽略C 、D 间的距离以及电⼦碰撞到C 、D 上的反射效应和⾦属⽹对电⼦的吸收)(3)若A 、C 间不加电压,要使由A 发射的电⼦不从⾦属⽹C 射出,可在⾦属⽹内环形区域加垂直于圆平⾯向⾥的匀强磁场,求所加磁场磁感应强度B 的最⼩值.【答案】(1)22e eUv v m=+4alt N ed π=(3) 43mv B ae = 【解析】【分析】(1)根据动能定理求解求电⼦通过⾦属⽹C 发射出来的速度⼤⼩;(2)根据=neI t求解圆柱体A 在时间t 内发射电⼦的数量N ;(3)使由A 发射的电⼦不从⾦属⽹C 射出,则电⼦在 CA 间磁场中做圆周运动时,其轨迹圆与⾦属⽹相切,由⼏何关系求解半径,从⽽求解B. 【详解】(1)对电⼦经 CA 间的电场加速时,由动能定理得221122e e U mv mv =- 解得:22e eUv v m=+(2)设时间t 从A 中发射的电⼦数为N ,由M ⼝射出的电⼦数为n ,则 =ne I t224d dNn N a aππ==?解得4alt Nedπ=(3)电⼦在 CA 间磁场中做圆周运动时,其轨迹圆与⾦属⽹相切时,对应的磁感应强度为B.设此轨迹圆的半径为r,则222(2)a r r a-=+2vBev mr=解得:43mv Bae =2.如图所⽰,MN为绝缘板,CD为板上两个⼩孔,AO为CD的中垂线,在MN的下⽅有匀强磁场,⽅向垂直纸⾯向外(图中未画出),质量为m电荷量为q的粒⼦(不计重⼒)以某⼀速度从A点平⾏于MN的⽅向进⼊静电分析器,静电分析器内有均匀辐向分布的电场(电场⽅向指向O点),已知图中虚线圆弧的半径为R,其所在处场强⼤⼩为E,若离⼦恰好沿图中虚线做圆周运动后从⼩孔C垂直于MN进⼊下⽅磁场.()1求粒⼦运动的速度⼤⼩;()2粒⼦在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时⽆电荷的转移,之后恰好从⼩孔D进⼊MN上⽅的⼀个三⾓形匀强磁场,从A点射出磁场,则三⾓形磁场区域最⼩⾯积为多少?MN上下两区域磁场的磁感应强度⼤⼩之⽐为多少?()3粒⼦从A点出发后,第⼀次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒⼦进⼊静电分析器做圆周运动,则有:2mv EqR=解得:EqRvm=(2)粒⼦从D到A匀速圆周运动,轨迹如图所⽰:由图⽰三⾓形区域⾯积最⼩值为:22RS=在磁场中洛伦兹⼒提供向⼼⼒,则有:2mvBqvR=得:mvRBq=设MN下⽅的磁感应强度为B1,上⽅的磁感应强度为B2,如图所⽰:若只碰撞⼀次,则有:112R mvRB q==22mvR RB q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒⼦在电场中运动时间:1242R mRt v Eqππ== 在MN 下⽅的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=== 在MN 上⽅的磁场中运动时间:232142R mRt v Eqππ=?=总时间:1232mRt t t t Eqπ=++=3.空间中存在⽅向垂直于纸⾯向⾥的匀强磁场,磁感应强度为B ,⼀带电量为+q 、质量为m 的粒⼦,在P 点以某⼀初速开始运动,初速⽅向在图中纸⾯内如图中P 点箭头所⽰.该粒⼦运动到图中Q 点时速度⽅向与P 点时速度⽅向垂直,如图中Q 点箭头所⽰.已知P 、Q 间的距离为L .若保持粒⼦在P 点时的速度不变,⽽将匀强磁场换成匀强电场,电场⽅向与纸⾯平⾏且与粒⼦在P 点时速度⽅向垂直,在此电场作⽤下粒⼦也由P 点运动到Q 点.不计重⼒.求:(1)电场强度的⼤⼩.(2)两种情况中粒⼦由P 运动到Q 点所经历的时间之⽐.【答案】22B qLE m=;2B E t t π=【解析】【分析】【详解】(1)粒⼦在磁场中做匀速圆周运动,以v 0表⽰粒⼦在P 点的初速度,R 表⽰圆周的半径,则有200v qv B m R= 由于粒⼦在Q点的速度垂直它在p 点时的速度,可知粒⼦由P 点到Q 点的轨迹为14圆周,故有2R =以E 表⽰电场强度的⼤⼩,a 表⽰粒⼦在电场中加速度的⼤⼩,t E 表⽰粒⼦在电场中由p 点运动到Q 点经过的时间,则有qE ma = ⽔平⽅向上:212E R at =竖直⽅向上:0E R v t =由以上各式,得 22B qL E m= 且E mt qB = (2)因粒⼦在磁场中由P 点运动到Q 点的轨迹为14圆周,即142Bt T m qB π== 所以2B E t t π4.如图所⽰,两块平⾏⾦属极板MN ⽔平放置,板长L =" 1" m .间距d =3m ,两⾦属板间电压U MN = 1×104V ;在平⾏⾦属板右侧依次存在ABC 和FGH 两个全等的正三⾓形区域,正三⾓形ABC 内存在垂直纸⾯向⾥的匀强磁场B 1,三⾓形的上顶点A 与上⾦属板M 平齐,BC 边与⾦属板平⾏,AB 边的中点P 恰好在下⾦属板N 的右端点;正三⾓形FGH 内存在垂直纸⾯向外的匀强磁场B 2,已知A 、F 、G 处于同⼀直线上.B 、C 、H 也处于同⼀直线上.AF 两点距离为23m .现从平⾏⾦属极板MN 左端沿中⼼轴线⽅向⼊射⼀个重⼒不计的带电粒⼦,粒⼦质量m = 3×10-10kg ,带电量q = +1×10-4C ,初速度v 0= 1×105m/s .(1)求带电粒⼦从电场中射出时的速度v 的⼤⼩和⽅向(2)若带电粒⼦进⼊中间三⾓形区域后垂直打在AC 边上,求该区域的磁感应强度B 1(3)若要使带电粒⼦由FH 边界进⼊FGH 区域并能再次回到FH 界⾯,求B 2应满⾜的条件.【答案】(1)52310/m s ?;垂直于AB ⽅向出射.(2)33T (3)23T + 【解析】试题分析:(1)设带电粒⼦在电场中做类平抛运动的时间为t ,加速度为a ,则:U qma d =解得:102310/qU a m s md ==? 50110Lt s v -==? 竖直⽅向的速度为:v y =at =3×105m/s 射出时速度为:22502310/y v v v m s =+=速度v 与⽔平⽅向夹⾓为θ,03tan y v v θ==,故θ=30°,即垂直于AB ⽅向出射.(2)带电粒⼦出电场时竖直⽅向的偏转的位移21322d y at m ===,即粒⼦由P 1点垂直AB 射⼊磁场,由⼏何关系知在磁场ABC 区域内做圆周运动的半径为12cos303d R m ==11v B qv m R =知:113310mv B T qR == (3)分析知当轨迹与边界GH 相切时,对应磁感应强度B 2最⼤,运动轨迹如图所⽰:由⼏何关系得:221sin 60R R += 故半径2(233)R m =⼜222v B qv m R =故2235B T +=所以B 2应满⾜的条件为⼤于235T +.考点:带电粒⼦在匀强磁场中的运动.5.如图所⽰,在平⾯直⾓坐标系xOy 平⾯内,直⾓三⾓形abc 的直⾓边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三⾓形内有垂直纸⾯向⾥的匀强磁场.在笫⼀象限内,有⽅向沿y 轴正向的匀强电场,场强⼤⼩E 与匀强磁场磁感应强度B 的⼤⼩间满⾜E=v 0B .在x=3d 的N 点处,垂直于x 轴放置⼀平⾯荧光屏.电⼦束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射⼊磁场,其中从y 轴上y=-2d 处射⼊的电⼦,经磁场偏转后,恰好经过O 点.电⼦质量为m,电量为e,电⼦间的相互作⽤及重⼒不计.求 (1)匀强磁杨的磁感应强度B(2)电⼦束从y 轴正半轴上射⼊电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L【答案】(1)0mv ed ;(2)02y d ≤≤;(3)94d ;【解析】(1)设电⼦在磁场中做圆周运动的半径为r ;由⼏何关系可得r =d电⼦在磁场中做匀速圆周运动洛伦兹⼒提供向⼼⼒,由⽜顿第⼆定律得:20v ev B m r=解得:0mv B ed=(2)当电⼦在磁场中运动的圆轨迹与ac 边相切时,电⼦从+ y 轴射⼊电场的位置距O 点最远,如图甲所⽰.设此时的圆⼼位置为O ',有:sin 30rO a '=3OO d O a ='-' 解得OO d '=即从O 点进⼊磁场的电⼦射出磁场时的位置距O 点最远所以22m y r d ==电⼦束从y 轴正半轴上射⼊电场时的纵坐标y 的范围为02y d ≤≤设电⼦从02y d ≤≤范围内某⼀位置射⼊电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度⽅向与x 轴间夹⾓为θ,在电场中运动的时间为t ,电⼦打到荧光屏上产⽣的发光点距N 点的距离为L ,如图⼄所⽰:根据运动学公式有:0x v t =212eE y t m=y eE v t m=tan y v v θ=tan 3Ld xθ=- 解得:(32)2L d y y =即98y d =时,L 有最⼤值解得:94L d =当322d y y -=【点睛】本题属于带电粒⼦在组合场中的运动,粒⼦在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据⼏何关系确定某些物理量之间的关系;粒⼦在电场中的偏转经常⽤化曲为直的⽅法,求极值的问题⼀定要先找出临界的轨迹,注重数学⽅法在物理中的应⽤.6.在如图所⽰的xoy 坐标系中,⼀对间距为d 的平⾏薄⾦属板竖直固定于绝缘底座上,底座置于光滑⽔平桌⾯的中间,极板右边与y 轴重合,桌⾯与x 轴重合,o 点与桌⾯右边相距为74d,⼀根长度也为d 的光滑绝缘细杆⽔平穿过右极板上的⼩孔后固定在左极板上,杆离桌⾯⾼为1.5d ,装置的总质量为3m .两板外存在垂直纸⾯向外、磁感应强度为B 的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有⼀个质量为m 、电量为+q 的⼩环(可视为质点)套在杆的左端,给极板充电,使板内有沿x 正⽅向的稳恒电场时,释放⼩环,让其由静⽌向右滑动,离开⼩孔后便做匀速圆周运动,重⼒加速度取g .求:(1)环离开⼩孔时的坐标值;(2)板外的场强E 2的⼤⼩和⽅向;(3)讨论板内场强E 1的取值范围,确定环打在桌⾯上的范围.【答案】(1)环离开⼩孔时的坐标值是-14d ;(2)板外的场强E 2的⼤⼩为mgq,⽅向沿y 轴正⽅向;(3)场强E 1的取值范围为223 68qB d qB dm m~,环打在桌⾯上的范围为1744d d -~.【解析】【详解】(1)设在环离开⼩孔之前,环和底座各⾃移动的位移为x 1、x 2.由于板内⼩环与极板间的作⽤⼒是它们的内⼒,系统动量守恒,取向右为正⽅向,根据动量守恒定律,有:mx1-3mx2=0 ①⽽x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开⼩孔时的坐标值为:x m=34d-d=-14d(2)环离开⼩孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,⽅向沿y轴正⽅向(3)环打在桌⾯上的范围可画得如图所⽰,临界点为P、Q,则若环绕⼩圆运动,则R=0.75d ④根据洛仑兹⼒提供向⼼⼒,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开⼩孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联⽴③④⑤⑥解得:2 138qB d Em=若环绕⼤圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联⽴③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌⾯上的范围为1744d d-~.7.如图所⽰,在不考虑万有引⼒的空间⾥,有两条相互垂直的分界线MN、PQ,其交点为O.MN⼀侧有电场强度为E的匀强电场(垂直于MN),另⼀侧有匀强磁场(垂直纸⾯向⾥).宇航员(视为质点)固定在PQ线上距O点为h的A点处,⾝边有多个质量均为m、电量不等的带负电⼩球.他先后以相同速度v0、沿平⾏于MN⽅向抛出各⼩球.其中第1个⼩球恰能通过MN上的C点第⼀次进⼊磁场,通过O点第⼀次离开磁场,OC=2h.求:(1)第1个⼩球的带电量⼤⼩;(2)磁场的磁感强度的⼤⼩B;(3)磁场的磁感强度是否有某值,使后⾯抛出的每个⼩球从不同位置进⼊磁场后都能回到宇航员的⼿中?如有,则磁感强度应调为多⼤.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q Eh tm=2h v t=Eh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B 由2 1v qvB mR=由⼏何关系得:22sinR hθ=解得:2EBv=;(3)后⾯抛出的⼩球电量为q,磁感应强度B'①⼩球作平抛运动过程2hmx v t vqE==2yqEv hm=②⼩球穿过磁场⼀次能够⾃⾏回到A,满⾜要求:sin R xθ=,变形得:sinmvxqBθ''=.8.如图所⽰,质量m=15g、长度L=2m的⽊板D静置于⽔平地⾯上,⽊板D与地⾯间的动摩擦因数µ=0.1,地⾯右端的固定挡板C与⽊板D等⾼。
带电粒子在电场和磁场中的运动
10-5 带电粒子在电场和磁场中的运动一、带电粒子在电场和磁场中所受的力若电场中点P 的电场强度为E ,则处于该点的电荷为q +的带电粒子所受的电场力为E F q =e此外,若点P 处的磁感强度为B ,且电荷为q +的带电粒子以速度v 通过点P ,如下图所示,那么,作用在带电粒子上的磁场力为B v F ⨯=q m (10-9)m F 叫做洛伦兹力。
洛伦兹力m F 的方向垂直于运动电荷的速度v 和磁感强度B 所组成的平面,且符合右手螺旋定则:即以右手四指由v 经小于180°的角弯向B ,此时,拇指的指向就是正电荷所受洛伦兹力的方向。
由式(10-9)还可以看出,当电荷为q +时,m F 的方向与B v ⨯的方向相同;当电荷为q -时,m F 的方向则为B v ⨯-的方向。
在普遍的情况下,带电粒子若既在电场又在磁场中运动时,那么作用在带电粒子上的 磁力应为电场力E q 和洛伦兹力B qv ⨯之和,即即B v E F ⨯+=q q二、带电粒子在磁场中运动举例1 回旋半径和回旋频率设电荷为q +,质量为m 的带电粒子,以初速0v 进入磁感强度为B 的均匀磁场中,且0v 与B垂直,如下图所示。
如略去重力作用,则作用在带电粒子上的力仅为洛伦兹力F ,其值为B qv F 0=,而F 的方向垂直于0v 与B 所构成的平面,所以,带电粒子进入磁场后将以速率0v 作匀速圆周运动,根据牛顿第二定律,有R v m B qv 200=其中R 为带电粒子作匀速圆周运动的轨道半径,也称回旋半径。
由上式得qB mv R 0= (10-10)我们把粒子运行一周所需要的时间叫做回旋周期,用符号T 表示,有qB m v R T π2π20== (10-11a )单位时间内粒子所运行的圈数叫做回旋频率,用f 表示,有m qB T f π21== (10-11b )讨论: 关于带电粒子在磁场中运动问题的讨论1 正电荷和负电荷的o v 与B 垂直时运动轨迹的比较如下图所示因此,在高能粒子物理中,常用带电粒子在云室中的径迹来观察和区分粒子的性质。
专题:带电粒子在电场和磁场中运动解读
专题:带电粒子在电场和磁场中运动8. (2013. 北京东城区上学期期末)如图20所示,在纸面内建立直角坐标系xOy ,以第Ⅲ象限内的直线OM (与负x 轴成45°角)和正y 轴为界,在x <0的区域建立匀强电场,方向水平向左,场强大小E=0.32V/m;以直线OM 和正x 轴为界,在y <0的区域建立垂直纸面向里的匀强磁场,磁感应强度B=0.1T ,一不计重力的带负电粒子,从坐标原点O 沿y 轴负方向以v 0=2×103m/s的初速度射入磁场,已知粒子的比荷为q/m=5×106C/kg,求:(1)粒子第一次经过磁场边界时的位置坐标(2)粒子在磁场区域运动的总时间(3)粒子最终离开电磁场区域时的位置坐标-3-3-5-4⨯10m , -4⨯10m )8. (1)((2)t =1. 256⨯10s (3)(0, 0. 192m )【解析】(1)粒子带负电,从O 点沿y 轴负方向射入磁场,沿顺时针方向做圆周运动。
第一次经过磁场边界上的一点(设为A 点),m,-3-3-4⨯10m , -4⨯10m )所以,A 点的坐标为:((2)设粒子在磁场中做圆周运动的周期为T ,则-5-5代入数据解得:T =1. 256⨯10s ,所以t =1. 256⨯10s(3)粒子从C 点沿y 轴正方向进入电场,做类平抛运动,则∆y =v 0t 1,代入数据解得:∆y =0. 2my =∆y -2r =0. 2m -2⨯4⨯10-3m =0. 192m粒子离开电磁场时的位置坐标为:(0, 0. 192m ) 36.(18分)如图所示,在xOy 平面内y≥0的区域存在电场与磁场,ON 为电场与磁场的分界线,× = ON 与y 轴的夹角为45°,电场强度大小为32N/C,磁感应强度为0.1T ,一质量为= kg =×,带电荷量为q =5⨯10-18C 的正粒子从O 点沿×x 轴负方向以速度m =1⨯10-24v 0=2⨯103m/s 射入磁场,不计粒子重力,求:(1)粒子在磁场中做圆周运动的轨道半径;(2)粒子在磁场中运动的时间;(3)粒子最终穿过x 轴时离O 点的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19 带电粒下落进入电场磁场问题
将带电小球从一定高度处由静止释放,小球在下落过程中经过水平方向的匀强电场或匀强磁场的问题始见于这类习题:三个完全相同的带电小球,下落和的初速度相同且不计空气阻力,球1自由落体、2下落过程中习经水平匀强电场、球3下落过程中飞经水平匀强磁场,比较三小球落地时的速度大小和落地时间的长短(图1)。
定性分析时,落地速度的大小可根据三小球下落过程中重力做功相同,电场力做正功、洛仑兹力不做功可得结论213V V V >=;分析下落时间,则由1、2两球在竖直方向的运动性质完全相同。
根据运动的独立性原理便有123t t t =<,至于小球下落过程中的运动性质如何,一般认为超出中学物理范围故不作讨论。
但实际上如果从运动的合成与分解的角度出发,用衽的方法完全可以从根本上解决这类问题。
下面就三种情况进行研究。
19.1带电小球落入水平方向的匀强电场
设带电小球从距竖直平行板电容器上方一定高度处自由下落,落入水平匀强电场时速度为V 0(图2),进入电场后小球的运动在水平方程上初速度为零的匀加速直线运动,其加速度为://qE
a m
=
;在竖直方向上是初速度不为零的匀加速直线运动,其加速度为a g ⊥=,
,但合外力的方向与初速度V 0方
向之间成一定的角度θ(角θ满足条件tan qE
mg
θ=
)。
现在以合外力的方向为Y 轴,以与其垂直方向为X 轴建立新的坐标系,则小球在新坐标中的运动做一日和尚撞一天钟可看成X 轴方向以0sin V θ做匀速直线运动和沿Y 轴方向以初速度0
cos V θ、加速度
运动性质类似于抛体运动,其运动轨迹为抛物线。
以时间t 为参数,建立小球的运动方程:
图
1
图2
00sin cos X V t Y V t θθ=⋅⎧⎪⎨=⋅+⎪⎩
消去t 后,便可写出其直角坐标系中的方程:()2222222202m g q E mg
Y X X qE mV q E
+=+。
这样,一量知道了小球落入电场后经历的时间,总能确切地求出其相对于落入点的具体位置,并且只要极板足够大,小球肯定会打在极板上。
19。
.2带电小球落入水平方向的匀强磁场
设带电小球从高处下落进入匀强磁场时的速度为V 0,则小球在磁场中运动时要受到恒定的重力和大小方向不断变化的洛仑兹力作用,小球的速度大小方向将时刻改变,其运动轨迹为摆线。
由于摆动线可以看成动圆沿定直线匀速滚动时,动圆上的一点所描出的曲线,因此我们可以将带电小球的运动看成匀速圆周运动与匀速直线运动的合成。
现在设想如果带电粒
子在磁场中以速度V '水平向右运动时,其速度V '恰好满足qV B mg '
=,则粒子受力平衡,铸匀速直线运动。
这样,如果我们将水平方向的速度V '±叠加于V 0之上,其结果重力将被
抵消,小球的运动将可以看成以速度1V =做匀速圆周运动和整修圆周以速度V '水平向右做匀速直线运动的合成。
再从动力学的角度分析这一问题:既然匀速直线运动是合外力为零的运动,而匀速圆周运动是合外力大小不变的运动,则小球在磁场中沿摆线轨迹运动时,其所受的合外力必定大小始终不变。
设小球运动摆线的最低点时的速度为V ,其所受的洛仑兹力大小为,qVB 方向竖直向上,因此小球所受的合外力为qVB mg -,其大小与小球刚落入磁场时所受的外力
大小相
等,
∵qVB mg -=
,∴()
22
02qB V V mgV -=,于是得
出结果
mg V qB =+。
-'
图3
再根据小球运动过程中只有重力做功条件下的动能定理:22
11
22
mgh mV mV
=-还能求出小球落入磁场时的最大深度
22
2
V V mV m mg
h
g qB qB qB
⎡
-⎢
===+
⎢
⎣。
继续分析小球以后的运动时,还会看到一种有趣的现
象,由于小球的运动轨迹以竖直方向为对称轴且运动过程
中机械能守恒。
因此当小球沿摆线轨迹运动到达磁场边缘
时必将竖直向上飞离磁场,且飞离时的速度大小与落入时
相等,小球被竖直上抛到原高度后再次下落并重复以上过
程,如不计空气阻力,小球就会不停地运动下去,其运动
见图4。
19.3带电小球落入水平方向的正交的匀强电场、磁场
这时又分两种情况:
(1)匀强电场、磁场方向如图5所示。
这种情况与粒子以一定的速度射入速度选择器有类似之处,若小球的初速
E
V
B
<,则
小球继续下落时将先向左侧偏移;如果
E
V
B
>,则小球继续
下落时将先向右侧偏移。
然而如果小球的初速度
E
V
B
=,小
球却不沿直线运动,这是由于小球所受的合外力
与初速度,成一定的夹角,以后也不可能再
保持水平方向上受力平衡的缘故,因此,这种情况下仍然是小
球沿摆线轨迹做曲线运动。
(2)匀强电场、磁场方向如图6所示
这种情况下小球进入复合场后受到恒力有重力(方向竖直
向下)和电场力(方向水平向右),但其所受的洛仑兹力的
大小和方向同样不断变化。
依照(1)中的做
法,先将恒力mg与Eq
合成为
图4
V0
B
图5
,然后再将一方向与该力垂直,且速率满足关
系
qV B '=
V '和V '-同时叠加于V 0之上,于是小球的运动便可视作以
速度()0V V V '=+-做匀速圆周运动和以V '做匀速直线运动的合成,因此小球的运动轨迹还是摆线。
下面再来求小球做匀速圆周运动的分速度的大小和运动到摆线轨迹的最低点时的速度。
设小球所受的重力和电场力满足关系tan qE
mg
θ=
,根据速度相加定理()0V V V
'=+-得:1V =
sin E
V B
θ'=
=
,故有:()()()
2
2
2210
2
2mg qE E
V V
V B
qB +=+
+,于是求出匀速圆周运动分速度的大小: 1V =
考虑到小球运动到摆线轨迹的最低点时速度方向水平,因小球运动过程中所受的合外力大小仍旧不变,与刚落入复合场时比较,应该有:
=
mg V qB =+与19.2的结果对照,19.2小球最低点速度正是此式在E =0的条件下的特例,当然, 这种情况下小球以后的运动过程必定是十分复杂的。