2017学年天津市蓟州区七年级下学期期中数学试卷带答案
天津市七年级下学期数学期中考试试卷
天津市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2012·本溪) 下列计算正确的是()A . a2+a3=a5B . (a2)3=a5C . 2a•3a=6aD . (2a3b)2=4a6b22. (2分)下列方程中,其中二元一次方程的个数是()① 4x+5=1;② 3x—2y=1;③ ;④ xy+y=14A . 1B . 2C . 3D . 43. (2分) (2017八下·临泽期末) 下列各式从左到右的变形中,为因式分解的是().A . x(a﹣b)=ax﹣bxB .C . ﹣1=(y+1)(y﹣1)D . ax+by+c=x(a+b)+c4. (2分) (2018八上·仁寿期中) ①x(2x2-x+1)=2x3-x2+1;②(a+b)2=a2+b2;③(x-4)2=x2-4x+16;④(5a-1)(-5a-1)=25a2-1;⑤(-a-b)2=a2+2ab+b2;其中正确的有()A . 1个B . 2个C . 3D . 4个5. (2分) (2016七下·槐荫期中) 已知是二元一次方程组的解,则m+n的值是()A . 1B . 2C . ﹣2D . 46. (2分) (2017七下·朝阳期中) 满足方程组的,的值的和等于,则的值为().A .B .C .D .7. (2分) (2019七下·长丰期中) 当m是正整数时,下列等式成立的有()(1)a2m=(am)2;(2)a2m=(a2)m;(3)a2m=(﹣am)2;(4)a2m=(﹣a2)m .A . 4个B . 3个C . 2个D . 1个8. (2分) (2019七下·洛阳月考) 如图,宽为50的大长方形图案由10个完全相同的小长方形拼成,其中一个小长方形的面积为()A . 400B . 500C . 600D . 4000二、填空题 (共10题;共10分)9. (1分) (2017九上·夏津开学考) 用科学计数法表示0.0000125=________.10. (1分)如果10b=n,那么称b为n的“拉格数”,记为d(n),由定义可知:d(n)=b.如102=100,则d(100)=d(102)=2,给出下列关于“拉格数”d(n)的结论:①d(10)=10,②d(10﹣2)=﹣2,③=3,④d(mn)=d(m)+d(n),⑤d()=d(m)÷d(n).其中,正确的结论有(填写所有正确的序号).________ .11. (1分) (2016七下·泗阳期中) 已知m+n﹣2=0,则3m×3n的值为________.12. (1分)若(x﹣3)和(x+5)是x2+px+q的因式,则p为=________.13. (1分)当时,关于字母x,y的二元一次方程组的解x,y互为相反数,则a=________,b=________.14. (1分)已知a>b,ab=2且a2+b2=5,则a﹣b=________15. (1分)已知a2﹣a﹣1=0,则a3﹣a2﹣a+2015=________16. (1分)(2017·金乡模拟) 分解因式:m2﹣4=________.17. (1分)若方程组的解是,则a+b=________.18. (1分)我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图1可以用来解释a2﹣b2=(a+b)(a﹣b).那么通过图2面积的计算,验证了一个恒等式,此等式是________.三、解答题 (共7题;共94分)19. (30分) (2016九上·连城期中) 计算: +| ﹣2|+(﹣1)2016﹣()﹣1 .20. (30分) (2017七下·滦南期末) 已知, ,求代数式的值21. (10分) (2016八上·太原期末) 解方程组:22. (5分) (2017八上·双柏期末) 已知和都是方程ax+y=b的解,求a与b的值.23. (10分)(2018·湛江模拟) 某商店准备销售甲、乙两种商品共 80 件,已知 2 件甲种商品与 3 件乙种商品的销售利润相同,3 件甲种商品比 2 件乙商品的销售利润多 150 元。
天津初一初中数学期中考试带答案解析
天津初一初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、单选题1.下列语句中,不是命题的是( )A.两点之间线段最短B.连接A,B两点C.平行于同一直线的两直线平行D.相等的角都是直角2.下列运算中,正确的是( )A.=24B.=3C.=±9D.-=-3.估算+4的值在( )A.5和6之间B.6和7之间C.7和8之间D.8和9之间4.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到B,则点B的坐标为( )A.(-2,-1)B.(-1,0)C.(-1,-1)D.(-2,0)二、填空题1.计算:=_______.2.若=2,则2x+5的平方根是__________.3.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段 _______的长度,这样测量的依据是____________________.4.如图所示,把图1中的圆A经过平移得到圆O(如图2),如果图1中圆A上一点P的坐标为(m,n),那么平移后在图2中的对应点P′的坐标为__________.三、解答题1.计算:(1)3-|-|;(2) (2-)+ (+).2.一个正数x的平方根是3a-4和1-6a,求a及x的值.3.如图所示,已知∠1+∠2=180°,∠B=∠3,求证:∠ACB=∠AED.4.填上推理的依据已知:如图,∠1=∠2,∠3=∠4,求证:EG∥FH.证明:∵∠1=∠2(已知)∠AEF="∠1" (),∴∠AEF="∠2" ().∴AB∥CD ().∴∠BEF="∠CFE" ( ).∵∠3=∠4(已知),∴∠BEF-∠4=∠CFE-∠3.即∠GEF="∠HFE" ().∴EG∥FH ()5.如图所示,在平面内有四个点,它们的坐标分别是A(-1,0),B(2+,0),C(2,1),D(0,1).(1)依次连接A,B,C,D围成的四边形是一个_____________形;(2)求这个四边形的面积;(3)将这个四边形向左平移个单位长度,四个顶点的坐标分别为多少?6.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3).(1)求a,b的值及S△ABC;(2)若点M在x轴上,且S三角形ACM =S三角形ABC,试求点M的坐标.7.(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?天津初一初中数学期中考试答案及解析一、单选题1.下列语句中,不是命题的是( )A.两点之间线段最短B.连接A,B两点C.平行于同一直线的两直线平行D.相等的角都是直角【答案】B【解析】根据命题的概念,是判断一件事情的句子,可知B连接A、B两点,不是判断一件事情,故不是命题.故选:B2.下列运算中,正确的是( )A.=24B.=3C.=±9D.-=-【答案】D【解析】根据平方根的性质,可知,故A不正确;根据二次根式的性质,可得=,故B不正确;根据算术平方根的意义,可知=9,故不正确;根据二次根式的性质,可知-=-,故D正确.故选:D.点睛:此题主要考查了二次根式的化简,解题时,应用二次根式的性质和意义,化简即可求解判断,此题是中考常考的易错题,解题时要特别小心,以免出错.3.估算+4的值在( )A.5和6之间B.6和7之间C.7和8之间D.8和9之间【答案】D【解析】根据二次根式的估算,可由=16,=25,可知,所以+4的值在8和9之间.故选:D4.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到B,则点B的坐标为( )A.(-2,-1)B.(-1,0)C.(-1,-1)D.(-2,0)【答案】C【解析】根据坐标点的平移,上加下减,左减右加,可得B点的坐标为(1-2,3-4),即(-1,-1).故选:C点睛:此题主要考查了平面直角坐标系中坐标点的平移,根据平移的规律,左减右加,上加下减的规律对坐标变形即可,这是中考常考的简单题,比较容易.二、填空题1.计算:=_______.【答案】2【解析】根据平方根的性质和立方根的意义可直接求解为=5-3=2.故答案为:2.2.若=2,则2x+5的平方根是__________.【答案】3,-3【解析】根据算术平方根的意义,可知x+2=4,解得x=2,然后求得2x+5=9,因此可求得9的平方根为±3.故答案为:±33.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段 _______的长度,这样测量的依据是____________________.【答案】 BN 垂线段最短【解析】根据生活实际,确定量取的位置,然后根据点到直线的距离确定跳远的成绩BN,因此明确理论依据为:垂线段最短.故答案为:(1)BN(2)垂线段最短4.如图所示,把图1中的圆A经过平移得到圆O(如图2),如果图1中圆A上一点P的坐标为(m,n),那么平移后在图2中的对应点P′的坐标为__________.【答案】(m+2,n-1)【解析】根据图示可知点A的坐标为(-2,1),平移后的坐标为(0,0),由此可知平移的轨迹为:向下平移一个单位,向右平移两个单位,因此根据平移的规律:左减右加,上加下减,可知P点平移后的坐标为(m+2,n-1).点睛:此题主要考查了平面直角坐标系中点的平移,解题时,先由图形中的特殊点的平移得到平移的方向和单位,然后根据平移的规律:左减右加,上加下减,确定平移后的点的坐标即可.三、解答题1.计算:(1)3-|-|;(2) (2-)+ (+).【答案】(1)4-(2)2+2【解析】(1)根据绝对值的性质化简,再用合并同类二次根式的法则计算即可;(2)根据单项式乘以多项式的法则,结合二次根式的性质计算,然后合并同类二次根式即可.试题解析:(1)3-|-|=3-(-)=3-+=4-(2) (2-)+ (+)= 2-2+3+1=2+22.一个正数x的平方根是3a-4和1-6a,求a及x的值.【答案】a的值是-1,x的值是49【解析】根据一个正数有两个平方根,且它们互为相反数,可直接根据互为相反数的两数和为0,列式求解出a的值,再根据乘方代入求出x即可.试题解析:由题意得3a-4+1-6a=0,解得a=-1.∴3a-4=-7.∴x=(-7)2=49.答:a的值是-1,x的值是49.3.如图所示,已知∠1+∠2=180°,∠B=∠3,求证:∠ACB=∠AED.【答案】证明见解析【解析】先由∠1+∠2=180°,∠1+∠4=180°推出∠2=∠4,推出BD∥FE,由平行线的性质结合已知可得∠B=∠ADE,从而证明DE∥BC,然后由两直线平行,同位角相等可得∠ACB与∠AED的大小关系.试题解析:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB4.填上推理的依据已知:如图,∠1=∠2,∠3=∠4,求证:EG∥FH.证明:∵∠1=∠2(已知)∠AEF="∠1" (),∴∠AEF="∠2" ().∴AB∥CD ().∴∠BEF="∠CFE" ( ).∵∠3=∠4(已知),∴∠BEF-∠4=∠CFE-∠3.即∠GEF="∠HFE" ().∴EG∥FH ()【答案】(1)(对顶角相等)(2)(等量代换)(3)(同位角相等,两直线平行)(4)(两直线平行,内错角相等)(5)(等式的性质)(6)(内错角相等,两直线平行)【解析】先根据对顶角相等,然后再根据等量代换证得∠2与∠AEF的关系,再根据平行线的性质和判定证明即可. 试题解析:证明:∵∠1=∠2(已知)∠AEF="∠1" (对顶角相等)∴∠AEF=∠2(等量代换)∴AB∥CD (同位角相等,两直线平行)∴∠BEF="∠CFE" (两直线平行,内错角相等)∵∠3=∠4(已知),∴∠BEF-∠4=∠CFE-∠3.即∠GEF=∠HFE(等式的性质).∴EG∥FH (内错角相等,两直线平行)5.如图所示,在平面内有四个点,它们的坐标分别是A(-1,0),B(2+,0),C(2,1),D(0,1).(1)依次连接A,B,C,D围成的四边形是一个_____________形;(2)求这个四边形的面积;(3)将这个四边形向左平移个单位长度,四个顶点的坐标分别为多少?【答案】(1)梯(2)(3)平移后四个顶点A,B,C,D对应点的坐标为(-1-,0),(2,0),(2-,1),(-,1)【解析】(1)根据连接作图的结果得出是梯形;(2)利用梯形的面积公式计算即可;(3)根据平移的规律:左减右加,上加下减,直接求出新坐标的横纵坐标即可.试题解析:(1)梯(2)∵A(-1,0),B(2+,0),C(2,1),D(0,1),∴AB=3+,CD=2.∴四边形ABCD的面积= (AB+CD)·OD= (3++2)×1=.(3)平移后四个顶点A,B,C,D对应点的坐标为(-1-,0),(2,0),(2-,1),(-,1).6.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3).(1)求a,b的值及S△ABC;(2)若点M在x轴上,且S三角形ACM =S三角形ABC,试求点M的坐标.【答案】(1) 9(2) x=0或-4,【解析】(1)根据非负数的性质求出a、b的值,得到A、B的坐标,然后根据三角形的面积公式求解;(2)设点M的坐标为(x,0),根据AM的距离和三角形的面积分类求出M的坐标即可.试题解析:(1)∵|a+2|+=0,∴a+2=0,b-4=0.∴a=-2,b=4.∴点A(-2,0),点B(4,0).又∵点C(0,3),∴AB=|-2-4|=6,CO=3.∴S三角形ABC=AB·CO=×6×3=9.(2)设点M的坐标为(x,0),则AM=|x-(-2)|=|x+2|.又∵S△ACM =S△ABC,∴AM·OC=×9,∴|x+2|×3=3.∴|x+2|=2.即x+2=±2,解得x=0或-4,所以点M的坐标为(0,0)或(-4,0)点睛:7.(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?【答案】(1)理由见解析(2)AB∥CD.(3)∠B+∠D+∠E=360°.(4)∠B=∠D+∠E.(5)∠E+∠G=∠B+∠F+∠D.【解析】已知AB∥CD,连接AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.试题解析:(1)理由:过点E作EF∥AB,∴∠B=∠BEF.∵CD∥AB,∴CD∥EF.∴∠D=∠DEF.∴∠B+∠D=∠BEF+∠DEF=∠BED.(2)AB∥CD.(3)∠B+∠D+∠E=360°.(4)∠B=∠D+∠E.(5)∠E+∠G=∠B+∠F+∠D.。
初级中学16—17学年下学期七年级期中考试数学试题(附答案)
54D 3E21C B A2016-2017学年第二学期期中考试七年级数学试卷(问卷)(卷面分值:100分;考试时间:100分钟)同学们,半个学期的勤奋,今天将展现在试卷上,老师相信你一定会把诚信答满试卷,......................................也一定会让努力书写成功,答题时记住细心和耐心。
.......................注意事项:本卷由问卷和答卷两部分组成,其中问卷共4页,答卷共2页,在问卷上答题无效。
一.选择题(本大题共8小题,每小题3分,共24分)1. 4的平方根是( )A . ±2B .2C .±D .2.点P (-1,5)所在的象限是( )A .第一象限B .第二象限C.第三象限 D.第四象限3.下列各组图形,可由一个图形平移得到另一个图形的是( )A B C D4.如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( )A.130°B.140°C.150°D.160 (第4题图)5.已知是二元一次方程4x+ay=7的一组解,则a 的值为( )A .﹣5B .5C .D .﹣6.如右图,下列能判定AB ∥CD 的条件有( )个. (第6题图) (1) ︒=∠+∠180BCD B (2)21∠=∠(3) 43∠=∠ (4) 5∠=∠B A . 1 B .2 C .3D.4 7.下列各组数中,互为相反数的组是( )A .﹣2与B .﹣2和C .﹣与2D .|﹣2|和28.下列命题:①两直线平行,内错角相等;②如果m 是无理数,那么m 是无限小数;③64的立方根是8;④同旁内角相等,两直线平行;⑤如果a 是实数,那么a 是无理数.其中正确的有( )A .1个B .2个C .3个D .4个二.填空(本大题共6小题,每小题3分,共18分)9.若32123=---n m y x 是二元一次方程,则m=____,n=____.10.计算:|3﹣π|+的结果是 .11.已知点P(0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.12.已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为 . (第13题图) 13.如图,一张宽度相等的纸条,折叠后,若∠ABC=120°,则∠1的度数为 .14.在平面直角坐标系中,点A 的坐标为(﹣1,3),线段AB ∥x 轴,且AB =4,则点B 的坐标为 .三、计算解答题 (每小题5分,共20分)15.计算:364+2)3(--31- 16.1+2)451(- .17.解二元一次方程组:18.已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.四、解答题:(19题6分,20题8分,21题6分,22题8分,23题10分共38分)19. 某工程队承包了修建隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了50米.求甲、乙两个班组平均每天各掘进多少米?20.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.证明:∵∠1=∠2 (已知)∴∥()∴∠E=∠()又∵∠E=∠3 (已知)∴∠3=∠()∴AD∥BE.()21.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.22.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(,),C(,).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.A PB 1l 2l 3l 1 2 323如图,已知直线 1l ∥2l ,且 3l 和1l 、2l 分别交于A 、B 两点,点P 在直线AB 上.(1)试找出∠1、∠2、∠3之间的关系并说明理由;(2)当点P 在A 、B 两点间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(只写结论)(3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3 之间的关系。
【3套打包】天津市七年级下册数学期中考试题(17)
七年级下学期期中考试数学试题(含答案)一、选择题(本大题共16个小题,1-10每小题3分,11-16每小题3分,共42分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知二元一次方程3x﹣y=1,当x=2时,y等于()A.5B.﹣3C.﹣7D.72.(3分)下列运算的结果为a6的是()A.a3+a3B.(a3)3C.a3•a3D.a12÷a23.(3分)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京召开,“一带”指的是“丝绸之路经济带”,“一路”指的是“21”.“一带一路”沿线大多是新兴经济体和发展中国家,经济总量约210 000亿美元,将“210 000亿”用科学记数法表示应为()A.21×104亿B.2.1×104亿C.2.1×105亿D.0.21×106亿4.(3分)如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD 的度数是()A.20°B.40°C.50°D.80°5.(3分)用加减法解方程组时,如果消去y,最简捷的方法是()A.①×4﹣②×3B.①×4+②×3C.②×2﹣①D.②×2+①6.(3分)计算(﹣1)2017+(﹣)﹣3﹣(2017)0的结果是()A.﹣10B.﹣8C.8D.﹣97.(3分)已知m+n=3,m﹣n=2,那么m2﹣n2的值是()A.6B.2C.7D.58.(3分)二元一次方程组的解是()A.B.C.D.9.(3分)如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4D.∠1=∠2 10.(3分)若(2a±3)2=4a2+(k﹣1)a+9,则k的值为()A.±12B.±11C.±13D.﹣11或13 11.(2分)下列语句中是真命题的有()个①一条直线的垂线有且只有一条②不相等的两个角一定不是对顶角③同位角相等④不在同一直线上的四个点最多可以画六条直线.A.1B.2C.3D.412.(2分)下列各式中,计算结果是x2+7x﹣18的是()A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)13.(2分)若方程中的x是y的4倍,则a等于()A.﹣7B.﹣3C.D.﹣14.(2分)已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.615.(2分)如图,正方形ABCD由四个矩形构成,根据图形,写出一个含有a和b的正确的等式是()A.(a+b)(a﹣b)=a2+b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)(a+b)=a2+b2+ab+ab16.(2分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.二、填空题(本大题共3个小题,17-18每小题3分,19、20每空2分,共10分17.(3分)如图,已知∠1=∠2=∠3=62°,则∠4=度.18.(3分)已知x、y满足方程组,则x﹣y的值为.19.(2分)计算(﹣0.125)2015×82014的结果是.20.(2分)如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为米.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)21.(12分)解方程或计算(1)解方程组;(2);(3)先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=;(4)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.22.(8分)题目:如图,直线a,b被直线所截,若∠1+∠7=180°,则a∥b.在下面说理过程中的括号里填写说理依据.方法一:∵∠1+∠7=180°(已知)而∠1+∠3=180°(平角定义)∴∠7=∠3()∴a∥b()方法二:∵∠1+∠7=180°(已知)∠1+∠3=180°(平角定义)∴∠7=∠3()又∠7=∠6()∴∠3=∠6()∴a∥b()方法三:∵∠1+∠7=180°(已知)而∠1=∠4,∠7=∠6()∠4+∠6=180°(平角定义)∴a∥b()23.(9分)请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.24.(9分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.25.(10分)用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40m3,第一架工作16小时,第二架工作24小时,共掘土8640m3,问每架掘土机每小时可以掘土多少m3?26.(10分)如图所示,已知AB∥CD,直线l分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=40°,求∠EGF的度数.27.(10分)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)x2+4y2的值;(ii)求(x+2y)2的值.2017-2018学年河北省承德市兴隆县七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1-10每小题3分,11-16每小题3分,共42分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:把x=2代入原方程,得到6﹣y=1,所以y=5.故选:A.2.【解答】解:A、a3+a3=2a3,故本选项错误;B、(a3)3=a9,故本选项错误;C、a3•a3=a6,故本选项正确;D、a12÷a2=a10,故本选项错误.故选:C.3.【解答】解:210 000亿=2.1×105亿.故选:C.4.【解答】解:∵∠EOC=100°且OA平分∠EOC,∴∠BOD=∠AOC=×100°=50°.故选:C.5.【解答】解:用加减法解方程组时,如果消去y,最简捷的方法是②×2+①.故选:D.6.【解答】解:∵(﹣1)2017=﹣1,(﹣)﹣3=﹣8,(2017)0=1,∴(﹣1)2017+(﹣)﹣3﹣(2017)0=﹣1﹣8﹣1=﹣10.故选:A.7.【解答】解:∵m+n=3,m﹣n=2∴原式=(m+n)(m﹣n)=6故选:A.8.【解答】解:二元一次方程组,即,解得x=2.则y=﹣3.9.【解答】解:∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选:C.10.【解答】解:∵4a2+(k﹣1)a+9是一个关于a的完全平方式,∴(k﹣1)a=±2•2a•3,k=13或﹣11,故选:D.11.【解答】解:一条直线的垂线有无数条,①是假命题;不相等的两个角一定不是对顶角,②是真命题;两直线平行,同位角相等,③是假命题;不在同一直线上的四个点最多可以画六条直线是真命题,故选:B.12.【解答】解:A、原式=x2+17x﹣18;B、原式=x2+11x+18;C、原式=x2+3x﹣18;D、原式=x2+7x﹣18.故选:D.13.【解答】解:∵x=4y,∴4y+4=y,解得y=﹣,∴x=4×(﹣)=﹣,∴a=[2×(﹣)﹣(﹣)]÷4=(﹣+)÷4=(﹣)÷4=﹣故选:D.14.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.15.【解答】解:由图象得出正方形的边长为(a+b),∴正方形的面积可以表示为(a+b)(a+b),∵正方形的面积也可以看成是两个小正方形和两个矩形的面积之和,∴正方形的面积也可以表示为a2+b2+ab+ab,∴(a+b)(a+b)=a2+b2+ab+ab,故选:D.16.【解答】解:设大马有x匹,小马有y匹,由题意得:,故选:C.二、填空题(本大题共3个小题,17-18每小题3分,19、20每空2分,共10分17.【解答】解:∵∠1=∠3,∴两直线a、b平行;∴∠2=∠5=62°,∵∠4与∠5互补,∴∠4=180°﹣62°=118°.18.【解答】解:在方程组中,①﹣②得:x﹣y=1.故答案为:1.19.【解答】解:(﹣0.125)2015×82014=(﹣0.125)2014×82014×(﹣0.125)=[(﹣0.125)×(﹣8)]2014×(﹣0.125)=,故答案为:,20.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,∴图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故答案为:98.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)21.【解答】解:(1),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为;(2),①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(3)原式=x2﹣3x+2﹣x2﹣2x﹣1=﹣5x+1,当x=时,原式=﹣2.5+1=﹣1.5;(4)原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3(x2﹣4x)+9,∵x2﹣4x﹣1=0,∴x2﹣4x=1,则原式=3+9=12.22.【解答】解:方法一:∵∠1+∠7=180°(已知)而∠1+∠3=180°(平角定义)∴∠7=∠3(同角的补角相等)∴a∥b(同位角相等,两直线平行)方法二:∵∠1+∠7=180°(已知)∠1+∠3=180°(平角定义)∴∠7=∠3(同角的补角相等)又∠7=∠6(对顶角相等)∴∠3=∠6(等量代换)∴a∥b(内错角相等,两直线平行)方法三:∵∠1+∠7=180°(已知)而∠1=∠4,∠7=∠6(对顶角相等)∠4+∠6=180°(平角定义)∴a∥b(同旁内角互补,两直线平行).故答案是:方法一:同角的补角相等;同位角相等,两直线平行;方法二:同角的补角相等;对顶角相等;等量代换;内错角相等,两直线平行;方法三:对顶角相等;同旁内角互补,两直线平行.23.【解答】解:(1)根据题意得:2◎4=2x+4y=﹣18,把x=﹣5代入得:﹣10+4y=﹣18,解得:y=﹣2;(2)根据题意得:,即,②﹣①得:x=2,把x=2代入得:y=6.24.【解答】证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNM=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.25.【解答】解:设第一架掘土机每小时掘土xm3,那么第二架掘土机每小时掘土(x﹣40)m3,依题意得:16x+24(x﹣40)=8640,解得:x=240,∴(x﹣40)=200m3.答:第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200m3.26.【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣40°=140°,∵EG平分∠BEF,∴∠BEG=∠BEF=70°,而AB∥CD,∴∠EGF=∠BEG=70°.27.【解答】解:(1)把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为;(2)(i)原方程组变形为,①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,(ii)由x2+4y2=17代入②得xy=2,∴(x+2y)2=x2+4y2+4xy=17+8=25.七年级下学期期中考试数学试题及答案一.填空题(每小题3分,共计24分)1.(3分)如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是.2.(3分)若方程组的解适合x+y=2,则k的值为.3.(3分)的平方根是.4.(3分)已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=.5.(3分)把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:.6.(3分)已知5+小数部分为m,11﹣为小数部分为n,则m+n=.7.(3分)已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为3,则点B的坐标是.8.(3分)观察数表:根据数表排列的规律,第10行从左向右数第8个数是.二.选择题(每小题2分,共计12分)9.(2分)把方程4y+=1+x写成用含x的代数式表示y的形式,以下各式正确的是()A.y=+1B.y=+C.y=+1D.y=+10.(2分)将一直角三角板与两边平行的硬纸条如图所示放置,下列结论(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中错误的个数是()A.0B.1C.2D.311.(2分)下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个12.(2分)下列运算中正确的是()A.±=5B.﹣=±5C.=2D.=2 13.(2分)如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于()A.180°B.360°C.540°D.720°14.(2分)若以A(﹣1,0),B(3,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限三.解答题(每小题5分,共计20分)15.(5分)解方程:25x2﹣36=0.16.(5分)计算:|﹣|+﹣.17.(5分)如图,∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥BC.证明:∵CF⊥AB,DE⊥AB()∴∠BED=90°,∠BFC=90°()∴∠BED=∠BFC()∴ED∥FC()∴∠1=∠BCF()∵∠1=∠2 ()∴∠2=∠BCF()∴FG∥BC()18.(5分)已知是方程组的解,求m,n值.四.解答题(每小题7分,共计28分)19.(7分)多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?20.(7分)如图,BD⊥AC于D,EF⊥AC于F,DM∥BC,∠1=∠2.求证:∠AMD=∠AGF.21.(7分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2019+(﹣b)2018.22.(7分)已知(2a﹣1)的平方根是±3,(3a+b﹣1)的平方根是±4,求a+2b的平方根.五.解答题(每小题8分,共计16分)23.(8分)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.24.(8分)△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A';B';C';(2)说明△A'B'C'由△ABC经过怎样的平移得到?.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为;(4)求△ABC的面积.六.解答题(每小题10分,共计20分)25.(10分)如图,在平面直角坐标系中,A、B坐标分别为A(O,a)、B(b,a),且a、b满足:,现同时将点A、B分别向下平移3个单位,再向左平移1个单位,分别得到点A、B的对应点C、D,连接AC、BD、AB.(1)求点C、D的坐标;(2)在y轴上是否存在点M,连接MC、MD,使三角形MCD的面积为30?若存在这样的点,求出点M的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA、PO,当点P在BD上移动时(不与B、D重合),的值是否发生变化,并说明理由.26.(10分)小张去书店购买图书,看好书店有A,B,C三种不同价格的图书,分别是A 种图书每本1元,B种图书每本2元,C种图书每本5元.(1)若小张同时购买A,C两种不同图书的6本,用去18元,求购买两种图书的本数;(2)若小张同时购买两种不同的图书10本,用去18元,请你设计他的购书方案;(3)若小张同时购进A,B,C三种不同图书10本,用去18元,请你设计他的购买方案.2018-2019学年吉林省白城市五校联考七年级(下)期中数学试卷参考答案与试题解析一.填空题(每小题3分,共计24分)1.(3分)如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是130°.【分析】首先根据平行线的性质可得∠B=∠C=50°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.【解答】解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.2.(3分)若方程组的解适合x+y=2,则k的值为3.【分析】方程组两方程相加表示出x+y,代入x+y=2中求出k的值即可.【解答】解:,①+②得:5(x+y)=5k﹣5,即x+y=k﹣1,代入x+y=2得:k﹣1=2,解得:k=3,故答案为:3【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.3.(3分)的平方根是±2.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=3.【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得m﹣3=1,2﹣n=1,解出m、n的值可得答案.【解答】解:由题意得:m﹣3=1,2﹣n=1,解得:m=4,n=1,m﹣n=4﹣1=3,故答案为:3.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.5.(3分)把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:如果两条直线都与第三条直线平行,那么这两条直线互相平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:命题可以改写为:“如果两条直线都与第三条直线平行,那么这两条直线互相平行”.故答案为:如果两条直线都与第三条直线平行,那么这两条直线互相平行.【点评】本题考查了命题的改写.任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.6.(3分)已知5+小数部分为m,11﹣为小数部分为n,则m+n=1.【分析】由于4<7<9,则2<<3,于是可得到7<5+<8,8<11﹣<9,则有m=5+﹣7=﹣2,n=11﹣﹣8=3﹣,然后代入m+n中计算即可.【解答】解:∵4<7<9,∴2<<3,∴7<5+<8,8<11﹣<9,∴m=5+﹣7=﹣2,n=11﹣﹣8=3﹣,∴m+n=﹣2+3﹣=1.故答案为:1.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.7.(3分)已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为3,则点B的坐标是(3,2)或(﹣3,2).【分析】因为A(1,2),B(x,y),AB∥x轴,根据平面直角坐标系内点的坐标特征,可知y=2,因为B到y轴距离为3,所以x=±3,于是B的坐标是(3,2)或(﹣3,2).【解答】解:∵A(1,2),B(x,y),AB∥x轴,∴y=2,∵B到y轴距离为3,x=±3,∴B的坐标是(3,2)或(﹣3,2),故答案为(3,2)或(﹣3,2).【点评】本题考查了坐标与图形性质,正确掌握平面直角坐标系内点的坐标特征是解题的关键.8.(3分)观察数表:根据数表排列的规律,第10行从左向右数第8个数是7.【分析】第1行第1个数为1,第2行第2个数为2,第3行第3个数为3,第4行第4个数为4,y以此类推,第10行第10个数为10,第10行第9个数为,第8个数为==7,【解答】解:第1行第1个数为1,第2行第2个数为2,第3行第3个数为3,第4行第4个数为4,…第10行第10个数为10,第10行第9个数为,第8个数为==7,故答案为7.【点评】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.二.选择题(每小题2分,共计12分)9.(2分)把方程4y+=1+x写成用含x的代数式表示y的形式,以下各式正确的是()A.y=+1B.y=+C.y=+1D.y=+【分析】把x看做已知数表示出y即可.【解答】解:方程4y+=1+x,去分母得:12y+x=3+3x,解得:y=+.故选:B.【点评】此题考查了解二元一次方程,将x看做已知数求出y是解本题的关键.10.(2分)将一直角三角板与两边平行的硬纸条如图所示放置,下列结论(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中错误的个数是()A.0B.1C.2D.3【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:A.【点评】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.11.(2分)下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个【分析】根据对顶角的性质和平行线的判定定理,逐一判断.【解答】解:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选:B.【点评】平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要学会区分不同概念之间的联系和区别.12.(2分)下列运算中正确的是()A.±=5B.﹣=±5C.=2D.=2【分析】根据平方根、算术平方根的定义求出每个式子的值,再进行判断即可.【解答】解:A、±=±5,故本选项错误;B、﹣=﹣5,故本选项错误;C、=2,故本选项正确;D、=≠2,故本选项错误;故选:C.【点评】本题考查了对算术平方根和平方根的定义的应用,能理解定义是解此题的关键.13.(2分)如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于()A.180°B.360°C.540°D.720°【分析】分别过E、F作AB或CD的平行线,运用平行线的性质求解.【解答】解:作EM∥AB,FN∥AB,∵AB∥CD,∴AB∥EM∥FN∥CD.∴∠A+∠AEM=180°,∠MEF+∠EFN=180°,∠NFC+∠C=180°,∴∠A+∠AEF+∠EFC+∠C=540°.故选:C.【点评】注意此类题要常作的辅助线,充分运用平行线的性质探求角之间的关系.14.(2分)若以A(﹣1,0),B(3,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先画出平面直角坐标系,根据A、B、C三点的坐标找出其位置,然后再根据两组对边分别平行的四边形是平行四边形找出D的位置,进而可得答案.【解答】解:如图所示:第四个顶点不可能在第三象限.故选:C.【点评】此题主要考查了平行四边形的性质、坐标与图形性质,根据题意画出图形是解题的关键.三.解答题(每小题5分,共计20分)15.(5分)解方程:25x2﹣36=0.【分析】先求出x2,再根据平方根的定义进行解答.【解答】解:整理得,x2=,∴x=±.故答案为:x=±.【点评】本题考查了利用平方根的定义求未知数的值,熟记正数的平方根有两个,互为相反数,负数没有平方根,0的平方根是0是解题的关键.16.(5分)计算:|﹣|+﹣.【分析】先把各根式化为最减二次根式,再合并同类项即可.【解答】解:原式=﹣+﹣1﹣(3﹣)=﹣+﹣1﹣3+=2﹣4.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.17.(5分)如图,∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥BC.证明:∵CF⊥AB,DE⊥AB(已知)∴∠BED=90°,∠BFC=90°(垂线的性质)∴∠BED=∠BFC(等量代换)∴ED∥FC(同位角相等,两直线平行)∴∠1=∠BCF(两直线平行,同位角相等)∵∠1=∠2 (已知)∴∠2=∠BCF(等量代换)∴FG∥BC(内错角相等,两直线平行)【分析】由CF⊥AB、DE⊥AB知∠BED=∠BFC,利用平行线的判定知ED∥FC,由性质得∠1=∠BCF,又因为∠2=∠1,所以∠2=∠BCF,故可由内错角相等两直线平行判定FG∥BC.【解答】证明:∵CF⊥AB,DE⊥AB(已知),∴∠BED=90°,∠BFC=90°(垂线的性质).∴∠BED=∠BFC(等量代换),∴ED∥FC(同位角相等,两直线平行).∴∠1=∠BCF(两直线平行,同位角相等).∵∠2=∠1 (已知),∴∠2=∠BCF(等量代换).∴FG∥BC(内错角相等,两直线平行).故答案为:已知、垂线的性质、等量代换、同位角相等,两直线平行、两直线平行,同位角相等、等量代换.【点评】本题主要考查证明过程中理论依据的填写,训练学生证明步骤的书写,比较简单.18.(5分)已知是方程组的解,求m,n值.【分析】把x与y的值代入方程组计算,即可求出m与n的值.【解答】解:把代入方程组得:解得:【点评】本题考查了二元一次方程组,掌握方程组的解满足方程组中的每个方程.四.解答题(每小题7分,共计28分)19.(7分)多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?【分析】根据马场的坐标为(﹣3,﹣3),建立直角坐标系,找到原点和x轴、y轴.再找到其他各景点的坐标.【解答】解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).【点评】本题考查了坐标位置的确定,由已知条件正确确定坐标轴的位置是解决本题的关键.20.(7分)如图,BD⊥AC于D,EF⊥AC于F,DM∥BC,∠1=∠2.求证:∠AMD=∠AGF.【分析】由BD⊥AC,EF⊥AC,得到BD∥EF,根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.【解答】证明:∵BD⊥AC,EF⊥AC,∴BD∥EF,∴∠2=∠CBD,∵∠2=∠1,∴∠1=∠CBD,∴GF∥BC,∵BC∥DM,∴MD∥GF,∴∠AMD=∠AGF.【点评】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.21.(7分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2019+(﹣b)2018.【分析】将代入方程组的第二个方程,代入方程组的第一个方程,联立求出a与b的值,代入计算即可求出所求式子的值.【解答】解:将代入方程组中的4x﹣by=﹣2得:﹣12+b=﹣2,即b=10;将代入方程组中的ax+5y=15得:5a+20=15,即a=﹣1,则a2019+(﹣b)2018=﹣1+1=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.22.(7分)已知(2a﹣1)的平方根是±3,(3a+b﹣1)的平方根是±4,求a+2b的平方根.【分析】先根据题意得出2a﹣1=9,3a+b﹣1=16,然后解出a=5,b=2,从而得出a+2b =5+4=9,所以a+2b的平方根为±3.【解答】解:∵2a﹣1的平方根为±3,3a+b﹣1的平方根为±4,∴2a﹣1=9,3a+b﹣1=16,解得:a=5,b=2,∴a+2b=5+4=9,∴a+2b的平方根为±3.【点评】此题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.五.解答题(每小题8分,共计16分)23.(8分)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠3,根据垂直推出BD∥EF,根据平行线的性质即可求出∠2.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.【点评】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.24.(8分)△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A'(﹣3,1);B'(﹣2,﹣2);C'(﹣1,﹣1);(2)说明△A'B'C'由△ABC经过怎样的平移得到?先向左平移4个单位,再向下平移2个单位.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为(a ﹣4,b﹣2);(4)求△ABC的面积.【分析】(1)直接利用已知图形得出各点坐标即可;(2)利用对应点位置得出平移规律;(3)利用(2)中平移规律进而得出答案;(4)利用△ABC所在矩形面积减去周围三角形进而得出答案.【解答】解:(1)如图所示:A'(﹣3,1),B′(﹣2,﹣2),C′(﹣1,﹣1);故答案为:(﹣3,1),(﹣2,﹣2),(﹣1,﹣1);(2)△ABC先向左平移4个单位,再向下平移2个单位得到△A'B'C';故答案为:先向左平移4个单位,再向下平移2个单位;(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为:(a ﹣4,b﹣2).故答案为:(a﹣4,b﹣2);=6﹣×2×2﹣×1×3﹣×1×1=2.(4)△ABC的面积为:S△ABC【点评】此题主要考查了平移变换的性质以及三角形面积求法,正确得出平移规律是解题关键.六.解答题(每小题10分,共计20分)25.(10分)如图,在平面直角坐标系中,A、B坐标分别为A(O,a)、B(b,a),且a、b满足:,现同时将点A、B分别向下平移3个单位,再向左平移1个单位,分别得到点A、B的对应点C、D,连接AC、BD、AB.(1)求点C、D的坐标;(2)在y轴上是否存在点M,连接MC、MD,使三角形MCD的面积为30?若存在这样的点,求出点M的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA、PO,当点P在BD上移动时(不与B、D重合),的值是否发生变化,并说明理由.【分析】(1)由偶次方及算术平方根的非负性可求出a、b的值,进而即可得出点A、B 的坐标,再根据平移的性质可得出点C、D的坐标;=30,即可得出关于y的含绝(2)设存在点M(0,y),根据三角形的面积结合S△MCD对值符号的一元一次方程,解之即可得出结论;(3)过P点作PE∥AB交OC与E点,根据平行线的性质得∠BAP+∠DOP=∠APE+∠OPE=∠APO,故比值为1.【解答】解:(1)∵(a﹣3)2+=0,∴a=3,b=5,∴点A(0,3),B(5,3).将点A,B分别向下平移3个单位,再向左平移1个单位,得到点C、D,∴点C(﹣1,0),D(4,0).(2)设存在点M(0,y),根据题意得:S=×5|y|=30,△MCD∴解得:y=±12,∴存在点M(0,12)或(0,﹣12).(3)当点P在BD上移动时,=1不变,理由如下:过点P作PE∥AB交OA于E.∵CD由AB平移得到,则CD∥AB,∴PE∥CD,∴∠BAP=∠APE,∠DOP=∠OPE,∴∠BAP+∠DOP=∠APE+∠OPE=∠APO,∴=1.【点评】本题综合考查了坐标与图形性质、三角形的面积、平行四边形的面积、平移以及非负性的运用,解题的关键是:(1)根据平移的性质找出点C、D的坐标;(2)根=30可得结论;(3)根据题意作出辅助线.据三角形的面积结合S△MCD26.(10分)小张去书店购买图书,看好书店有A,B,C三种不同价格的图书,分别是A 种图书每本1元,B种图书每本2元,C种图书每本5元.(1)若小张同时购买A,C两种不同图书的6本,用去18元,求购买两种图书的本数;(2)若小张同时购买两种不同的图书10本,用去18元,请你设计他的购书方案;(3)若小张同时购进A,B,C三种不同图书10本,用去18元,请你设计他的购买方案.【分析】(1)设小张购买A种图书x本,则购买C种图书(6﹣x)本,根据购买A,C 两种不同图书一共用去18元列出方程,求解即可;(2)因为书店有A,B,C三种不同价格的图书,而小张同时购买两种不同的图书,所以要将A,B,C两两组合,分三种情况:A,B;A,C;B,C,每种情况都可以根据下面两个相等关系列出方程,两种不同价格的图书本数之和=10,购买两种不同价格的图书钱数之和=18,然后根据实际含义确定他们的解;(3)有两个等量关系:A种图书本数+B种图书本数+C种图书本数=10,购买A种图书钱数+购买B种图书钱数+购买C种图书钱数=18.设两个未知数,得出二元一次方程,根据实际含义确定解.【解答】解:(1)设小张购买A种图书x本,则购买C种图书(6﹣x)本.根据题意,得x+5(6﹣x)=18,解得x=3,则6﹣x=3.答:小张购买A种图书3本,购买C种图书3本;。
天津2016-2017学年七年级下学期期中考试数学试题
天津2016-2017学年七年级下学期期中考试数学试题天津市2016-2017学年七年级期中考试试卷第I卷选择题(共24分)一、选择题:本大题共12小题,每小题2分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的,请将题中正确选项的代号填在下列表格中。
题号 1 2 3 4 5 6 7 8 9 10 11 12选项 D D B C B C A A B B C A二、填空题:本大题共6小题,每小题3分,共18分。
请将答案直接填在题中的横线上。
13.已知2x-3是81的算术平方根,则x的值为 9.14.在-3与10之间的整数是 8.三、解答题:本大题共7小题,共58分。
15.如图,在平面直角坐标系中,点A(2,3),B(-1,4),C(-3,-1).(10分)1)求线段AB的长度;2)求线段BC的斜率;3)求直线AC的解析式。
解:1)AB的长度为√10.2)BC的斜率为-1/2.3)直线AC的解析式为y=-2x+7.16.如果a+b=3,a-b=1,求a和b的值。
(6分)解:将两式相加,得2a=4,即a=2.将a=2代入其中一式,得b=1.17.一辆汽车以每小时60公里的速度行驶,从A地到B地需要6小时,从B地到A地需要8小时。
求AB两地的距离。
(6分)解:设AB两地的距离为x。
则从A地到B地的路程为60×6=360公里,从B地到A地的路程为60×8=480公里。
因此,360+480=x,即x=840(公里)。
18.用两个相同的正方体积木搭成如图所示的长方体,求这个长方体的表面积。
(8分)解:如图,设正方体积木的边长为a,则长方体的长为2a,宽为a,高为a。
长方体的表面积为2(2a×a+a×a+a×2a)=22a²。
19.一组数据为15,12,18,16,20,13,14,17,15,19,其中的众数是多少?(6分)解:将数据从小到大排列,得12,13,14,15,15,16,17,18,19,20.因此,众数为15.20.解不等式3x-1≤5x+3,将解表示为区间。
天津市七年级下学期期中数学试卷
天津市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列各式中不正确的是()A . 22=(﹣2)2B . ﹣33=(﹣3)3C . ﹣22=(﹣2)2D . ﹣33=﹣|﹣33|2. (2分) (2019·岳麓模拟) 若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A . 12B . 10C . 8或10D . 63. (2分) (2018七上·渝北期末) 下图是一个正方体的表面展开图,已知正方体的每个面都有一个有理数,且相对面上的两个数互为相反数,那么代数式 a-b+c的值是()A . -4B . 0C . 2D . 44. (2分) (2019七上·哈尔滨月考) 下列说法:①垂直于同一直线的两条直线互相平行;②两个无理数的和是无理数;③点一定不在第四象限;④平方根等于本身的数是或;⑤若点的坐标满足,则点落在原点上;⑥如果两个角的角平分线互为反向延长线,则这两个角为对顶角.正确个数是()A . 3B . 2C . 1D . 05. (2分)(2017·平谷模拟) 把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是()A . 1B .C .D . 26. (2分) (2019七下·重庆期中) 下列命题:垂直于同一直线的两条直线互相平行; 的平方根是; 若一个角的两边与另一个角的两边互相垂直,且其中一个角是45°,则另一个角为45°或135°;④若是的整数部分,是不等式的最大整数解,则关于,方程的自然数解共有3对;⑤在平面直角坐标系中,点A、B的坐标分别为(2,0),(0,1),将线段AB平移至,的位置,则 .其中真命题的个数是()A . 2B . 3C . 4D . 57. (2分)(2017·房山模拟) 下列四个命题中,属于真命题的共有()①相等的圆心角所对的弧相等② 若,则a、b都是非负实数③相似的两个图形一定是位似图形④ 三角形的内心到这个三角形三边的距离相等A . 1个B . 2个C . 3个D . 4个8. (2分)①4的算术平方根是±2;②与-是同类二次根式;③点P(2,3)关于原点对称的点的坐标是(-2,-3);④抛物线y=-(x-3)2+1的顶点坐标是(3,1).其中正确的是()A . ①②④B . ①③C . ②④D . ②③④二、填空题 (共8题;共15分)9. (1分)如图,已知函数y=与y=ax2+bx+c(a>0,b>0)的图象相交于点P,且点P的纵坐标为1,则关于x的方程ax2+bx+=0的解是________10. (1分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,则点C的坐标是________.11. (1分) (2019九下·鞍山月考) 如图放置的都是边长为1的等边三角形,点在轴上,点都在直线上,则点的坐标是________.12. (1分)(2020·南通模拟) 如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为________.13. (5分)点P(-2,m)在第二象限的角平分线上,则m=____。
6—17学年下学期七年级期中考试数学试题(附答案)(5)
2016~2017学年度第二学期期中考试八年级数学试卷注意事项:1.本试卷满分120分,考试时间100分钟,考试形式闭卷.一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一个选项是正确的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列调查中,适宜采用普查方式的是 ……………………………………………【 ▲ 】 A .了解一批圆珠笔的寿命 B .了解全国九年级学生身高的现状C .检查一枚用于发射卫星的运载火箭的各零部件D .考察人们保护海洋的意识2.2017年3月15日,某中学八年级(五)班同学纷纷捐出自己的零花钱,为建档立卡的贫困学生献爱心,该班第2小组8名同学捐款数额如下(单位:元):12,5,10,5,20,10,10,8.这组捐款数据中,“10”出现的频率是………………………………【 ▲ 】 A .25%B .37.5%C .30%D .32.5%3.“a 是实数,|a |<0”这一事件是……………………………………………………【 ▲ 】 A .必然事件B .随机事件C .不可能事件D .以上均有可能4.如果分式x x-1 有意义,那么x 的取值范围是……………………………………………【 ▲ 】A .x ≥1B .x ≤1C .x >1D .x ≠15.如图,在□ABCD 中,BE 平分∠ABC ,交CD 于点E ,AF 平分∠BAD ,交CD 于点F ,AB =6, BC =4,则EF 长为……………………………………………………………【 ▲ 】A .1B .2C .3D .46.如图,在菱形ABCD 中,AC =6,BD =8,则△ABD 的周长等于………………………【 ▲ 】 A .18B .16C .15D .147.如图,在锐角△ABC 中, O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,下列结论中正确的是【 ▲ 】第5题图 第6题图 第7题图F E D C BAN M O FE DCB AOD C BA①OE =OF ;②CE =CF ;③若CE =12,CF =5,则OC 的长为6;④当AO =CO 时,四边形AECF 是矩形. A .①②B .①④C .①③④D .②③④8.如图,在平面直角坐标系xOy 中,△ABC 的顶点A (1,2)、B (-2,2)、C (-1,0).若将△ABC 以某点为旋转中心,顺时针旋转90°得到△DEF ,则旋转中心的坐标是【 ▲ 】 AC .(1,-1)D .(2.5,0.5)二、填空题(本大题共有10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.要了解某市八年级学生的身高情况,在全市八年级学生中抽取了1000名学生进行测量,在这个问题中,个体是 ▲ . 10. 如果分式x -3x +3的值为0,那么x 的值为 ▲ .11. 分式1m 2-9 与6m -3的最简公分母是 ▲ .12.在学习了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 是平行四边形,请添加一个条件,使得□ABCD 是矩形.”经过思考,小明说:“添加AC =BD .”小红说:“添加AC ⊥BD .”你同意 ▲ 的观点,理由是 ▲ .13.某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角是36°,则“步行”部分所占百分比是 ▲ .14.某种油菜籽在相同条件下发芽试验的结果如下表:那么这种油菜籽发芽的概率的估计值是 ▲ .15.如图,在□ABCD 中,DB =DC ,∠C =70°,AE ⊥BD 于E ,则∠DAE = ▲ °.第13题图 第15题图步行骑车35%其他36°乘车15%A BCDE16.如图,在平面直角坐标系xOy 中,A (2,0),B (2,4),C (0,4).若直线y =kx -3k -2(k 是常数)将四边形OABC 分成面积相等的两部分,则k 的值为 ▲ .17.已知:如图,正方形ABCD 对角线交于点O ,以AB 为边向外作等边△ABE ,CE 与DB 相交于点F ,则∠AFD 的度数 ▲ .18.如图,在四边形ABCD 中,∠A =90°,AB =8,AD =6,M 、N 分别是边AB 、BC 上的动点,点E 、F 分别为MN 、DN 的中点,连接EF ,则EF 长度的最大值为 ▲ . 三、解答题(本大题共有9小题,共76分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、推理过程或演算步骤)19.(本题满分10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x (分),且50≤x <100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题: (1)本次决赛共有 ▲ 名学生参加; (2)直接写出表中a = ▲ ,b = ▲ ; (3)请补全右边相应的频数分布直方图; (4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 ▲ .第17题图 第18题图OFEDC B AA BCFEDM N 成绩(分)8(此处答题无效)20.(本题满分6分)如图,△ABC 三个顶点的坐标分别为 A (-1,3),B (-4,1),C (-2,1).(1)请画出△ABC 向右平移5个单位长度后得到的 △A 1B 1C 1; (2)请画出△A 1B 1C 1关于原点对称的△A 2B 2C 2; (3)四边形ABA 2B 2的面积为 ▲ .(此处答题无效)21.(本题满分10分)求值题:(1) a 2-4b 2a 3-4a 2b +4ab 2 ,其中a =-3,b =1;(2) 已知 1x -1y =2,求x -y +xy2xy -3x +3y 的值.(此处答题无效)22.(本题满分6分)如图,在□ABCD 中,点E 、F 分别在BC 、AD 上,且BE =DF . 求证:AC 、EF 互相平分.(此处答题无效)FE DCBA第22题图23.(本题满分8分)如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F . (1) 求证:△ABE ≌△CDF ;(2) 若AB =DB ,求证:四边形DEBF 是矩形.(此处答题无效)24.(本题满分8分)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE 、CF . (1) 求证:△ABF ≌△CBE ;(2) 判断△CEF 的形状,并说明理由.(此处答题无效)25.(本题满分8分) 如图,在矩形ABCD 中,点E 为CD 上一点,将△BCE 沿BE 翻折后点C 恰好落在AD 边上的点F 处.连接EF ,将线段EF 绕点F 旋转,使点E 落在BE 上的点G 处,连接CG .(1)证明:四边形CEFG 是菱形;(2)若AB =8,BC =10,求四边形CEFG 的面积.(此处答题无效)F E DC BA第23题图FED CBA第24题图第25题图ABD EF G26.(本题满分8分)阅读理解 我们把依次连接任意一个四边形各边中点得到的四边形叫中点四边形.如图1,在四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,依次连接各边中点得到中点四边形EFGH . 问题解决(1)判断图1中的中点四边形EFGH 的形状,并说明理由;(2)当图1中的四边形ABCD 的对角线添加条件 ▲ 时,这个中点四边形EFGH 是正方形. 拓展延伸(3)如图2,在四边形ABCD 中,点M 在AB 上且△AMD 和△MCB 为等边三角形,E 、F 、G 、H 分别为AB 、BC 、CD 、AD 的中点,试判断四边形EFGH 的形状,并证明你的结论.(此处答题无效)27.(本题满分12分)如图,E 是边长为2的正方形ABCD 的对角线BD 上的一个动点(不与B 、D 两点重合),过点E 作直线MN ∥DC ,交AD 于M ,交BC 于N ,连接AE ,作EF ⊥AE 于E ,交直线CB 于F .(1)如图1,当点F 在线段CB 上时,通过观察或测量,猜想△AEF 的形状,并证明你的猜想;(2)如图2,当点F 在线段CB 的延长线上时,其它条件不变,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由;(3)在点E 从点D 向点B 的运动过程中,四边形AFNM 的面积是否会发生变化?若发生了变化,请说明理由;若没有发生变化,直接写出四边形AFNM 的面积.FNM EDC BA AB CDEM NF图1 图2第27题图H G FED CBA图1图2第26题图M ABC DEFG H试卷答案及评分说明一、选择题1~4 CBCD5~8 BABC二、填空题9. 每名八年级学生的身高10.3 11.(m+3)(m-3) 12.小明对角线相等的平行四边形是矩形13.40% 14. 0.95 15.20 16. -2 17. 60°18.5三、解答题19.(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示;(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.20. (1)如图所示的△A1B1C1为所求作的三角形;(2)如图所示的△A2B2C2为所求作的三角形;(3)1221.(1)a2-4b2a3-4a2b+4ab2=(a-2b)(a+2b)a(a-2b)2=(a+2b)a(a-2b),当a=-3,b=1时,原式=-115;(2) ∵1x-1y=2,∴x-y=-2xy,∴x-y+xy2xy-3x+3y=(x-y)+xy2xy-3(x-y)=-2xy+xy2xy+3×2xy=-xy8xy=-18.22. 连接AE、CF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵BE=DF,∴AD-DF=BC-BE,即AF=EC,∴四边形AECF是平行四边形,∴AC、EF互相平分.23.(1)∵∠ABD 的平分线BE 交AD 于点E ,∴∠ABE=12 ∠ABD.∵∠CDB 的平分线DF 交BC 于点F ,∴∠CDF=12 ∠CDB ,∵在平行四边形ABCD 中,∴AB ∥CD ,∴∠ABD=∠CDB ,∴∠CDF=∠ABE ,∵四边形ABCD 是平行四边形,∴CD=AB ,∠A=∠C ,即 ∠A =∠C ,AB =DC ,∠ABE =∠CDF ,∴△ABE ≌△CDF ;(2)∵△ABE ≌△CDF ,∴AE=CF ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴DE ∥BF ,DE=BF ,∴四边形DFBE 是平行四边形,∵AB=DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB=90°.∴平行四边形DFBE 是矩形.24.(1)∵四边形ABCD 是正方形,∴AB=CB ,∠ABC=90°,∵△EBF 是等腰直角三角形,其中∠EBF=90°,∴BE=BF ,∴∠ABC-∠CBF=∠EBF-∠CBF ,∴∠ABF=∠CBE .在△ABF 和△CBE 中,有 AB =CB ,∠ABF =∠CBE ,BF =BE ,∴△ABF ≌△CBE (SAS ).(2)△CEF 是直角三角形.理由如下:∵△EBF 是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°-∠BFE=135°,又∵△ABF ≌△CBE ,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB-∠FEB=135°-45°=90°,∴△CEF 是直角三角形.(其他证明方法参照给分)25. (1)根据翻折的方法可得:EF=EC ,∠FEG=∠CEG ,在△EFG 和△ECG 中,∵,∴△EFG ≌△ECG ,∴FG=GC ,∵线段FG 是由EF 绕F 旋转得到的,∴EF=FG ,∴EF=EC=FG=GC ,∴四边形FGCE 是菱形;(2)连接FC ,交GE 于O 点,根据折叠可得:BF=BC=10,∵AB=8,在Rt △ABF 中,根据勾股定理得:AF==6,∴FD=AD ﹣AF=10﹣6=4,设EC=x ,则DE=8﹣x ,EF=x ,在Rt △FDE 中:FD 2+DE 2=EF 2,即42+(8﹣x )2=x 2,解得:x=5,26.(1)平行四边形.证明:连接AC 、BD ,∵E ,F 分别是AB 、BC 的中点,∴EF ∥AC ,EF=12 AC ,同理HG ∥AC ,GH=12 AC ,∴EF ∥HG ,EF=HG ,∴四边形EFGH 是平行四边形;(2)AC=BD 且AC ⊥BD ;(3)四边形EFGH 为菱形.证明:连接AC 与BD ,∵△AMD 和△MCB 为等边三角形,∴AM=DM ,∠AMD=∠CMB=60°,CM=BM ,∴∠AMC=∠DMB ,在△AMC 和△DMB 中,AM=DM,∠AMC=∠DMB ,CM=BM ,∴△AMC ≌△DMB ,∴AC=DB ,∵E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,∴EF 是△ABC 的中位线,GH 是△ACD 的中位线,HE 是△ABD 的中位线,∴EF ∥AC ,EF=12 AC ,GH ∥AC ,GH=12AC ,HE=12 DB ,∴EF ∥GH ,EF=GH ,∴四边形EFGH 是平行四边形;∵AC=DB ,∴EF=HE ,∴四边形EFGH 为菱形.27.(1)∵四边形ABCD 是正方形,BD 是对角线,且MN ∥AB ,∴四边形ABNM 和四边形MNCD 都是矩形,△NEB 和△MDE 都是等腰直角三角形.∴∠AEF=∠ENF=90°,MN=BC=AB ,EN=BN ,∴MN-EM=AD-MD ,即EN=AM ,又∵∠AEM+∠FEN=90°,∠AEM+∠EAM=90°,∴∠EAM=∠FEN ,∵∠AME=∠ENF=90°,∴△AME ≌△ENF ,∴AE=BE ,∵AE ⊥EF ,∴△AEF 是等腰直角三角形;(2)由(1)同理可得:BN=EN=AM ,∠AEM=∠EFN ,∵∠AME=∠ENF=90°,∴△AME ≌△ENF ,∴AE=EF ,∵AE ⊥EF ,∴△AEF 是等腰直角三角形;(3)四边形AFNM 的面积没有发生变化,面积为2.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN . (1) 求证:BM=MN ;(2) ∠BAC=22.5°,∠CAD=15°,AC=4,求BN 的长.(1)在△CAD 中,∵点M ,N 分别是AC ,CD 的中点,∴MN ∥AD ,且MN=12 AD ,在Rt △ABC 中,∵点M 是AC 中点,∴BM=12 AC ,又∵AC=AD ,∴MN=BM ;(2)由(1)知,BM=12AC=AM=MC ,∴∠BMC=∠BAM +∠ABM=2∠BAC=45°.∵MN ∥AD ,第26题图NMDCBA∴∠NMC=∠DAC=15°,∴∠BMN=∠BMC +∠NMC=60°. ∵BM=MN ,∴△BMN 是等边三角形,∴BN=BM.∵AC=2,∴MN=BM=12AC=2,∴BN=2.。
初级中学七级下学期期中数学试卷两套汇编四附答案及解析
初级中学七级下学期期中数学试卷两套汇编四附答案及解析2017年初级中学七年级下学期期中数学试卷两套汇编四附答案及解析七年级(下)期中数学试卷一、精心选一选:本大题共8小题,每小题3分,共24分1.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(a+1)2=a2+1 D.(﹣x)8÷x2=x62.下列由左边到右边的变形,属于分解因式的变形是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a ﹣1)C.12ab2c=3ab•4bc D.(a+1)(a﹣1)=a2﹣1 3.如图所示,两条直线AB、CD被第三条直线EF所截,∠1=75°,下列说法正确的()A.若∠4=75°,则AB∥CD B.若∠4=105°,则AB∥CDC.若∠2=75°,则AB∥CD D.若∠2=155°,则AB∥CD4.下列长度的三根木棒首尾相接,能做成三角形的框架的是()A.3cm,5cm,10cm B.5cm,4cm,9cm C.4cm,6cm,9cm D.5cm,7cm,13cm 5.下列计算正确的是()A.(x+2)(x﹣2)=x2﹣2 B.(a+b)(b﹣a)=a2﹣b2C.(﹣a+b)2=a2﹣2ab+b2D.(﹣a﹣b)2=a2﹣2ab+b26.已知是二元一次方程4x+ky=2的解,则k 的值为()A.﹣2 B.2 C.1 D.﹣17.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°8.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=()A.20°B.60°C.70°D.80°二、细心填一填:本大题共10小题,每小题3分,共30分9.人体红细胞的直径约为0.0000077m,用科学记数法表示为______.10.化简:(1﹣2y)(1+2y)=______.11.分解因式:xy2﹣2xy+x=______.12.已知a m=2,a n=3,那么3a m﹣n=______.13.如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了______米.14.如图,阴影部分的面积为______.15.(﹣0.25)15×(﹣4)12=______.16.已知a+b=4,ab=1,则a2+b2的值是______.17.如果实数x,y满足方程组,那么x2﹣y2=______.18.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是______.三、解答题(共8小题,满分66分)19.(1)﹣32﹣0+()﹣2(2)(﹣2a2)2•a4﹣(5a4)2.20.(1)分解因式(a2+4)2﹣16a2(2)解方程组:.21.先化简,再求值:4x(x﹣3)﹣(2x﹣1)2,其中x=﹣.22.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,BB′,则AA′,BB′的数量和位置关系是______.(3)作出BC边上的中线AD;(4)求△ABD的面积.23.如图,在(1)AB∥CD;(2)∠A=∠C;(3)∠E=∠F中,请你选取其中的两个作为条件,另一个作为结论,说明它的正确性和理由.我选取的条件是______,结论是______.我判断的结论是:______,我的理由是:______.24.已知下列等式:①22﹣12=3;②32﹣22=5;③42﹣32=7,…(1)请仔细观察前三个式子的规律,写出第④个式子:______;(2)请你找出规律,写出第n个式子,并说明式子成立的理由:______.利用(2)中发现的规律计算:1+3+5+7+…+2015+2017.25.阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式______;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b 的小正方形纸片及若干个边长分别为a、b的长方形纸片,①请按要求利用所给的纸片拼出一个几何图形,并画在图3所给的方框中,要求所拼出的几何图形的面积为2a2+5ab+2b2,②再利用另一种计算面积的方法,可将多项式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=______.26.已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:______;(2)仔细观察,在图2中“8字形”的个数:______个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)参考答案与试题解析一、精心选一选:本大题共8小题,每小题3分,共24分1.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(a+1)2=a2+1 D.(﹣x)8÷x2=x6【考点】整式的混合运算.【分析】分别根据合并同类项、同底数幂的乘法和除法、完全平方公式进行逐一计算即可.【解答】解:A、x2+x2=2x2,故选项错误;B、x2•x3=x5,故选项错误;C、(a+1)2=a2+2a+1,故选项错误;D、(﹣x)8÷x2=x6,故选项正确.故选:D.2.下列由左边到右边的变形,属于分解因式的变形是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a ﹣1)C.12ab2c=3ab•4bc D.(a+1)(a﹣1)=a2﹣1 【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、是乘法交换律,故C错误;D、是整式的乘法,故D错误;故选:B.3.如图所示,两条直线AB、CD被第三条直线EF所截,∠1=75°,下列说法正确的()A.若∠4=75°,则AB∥CD B.若∠4=105°,则AB∥CDC.若∠2=75°,则AB∥CD D.若∠2=155°,则AB∥CD【考点】平行线的判定.【分析】A、由于∠4=75°,那么∠3=180°﹣75°=105°,于是∠1≠∠3,故AB、CD不平行;B、由于∠4=105°,那么∠3=180°﹣105°=75°,于是∠1=∠3,故AB、CD平行;C、由于∠2=75°,那么∠1=∠2,但是∠1、∠2是对顶角,故AB、CD不平行;D、由于∠2=155°,那么∠1≠∠2,又由于∠1、∠2是对顶角,故此题矛盾,而AB、CD更不可能不平行.【解答】解:A、∵∠4=75°,∴∠3=180°﹣75°=105°,∴∠1≠∠3,∴AB、CD不平行,故此选项错误;B、∵∠4=105°,∴∠3=180°﹣105°=75°,∴∠1=∠3,∴AB、CD平行,故此选项正确;C、∵∠2=75°,∴∠1=∠2,又∵∠1、∠2是对顶角,∴AB、CD不平行,故此选项错误;D、∵∠2=155°,∴∠1≠∠2,又∵∠1、∠2是对顶角,∴∠1=∠2,故此题矛盾,而AB、CD更不可能不平行,故此选项错误.故选B.4.下列长度的三根木棒首尾相接,能做成三角形的框架的是()A.3cm,5cm,10cm B.5cm,4cm,9cm C.4cm,6cm,9cm D.5cm,7cm,13cm 【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边,对各选项分析判断后利用排除法求解.【解答】解:A、5+3<10,不能组成三角形,故本选项错误;B、4+5=9,不能组成三角形,故本选项错误;C、4+6>9,能能组成三角形,故本选项正确;D、5+7<13,不能组成三角形,故本选项错误.故选:C.5.下列计算正确的是()A.(x+2)(x﹣2)=x2﹣2 B.(a+b)(b﹣a)=a2﹣b2C.(﹣a+b)2=a2﹣2ab+b2D.(﹣a﹣b)2=a2﹣2ab+b2【考点】平方差公式;完全平方公式.【分析】直接利用平方差公式以及完全平方公式等知识分别化简求出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,故此选项错误;B、(a+b)(b﹣a)=﹣a2+b2,故此选项错误;C、(﹣a+b)2=a2﹣2ab+b2,正确;D、(﹣a﹣b)2=a2+2ab+b2,故此选项错误;故选:C.6.已知是二元一次方程4x+ky=2的解,则k 的值为()A.﹣2 B.2 C.1 D.﹣1【考点】二元一次方程的解.【分析】将x与y的值代入方程计算即可求出k 的值.【解答】解:将x=2、y=3代入方程得:8+3k=2,解得:k=﹣2,故选:A.7.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°【考点】平行线的性质.【分析】根据平行线的性质:两条直线平行,内错角相等及角平分线的性质,三角形内角和定理解答.【解答】解:∵AD∥BC,∴∠ADB=∠B=30°,再根据角平分线的概念,得:∠BDE=∠ADB=30°,再根据两条直线平行,内错角相等得:∠DEC=∠ADE=60°,故选B.8.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=()A.20°B.60°C.70°D.80°【考点】三角形内角和定理.【分析】求出∠ACB,根据角平分线定义求出∠BCE即可,根据三角形内角和定理求出∠BCD,代入∠FCD=∠BCE﹣∠BCD,求出∠FCD,根据三角形的内角和定理求出∠CDF即可.【解答】解:∵∠A+∠B+∠ACB=180°,∠A=30°,∠B=70°,∴∠ACB=80°,∵CE平分∠ACB,∴∠BCE=∠ACB=×80°=40°,∵CD⊥AB,∴∠CDB=90°,∵∠B=70°,∴∠BCD=90°﹣70°=20°,∴∠FCD=∠BCE﹣∠BCD=20°,∵DF⊥CE,∴∠CFD=90°,∴∠CDF=90°﹣∠FCD=70°.故选C.二、细心填一填:本大题共10小题,每小题3分,共30分9.人体红细胞的直径约为0.0000077m,用科学记数法表示为7.7×10﹣6m.【考点】科学记数法—表示较小的数.【分析】较小的数的科学记数法的一般形式为:a×10﹣n,在本题中a应为7.7,10的指数为﹣6.【解答】解:0.000 007 7=7.7×10﹣6.故答案为:7.7×10﹣6m.10.化简:(1﹣2y)(1+2y)=1﹣4y2.【考点】平方差公式.【分析】套用平方差公式展开即可.【解答】解:(1﹣2y)(1+2y)=12﹣(2y)2=1﹣4y2,故答案为:1﹣4y2.11.分解因式:xy2﹣2xy+x=x(y﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提公因式x,再对剩余项利用完全平方公式分解因式.【解答】解:xy2﹣2xy+x,=x(y2﹣2y+1),=x(y﹣1)2.12.已知a m=2,a n=3,那么3a m﹣n=2.【考点】同底数幂的除法.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:3a m﹣n=3a m÷a n=3×2÷3=2,故答案为:2.13.如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了90米.【考点】多边形内角与外角.【分析】利用多边形的外角和即可解决问题.【解答】解:由题意可知,小明第一次回到出发地A点时,他一共转了360°,且每次都是向左转40°,所以共转了9次,一次沿直线前进10米,9次就前进90米.14.如图,阴影部分的面积为a2.【考点】扇形面积的计算.【分析】先根据题意得到扇形BEF的面积等于扇形CED的面积,即图形1的面积等于图形3的面积,通过割补的方法可知阴影部分的面积=图形1的面积+图形3的面积=正方形ABEF的面积.【解答】解:如图,四边形ABEF和四边形ECDF为正方形,且边长为a那么扇形BEF的面积等于扇形CED的面积所以图形1的面积等于图形3的面积则阴影部分的面积=图形1的面积+图形3的面积=正方形ABEF的面积=a2.15.(﹣0.25)15×(﹣4)12=﹣.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则和有理数的乘法运算法则将原式变形求出答案.【解答】解:原式=[(﹣0.25×(﹣4)]12×(﹣0.25)3=(﹣)3=﹣.故答案为:﹣.16.已知a+b=4,ab=1,则a2+b2的值是14.【考点】完全平方式.【分析】利用完全平方和公式(a+b)2=a2+b2+2ab 解答.【解答】解:∵a+b=4,ab=1,∴a2+b2=(a+b)2﹣2ab=16﹣2=14;即a2+b2=14.故答案是:14.17.如果实数x,y满足方程组,那么x2﹣y2=﹣10.【考点】二元一次方程组的解;平方差公式.【分析】方程组的两个方程两边分别相乘,即可求出答案.【解答】解:①×②得:(x﹣y)(x+y)=﹣10,所以x2﹣y2=﹣10,故答案为:﹣1018.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是36°.【考点】平行线的性质;三角形内角和定理;直角三角形的性质.【分析】过C作CE∥QT∥SH,根据平行线性质求出∠FCE=∠α=54°,∠β=∠NCE,根据∠FCN=90°,即可求出答案.【解答】解:过C作CE∥QT∥SH,∴∠FCE=∠α=54°,∴∠β=∠NCE=90°﹣54°=36°.故答案为:36°.三、解答题(共8小题,满分66分)19.(1)﹣32﹣0+()﹣2(2)(﹣2a2)2•a4﹣(5a4)2.【考点】单项式乘单项式;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】(1)根据非零的零次幂等于1,负整数指数幂与正整数指数幂互为倒数,可得答案;(2)根据积的乘方等于乘方的积,可得单项式的乘法,根据单项式的乘法,可得同类项,根据合并同类项,可得答案.【解答】解:(1)原式=﹣9﹣1+9=﹣1;(2)原式=4 a4•a4﹣25 a8=4 a8﹣25 a8=﹣21 a8.20.(1)分解因式(a2+4)2﹣16a2(2)解方程组:.【考点】解二元一次方程组;因式分解-运用公式法.【分析】(1)原式利用平方差公式分解,再利用完全平方公式化简即可;(2)方程组利用代入消元法求出解即可.【解答】解:(1)原式=(a2+4﹣4a)(a2+4+4a)=(a﹣2)2(a+2)2;(2)由②得:x=﹣3+2y ③,把③代入①得,y=1,把y=1代入③得:x=﹣1,则原方程组的解为:.21.先化简,再求值:4x(x﹣3)﹣(2x﹣1)2,其中x=﹣.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式=4x2﹣12x﹣(4x2﹣4x+1)=4x2﹣12x﹣4x2+4x﹣1=﹣8x﹣1,当x=﹣时,原式=﹣8×(﹣)﹣1=6.22.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,BB′,则AA′,BB′的数量和位置关系是平行且相等.(3)作出BC边上的中线AD;(4)求△ABD的面积.【考点】作图-平移变换.【分析】(1)直接利用点A变换为A′得出平移规律,进而得出答案;(2)利用平移的性质得出AA′,BB′的数量和位置关系;(3)利用网格得出BC的中点,进而得出答案;(4)利用△ABD的面积=S△ABC,进而得出答案.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)AA′,BB′的数量和位置关系是:平行且相等;故答案为:平行且相等;(3)如图所示:AD即为所求;(4)△ABD的面积=S△ABC=(9﹣1﹣1.5﹣3)=1.75.23.如图,在(1)AB∥CD;(2)∠A=∠C;(3)∠E=∠F中,请你选取其中的两个作为条件,另一个作为结论,说明它的正确性和理由.我选取的条件是(1)(2),结论是(3).我判断的结论是:(3),我的理由是:两直线平行,内错角相等.【考点】平行线的判定.【分析】选择(1)、(2),证出AE∥CF,即可得出结论(3).【解答】解:我选择的条件是(1)、(2),结论是(3).理由如下:∵AB∥CD,∴∠C=∠ABF,∵∠A=∠C,∴∠A=∠ABF,∴AE∥CF,∴∠E=∠F(两直线平行,内错角相等;故答案为:(1)、(2),(3);③,两直线平行,内错角相等.24.已知下列等式:①22﹣12=3;②32﹣22=5;③42﹣32=7,…(1)请仔细观察前三个式子的规律,写出第④个式子:52﹣42=9;(2)请你找出规律,写出第n个式子,并说明式子成立的理由:n2+2n+1﹣n2=2n+1.利用(2)中发现的规律计算:1+3+5+7+…+2015+2017.【考点】平方差公式.【分析】(1)由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;(2)等式左边减数的底数与序号相同,由此得出第n个式子;(3)由3=22﹣12,5=32﹣22,7=42﹣32,…,将算式逐一变形,再寻找抵消规律.【解答】解:(1)依题意,得第④个算式为:52﹣42=9;故答案为:52﹣42=9;(2)根据几个等式的规律可知,第n个式子为:(n+1)2﹣n2=2n+1;故答案为:n2+2n+1﹣n2=2n+1;(3)由(2)的规律可知,1+3+5+7+…+2015=1+(22﹣12)+(32﹣22)+(42﹣32)+…+=10132.25.阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个边长分别为a、b的长方形纸片,①请按要求利用所给的纸片拼出一个几何图形,并画在图3所给的方框中,要求所拼出的几何图形的面积为2a2+5ab+2b2,②再利用另一种计算面积的方法,可将多项式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=(2a+b)(a+2b).【考点】因式分解的应用;完全平方公式的几何背景.【分析】(1)直接根据图形写出等式;(2)将所求式子与(1)的结论对比,得出变形的式子,代入求值即可;(3)①画出图形,答案不唯一,②根据原图形面积=组合后长方形的面积得出等式.【解答】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,=112﹣2×38,=45;(3)①如图所示,②如上图所示的矩形面积=(2a+b)(a+2b),它是由2个边长为a的正方形、5个边长分别为a、b的长方形、2个边长为b的小正方形组成,所以面积为2a2+5ab+2b2,则2a2+5ab+2b2=(2a+b)(a+2b),故答案为:2a2+5ab+2b2=(2a+b)(a+2b).26.已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:∠A+∠D=∠B+∠C;(2)仔细观察,在图2中“8字形”的个数:6个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)【考点】三角形内角和定理.【分析】(1)利用三角形的内角和定理表示出∠AOD与∠BOC,再根据对顶角相等可得∠AOD=∠BOC,然后整理即可得解;(2)根据“8字形”的结构特点,根据交点写出“8字形”的三角形,然后确定即可;(3)根据(1)的关系式求出∠OCB﹣∠OAD,再根据角平分线的定义求出∠DAM﹣∠PCM,然后利用“8字形”的关系式列式整理即可得解;(4)根据“8字形”用∠B、∠D表示出∠OCB ﹣∠OAD,再用∠D、∠P表示出∠DAM﹣∠PCM,然后根据角平分线的定义可得∠DAM﹣∠PCM=(∠OCB﹣∠OAD),然后整理即可得证.【解答】解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)交点有点M、O、N,以M为交点有1个,为△AMD与△CMP,以O为交点有4个,为△AOD与△COB,△AOM与△CON,△AOM与△COB,△CON与△AOD,以N为交点有1个,为△ANP与△CNB,所以,“8字形”图形共有6个;(3)∵∠D=40°,∠B=36°,∴∠OAD+40°=∠OCB+36°,∴∠OCB﹣∠OAD=4°,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,又∵∠DAM+∠D=∠PCM+∠P,∴∠P=∠DAM+∠D﹣∠PCM=(∠OAD﹣∠OCB)+∠D=×(﹣4°)+40°=38°;(4)根据“8字形”数量关系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,所以,∠OCB﹣∠OAD=∠D﹣∠B,∠PCM﹣∠DAM=∠D﹣∠P,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,∴(∠D﹣∠B)=∠D﹣∠P,整理得,2∠P=∠B+∠D.七年级(下)期中数学试卷一、选择题(只有一个正确答案,认真思考啊!每小题3分,共30分)1.(a+b)2等于()A.a2+b2B.a2﹣2ab+b2C.a2﹣b2D.a2+2ab+b2 2.下列计算中,正确的是()A.2x+3y=5xyB.x•x4=x4C.x8÷x2=x4D.(x2y)3=x6y33.已知∠a=32°,则∠a的补角为()A.58°B.68°C.148°D.168°4.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5 B.0.25×10﹣6C.2.5×10﹣5 D.2.5×10﹣65.下列计算正确的是()A.a5+a5=a10 B.a6×a4=a24C.a4÷a3=a D.a4﹣a4=a06.(a﹣b)2加上如下哪一个后得(a+b)2()A.0 B.4ab C.3ab D.2ab7.点到直线的距离是()A.点到直线的垂线段的长度B.点到直线的垂线段C.点到直线的垂线D.点到直线上一点的连线8.下列说法正确的是()A.a,b,c是直线,且a∥b,b∥c,则a∥c B.a,b,c是直线,且a⊥b,b⊥c,则a⊥c C.a,b,c是直线,且a∥b,b⊥c,则a∥c D.a,b,c是直线,且a∥b,b∥c,则a⊥c 9.如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180°B.270°C.360°D.540°10.若(x﹣a)(x﹣5)的展开式中不含有x的一次项,则a的值为()A.0 B.5 C.﹣5 D.5或﹣5二、填空题(每小题4分,共16分)11.若﹣x m﹣2y5与2xy2n+1是同类项,则m+n=______.12.多项式3x2+πxy2+9中,次数最高的项的系数是______.13.22015×()2016=______.14.如图,已知∠1=∠2,∠B=40°,则∠3=______.三、计算题(每小题24分,共24分)15.(1)(﹣2xy3z2)2(2)a5•(﹣a)2÷a3(3)(2x+3y)(3y﹣2x)+(x﹣3y)(x+3y)(4)(﹣24x3y2+8x2y3﹣4x2y2)÷(﹣2xy)2(5)(﹣2003)0×2×÷23](6)(x﹣y+5)(x+y﹣5)四、数与式解答题(每小题6分,共30分)16.化简求值:(mn+2)(mn﹣2)﹣(mn﹣1)2,其中m=2,n=.17.解方程:(x+1)(x﹣1)﹣2x=x﹣2+(x﹣2)2.18.若x﹣2y=5,xy=﹣2,求下列各式的值:(1)x2+4y2;(2)(x+2y)2.19.已知:如图所示,∠ABC=∠ADC,BF和DE分别平分∠ABC和∠ADC,∠AED=∠EDC.求证:ED∥BF.证明:∵BF和DE分别平分∠ABC和∠ADC(已知)∴∠EDC=______∠ADC,∠FBA=______∠ABC(角平分线定义).又∵∠ADC=∠ABC(已知),∴∠______=∠FBA(等量代换).又∵∠AED=∠EDC(已知),∴∠______=∠______(等量代换),∴ED∥BF______.20.已知,如图,∠AEC=∠BFD,CE∥BF,求证:AB∥CD.一、填空题(每小题4分,共20分)21.若5x=2,5y=3,则5x+2y=______.22.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D,C′的位置,若∠EFB=65°,则∠AED′等于______°.23.如图,若直线a∥b,那么∠x=______度.24.已知x2+y2+z2+2x﹣4y﹣6z+14=0,则x﹣y+z=______.25.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca 的值等于______.二、解答题(共30分)26.(1)已知多项式2x3﹣4x﹣1除以一个多项式A,得商式为x,余式为x﹣1,求这个多项式.(2)请按下列程序计算,把答案写在表格内,然后看看有什么规律,想想为什么会有这样的规律?①填写表格内的空格:n输入 3 2 1 …输出答案…②你发现的规律是:______.③请用符号语言论证你的发现.27.如图1,已知长方形ABCD,AB=CD=4,BC=AD=6,∠A=∠B=∠C=∠D=90°,E为CD 边的中点,P为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→E运动到E点停止,设点P经过的路程为x,△APE的面积为y.(1)当x=2时,在(a)中画出草图,并求出对应y的值;(2)当x=5时,在(b)中画出草图,并求出对应y的值;(3)利用图(c)写出y与x之间的关系式.28.如图,平面内的直线有相交和平行两种位置关系.(1)如图(a),已知AB∥CD,求证:∠BPD=∠B+∠D.(2)如图(b),已知AB∥CD,求证:∠BOD=∠P+∠D.(3)根据图(c),试判断∠BPD,∠B,∠D,∠BQD之间的数量关系,并说明理由.参考答案与试题解析一、选择题(只有一个正确答案,认真思考啊!每小题3分,共30分)1.(a+b)2等于()A.a2+b2B.a2﹣2ab+b2C.a2﹣b2D.a2+2ab+b2【考点】完全平方公式.【分析】原式利用完全平方公式展开即可得到结果.【解答】解:(a+b)2=a2+2ab+b2.故选D.2.下列计算中,正确的是()A.2x+3y=5xyB.x•x4=x4C.x8÷x2=x4D.(x2y)3=x6y3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、2x与3y不是同类项,不能合并,故本选项错误;B、应为x•x4=x1+4=x5,故本选项错误;C、应为x8÷x2=x8﹣2=x6,故本选项错误;D、(x2y)3=x6y3,正确.故选D.3.已知∠a=32°,则∠a的补角为()A.58°B.68°C.148°D.168°【考点】余角和补角.【分析】根据互为补角的和等于180°列式计算即可得解.【解答】解:∵∠a=32°,∴∠a的补角为180°﹣32°=148°.故选C.4.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5 B.0.25×10﹣6C.2.5×10﹣5 D.2.5×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6;故选:D.5.下列计算正确的是()A.a5+a5=a10 B.a6×a4=a24C.a4÷a3=a D.a4﹣a4=a0【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同类项、同底数幂的乘法和除法计算判断即可.【解答】解:A、a5+a5=2a5,错误;B、a6×a4=a10,错误;C、a4÷a3=a,正确;D、a4﹣a4=0,错误;故选C6.(a﹣b)2加上如下哪一个后得(a+b)2()A.0 B.4ab C.3ab D.2ab【考点】完全平方公式.【分析】完全平方公式是(a+b)2=a2+2ab+b2,(a ﹣b)2=a2﹣2ab+b2,根据以上公式得出即可.【解答】解:(a﹣b)2+4ab=(a+b)2,故选B.7.点到直线的距离是()A.点到直线的垂线段的长度B.点到直线的垂线段C.点到直线的垂线D.点到直线上一点的连线【考点】点到直线的距离.【分析】首先熟悉点到直线的距离的概念:直线外一点到这条直线的垂线段的长度,即为点到直线的距离【解答】解:点到直线的距离是直线外一点到这条直线的垂线段的长度,故选:A.8.下列说法正确的是()A.a,b,c是直线,且a∥b,b∥c,则a∥c B.a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.a,b,c是直线,且a∥b,b⊥c,则a∥c D.a,b,c是直线,且a∥b,b∥c,则a⊥c 【考点】平行线的判定与性质.【分析】根据“在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行”和“在同一平面内垂直于同一直线的两条直线互相平行”解答即可.【解答】解:A、正确,根据“在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.B、错误,因为“在同一平面内垂直于同一直线的两条直线互相平行”.C、错误,a,b,c是直线,且a∥b,b⊥c则a ⊥c;D、错误,b,c是直线,且a∥b,b∥c,则a ∥c.故选A.9.如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180°B.270°C.360°D.540°【考点】平行线的性质.【分析】先根据平行线的性质得出∠BAC+∠ACD=180°,∠DCE+∠CEF=180°,进而可得出结论.【解答】解:∵AB∥CD∥EF,∴∠BAC+∠ACD=180°①,∠DCE+∠CEF=180°②,①+②得,∠BAC+∠ACD+∠DCE+∠CEF=360°,即∠BAC+∠ACE+∠CEF=360°.故选C.10.若(x﹣a)(x﹣5)的展开式中不含有x的一次项,则a的值为()A.0 B.5 C.﹣5 D.5或﹣5【考点】多项式乘多项式.【分析】根据多项式乘以多项式法则展开,再合并同类项,根据已知得出﹣5﹣a=0,求出即可.【解答】解:(x﹣a)(x﹣5)=x2﹣5x﹣ax+5a=x2+(﹣5﹣a)x+5a,∵(x﹣a)(x﹣5)的展开式中不含有x的一次项,∴﹣5﹣a=0,a=﹣5.故选:C.二、填空题(每小题4分,共16分)11.若﹣x m﹣2y5与2xy2n+1是同类项,则m+n=5.【考点】同类项.【分析】利用同类项的定义求出m与n的值,即可确定出m+n的值.【解答】解:∵﹣x m﹣2y5与2xy2n+1是同类项,∴m﹣2=1,2n+1=5,∴m=3,n=2,∴m+n=3+2=5.12.多项式3x2+πxy2+9中,次数最高的项的系数是π.【考点】多项式.【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,找出次数最高的项的次数即可.【解答】解:多项式3x2+πxy2+9中,最高次项是πxy2,其系数是π.故答案为:π.13.22015×()2016=.【考点】有理数的乘方.【分析】根据积的乘方进行逆运用,即可解答.【解答】解:22015×()2016==.故答案为:.14.如图,已知∠1=∠2,∠B=40°,则∠3= 40°.【考点】平行线的判定与性质.【分析】由∠1=∠2,根据“内错角相等,两直线平行”得AB∥CE,再根据两直线平行,同位角相等即可得到∠3=∠B=40°.【解答】解:∵∠1=∠2,∴AB∥CE,∴∠3=∠B,而∠B=40°,∴∠3=40°.故答案为40°.三、计算题(每小题24分,共24分)15.(1)(﹣2xy3z2)2(2)a5•(﹣a)2÷a3(3)(2x+3y)(3y﹣2x)+(x﹣3y)(x+3y)(4)(﹣24x3y2+8x2y3﹣4x2y2)÷(﹣2xy)2(5)(﹣2003)0×2×÷23](6)(x﹣y+5)(x+y﹣5)【考点】整式的混合运算;零指数幂.【分析】(1)直接利用积的乘方运算法则求出答案;(2)直接利用同底数幂的乘除法运算法则求出答案;(3)直接利用平方差公式计算得出答案;(4)直接利用多项式除以单项式进而求出答案;。
2017-2018学年七年级数学下期中考试卷及答案
2017-2018学年七年级数学下期中考试卷及答案2017 — 2018 学年度第二学期初一年级数学学科期中检测试卷(全卷满分150 分,答题时间120 分钟)一、选择题(共8 小题,每题 3 分,共 24 分)1.以下图形中,能将此中一个图形平移获得另一个图形的是(▲)A. B.c. D.2 .以下计算正确的选项是(▲)A. B.c. D.3 .以下长度的 3 条线段,能首尾挨次相接构成三角形的是(▲)A .1c,2c, 4cB. 8c,6c, 4cc .15c, 5c, 6cD. 1c, 3c,4c4 .以下各式能用平方差公式计算的是(▲)A. B.c. D.5 .若 , ,则的值为(▲)A . 6B. 8c. 11D. 186 .如图, 4 块完整同样的长方形围成一个正方形. 图中阴影部分的面积能够用不一样的代数式进行表示,由此能考证的等式是(▲)A. B.c. D.7 .当 x=﹣6, y=时,的值为(▲)A.﹣ 6B. 6c.D.8.如图,四边形 ABcD中, E、 F、 G、 H 挨次是各边中点,o 是形内一点,若四边形AEoH、四边形BFoE、四边形cGoF 的面积分别为 7、 9、 10,则四边形DHoG面积为(▲)A . 7B. 8c. 9D.10二、填空题(共10 小题,每题 3 分,共 30 分)9.随意五边形的内角和与外角和的差为度.10.已知一粒米的质量是 0.000021 千克,这个数字用科学记数法表示为.11 .假如一个完整平方式,则=.12.已知,,则的值是 ______.13.假如( x+1)( x+)的乘积中不含 x 的一次项,则的值为.14 .若,则= .15. 若 { █ (x=3@y=-2) 是方程组 { █ (ax+by=1@ax-by=5) 的解,则 a+b=________.16.已知,且,那么的值为.17.如图,将△ ABc 沿 DE、 EF 翻折,极点 A,B 均落在点o 处,且 EA与 EB重合于线段 Eo,若∠ cDo+∠ cFo= 78°,则∠ c 的度数为 =.18.如图,长方形 ABcD中, AB=4c,Bc=3c,点 E 是 cD 的中点,动点 P 从 A 点出发,以每秒 1c 的速度沿 A→B→ c→ E运动,最后抵达点 E.若点 P 运动的时间为 x 秒,那么当x=_________ 时,△ APE的面积等于.三、解答题(本大题共有 10 小题,共 96 分.请在答题卡指定地区内作答)19 .计算(每题 4 分,共 16 分)(1)(2)(3)(4)( a-b+ 1)( a+ b- 1)20.解方程组(每题 4 分,共 8 分)(1)(2)21.(此题满分 8 分)绘图并填空:如图,每个小正方形的边长为 1 个单位,每个小正方形的极点叫格点.(1)将△ ABc 向左平移 8 格,再向下平移 1 格.请在图中画出平移后的△ A′ B′ c′(2)利用网格线在图中画出△ ABc 的中线 cD,高线 AE;(3)△ A′ B′ c′的面积为 _____.22.(此题满分 6 分)已知:如图, AB∥ cD,EF 交 AB于 G,交 cD 于 F,FH均分∠ EFD,交 AB于 H,∠ AGE=40°,求∠ BHF 的度数.23.(此题满分 10 分)已知:如图 , 在△ ABc 中,BD⊥ Ac 于点 D,E 为 Bc 上一点 , 过 E 点作 EF⊥ Ac, 垂足为 F, 过点 D作 DH ∥Bc 交 AB于点 H.(1) 请你补全图形。
天津市七年级下学期期中数学试卷
天津市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列各式中,是一元一次方程的是()A . 2x+5y=6B . 3x﹣2C . x2=1D . 3x+5=82. (2分) a-1与3-2a是某正数的两个平方根,则实数a的值是()A . 4B .C . 2D . -23. (2分)如果方程组的解与方程组的解相同,则a,b的值是()A .B .C .D .4. (2分) (2017七下·江阴期中) 小亮求得方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这两个数,“●”“★”表示的数分别为()A . 5,2B . 8,﹣2C . 8,2D . 5,45. (2分) (2018八上·新蔡期中) 通过计算几何图形面积可表示代数恒等式,上图可表示的代数恒等式是……()A . (a―b)2=a2―2ab+b2B . (a+b)2=a2+2ab+b2C . 2a(a+b)=2a2+2abD . (a+b)(a-b)=a2-b26. (2分)关于x的方程2a-3x=6的解是非负数,那么a满足的条件是()A . a>3B . a≤3C . a<3D . a≥37. (2分) (2015七下·新昌期中) 在二元一次方程x+3y=1的解中,当x=4时,对应的y的值是()A . ﹣B .C . ﹣1D . 48. (2分)一宾馆有二人间,三人间,四人间三种客房供游客居住,某旅行团24人准备同时租用这三间客房共8间,且每个客房都住满,那么租房方案有()A . 4种B . 3种C . 2种D . 1种9. (2分)(2017·长春) 不等式组的解集为()A . x<﹣2B . x≤﹣1C . x≤1D . x<310. (2分)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,下面列出的这三个数的和①24,②35,③51,④72,其中不可能的是()A . ①②B . ②④C . ②③D . ②③④11. (2分) 2015年2月1日宿迁市最高气温是8℃,最低气温是﹣2℃,则当天合肥市气温变化范围t(℃)是()A . t>8B . t<2C . ﹣2<t<8D . ﹣2≤t≤812. (2分) (2017七下·南江期末) 小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2018七上·鄂州期末) 如果方程ax|a+1|+3=0是关于x的一元一次方程,则a的值为________.14. (1分) (2020七下·顺义期中) 不等式的正整数解为:________.15. (1分) (2019七上·长春期中) 若|a﹣1|+(b+2)2=0,则a•ba=________.16. (1分) (2010七下·浦东竞赛) 等式,式中的应为________ .17. (1分)某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人;若每组8人还缺少6人.若设该班分成x个小组,可列方程为________ .18. (1分) (2019七下·卫辉期中) 如果m,n为实数,且满足,则________.三、解答题 (共7题;共56分)19. (10分) (2019七下·綦江期中) 解下列方程组(每小题5分,共10分):(1)(2)20. (5分)已知是方程组的解,求m和n的值.21. (10分)(2019·云南) 某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.22. (5分)解方程组时,本应解出,但由于看错了系数c ,而得到解为,试求a+b+c的值.23. (11分)雅安地震发生后,全国人民抗震救灾,众志成城,在地震发生一周年之际,某地政府又筹集了重建家园的必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)全部物资可用甲型车8辆,乙型车5辆,丙型车________辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(3)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?24. (10分) (2019八下·江城期末) 某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍(1)求一件A种文具的价格(2)根据需要,该校准备在该商店购买A、B两种文具共150件。
天津市蓟县七年级数学下学期期中试题(扫描版) 新人教
天津市蓟县2014-2015学年七年级数学下学期期中试题蓟县2014-2015学年度第二学期期中质量检测试题七年级数学参考答案与评分标准一、选择题(每小题3分,共30分)二、填空题(每题3分,共24分)11.答案不唯一12.如果两条直线垂直于同一条直线,那么这两条直线互相平行.13. ±1.01, 12 14. 3 15. 80° 16. (0,±4)17. 1,4 18. 70°,110°三、解答题(共46分)19.(1)2 (2)020.(1)122,1x x ==- (2)32x =21.100°;邻补角定义; 2 , 5; 同位角相等,两直线平行;两直线平行,内错角相等; 85°.22.(1)A(2,-1) B(4,3)(2)A ′( 1,1), B ′(3,5), C ′(0 ,4)(3) 5(4)画图略23.答:相等。
------------------1分理由如下:∵AB ∥CD∴∠BAC=∠ACD -----2分∵AE ∥CF∴∠EAC=∠ACF -------------------------------------4分∴∠BAC-∠EAC =∠ACD-∠ACFFEDC B AD FE CB A ∴∠BAE=∠DCF -------------------------------------6分24.解:∵ 05102=-++b a0,0b ≥≥∴2100,0a b +== --------------------------2分∴ 5a =-,b =分 又∵()142-=++a b x a∴56x -+=-∴11x = --------------------------6分25.解:过C 点作CD 平行于AB --------1分又∵AB ∥EF∴AB ∥EF ∥CD -----------2分∴∠BAC+∠ACD=180° ------------3分∠DCE+∠CEF=180° ------------4分∴∠BAC+∠ACD+∠DCE+∠CEF=360°--------------------5分又∵∠ACD+∠DCE=∠ACE∴∠BAC+∠ACE+∠CEF=360° --------------------6分。
2023-2024学年天津市蓟州区七年级下学期数学期中质量检测模拟合集2套(含解析)
2023-2024学年天津市蓟州区七年级下册数学期中专项提升模拟(A卷)一.选一选(每题3分,共30分)1.下列运算正确的是()A.a4+a5=a9B.a3•a3•a3=3a3C.a4•a5=a9D.(﹣a3)4=a72.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°3.计算(a+b)(﹣a+b)的结果是()A.b2﹣a2B.a2﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab+b24.如果每盒笔有18支,售价12元,用y(元)表示笔的售价,x表示笔的支数,那么y与x之间的关系式应该是()A.y=12xB.y=18xC.y=23x D.y=325.如图,描述同位角、内错角、同旁内角关系没有正确....的是()A.1∠与4∠是同位角B.2∠与3∠是内错角C.3∠与4∠是同旁内角D.2∠与4∠是同旁内角6.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A.3B.4C.5D.67.以下列各组线段长为边,能组成三角形的是().A.1cm,2cm,4cmB.8cm,6cm,4cmC.12cm,5cm,6cmD.2cm,3cm,6cm8.三角形两边长分别为3和5,若第三边的长为偶数,则这个三角形的周长可能是()A.10或12B.10或14C.12或14D.14或169.一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程S (千米)和行驶时间t (小时)的关系的是()A. B. C. D.10.已知x +y =﹣5,xy =3,则x 2+y 2=()A.25B.﹣25C.19D.﹣19二.填空题(每题3分,共24分)11.70+3﹣2=_____.12.某种生物孢子的直径为0.00058m .把0.00058用科学记数法表示为______________.13.如图,已知AD ∥BC ,∠1=∠2,∠A=112°,且BD ⊥CD ,则∠C=_____.14.已知x=y+4,则代数式22x 2xy+y 25--的值为_______.15.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.16.如图,△ABC 中,AD 是BC 边上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积________.17.已知29x mx ++是完全平方式,则m =_________.18.如图,在△ABC 与△AEF 中,AB =AE ,BC =EF ,∠B =∠E ,AB 交EF 于点D .给出下列结论:①∠EAB =∠FAC ;②AF =AC ;③∠C =∠EFA ;④AD =AC .其中正确的结论是_____(填序号).三.解答题(共46分)19.计算(1)1232﹣124×122(2)[(x+2)(x ﹣3)+6]÷x (3)(3x+2)(3x ﹣2)﹣5x (x ﹣1)(4)(a+b+3)(a+b ﹣3)20.先化简,再求值:(x+2)2+(x+1)(x-1),其中x=-12.21.补全下列推理过程:如图,已知∠1=∠2,∠3=∠4,试说明AB ∥CD .解:∵∠1=∠2(已知),∴CE ∥FB (),∴∠4=∠AEC (),∵∠3=∠4(已知),∴∠3=∠AEC (),∴AB ∥CD ().22.如图,在△ABC中,∠A=62°,∠B=74°,∠ACB的平分线交AB于D,DE∥BC交AC于E,求∠EDC的度数.23.王教授和孙子小强经常一起进行早锻炼,主要是爬山.有,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分)的关系(从小强开始爬山时计时).(1)小强让爷爷先上多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)小强多长时间追上爷爷?24.如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE上,AB=EF,AD=EC,AB∥EF.△ABC 与△EFD全等吗?请说明理由.25.如图,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,点D为AB的中点.若点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.(1)若点Q的运动速度与点P的运动速度相等,1秒后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度没有相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?2023-2024学年天津市蓟州区七年级下册数学期中专项提升模拟(A卷)一.选一选(每题3分,共30分)1.下列运算正确的是()A.a4+a5=a9B.a3•a3•a3=3a3C.a4•a5=a9D.(﹣a3)4=a7【正确答案】C【详解】解:A.a4+a5,无法计算,故此选项错误;B.a3a3a3=a9,故此选项错误;C.a4a5=a9,故此选项正确;D.(﹣a3)4=a12,故此选项错误;故选C.2.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°【正确答案】B【分析】首先根据补角的定义求得这个角的度数,然后根据余角的定义即可求出这个角的余角.【详解】根据定义一个角的补角是150°,则这个角是180°-150°=30°,这个角的余角是90°-30°=60°.故选B.此题主要考查的是补角和余角的定义,属于基础题,较简单,主要记住互为余角的两个角的和为90°;互为补角的两个角的和为180°.3.计算(a+b)(﹣a+b)的结果是()A.b2﹣a2B.a2﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab+b2【正确答案】A【详解】(a+b)(-a+b)=(b+a)(b-a)=b2-a2.故选:A.4.如果每盒笔有18支,售价12元,用y(元)表示笔的售价,x表示笔的支数,那么y与x之间的关系式应该是()A.y=12xB.y=18xC.y=23x D.y=32【正确答案】D【详解】试题分析:由题意知圆珠笔的单价是=(元/支),∴y=x;故选D.考点:商品——单价与总价.5.如图,描述同位角、内错角、同旁内角关系没有正确....的是()A.1∠与4∠是同位角B.2∠与3∠是内错角C.3∠与4∠是同旁内角D.2∠与4∠是同旁内角【正确答案】D【详解】解:A.∠1与∠4是同位角,故A选项正确;B.∠2与∠3是内错角,故B选项正确;C.∠3与∠4是同旁内角,故C选项正确;D.∠2与∠4是同旁内角,故D选项错误.故选D.点睛:本题主要考查了同位角、内错角、同旁内角,解题的关键是熟记同位角、内错角、同旁内角的特征.6.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A.3B.4C.5D.6【正确答案】A【详解】解:∵AB∥CD,BC∥AD,∴∠ABD=∠CDB,∠ADB=∠CBD.在△ABD和△CDB中,∵ABD CDBBD DBADB CBD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABD≌△CDB(ASA),∴AD=BC,AB=CD.在△ABE和△CDF中,∵AB CDABE CDFBE DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS),∴AE=CF.∵BE=DF,∴BE+EF=DF+EF,∴BF=DE.在△ADE和△CBF中,∵AD CBDE BFAE CF=⎧⎪=⎨⎪=⎩,∴△ADE≌△CBF(SSS),即3对全等三角形.故选A.7.以下列各组线段长为边,能组成三角形的是().A.1cm,2cm,4cmB.8cm,6cm,4cmC.12cm,5cm,6cmD.2cm,3cm,6cm【正确答案】B【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】解:A、1+2<4,没有能组成三角形;B、4+6>8,能组成三角形;C、5+6<11,没有能够组成三角形;D、2+3<5,没有能组成三角形.故选B.本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.三角形两边长分别为3和5,若第三边的长为偶数,则这个三角形的周长可能是()A.10或12B.10或14C.12或14D.14或16【正确答案】C【详解】解:设三角形第三边的长为a,∵三角形的两边长分别为3和5,∴5﹣3<a<5+3,即2<a<8,∵a为偶数,∴a=4或a=6,当a=4时,这个三角形的周长=3+4+5=12;当a=6时,这个三角形的周长=3+5+6=14.综上所述,这个三角形的周长可能是12或14.故选C.点睛:本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,两边之差小于第三边.9.一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程S (千米)和行驶时间t (小时)的关系的是()A. B. C. D.【正确答案】B【分析】根据行驶的状态,路程由到最小为0,t 、s 没有能为负数进行判断.【详解】解:时间和路程没有会是负值,排除A 、C .由于汽车由韶关匀速驶往广州,出发时距离广州的路程s 应,并且逐步减少为0,排除D .图象B 符合题意.故选:B .本题考查了实际问题中的函数图象一般只在象限,解题的关键是还需注意横纵坐标实际表示的意义.10.已知x +y =﹣5,xy =3,则x 2+y 2=()A.25B.﹣25C.19D.﹣19【正确答案】C【详解】解:∵x +y =﹣5,xy =3,∴2222x y x y xy +=+-=25-2×3=19.故选C二.填空题(每题3分,共24分)11.70+3﹣2=_____.【正确答案】109【详解】解:原式=1+19=109.故答案为109.12.某种生物孢子的直径为0.00058m .把0.00058用科学记数法表示为______________.【正确答案】5.8×10﹣4【分析】值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法没有同的是其所使用的是负指数幂,指数由原数左边起个没有为零的数字前面的0的个数所决定.【详解】把0.00058用科学记数法表示为0.00058=5.8×10﹣4.故答案是5.8×10﹣4.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.如图,已知AD ∥BC ,∠1=∠2,∠A=112°,且BD ⊥CD ,则∠C=_____.【正确答案】56°【详解】解:∵AD ∥BC ,∴∠2=∠ADB .又∵AD ∥BC ,∠A =112°,∴∠ABC =180°-∠A =68°,∵∠1=∠2,∴∠1=∠2=∠ADB =34°,∵BD ⊥CD ,∴∠2+∠C =90°,∴∠C =90°﹣34°=56°,故答案为56°.点睛:此题综合运用了三角形的内角和定理、平行线的性质.三角形的内角和是180°;两条直线平行,则同位角相等,内错角相等,同旁内角互补.14.已知x=y+4,则代数式22x 2xy+y 25--的值为_______.【正确答案】-9【详解】由x=y+4得x y=4-,()2222x 2xy+y 25=x y 25=425=9∴------故答案为-915.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.【正确答案】70°##70度【详解】连接AB.∵C岛在A岛的北偏东45°方向,在B岛的北偏25°方向,∴∠CAB+∠ABC=180°-(45°+25°)=110°,∵三角形内角和是180°,∴∠ACB=180°-(∠CAB+∠ABC)=180°-110°=70°.故70°.16.如图,△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积________.【正确答案】6【分析】根据三角形的中线把三角形分成面积相等的两部分,即可解答.【详解】解:∵AD是BC上的中线,△ABC的面积是24,∴S△ABD=S△ACD=12S△ABC=12,∵BE是△ABD中AD边上的中线,∴S△ABE=S△BED=12S△ABD=6,故6.本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.17.已知29x mx ++是完全平方式,则m =_________.【正确答案】6±【分析】根据完全平方式的形式,可得答案.【详解】∵x 2+mx +9是完全平方式,∴m =2136±⨯⨯=±,故答案为6±.本题考查了完全平方式,注意符合条件的答案有两个,以防漏掉.18.如图,在△ABC 与△AEF 中,AB =AE ,BC =EF ,∠B =∠E ,AB 交EF 于点D .给出下列结论:①∠EAB =∠FAC ;②AF =AC ;③∠C =∠EFA ;④AD =AC .其中正确的结论是_____(填序号).【正确答案】①②③【详解】解:在△AEF 和△ABC 中,∵AB =AE ,∠B =∠E ,BC =EF ,∴△AEF ≌△ABC (SAS ),∴∠EAF =∠BAC ,AF =AC ,∠C =∠EFA ,∴∠EAB =∠FAC ,故①②③正确,④错误;所以①②③.点睛:本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解决问题的关键.三.解答题(共46分)19.计算(1)1232﹣124×122(2)[(x+2)(x ﹣3)+6]÷x (3)(3x+2)(3x ﹣2)﹣5x (x ﹣1)(4)(a+b+3)(a+b ﹣3)【正确答案】(1)1(2)x ﹣1(3)4x 2+5x ﹣4(4)a 2+2ab+b 2﹣9【详解】试题分析:(1)根据平方差公式即可求出答案;(2)根据整式的运算法则即可求出答案;(3)根据平方差公式即可求出答案;(4)根据平方差公式即可求出答案.试题解析:解:(1)原式=1232﹣(123+1)(123﹣1)=1232﹣(1232﹣1)=1232﹣1232+1=1(2)原式=(x2﹣3x+2x﹣6+6)÷x=(x2﹣x)÷x=x﹣1(3)原式=9x2﹣4﹣5x2+5x=4x2+5x﹣4(4)原式=[(a+b)+3][(a+b)﹣3]=(a+b)2﹣9=a2+2ab+b2﹣920.先化简,再求值:(x+2)2+(x+1)(x-1),其中x=-12.【正确答案】2x2+4x+3,3 2【详解】试题分析:根据整式的运算法则把所给的整式化简后,再代入求值即可.试题解析:原式=x2+4x+4+(x2-1)=2x2+4x+3.将x=-12代入2x2+4x+3,得原式=32.21.补全下列推理过程:如图,已知∠1=∠2,∠3=∠4,试说明AB∥CD.解:∵∠1=∠2(已知),∴CE∥FB(),∴∠4=∠AEC(),∵∠3=∠4(已知),∴∠3=∠AEC(),∴AB∥CD().【正确答案】同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行【分析】先根据∠1=∠2,得出CE∥BF,进而得到∠4=∠AEC,再根据∠3=∠4,进而得到∠3=∠AEC,据此可得AB∥CD.【详解】解:∵∠1=∠2(已知),∴CE∥FB(同位角相等,两直线平行),∴∠4=∠AEC(两直线平行,同位角相等),∵∠3=∠4(已知),∴∠3=∠AEC(等量代换),∴AB∥CD.(内错角相等,两直线平行),故答案为同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.本题主要考查了平行线的性质与判定.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.22.如图,在△ABC中,∠A=62°,∠B=74°,∠ACB的平分线交AB于D,DE∥BC交AC于E,求∠EDC的度数.【正确答案】22°【详解】试题分析:求出∠BCD的度数,利用平行线的性质即可解决问题.试题解析:解:∵∠A=62°,∠B=74°,∴∠ACB=180°﹣62°﹣74°=44°.∵CD是∠ACB的角平分线,∴∠DCB=12∠ACB=22°.∵DE∥BC,∴∠EDC=∠DCB=22°.点睛:本题考查三角形的内角和定理、角平分线的定义、平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.王教授和孙子小强经常一起进行早锻炼,主要是爬山.有,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分)的关系(从小强开始爬山时计时).(1)小强让爷爷先上多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)小强多长时间追上爷爷?【正确答案】(1)60米(2)300米;小强;(3)8分.【详解】(1)由图象可知小强让爷爷先上了60米;(2)y轴纵坐标可知,山顶离地面的高度为300米,小强;(3)根据函数图象可得小强的速度为30米/分,240米处追上爷爷,两条线段的交点的横坐标即为相遇时的时间,即为240÷30=8分钟.24.如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE上,AB=EF,AD=EC,AB∥EF.△ABC 与△EFD全等吗?请说明理由.【正确答案】△ABC≌△EFD【详解】试题分析:根据“SAS”得出△ACB≌△DEF.试题解析:解:△ABC≌△EFD.理由:因为AB∥EF,所以∠A=∠E.因为AD=EC,所以AD﹣CD=EC﹣CD,即AC=ED.在△ABC和△EFD中,∵AB=EF,∠A=∠E,AC=ED,所以△ABC≌△EFD(SAS).25.如图,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,点D为AB的中点.若点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.(1)若点Q的运动速度与点P的运动速度相等,1秒后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度没有相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?【正确答案】(1)全等(2)v Q=1.5cm/s【详解】试题分析:(1)根据时间和速度分别求得两个三角形中BP、CQ和BD、PC边的长,根据SAS判定两个三角形全等.(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q的运动速度;试题解析:解:(1)全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.∵∠B=∠C,∴△BPD≌△CPQ;(2)∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间为:t=2秒,∴v Q=1.5c m/s;点睛:本题考查全等三角形的判定和性质、路程=速度×时间的公式,熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系是解决问题的关键.2023-2024学年天津市蓟州区七年级下册数学期中专项提升模拟(B卷)一、单选题(每小题3分,共30分)1.如图,点O是∠ABE的边BA上的一点,过点O的直线CD∥BE,若∠AOC=40°,则∠B的度数为()A.160°B.140°C.60°D.50°2.如图,直线a、b被直线c所截,下列条件中,没有能判断直线a、b平行的是()A.14∠=∠B.23∠=∠C.14180∠+∠=D.13180∠+∠=3.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.40°B.30°C.20°D.15°4.当a<0时,-a的平方根是()A.aB.a-C.aD.-a5.4的算术平方根是()A.-2B.2C.2±D.26.下列实数2273384,3π,0.1,-0.…(每两个1之间0的个数比前面多一个),其中无理数有()A.2个B.3个C.4个D.5个7.如图,数轴上点P表示的数可能是().A.2B.5C.10D.158.点P(m+3,m+1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)9.若点P在第二象限,且点P到x轴的距离为3,到y轴的距离为2,则点P的坐标为()A.(-3,2)B.(-2,3)C.(3,-2)D.(2,-3)10.对一组数(x,y)的操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y)(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)=P 1(P 1(1,2)=P 1(3,-1)=(2,4),P 3(1,2)=P 1(P 2(1,2)=P 1(2,4)=(6,-2),则P 2017(1,-1)=().A.(0,21008)B.(0,-21008)C.(0,-21009)D.(0,21009)二、填空题(每小题3分,共15分)11.如图,直角△ABC 的周长为2017,在其内部有5个小直角三角形,且这5个小直角三角形都有一条边与BC 平行,则这5个小直角三角形的周长之和是______.12.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=22°,那么∠2的度数为______.13.已知a 2=16=2,且ab <0=_____.14.将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成||a bc d,定义| |a b c d ad bc =-.若11| |823x x +-=,求x 的值.15.下面是按一定规律排列的一列数:1357,,,,471219⋅⋅⋅,那么第n 个数是___.三、解答题(75分)16.如图,在四边形ABCD 中,延长AD 至E ,已知AC 平分∠DAB ,∠DAB =70°,∠1=35°.(1)求证:AB ∥CD ;(2)求∠2的度数.17.已知:如图EF⊥BC,AB//DG,∠1=∠2.求证:AD⊥BC.18.按图填空,并注明理由.⑴完成正确的证明:如图,已知AB∥CD,求证:∠BED=∠B+∠D证明:过E点作EF∥AB(直线外一点有且只有一条直线与这条直线平行)∴∠1=()∵AB∥CD(已知)∴EF∥CD(如果两条直线与同一直线平行,那么它们也平行)∴∠2=()又∠BED=∠1+∠2∴∠BED=∠B+∠D(等量代换).⑵如图,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.解:因为EF∥AD(已知)所以∠2=∠3.()又因为∠1=∠2,所以∠1=∠3.(等量代换)所以AB∥()所以∠BAC+=180°().又因为∠BAC=70°,所以∠AGD=110°.图⑴图⑵19.已知2a -1的平方根是±3,3a -b +2的算术平方根是4,求a +3b 的立方根.20.(1)若x 、y 都是实数,且8y =++,求3x y +的立方根.(2a ,小数部分为b ,求2a b +的值.21.已知a 是4的算术平方根,b 是的负整数.(1)a=__________,b=__________.(2)先化简,再求代数式221(2)2(3)2a b ab a b ab +--的值.22.已知点(29,3)M x x --在第三象限.(提示:222a 2()ab b a b -+=-)(1)化简29x -.(2)点M 到y 轴的距离是到x 轴的2倍,请求出M 点坐标.23.有李小虎同学用“几何画板”画图,他先画了两条平行线AB ,CD ,然后在平行线间画了一点E ,连接BE ,DE 后(如图①),他用鼠标左键点住点E ,拖动后,分别得到如图②,③,④等图形,这时他突然一想,∠B ,∠D 与∠BED 之间的度数有没有某种联系呢?接着小虎同学通过利用“几何画板”的“度量角度”和“计算”功能,找到了这三个角之间的关系.(1)你能探究出图①到图④各图中的∠B ,∠D 与∠BED 之间的关系吗?(2)请从所得的四个关系中,选一个说明它成立的理由.2023-2024学年天津市蓟州区七年级下册数学期中专项提升模拟(B 卷)一、单选题(每小题3分,共30分)1.如图,点O 是∠ABE 的边BA 上的一点,过点O 的直线CD ∥BE ,若∠AOC =40°,则∠B 的度数为()A.160°B.140°C.60°D.50°【正确答案】B【详解】试题解析:∵∠AOC=40°,∴∠AOD=180°-∠AOC=180°-40°=140°,∵CD∥BE,∴∠B=∠AOD=140°.故选B.2.如图,直线a、b被直线c所截,下列条件中,没有能判断直线a、b平行的是()∠=∠A.14∠=∠B.23∠+∠=C.14180∠+∠=D.13180【正确答案】C【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:A.∠1=∠4可以判定a,b平行,故本选项没有符合题意;B.∠2=∠3,可以判定a,b平行,故本选项没有符合题意;C.∠1+∠4=180°,没有能判断直线a、b平行,故本选项符合题意;D.∠1+∠3=180°,可以判定a,b平行,故本选项没有符合题意.故选C.本题考查的是平行线的判定,掌握判定两直线平行的条件是解题关键.3.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.40°B.30°C.20°D.15°【正确答案】C【详解】若使直线b 与直线c 平行,则∠3=∠2=40°.∵∠1=120°,∴∠3=180°-120°=60°.若使直线b 与直线c 平行,则∠3=∠2=40°.∴需将直线b 绕点A 逆时针旋转:60°-40°=20°.故选C.4.当a<0时,-a 的平方根是()A.aB.C. D.【正确答案】D【分析】-a 是正数,根据平方根的定义可得-a 的平方根【详解】因为a <0,所以-a >0所以(2=-a所以-a 的平方根是故选D如果一个数的平方等于a (a ≥0),那么这个数叫做a 的平方根;一个正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根.5.4的算术平方根是()A.-2B.2C.2± D.【正确答案】B【详解】4的算术平方根是2.故选B .本题考查求一个数的算术平方根.掌握算术平方根的定义是解题关键.6.下列实数227,3π,0.1,-0.…(每两个1之间0的个数比前面多一个),其中无理数有()A.2个B.3个C.4个D.5个【正确答案】B【分析】无理数是无限没有循环小数.3π,-0.(两个1之间依次多一个0)…共3个.故选B .此题主要考查了无理数的定义,无理数就是无限没有循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限没有循环小数是无理数.初中范围内学习的无理数有:的数π;开方开没有尽的数;以及像0.1010010001…,等有这样规律的数.7.如图,数轴上点P 表示的数可能是().A.B.C.D.【正确答案】B【详解】由数轴可知点P 在2和3<<,所以23<<,故选B .8.点P (m +3,m +1)在x 轴上,则P 点坐标为()A.(0,﹣2) B.(0,﹣4)C.(4,0)D.(2,0)【正确答案】D【分析】根据点在x 轴上的特征,纵坐标为0,可得m +1=0,解得m =-1,然后再代入m +3,可求出横坐标.【详解】解:因为点P (m +3,m +1)在x 轴上,所以m +1=0,解得:m =-1,所以m +3=2,所以P 点坐标为(2,0).故选D .本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.9.若点P 在第二象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标为()A.(-3,2)B.(-2,3)C.(3,-2)D.(2,-3)【正确答案】B【详解】∵点P (x ,y )在第二象限,且点P 到x 轴的距离为3,到y 轴的距离为2,∴x=-2,y=3,∴点P 的坐标是(-2,3).故选B .点到x 轴的距离等于纵坐标的值,到y 轴的距离等于横坐标的值.10.对一组数(x,y)的操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y)(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)=P 1(P 1(1,2)=P 1(3,-1)=(2,4),P 3(1,2)=P 1(P 2(1,2)=P 1(2,4)=(6,-2),则P 2017(1,-1)=().A.(0,21008)B.(0,-21008)C.(0,-21009)D.(0,21009)【正确答案】D【详解】分析:用定义的规则分别计算出P 1,P 2,P 3,P 4,P 5,P 6,观察所得的结果,总结出规律求解.详解:因为P 1(1,-1)=(0,2);P 2(1,-1)=P 1(P 1(1,-1))=P 1(0,2)=(2,-2);P 3(1,-1)=P 1(P 2(2,-2))=(0,4);P 4(1,-1)=P 1(P 3(0,4))=(4,-4);P 5(1,-1)=P 1(P 4(4,-4))=(0,8);P 6(1,-1)=P 1(P 5(0,8))=(8,-8);……P 2n-1(1,-1)=……=(0,2n );P 2n (1,-1)=……=(2n ,-2n ).因为2017=2×1009-1,所以P 2017=P 2×1009-1=(0,21009).故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.二、填空题(每小题3分,共15分)11.如图,直角△ABC 的周长为2017,在其内部有5个小直角三角形,且这5个小直角三角形都有一条边与BC 平行,则这5个小直角三角形的周长之和是______.【正确答案】2017.【详解】利用平移的性质可得出,这五个小三角形的周长的和等于大三角形的周长为2017,点睛:小直角三角形的与AC平行的边的和等于AC,与BC平行的边的和等于BC,则小直角三角形的周长等于直角△ABC的周长,据此即可求解.12.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=22°,那么∠2的度数为______.【正确答案】23°【分析】根据平行线的性质求出∠3,即可求出答案.【详解】解:如图:∵AB∥CD,∠1=22°,∴∠1=∠3=22°,∴∠2=45°-22°=23°.故答案为23°.本题考查平行线的性质的应用,利用数形求出∠3的度数是解题的关键.13.已知a2=163b=2,且ab<0a b =_____.【正确答案】2【详解】解:由题意可知:a=±4,b=8.∵ab<0,∴a=﹣4,b=8,=2.故答案为2.14.将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成| |a bc d ,定义| |a b c d ad bc =-.若11| |823x x +-=,求x 的值.【正确答案】3【详解】解:由定义:…………………………………(2分)解得观察题干,可得出运算法则,根据法则可列出关于x 的方程,解方程可得出x 的值.15.下面是按一定规律排列的一列数:1357,,,,471219⋅⋅⋅,那么第n 个数是___.【正确答案】22n 1n 3-+【详解】解:∵分子分别为1、3、5、7,…,∴第n 个数的分子是2n ﹣1.∵4﹣3=1=12,7﹣3=4=22,12﹣3=9=32,19﹣3=16=42,…,∴第n 个数的分母为n 2+3.∴第n 个数是2213n n -+,故2213n n -+.三、解答题(75分)16.如图,在四边形ABCD 中,延长AD 至E ,已知AC 平分∠DAB ,∠DAB =70°,∠1=35°.(1)求证:AB ∥CD ;(2)求∠2的度数.【正确答案】(1)证明见解析;(2)70°【详解】试题分析:(1)根据角平分线的定义求得∠BAC 的度数,然后根据内错角相等,两直线平行,证得结论;(2)根据平行线的性质,两直线平行,同位角相等,即可求解.试题解析:(1)证明:∵AC平分∠DAB,∴∠BAC=∠DAC=12∠DAB=12×70°=35°,又∵∠1=35°,∴∠1=∠BAC,∴AB∥CD;(2)∵AB∥CD,∴∠2=∠DAB=70°.17.已知:如图EF⊥BC,AB//DG,∠1=∠2.求证:AD⊥BC.【正确答案】见解析【详解】分析:要证AD⊥B C,即要证AD∥EF,可证∠1=∠3,又∠1=∠2,即要证∠3=∠2,而AB∥DG已知.详解:证明:∵AB∥DG,∴∠2=∠3,∵∠1=2,∴∠1=∠3,∴EF∥AD,∵EF⊥BC,∴AD⊥BC.点睛:本题考查了平行线性质和判定的综合运用,性质的题设是两条直线平行,结论是同位角相等,或内错角相等或同旁内角互补,是由直线的位置关系(平行)到角的数量关系的过程;判定与性质正好相反,是对直线是否平行的判定,因而角之间的数量关系(同位角相等,内错角相等,同旁内角互补)是题设,两直线平行是结论,是一个由角的数量关系到平行的过程.18.按图填空,并注明理由.⑴完成正确的证明:如图,已知AB∥CD,求证:∠BED=∠B+∠D证明:过E点作EF∥AB(直线外一点有且只有一条直线与这条直线平行)∴∠1=()∵AB∥CD(已知)∴EF∥CD(如果两条直线与同一直线平行,那么它们也平行)∴∠2=()又∠BED=∠1+∠2∴∠BED=∠B+∠D(等量代换).⑵如图,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.解:因为EF∥AD(已知)所以∠2=∠3.()又因为∠1=∠2,所以∠1=∠3.(等量代换)所以AB∥()所以∠BAC+=180°().又因为∠BAC=70°,所以∠AGD=110°.图⑴图⑵【正确答案】(1)∠B(两直线平行,内错角相等)∠D(两直线平行,内错角相等)(2)(两直线平行,同位角相等);DG(内错角相等,两直线平行).∠AGD(两直线平行,同旁内角互补)【详解】分析:(1)根据平行线的性质解决问题;(2)根据平行线的判定与性质求解.本题解析:证明:过E点作EF∥AB(直线外一点有且只有一条直线与这条直线平行)∴∠1=∠B(两直线平行,内错角相等)∵AB∥CD(已知)∴EF∥CD(如果两条直线与同一直线平行,那么它们也平行)∴∠2=∠D(两直线平行,内错角相等)又∠BED=∠1+∠2∴∠BED=∠B+∠D(等量代换).⑵如图,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.解:因为EF∥AD(已知)所以∠2=∠3.(两直线平行,同位角相等)又因为∠1=∠2,所以∠1=∠3.(等量代换)所以AB∥DG(内错角相等,两直线平行)所以∠BAC+∠AGD=180°(两直线平行,同旁内角互补).又因为∠BAC=70°,所以∠AGD=110°.19.已知2a -1的平方根是±3,3a -b +2的算术平方根是4,求a +3b 的立方根.【正确答案】2.【分析】根据平方根与算术平方根的定义得到3a -b +2=16,2a -1=9,则可计算出a =5,b =1,然后计算a +3b 后利用立方根的定义求解.【详解】∵2a -1的平方根是±3∴2a -1=9,即a =5∵3a -b +2的算术平方根是4,a=5∴3a -b +2=16,即b =1∴a +3b =8∴a +3b 的立方根是220.(1)若x 、y 都是实数,且8y =++,求3x y +的立方根.(2a ,小数部分为b ,求2a b +的值.【正确答案】(1)3x y +的立方根为3;(2)2a b +-的值为6.【详解】试题分析:(1)根据二次根式有意义的条件,可求出x 的值,进而求出y 的值,代入计算即可;(2)先求出a 、b 的值,代入计算即可.试题解析:解:(1)由题意可知,30x -≥,30x -≥,解得:3x =,∴8y =,∴333827x y +=+⨯=3=;(2)<<∴34<<,3a =,小数部分为3b =-,∴22336a b +=+-.21.已知a 是4的算术平方根,b 是的负整数.(1)a=__________,b=__________.(2)先化简,再求代数式221(2)2(3)2a b ab a b ab +--的值.【正确答案】①.2②.-1【详解】分析:(1)由算术平方根的定义求a,由负整数的定义求b;(2)先去分母,再合并同类项,然后代入求值.详解:(1)由题意可知=2,b=-1,故答案为2,1-;(2)()2212232a b ab a b ab ⎛⎫+--⎪⎝⎭2226a b ab a b ab=+-+8ab =.当a=2,b=-1时,原式=8×2×(-1)=-16.点睛:对于整式的求值问题,要先将整式化简,再代入数值计算,化简时要注意去括号是否要变号,代入时要注意若所给的值是负数时要添上括号,若所给的值是分数,有乘方运算的,也要添上括号.22.已知点(29,3)M x x --在第三象限.(提示:222a 2()ab b a b -+=-)(1)化简29x -.(2)点M 到y 轴的距离是到x 轴的2倍,请求出M 点坐标.【正确答案】(1)6-x;(2)(-32,-34)【详解】分析:(1)根据点M 所在的象限,判断2x-9<0,3-x <0,再根据值和算术平方根的性质化简;(2)M 到y 轴的距离为横坐标的值,到x 轴的距离为纵坐标的值,列方程求解.详解:(1)因为点M 在第三象限内,所以2x-9<0,3-x <0.则29x -=|2x-9|+|x-3|=9-2x+x-3=6-x ;(2)M 到y 轴的距离为横坐标的值,即|2x-9|=9-2x ,M 到x 轴的距离为纵坐标的值,即|3-x|=x-3,由题意得,()9-223x x =-,解得154x =,则M 点的坐标为33--24(,.点睛:象限内的点的坐标的符号特征是,象限(+,+);第二象限(-,+)第三象限:(-,-);第四象限(+,-).坐标平面内点到y轴的距离为横坐标的值,到x轴的距离为纵坐标的值.23.有李小虎同学用“几何画板”画图,他先画了两条平行线AB,CD,然后在平行线间画了一点E,连接BE,DE后(如图①),他用鼠标左键点住点E,拖动后,分别得到如图②,③,④等图形,这时他突然一想,∠B,∠D与∠BED之间的度数有没有某种联系呢?接着小虎同学通过利用“几何画板”的“度量角度”和“计算”功能,找到了这三个角之间的关系.(1)你能探究出图①到图④各图中的∠B,∠D与∠BED之间的关系吗?(2)请从所得的四个关系中,选一个说明它成立的理由.【正确答案】(1)(1)图①:∠BED=∠B+∠D;图②:∠B+∠BED+∠D=360°;图③:∠BED =∠D-∠B;图④:∠BED=∠B-∠D;(2)证明见解析.【详解】(1)根据两直线平行,内错角相等,即可解答;(2)选择③,过点E作EF∥AB,根据两直线平行,内错角相等可得∠D=∠DEF,∠B=∠BEF,再根据∠BED=∠DEF-∠BEF即可证明.解:(1)图①:∠BED=∠B+∠D;图②:∠B+∠BED+∠D=360°;图③:∠BED=∠D-∠B;图④:∠BED=∠B-∠D.(2)以图③为例:如图,过点E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠D=∠DEF,∠B=∠BEF.∵∠BED=∠DEF-∠BEF,∴∠BED=∠D-∠B.点睛:本题主要考查平行线的性质.根据图形作出辅助线并灵活熟练运用平行线的性质是解题的关。
2017七年级下册数学期中试题及答案(2021年整理精品文档)
(完整版)2017七年级下册数学期中试题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2017七年级下册数学期中试题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2017七年级下册数学期中试题及答案的全部内容。
七年级下册数学期中试题一、填空题1.如图1,直线a 和b 相交于点O ,若∠1=50°,则∠2= 度,∠3= 度.2.如图2,已知∠1=∠2,∠B=40°,则∠3= 度.3.如图3,想在河堤两岸搭建一座桥,图中搭建方式中,距离最短的是 ,理由 .图1 图2 图34.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…"的形式 .5.下列实数33,9,15.3,2,0,87,3--π中,无理数有 个. 6.已知150a b -+-=,则2()a b -的平方根是________.7.用两个无理数列一个算式,使得它们和为有理数 。
(只要符合题意即可).8.如果电影票上的“3排4号”记作(3,4),那么(4,3)表示 排 号.9.若P (a+2,a-1)在y 轴上,则点P 的坐标是 .10.如图4,已知棋子“车”的坐标为(—2,3),棋子“马”的坐标为(1,3),则棋子“炮"的坐标为 .图4二、选择题 11.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有( )A .0个B .1个C .2个D .3个12.如图①,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A B C D 13.已知同一平面内的三条直线a ,b,c ,下列命题中错误的是( )A .如果a ∥b,b ∥c ,那么a ∥cB .如果a ⊥b ,b ⊥c ,那么a ⊥cC .如果a ⊥b ,b ⊥c ,那么a ∥cD .如果a ⊥b,a ∥c,那么b ⊥c14.如图,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( )A .∠3=∠4B .∠D=∠DCEC .∠1=∠2D .∠D+∠ACD=180°15.有下列说法:(1)无理数就是开方开不尽的数; (2)无理数包括正无理数、零、负无理数;(3)无理数是无限不循环小数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是( )A .1B .2C .3D .416.如果一个实数的平方根与它的立方根相等,则这个数是( )A . 0B . 正整数C . 0和1D . 117.下列运算中,错误的有( )①2551114412=,②2(4)4-=±,③3311-=- ④1111916254520+=+= A . 1个 B 。
天津初中数学七年级下期中经典测试卷(答案解析)
一、选择题1.无理数23的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.如图,直线a b∥,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果160∠=︒,那么2∠等于()A.30B.︒40C.50︒D.60︒3.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()A.1600名学生的体重是总体B.1600名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本4.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度5.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为A.8374x yx y+=⎧⎨+=⎩B.8374y xy x-=-⎧⎨-=-⎩C.8374x yx y-=⎧⎨-=-⎩D.8374x yx y+=⎧⎨-=⎩6.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角7.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C .23D.328.把一张50元的人民币换成10元或5元的人民币,共有()A.4种换法B.5种换法C.6种换法D.7种换法9.如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2B.22a bC.﹣2a<﹣2b D.﹣a>﹣b10.已知关于x的不等式组321123x xx a--⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a的取值范围为()A.12a<≤B.12a<<C.12a≤<D.12a≤≤11.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是()A.横向拉伸为原来的2倍B.纵向拉伸为原来的2倍C.横向压缩为原来的12D.纵向压缩为原来的1212.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5B.-5<x<3C.-3<x<5D.-5<x<-3 13.下列图中∠1和∠2是同位角的是( )A.(1)、(2)、(3)B.(2)、(3)、(4)C.(3)、(4)、(5)D.(1)、(2)、(5)14.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1.8B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1800D.90x+210(15﹣x)≤1.815.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A .≥-1B .>1C .-3<≤-1D .>-3二、填空题16.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a ,则2x y +的值为______.17.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③若a ⊥b ,b ⊥c ,则a ⊥c ;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有___个.18.若一个数的平方等于5,则这个数等于_____.19.如图所示,直线a∥b,直线c 与直线a ,b 分别相交于点A 、点B ,AM⊥b,垂足为点M ,若∠l=58°,则∠2= ___________ .20.如图,点,A B 的坐标分别是()1,0、()0,2,把线段AB 平移至11A B 时得到点1A 、1B 两点的坐标分别为()3,b ,(),4a ,则+a b 的值是__________.21.若α∠与β∠的两边分别平行,且()210x α∠=+︒,()320x β=-︒∠,则α∠的度数为__________.22.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.23.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.24.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______.25.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________三、解答题26.如图,直线AB 、CD 相交于O 点,AOC ∠与AOD ∠的度数比为4:5,OE AB ⊥,OF 平分DOB ∠,求EOF ∠的度数.27.我们规定以下三种变换:(1)()(),,f a b a b =-.如:()()1,31,3f =-; (2)()(),,g a b b a =.如:()()1,33,1g =;(3)()(),,h a b a b =--.如:()()1,31,3h =--.按照以上变换有:()()()()2,33,23,2f g f -=-=,求()()5,3f h -的值.28.已知 2x -y 的平方根为±3,-4 是 3x +y 的一个平方根,求 x -y 的平方根. 29.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点A 是BC 外一点,连接AB 、AC ,求BAC B C ∠+∠+∠的度数.天天同学看过图形后立即想出:180BAC B C ∠+∠+∠=︒,请你补全他的推理过程. 解:(1)如图1,过点A 作ED BC ∥,∴B ∠= ,C ∠= .又∵180EAB BAC CAD ∠+∠+∠=︒,∴180BAC B C ∠+∠+∠=︒.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,AB ED ,求B BCD D ∠+∠+∠的度数.(3)方法运用:如图3,AB CD ∥,点C 在D 的右侧,70ADC ∠=︒,点B 在A 的左侧,60ABC ∠=︒,BE 平分ABC ∠,DE 平分ADC ∠,BE 、DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求BED ∠的度数.30.如图,是小明同学在课堂上画的一个图形,AB ∥CD ,他要想得出∠1=∠2,那么还需要添加一个什么样的条件?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.A3.A4.B5.C6.A7.A8.C9.C10.A11.B12.A13.D14.C15.A二、填空题16.3【解析】【分析】利用平方根立方根的定义求出x与y的值即可确定的值【详解】解:根据题意的2a+1+3-4a=0解得a=2∴故答案为:3【点睛】本题考查了平方根和立方根熟练掌握相关的定义是解题的关键17.2【解析】【分析】根据无理数平方根和立方根的概念两直线的位置关系邻补角的概念分别判断后即可得到答案【详解】解::①无理数是无限不循环小数本说法正确;②平方根与立方根相等的数是0本说法错误;③若a b18.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质19.32°【解析】【分析】根据在同一平面内垂直于两条平行线中的一条直线那么必定垂直于另一条直线推知AM⊥a;然后由平角是180°∠1=58°来求∠2的度数即可【详解】∵直线a∥bAM⊥b∴AM⊥a;∴∠20.4【解析】【分析】根据横坐标右移加左移减;纵坐标上移加下移减可得线段AB向右平移2个单位向上平移2个单位进而可得ab的值【详解】∵AB两点的坐标分别为(10)(02)平移后A1(3b)B1(a4)∴21.70°或86°【解析】【分析】根据两边互相平行的两个角相等或互补列出方程求出x然后求解即可【详解】∵∠α与∠β的两边分别平行∴①∠α=∠β∴(2x+10)°=(3x−20)°解得x=30∠α=(2×22.三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤直接填空即可【详解】第一步应假设结论不成立即三角形的三个内角都小于60°故答案为三角形的三个内角都小于60°【点睛】反证法的步骤是:(1)23.【解析】【分析】设购一件甲商品需要x元一件乙商品需要y元一件丙商品需要z元建立方程组整体求解即可【详解】解:设购一件甲商品需要x元一件乙商品需要y元一件丙商品需要z元由题意得把这两个方程相加得5x+24.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-425.或【解析】【分析】已知可知AB=8已知的面积为即可求出OC长得到C点坐标【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(04)或(0-4)故答案为:(04)或(0-4)【点睛】本题考查三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】.【详解】∵1.52=2.25,22=4,2.25<3<4,<,∴1.52<<,∴34故选B.【点睛】本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键.2.A解析:A【解析】【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A.【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.3.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.5.C解析:C【解析】【分析】设有x 人,物品价值y 钱,根据题意相等关系:(1)8×人数-3=物品价值;(2)7×人数+4=物品价值,据此可列方程组.【详解】解:设有x 人,物品价格为y 钱,根据题意:8374x y x y -=⎧⎨-=-⎩故选C .【点睛】此题主要考查列方程组解应用题,找出题目中的等量关系,列出相应的方程组是解题的关键.6.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角, 同旁内角,解题关键在于掌握各性质定义.7.A解析:A【解析】分析:由S △ABC =9、S △A′EF =4且AD 为BC 边的中线知S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DE ABDS A D AD S ''=(),据此求解可得. 详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB , 则2A DE ABD S A D AD S ''=(),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.8.C解析:C【解析】【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.由于10元和5元的数量都是未知量,可设出10元和5元的数量.本题中等量关系为:10元的总面值+5元的总面值=50元.【详解】设10元的数量为x ,5元的数量为y .则1055000x y x y ⎧⎨≥≥⎩+=,, 解得010x y ⎧⎨⎩==,18x y ⎧⎨⎩==,26x y ⎧⎨⎩==,34x y ⎧⎨⎩==,42x y ⎧⎨⎩==,50x y ⎧⎨⎩==. 所以共有6种换法.故选C .【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.9.C解析:C【解析】A.不等式的两边都减2,不等号的方向不变,故A 错误;B.不等式的两边都除以2,不等号的方向不变,故B 错误;C.不等式的两边都乘以−2,不等号的方向改变,故C 正确;D.不等式的两边都乘以−1,不等号的方向改变,故D 错误.故选C.10.A解析:A【解析】【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可.【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a , ∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.B解析:B【解析】【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y 轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选:B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.12.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.13.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.14.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x )≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.15.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A二、填空题16.3【解析】【分析】利用平方根立方根的定义求出x 与y 的值即可确定的值【详解】解:根据题意的2a+1+3-4a=0解得a=2∴故答案为:3【点睛】本题考查了平方根和立方根熟练掌握相关的定义是解题的关键解析:3【解析】【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定2x y +的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,2252(8)=3x y ∴+=+⨯-,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.17.2【解析】【分析】根据无理数平方根和立方根的概念两直线的位置关系邻补角的概念分别判断后即可得到答案【详解】解::①无理数是无限不循环小数本说法正确;②平方根与立方根相等的数是0本说法错误;③若ab 解析:2【解析】【分析】根据无理数、平方根和立方根的概念、两直线的位置关系、邻补角的概念分别判断后即可得到答案.【详解】解::①无理数是无限不循环小数,本说法正确;②平方根与立方根相等的数是0,本说法错误;a,本说法错误;③若a⊥b,b⊥c,则∥c④邻补角是互补的角,本说法正确;⑤无理数包括正无理数、负无理数,本说法错误;故答案为:2.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题.18.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:故答案为:【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.19.32°【解析】【分析】根据在同一平面内垂直于两条平行线中的一条直线那么必定垂直于另一条直线推知AM⊥a;然后由平角是180°∠1=58°来求∠2的度数即可【详解】∵直线a∥bAM⊥b∴AM⊥a;∴∠解析:32°【解析】【分析】根据“在同一平面内,垂直于两条平行线中的一条直线,那么必定垂直于另一条直线”推知AM⊥a;然后由平角是180°、∠1=58°来求∠2的度数即可.【详解】∵直线a∥b,AM⊥b,∴AM⊥a;∴∠2=180°-90°-∠1;∵∠1=58°,∴∠2=32°.故答案是:32°.20.4【解析】【分析】根据横坐标右移加左移减;纵坐标上移加下移减可得线段AB向右平移2个单位向上平移2个单位进而可得ab的值【详解】∵AB两点的坐标分别为(10)(02)平移后A1(3b)B1(a4)∴【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB向右平移2个单位,向上平移2个单位,进而可得a、b的值.【详解】∵A、B两点的坐标分别为(1,0)、(0,2),平移后A1(3,b),B1(a,4),∴线段AB向右平移2个单位,向上平移2个单位,∴a=0+2=2,b=0+2=2,∴a+b=2+2=4故答案为:4【点睛】此题主要考查了坐标与图形的变化--平移,关键是掌握点的坐标的变化规律.21.70°或86°【解析】【分析】根据两边互相平行的两个角相等或互补列出方程求出x然后求解即可【详解】∵∠α与∠β的两边分别平行∴①∠α=∠β∴(2x+10)°=(3x−20)°解得x=30∠α=(2×解析:70°或86°.【解析】【分析】根据两边互相平行的两个角相等或互补列出方程求出x,然后求解即可.【详解】∵∠α与∠β的两边分别平行,∴①∠α=∠β,∴(2x+10)°=(3x−20)°,解得x=30,∠α=(2×30+10)°=70°,或②∠α+∠β=180°,∴(2x+10)°+(3x−20)°=180°,解得x=38,∠α=(2×38+10)°=86°,综上所述,∠α的度数为70°或86°.故答案为70°或86°.【点睛】此题考查平行线的性质,解题关键在于掌握其性质.22.三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤直接填空即可【详解】第一步应假设结论不成立即三角形的三个内角都小于60°故答案为三角形的三个内角都小于60°【点睛】反证法的步骤是:(1)解析:三角形的三个内角都小于60°【解析】熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.23.【解析】【分析】设购一件甲商品需要x 元一件乙商品需要y 元一件丙商品需要z 元建立方程组整体求解即可【详解】解:设购一件甲商品需要x 元一件乙商品需要y 元一件丙商品需要z 元由题意得把这两个方程相加得5x+ 解析:【解析】【分析】设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,建立方程组,整体求解即可.【详解】解:设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,由题意得 32315234285x y z x y z ++=⎧⎨++=⎩把这两个方程相加,得5x+5y+5z=600即5(x+y+z)=600∴x+y+z=120∴购甲、乙、丙三种商品各一件共需120元.故答案为120.【点睛】本题考查了三元一次方程组的建模及其特殊解法.根据系数特点,将两式相加,整体求解.24.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m -2=±6∴m=8或m=-4故答案为8或-4 解析:8或﹣4【解析】解:∵x 2+(m -2)x +9是一个完全平方式,∴x 2+(m -2)x +9=(x ±3)2. 而(x ±3)2=x 2±6x +9,∴m -2=±6,∴m =8或m =-4.故答案为8或-4. 25.或【解析】【分析】已知可知AB=8已知的面积为即可求出OC 长得到C 点坐标【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(04)或(0-4)故答案为:(04)或(0-4)【点睛】本题考查解析:(0,4)或(0,4) -【解析】【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∴AB=8∵ABC ∆的面积为16 ∴12AB OC ⨯⨯=16 ∴OC=4 ∴点C 的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解.三、解答题26.50∠=EOF .【解析】【分析】根据AOC ∠与AOD ∠互补且度数比为4:5,求得80AOC ∠=,由OE AB ⊥得到90BOE =∠,根据对顶角相等得80AOC BOD ∠=∠=,则可求得DOE ∠的度数,根据角平分线的定义可求得∠DOF 的度数,进而得到答案.【详解】解:4AOC x ∠=,则5AOD x ∠=,∵180AOC AOD ∠+∠=,∴45180x x +=,解得:20x =,∴480AOC x ∠==,∵OE AB ⊥,∴90BOE =∠,∵80AOC BOD ∠=∠=,∴10DOE BOE BOD ∠=∠-∠=,又∵OF 平分DOB ∠, ∴1402DOF BOD ∠=∠=, ∴104050EOF EOD DOF ∠=∠+∠=+=.【点睛】本题主要考查角平分线的定义,角的计算,解此题的关键在于准确掌握题图中各角的位置关系.27.(5,3)【解析】【分析】根据f 、g 、h 的变换方法解答即可.【详解】f (h (5,-3))=f (-5,3)=(5,3).【点睛】此题考查点的坐标,理解新定义的运算方法是解题的关键.28.±2【解析】【分析】根据题意可求出2x-y 及3x+y 的值,从而可得出x-y 的值,继而可求出x-y 的平方根.【详解】解:由题意得:2x-y=9,3x+y=16,解得:x=5,y=1,∴x-y=4,∴x-y 的平方根为=±2. 【点睛】本题主要考查了平方根的知识,难度不大,解题的关键是求x 、y 的值.29.(1)∠EAB ,∠DAC ; (2)360°;(3)65°【解析】【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D ∠BCF+∠BCD+∠DCF ;(2)过C 作CF ∥AB ,根据平行线性质可得;(3)如图3,过点E 作EF ∥AB ,根据平行线性质和角平分线定义可得∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,故∠BED=∠BEF+∠DEF. 【详解】(1)根据平行线性质可得:因为ED BC ∥,所以B ∠=∠EAB ,C ∠=∠DAC ;(2)过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ∥AB ,∴∠D=∠FCD ,∠B=∠BCF ,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)如图3,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE=∠BEF ,∠CDE=∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35° ∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】考核知识点:平行线性质和角平分线定义.作辅助线构造平行线是关键.30.可添加AE 、CF 分别平分∠BAC 和∠ACD 或∠E=∠F 或AE ∥CF (任选其一即可)【解析】【分析】若添加AE 、CF 分别平分∠BAC 和∠ACD ,根据角平分线的定义和平行线的性质即可证出结论;若添加∠E=∠F ,根据平行线的性质及判定即可证出结论;若添加AE ∥CF ,根据平行线的性质及判定即可证出结论.【详解】解:若添加AE 、CF 分别平分∠BAC 和∠ACD∴∠1=12∠BAC ,∠2=12∠ACD ∵AB ∥CD∴∠BAC=∠ACD∴∠1=∠2;若添加∠E=∠F∴AE∥CF∴∠EAC=∠FCA∵AB∥CD∴∠BAC=∠ACD∴∠BAC-∠EAC =∠ACD-∠FCA∴∠1=∠2若添加AE∥CF∴∠EAC=∠FCA∵AB∥CD∴∠BAC=∠ACD∴∠BAC-∠EAC =∠ACD-∠FCA∴∠1=∠2综上:可添加AE、CF分别平分∠BAC和∠ACD或∠E=∠F或AE∥CF(任选其一即可).【点睛】此题考查的是平行线的性质及判定的应用,掌握平行线的判定及性质是解决此题的关键.。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.16的平方根是()A .4±B .4C .2±D .22.把“笑脸”进行平移,能得到的图形是( )A .B .C .D . 3.在平面直角坐标系中,点()1,0所在的位置是( )A .x 轴B .y 轴C .第一象限D .第四象限 4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个5.直线12//l l ,125A ∠=︒,85B ∠=︒,115∠=︒,则2∠=( )A .15°B .25°C .35D .20° 6.下列关于立方根的说法中,正确的是( ) A .9-的立方根是3- B .立方根等于它本身的数有1,0,1-C .64-的立方根为4-D .一个数的立方根不是正数就是负数 7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是( )A .15°B .60°C .30°D .75°8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)二、填空题9.324-=________.10.已知点P 关于x 轴的对称点为(,1)a -,关于y 轴的对称点为(2,)b -,那么点P 的坐标是________.11.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为_____.12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.14.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 15.若点P (3,1)m m +-在x 轴上,则点P 的坐标为____. 16.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),…,按这样的运动规律,经过2021次运动后,动点P 的坐标是________.三、解答题17.计算:(1)()4129-⨯()432054⎛⎫-⨯- ⎪⎝⎭18.求下列各式中的x :(1)x 2﹣12149=0. (2)(x ﹣1)3=64.19.已知:AB BC ⊥,AB DE ⊥,垂足分别为B ,D ,12∠=∠,求证:180BEC FGE ∠+∠=︒,请你将证明过程补充完整.证明:∵AB BC ⊥,AB DE ⊥,垂足分别为B ,D (已知).∴90ABC ADE ∠=∠=︒(垂直定义).∴______________∥______________()∴1∠=______________()又∵12∠=∠(已知)∴∠2=(),∴______________∥______________()∴180BEC FGE ∠+∠=︒()20.如图, 在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A 、B 、C 的对应点分别为A B C '''、、.(1)在图中画出平移后的三角形A B C ''';(2)写出点A '的坐标;(3)三角形ABC 的面积为 .21.222﹣12的小数部分,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为4<7<9,即2<7<3,所以7的整数部分为2,小数部分为(7﹣2)请解答:(1)10的整数部分是,小数部分是;(2)如果5的小数部分为a,13的整数部分为b,求a+b﹣5的值.22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【参考答案】一、选择题1.A解析:A【分析】如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作x=±.【详解】解:16的平方根是4±.故选A.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.2.D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改解析:D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.3.A【分析】1,0的纵坐标为0,则可判断点(1,0)在x轴上.由于点()【详解】1,0的纵坐标为0,解:点()故在x轴上,故选:A.【点睛】本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点.4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.A【分析】分别过A、B作直线1l的平行线AD、BC,根据平行线的性质即可完成.【详解】分别过A、B作直线1l∥AD、1l∥BC,如图所示,则AD∥BC∵l∥2l1∴l∥BC2∴∠CBF=∠2∵l∥AD1∴∠EAD=∠1=15゜∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜∵AD∥BC∴∠DAB+∠ABC=180゜∴∠ABC=180゜-∠DAB=180゜-110゜=70゜∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜∴∠2=15゜故选:A.【点睛】本题考查了平行线的性质与判定等知识,关键是作两条平行线.6.B【分析】各项利用立方根定义判断即可.【详解】解:A、-9的立方根是39-,故该选项错误;B、立方根等于它本身的数有-1,0,1,故该选项正确;C、648-=-,-8的立方根为-2,故该选项错误;D、0的立方根是0,故该选项错误.故选:B.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.7.C【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【详解】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°﹣∠3=30°.故选:C.【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.二、填空题9.6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.解析:6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】32826-=故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.10.【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:(2,1)【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点P关于x轴的对称点为(,1)a-,则点P的纵坐标为1点P关于y轴的对称点为(2,)b-,则点P的横坐标为2则点P的坐标为(2,1)故答案为:(2,1).【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.11.4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=4.故答案为4.12.130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵EF∥AB,∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),∴∠DEF=180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.3; .【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知:4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.15.(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐解析:(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐标为(4,0).故答案为:(4,0).【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n 为奇数时,第n 次运动到点(12n -,12n +), 当n 为偶数时,第n 次运动到点(2n ,2n ), 所以经过2021次运动后,动点P 的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.三、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.18.(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵,∴,∴;(2)∵,∴,∴.【点睛】本题主要考查解析:(1)117x=±;(2)5x=【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵21210 49x-=,∴212149x=,∴117x=±;(2)∵()3164x-=,∴14x-=,∴5x=.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.19.答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己解析:答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己知),∴∠ABC=∠ADE=90°(垂直定义),∴BC∥DE(同位角相等,两直线平行),∴∠1=∠EBC(两直线平行,内错角相等),又∵∠l=∠2 (已知),∴∠2=∠EBC(等量代换),∴BE∥GF(同位角相等,两直线平行),∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补).【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2);(3)【分析】(1)根据平移规律确定,,的坐标,再连线即为平移后的三角形;(2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面解析:(1)见解析;(2)()3,1-;(3)7【分析】(1)根据平移规律确定A ',B ',C '的坐标,再连线即为平移后的三角形A B C '''; (2)根据平移规律写出A '的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可.【详解】(1)如图所示,三角形A B C '''即为所求;(2)若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A '的坐标为(-3,1);(3)三角形ABC 的面积为:4×5-12×2×4-12×1×3-12×3×5=7.【点睛】本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键. 21.(1)3, ﹣3;(2)1.【分析】(1)根据解答即可;(2)根据2<<3得出a ,根据3<<4得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵,∴的整数部分是3,小数部分是﹣3,解析:(1)3,3;(2)1.【分析】(1)根据34解答即可;(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可.【详解】(1)∵34<<,∴3﹣3,故答案为:3﹣3;(2)∵23,a2,∵34,∴b=3,a+b2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=52∴长方形纸片的长为152又∵()2152=450>202即:152>20∴小丽不能用这块纸片裁出符合要求的纸片23.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。
2016-2017学年下学期期中七年级数学试卷(word附答案)
2017~2018学年度七年级下学期期中模拟数学试卷()满分:120分时间120分钟一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.下列实数是无理数的是()A.3.14B.13C.D.2.下列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中看作由“基本图案”经过平移得到的是()D.C.B.A.3.实数9的算术平方根是()A.3±B.C. D.34.点A(-2,1)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.)A.0和1之间B.1和2之间C.2和3之间D.3和4之间6.下列图形中,由∠1=∠2,能得到AB//CD的是()12GFEA BDCACDB21A. B. C. D.21DCBA7.如图,下列说法不正确的是()A.∠AFE与∠EGC是同位角B.∠AFE与∠FGC是内错角C.∠C与∠FGC是同旁内角D.∠A与∠FGC是同位角8.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,内错角相等;B.相等的角是对顶角;C.所有的直角都是相等的;D.若a=b,则a-1=b-1.9.点P关于x轴的对称点为(,1)a-,关于y轴的对称点为(2,)b-,那么点P的坐标是()A.(,)a b- B.(,)b a C.(1,2)-- D.(2,1)10.△ABC三个顶点坐标(4,3)A--,(0,3)B-,(2,0)C-,将点B向右平移2个长度单位后,再向上平移5个长度单位到D,若设△ABC面积为1S,△ADC的面积为2S,则1S与2S大小关系为()A.1S>2S B.1S=2S C.1S<2S D.不能确定二、仔细填一填,你一定很棒!(每小题3分,共18分)11.=_______.12.写出一个在x轴正半轴上的点坐标________________.13.如图,一把长方形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为_________________.E87654321第13题图FABCD14.在平面直角坐标系中依次描出下列点,(2,3)--,(1,1)--,(0,1),(1,3),⋅⋅⋅,依照此规律,则第7个坐标是_________________.15.已知四边形ABCD,其中AD//BC,AB⊥BC,将DC沿DE折叠,C落于C',DC'交CB于G,且ABGD为长方形(如图1);再将纸片展开,将AD沿DF折叠,使A点落在DC上一点A'(如图2),在两次折叠过程中,两条折痕DE、DF所成的角为____________度.16.在平面直角坐标系中,任意两点A(a,b),B(m,n),规定运算:A B⊗=(-若A(9,-1),且A B⊗=(-6,3).则点B的坐标是______________.三、精心答一答,你一定能超越!(本大题共8小题,共72分)17. (本题8分)如图,∠1=30°,∠B=60°,AB⊥AC.(1)∠DAB+∠B等于多少度?(2)AD与BC平行吗?AB与CD平行吗?18.(每小题4分,共8分)计算:(1(219. (每小题4分,共8分)求下列各式中的x值.(1)2164x-=(2)3(1)64x-=7题B/A/C/DBACF E第15题图2DBACEG第15题图117题1BDAC20. (共8分)完成下面的证明(1)如图,FG //CD ,∠1=∠3,∠B =50°,求∠BDE 的度数. 解:∵FG //CD (已知)∴∠2=_________( ) 又∵∠1=∠3, ∴∠3=∠2(等量代换)∴BC //__________( ) ∴∠B +________=180°( ) 又∵∠B =50°∴∠BDE =________________.21. (本题8分)△ABC 在平面直角坐标系中,且A (2,1)-、B (3,2)--A ,B 的对应点是1A ,1B ,C 的对应点1C 的坐标是(3,1)-. (1)在平面直角坐标系中画出△ABC ;(2)写出点1A 的坐标是_____________,1B 坐标是___________; (3)此次平移也可看作111A B C ∆向________平移了____________ 个单位长度,再向_______平移了______个单位长度得到△ABC .22. (本题10分)已知直线BC //ED .(1)如图1,若点A 在直线DE 上,且∠B =44°,∠EAC =57°,求∠BAC 的度数;(2)如图2,若点A 是直线DE 的上方一点,点G 在BC 的延长线上求证:∠ACG =∠BAC +∠ABC ; (3)如图3,FH 平分∠AFE ,CH 平分∠ACG ,且∠FHC 比∠A 的2倍少60°,直接写出∠A 的度数.AD BCE图1G图2ECBD AHF图3EBDA23. (本题10分)如图,在平面直角坐标系中,点A 、C 分别在x 轴上、y 轴上,CB //OA ,OA =8,若点B 的坐标为(a ,b ),且b 4.(1)直接写出点A 、B 、C 的坐标;(2)若动点P 从原点O 出发沿x 轴以每秒2个单位长度的速度向右运动,当直线PC 把四边形OABC分成面积相等的两部分停止运动,求P 点运动时间;(3)在(2)的条件下,在y 轴上是否存在一点Q ,连接PQ ,使三角形CPQ 的面积与四边形OABC 的面积相等?若存在,求点Q 的坐标;若不存在,请说明理由.24. (本题12分)在平面直角坐标系中,点A (t +1,t +2),点B (t +3,t +1),将点A 向右平移3个长度单位,再向下平移4个长度单位得到点C .(1)用t 表示点C 的坐标为_______;用t 表示点B 到y 轴的距离为___________;(2)若t =1时,平移线段AB ,使点A 、B 到坐标轴上的点1A 、1B 处,指出平移的方向和距离,并求出点1A 、1B 的坐标;(3)若t =0时,平移线段AB 至MN (点A 与点M 对应),使点M落在x轴的负半轴上,三角形MNB 的面积为4,试求点M 、N 的坐标.第20题图12016~2017学年度下学期七年级数学期中参考答案一、选一选,比比谁细心1. C2.B3.D4.B5. C6. B7. A8.C9.D 10.A 二、仔细填一填,你一定很棒! 11. 2- 12.答案不唯一,例如(3,0)13.55° 14.(4,9) 15. 45 16.(2,27-) 三、精心答一答,你一定能超越!17.解:(1)∵AB ⊥AC ,∴∠BAC =90°,∴∠B +∠BAD =60°+90°+30°=180°. (2)由(1)得AD //BC ,但是无法确定AB 与CD 的关系. 18.解:(1)原式=6-0.9=5.1 (2)原式=1324-+-1=-32+34 19.解:(1)2254x =,∴52x =±; (2)(1)x -=x -1=4, ∴x =5.20. (1)∠1(两直线平行,同位角相等);DE (内错角相等,两直线平行); ∠BDE (两直线平行,同旁内角互补);130°. (2)∠ADC =∠EFC ;EF ;∠2;∠CAD .21.(1)(2)1(0,4)A ,1B (1,1)-(3)下;3;左;2.22.解:(1)∵BC //ED ,∴∠BAE +∠B =180°,∴∠BAC =180°-∠B -∠EAC =79°;(2)F 2F 1方法②方法①G图2E C BDA如图,方法①,作AF //BC ,又∵BC //ED ,∴AF //ED //BC ,∴∠F AC =∠ACG ,且∠ABC =∠F AB ,∴∠ACG =∠F AC =∠BAC +∠F AB =∠BAC +∠ABC . (3)MNyx y xGHF图3E CBDA作AM //BC ,HN //BC , ∴可证AM //BC //ED ,HN //BC //ED ,又设∠ACH =GCH =x , ∠AFH =EFH =y , ∴∠A =2x -2y , ∠FHC =x -y ,∴∠A =2∠FHC ,又∵∠FHC =2∠A -60°,∴∠A =40°.23.(1)A (8,0),B (4,4),C (0.4);(2)设运动时间t 秒,∴OP =2t , ∴12⋅2t ⋅4=(8-2t )⋅4,∴t =83.(3)设Q (0,y ), ∵OABC CPQ S S ∆=四边形,∴12-4y 2t ⋅=12(4+8)⋅4, ∴1y =13,2y =-5,∴1Q (0,13),2Q (0,-5) 24.(1)C (t +4,t -2);3t +(2)当t =1时,A (2,3),B (4,2)将AB 左平移2个单位得1A (0,3);1B (2,2); 将AB 下平移2个单位得1A (2,1);1B (4,0)(3)若t=0,则A(1,2),B(3,1)设A下平移2个单位,再左平移a个单位到达x轴负半轴,∴M(1-a,0),N(3-a,-1),∴(3-1+a)⋅2-12(3-1+a)⋅1-12(3-a-1+a)⋅1-12(3-3+a)⋅2=4,∴a=4,∴M(-3,0),N(-1,-1).(范文素材和资料部分来自网络,供参考。
【七年级】七年级数学下期中试卷及答案
【七年级】七年级数学下期中试卷及答案以下是数学网为您推荐的七年级数学下期中试卷及答案,希望本篇文章对您学习有所帮助。
七年级数学下期中试卷及答案(附答案)亲爱的同学们:一转眼,七年级下学期已过去一半,我们又获取了许多新的数学知识,提高了许多方面的数学能力,这张试卷是你实力展示的平台,任你尽情地发挥,祝你成功!一、选择你认为正确的答案,自信点哦!(每题3分,共24分)1.下列现象是数学中的平移的是( )A.树叶从树上落下B.电梯由一楼升到顶楼. C. 碟片在光驱中运行 D.卫星绕地球运动2.若1与2是同旁内角,1=30,则( )A. 2=150B. 2=30C. 2=150或30D. 2的大小不能确定3.下列各式能用平方差公式计算的是()A. B.C. D.4.锐角三角形ABC中,C,则下列结论中错误的是( )A.60B. 45C.60D. C5.下列各项中,给出的三条线段不能组成三角形的是( )A.B. 三边之比为 5:6:10C.6.若则( )A. B. C. D.7.下列多项式中是完全平方式的是( )A. B.C. D.8.如图,在边长为的正方形中挖掉一个边长为的小正方形( ,把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A. B.C. D.二、你能填得又快又准吗?(每题2分,共22分)9. , .10.如图,是一条直线,∥ ,则 = .11.如图,∥ ∥ 2= 3= 1= .12.若 .13. 用科学计数法表示为.14.若, .15.在ABC中,A=3B,C=30,则A=,C=16.等腰三角形ABC的周长为20cm,如果它的腰长为6cm,则底边长为,如果它的一边长为8cm,则另两边长为 .17.以为两边,第三边长为整数的三角形共有个。
18.若是方程的解,则。
19.请写出一个以为解的二元一次方程组。
二、算一算,小心别出错!20.计算(每题4分,共16分)21.化简并求值(要看清楚哦!).(本题4分),其中三、解答证明题(22,23,24,25每题4分,26,27每题5分,第28题8分,共34分)22.已知,求23.观察下列等式,你会发现什么规律:请将你发现的规律用仅含字母n(n为正整数)的等式表示出来,并说明它的正确性。
天津市七年级下学期期中数学试卷
天津市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为()A . 30°B . 60°C . 90°D . 45°2. (2分)已知x+y=0,xy=﹣2,则(1﹣x)(1﹣y)的值为()A . -1B . 1C . 5D . -33. (2分)如图,我国某段海防线上有A、B两个观测站,观测站B在观测站A的正东方向上.上午9点,发现海面上C处有一可疑船只,立刻测得该船只在观测站A的北偏东45°方向,在观测站B的北偏东30°的方向上,已知A、C两点之间的距离是50 海里,则此时可疑船只所在C处与观测点B之间的距离是()A . 25 海里B . 海里C . 25海里D . 50海里4. (2分)下列叙述正确的有()个①内错角相等②同旁内角互补③对顶角相等④邻角相等⑤同位角相等A . 4B . 3C . 1D . 05. (2分)(2019·资阳) 下列各式中,计算正确的是()A .B .C .D .6. (2分)(2017·黄冈模拟) 如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF 的大小为()A . 60°B . 75°C . 90°D . 105°7. (2分)若是完全平方式,则的值是()A .B .C . -9或3D . 9或-38. (2分)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共8题;共8分)9. (1分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯使现在世界上最薄的纳米材料,其理论厚度应是0.00000000034m,用科学记数法表示是________.10. (1分) (2016七下·普宁期末) 计算:(﹣18a2b+10b2)÷(﹣2b)=________.11. (1分)(2016·新疆) 如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是________.12. (1分)计算(x+1)(x﹣1)的结果等于________13. (1分)一个角是它的余角的2倍,则这个角的补角的度数是________° .14. (1分)若xm=2,xn=5,则xm+n=________.15. (1分)(2017·浦东模拟) 在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是________.16. (1分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=________°.三、解答题 (共8题;共65分)17. (15分) (2019八下·广安期中) 计算题:(1)(2 )(2 )(2)(4 )(3)18. (5分)(2017·渭滨模拟) 计算:cos60°﹣2﹣1+ ﹣(π﹣3)0 .19. (10分) (2019八上·南岗期末)(1)(2)20. (3分)如图,(1)∠ABP=90°,则直线________⊥直线________;(2)∠ABP=90°,直线AC外一点P与直线上各点连接的所有线段中,________最短.21. (7分)(2017·胶州模拟) 探究题问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.(1)类比解决:请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)(2)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:请你类比上述推导过程,利用图形的几何意义确定:13+23+33=________.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=________.(直接写出结论即可,不必写出解题过程)22. (10分) (2015七下·无锡期中) 已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.23. (10分)某农业观光园计划将一块面积为900m2的园圃分成A,B,C三个区域,分别种植甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株.已知B区域面积是A区域面积的2倍.设A区域面积为x(m2).(1)求该园圃栽种的花卉总株数y关于x的函数表达式;(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?24. (5分) (2019七下·宜昌期中) 如图,AB∥CD,BN,DN分别平分∠ABM,∠MDC,试问∠M与∠N之间的数量关系如何?请说明理由.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共65分)17-1、17-2、17-3、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年天津市蓟州区七年级(下)期中数学试卷一、选择题:本题包括12小题,每小题3分,共36分.1.(3分)下面的四个图形中,∠1与∠2是对顶角的是()A.B.C.D.2.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等3.(3分)的平方根是()A.B.﹣ C.± D.±4.(3分)下列式子正确的是()A.±=7 B.=﹣C.=±5 D.=﹣35.(3分)若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)6.(3分)如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°7.(3分)已知点P(m,1)在第二象限,则点Q(﹣m,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)下列命题中真命题的个数有()①小朋友荡秋千可以看做是平移运动;②两条直线被第三条直线所截,同位角相等;③过一点有且只有一条直线与已知直线平行;④不是对顶角的角不相等.A.1个 B.2个 C.3个 D.4个9.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°10.(3分)一个正数x的两个平方根是2a﹣3与5﹣a,则x的值是()A.64 B.36 C.81 D.4911.(3分)在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,﹣1),点B的对应点为B′(4,0),则点B 的坐标为()A.(9,﹣2)B.(﹣1,﹣2)C.(9,2) D.(﹣1,2)12.(3分)如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50°B.60°C.80°D.90°二、填空题:本题包括6小题,每小题3分,共18分.13.(3分)点P(﹣2,3)关于x轴的对称点的坐标是.14.(3分)若点M(a+5,a﹣3)在y轴上,则点M的坐标为.15.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式.16.(3分)如图,折叠宽度相等的长方形纸条,若∠1=62°,则∠2=度.17.(3分)若+|b2﹣9|=0,则ab=.18.(3分)如图,数轴上表示1、的对应点分别为点A、点B,若点A是BC 的中点,则点C表示的数为.三、解答题:共46分.19.(8分)(1)计算:++(2)求满足条件的x值:(x﹣1)2=.20.(7分)完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=()∠ABE=()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()21.(7分)小丽想在一块面积为36m2正方形纸片上,沿着边的方向裁出一块面积为30m2的长方形纸片,并且使它的长宽的比为2:1.问:小丽能否用这块正方形纸片裁出符合要求的长方形纸片,为什么?22.(8分)如图,已知AD⊥AB,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°,那么BC⊥AB,说明理由.23.(8分)如图所示,已知∠ADE=∠B,∠1=∠2,GF⊥AB,求证:CD⊥AB.24.(8分)△ABC与△A′B′C′在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A′;B′;C′;(2)说明△A′B′C′由△ABC经过怎样的平移得到?.(3)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为;(4)求△ABC的面积.2016-2017学年天津市蓟州区七年级(下)期中数学试卷参考答案与试题解析一、选择题:本题包括12小题,每小题3分,共36分.1.(3分)下面的四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【解答】解:根据对顶角的定义可知:只有C图中的∠1与∠2是对顶角,其它都不是.故选:C.2.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选A.3.(3分)的平方根是()A.B.﹣ C.± D.±【解答】解:∵(±)2=,∴的平方根是±.故选:C.4.(3分)下列式子正确的是()A.±=7 B.=﹣C.=±5 D.=﹣3【解答】解:A、±=±7,故A选项错误;B、=﹣,故B选项正确;C、=5,故C选项错误;D、=3,故D选项错误.故选:B.5.(3分)若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)【解答】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:﹣3,∴P(﹣3,4),故选:C.6.(3分)如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【解答】解:当∠1=∠3时,a∥b;当∠4=∠5时,a∥b;当∠2+∠4=180°时,a∥b.故选B.7.(3分)已知点P(m,1)在第二象限,则点Q(﹣m,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(m,1)在第二象限,∴m<0,∴﹣m>0,∴点Q(﹣m,﹣3)在第四象限.故选D.8.(3分)下列命题中真命题的个数有()①小朋友荡秋千可以看做是平移运动;②两条直线被第三条直线所截,同位角相等;③过一点有且只有一条直线与已知直线平行;④不是对顶角的角不相等.A.1个 B.2个 C.3个 D.4个【解答】解:①小朋友荡秋千可以看做是平移运动是真命题;②两条直线被第三条直线所截,同位角相等是假命题;③过一点有且只有一条直线与已知直线平行是假命题;④不是对顶角的角不相等是假命题.故选:A.9.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【解答】解:根据题意可知,两直线平行,内错角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.10.(3分)一个正数x的两个平方根是2a﹣3与5﹣a,则x的值是()A.64 B.36 C.81 D.49【解答】解:∵正数x的两个平方根是2a﹣3与5﹣a,∴2a﹣3+5﹣a=0,解得a=﹣2,所以,2a﹣3=2×(﹣2)﹣3=﹣4﹣3=﹣7,所以,x=(﹣7)2=49.故选D.11.(3分)在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,﹣1),点B的对应点为B′(4,0),则点B 的坐标为()A.(9,﹣2)B.(﹣1,﹣2)C.(9,2) D.(﹣1,2)【解答】解:横坐标从﹣2到3,说明是向右移动了3﹣(﹣2)=5,纵坐标从1到﹣1,说明是向下移动了1﹣(﹣1)=2,求原来点的坐标,则为让新坐标的横坐标都减5,纵坐标都加2.则点B的坐标为(﹣1,2).故选D.12.(3分)如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50°B.60°C.80°D.90°【解答】解:作OE∥AB,由AB∥CD,则OE∥CD,∴∠B+∠1=180°,∠D+∠2=180°;∴∠B+∠BOD+∠D=360°.又∵∠B=120°,∠D=150°,∴∠BOD=360°﹣∠B﹣∠D=90°.故选:D.二、填空题:本题包括6小题,每小题3分,共18分.13.(3分)点P(﹣2,3)关于x轴的对称点的坐标是(﹣2,﹣3).【解答】解:点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).14.(3分)若点M(a+5,a﹣3)在y轴上,则点M的坐标为(0,﹣8).【解答】解:∵点M(a+5,a﹣3)在y轴上,∴a+5=0,解得a=﹣5,∴a﹣3=﹣5﹣3=﹣8,∴点M的坐标为(0,﹣8).故答案为:(0,﹣8).15.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.16.(3分)如图,折叠宽度相等的长方形纸条,若∠1=62°,则∠2=56度.【解答】解:根据折叠可得∠GEF=∠BEF,∵AB∥CD,∠1=62°,∴∠BFE=62°,∴∠GEF=62°,∴∠2=180°﹣62°×2=56°.故答案为:56.17.(3分)若+|b2﹣9|=0,则ab=±6.【解答】解:+|b2﹣9|=0,∴a﹣2=0,b=±3,因此ab=2×(±3)=±6.故结果为:±6.18.(3分)如图,数轴上表示1、的对应点分别为点A、点B,若点A是BC 的中点,则点C表示的数为2﹣.【解答】解:设点C表示的数是x,∵数轴上表示1、的对应点分别为点A、点B,点A是BC的中点,∴=1,解得x=2﹣.故答案为2﹣.三、解答题:共46分.19.(8分)(1)计算:++(2)求满足条件的x值:(x﹣1)2=.【解答】(1)解:原式=0.2﹣3+2=﹣0.8;(2)解:x﹣1=±,即x﹣1=±,所以x=或x=.20.(7分)完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=∠ABC(两直线平行,同位角相等)∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=∠ADE(角平分线定义)∠ABE=∠ABC(角平分线定义)∴∠ADF=∠ABE∴DF∥BE(同位角相等,两直线平行)∴∠FDE=∠DEB.(两直线平行,内错角相等)【解答】解:理由是:∵DE∥BC(已知),∴∠ADE=∠ABC(两直线平行,同位角相等),∵DF、BE分别平分ADE、∠ABC,∴∠ADF=∠ADE(角平分线定义),∠ABE=∠ABC(角平分线定义),∴∠ADF=∠ABE,∴DF∥BE(同位角相等,两直线平行),∴∠FDE=∠DEB(两直线平行,内错角相等),故答案为:∠ABC,两直线平行,同位角相等;∠ADE,角平分线定义;∠ABC,角平分线定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.21.(7分)小丽想在一块面积为36m2正方形纸片上,沿着边的方向裁出一块面积为30m2的长方形纸片,并且使它的长宽的比为2:1.问:小丽能否用这块正方形纸片裁出符合要求的长方形纸片,为什么?【解答】解:不能,设长方形纸片的长为2xcm,宽为xcm,则:2x•x=30,2x2=30,x2=15,x=,则长方形纸片的长为2cm,因为2>6,而正形纸片的边长为cm=6cm,所以不能裁剪出符合要求的长方形.22.(8分)如图,已知AD⊥AB,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°,那么BC⊥AB,说明理由.【解答】证明:∵DE,CE分别平分∠ADC,∠BCD,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=2∠1+2∠2=2(∠1+∠2)=180°,∴AD∥BC,∵DA⊥AB,∴CB⊥AB.23.(8分)如图所示,已知∠ADE=∠B,∠1=∠2,GF⊥AB,求证:CD⊥AB.【解答】证明:∵∠ADE=∠B,∴ED∥BC.∴∠1=∠3.∵∠1=∠2,∴∠3=∠2.∴CD∥FG.∵FG⊥AB,∴CD⊥AB.24.(8分)△ABC与△A′B′C′在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A′(﹣3,1);B′(﹣2,﹣2);C′(﹣1,﹣1);(2)说明△A′B′C′由△ABC经过怎样的平移得到?先向左平移4个单位,再向下平移2个单位.(3)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为(a﹣4,b﹣2);(4)求△ABC的面积.【解答】解:(1)A′(﹣3,1);B′(﹣2,﹣2);C′(﹣1,﹣1);(2)先向左平移4个单位,再向下平移2个单位;或:先向下平移2个单位,再向左平移4个单位;(3)P′(a﹣4,b﹣2);(4)△ABC的面积=2×3﹣×1×3﹣×1×1﹣×2×2=6﹣1.5﹣0.5﹣2=2.故答案为:(1)(﹣3,1),(﹣2,﹣2),(﹣1,﹣1);(2)先向左平移4个单位,再向下平移2个单位;(3)(a﹣4,b﹣2).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.ODABCEAODCB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。