北师大版九年级数学上册第四章4.4.1探索三角形相似的条件导学案
北师大版-数学-九年级上册-北师大版数学4.4.1 探索三角形相似的条件 教案
探索三角形相似的条件(一)●教学目标(一)教学知识点1.掌握三角形相似的判定方法1.2.会用相似三角形的判定方法1来证明及计算.(二)能力训练要求1.通过亲身体会得出相似三角形的判定方法,培养学生的动手能力;2.利用相似三角形的判定方法1进行有关计算及证明,训练学生的灵活运用能力.(三)情感与价值观要求1.经历对图形的观察、实验、猜想等数学活动过程,发展合情推理能力,并能有条理地、清晰地阐述自己的观点.2.通过用三角形全等的判定方法类比得出三角形相似的判定方法,进一步领悟类比的思想方法.●教学重点相似三角形的判定方法以及推导过程,并会用判定方法来证明和计算.●教学难点判定方法的运用●教学过程Ⅰ.创设问题情境,引入新课定义法:三角对应相等、三边对应成比例的两个三角形是相似三角形本节课开始我们将进行这方面的探索Ⅱ.新课问题:相似三角形应该如何判断呢?1.做一做.(1)画一个△ABC,使得∠BAC=60°,与同伴交流,你们所画的三角形相似吗?(2)与同伴合作,一人画△ABC,另一人画△A′B′C′,使得∠A和∠A′都等于给定的∠α,∠B和∠B′都等于给定的∠β,比较你们画的两个三角形,∠C与∠C′相等吗?对应边的比相等吗?这样的两个三角形相似吗?改变∠α、∠β的大小,再试一试.结论:判定方法1:两角对应相等的两个三角形相似.2.例题.如图,D、E分别是△ABC边AB、AC上的点,DE∥BC.(1)图中有哪些相等的角?(2)找出图中的相似三角形,并说明理由;(3)写出三组成比例的线段.3.想一想 在上面例题的条件下,AECE AD BD 吗? Ⅲ.课堂练习1.随堂练习(1)有一个锐角对应相等的两个直角三角形是否相似?为什么?(2)顶角相等的两个等腰三角形是否相似?为什么?2.补充练习(1)已知△ABC 与△A′B′C′中,∠B=∠B′=75°,∠C=50°,∠A′=55°,这两个三角形相似吗?为什么?(2)已知一个三角形的两个角分别是70°和65°,你能画一个和这个三角形相似的三角形吗?Ⅳ.课时小结本节课主要探索了相似三角形的判定方法,即两角对应相等的两个三角形相似,并且利用这个判定方法进行有关证明和计算.Ⅴ.课后作业。
北师大版九年级数学上册4.4探索三角形相似的条件优秀教学案例
(一)知识与技能
1.让学生掌握三角形相似的判定条件,理解相似三角形的性质,并能够运用其解决实际问题。
2.培养学生运用观察、操作、思考、交流、总结等方法,自主探索和发现数学知识的能力。
3.通过对三角形相似的学习,提高学生空间想象力,培养学生的几何思维能力。
(二)过程与方法
1.采用启发式教学,引导学生主动参与课堂,激发学生思考,培养学生独立解决问题的能力。
3.利用小组合作,促进学生之间的交流,激发学生的思维碰撞,提高课堂教学效果。
(四)反思与评价
1.教师引导学生对自己所学知识进行反思,查漏补缺,提高学生的自我认知能力。
2.学生相互评价,取长补短,促进共同进步。
3.教师对学生的学习过程和结果进行评价,关注学生的个体差异,激发学生的学习动力。
在教学过程中,我将关注每一个学生的学习进度,关注学生的个体差异,根据学生的实际情况进行有针对性的教学,让每一个学生都能在课堂上得到充分的锻炼和发展。同时,我会注重教学评价,及时给予学生反馈,帮助学生调整学习方法和策略,提高学习效果。
四、教学内容与过程
(一)导入新课
1.利用多媒体课件展示一个有趣的数学故事,引发学生思考,激发学生学习兴趣。
2.提出问题:“为什么故事中的主人公能够顺利解决问题?”引导学生思考三角形相似的判定条件。
3.简要介绍本节课的学习目标,让学生明确学习方向。
(二)讲授新知
1.利用模型、多媒体课件等教学工具,直观展示三角形相似的概念和性质。
2.利用多媒体课件、模型等教学工具,直观展示三角形相似的概念和性质,帮助学生建立直观的空间观念。
3.组织学生进行小组讨论和合作交流,培养学生的团队协作能力和沟通表达能力。
(三)情感态度与价值观
北师大版数学九年级上册4.4探索三角形相似的条件(第四课时)教学设计
在本节课中,学生将通过以下过程与方法,培养几何思维和解决问题的能力:
1.通过观察、分析、猜想、验证等步骤,发现并理解三角形相似的判定方法;
2.学会运用画图、计算、逻辑推理等手段,解决与三角形相似相关的问题;
3.通过小组合作、讨论交流,提高合作能力和解决问题的效率。
(三)情感态度与价ቤተ መጻሕፍቲ ባይዱ观
1.注重引导学生从具体实例中抽象出相似三角形的判定方法,培养学生的逻辑思维能力;
2.鼓励学生运用所学知识解决实际问题,提高学生将问题转化为数学模型的能力;
3.在小组合作学习中,关注每个学生的参与程度,引导他们独立思考,提高合作学习效果。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握三角形相似的判定方法,包括SSS、SAS、ASA、AAS和HL;
2.汇报交流:各小组汇报讨论成果,分享判定方法在实际问题中的应用经验。
3.互动提问:学生针对其他小组的汇报提出问题,共同讨论、解决问题,提高学生的合作能力和批判性思维。
(四)课堂练习
1.设计具有梯度性的练习题,让学生独立完成,巩固所学知识;
2.教师巡回指导,解答学生疑问,关注学生解题思路和方法;
3.学生互相交流解题过程,分享解题心得,提高解题能力。
(五)总结归纳
1.引导学生总结相似三角形的判定方法,强化记忆;
2.让学生回顾本节课所学内容,总结自己在解决问题时的经验教训;
3.强调相似三角形判定方法在实际生活中的应用价值,激发学生学习数学的兴趣;
4.鼓励学生课后继续探究相似三角形的相关问题,培养自主学习能力。
五、作业布置
为了巩固本节课所学知识,提高学生的几何思维能力和问题解决能力,特布置以下作业:
4.4《探索三角形相似的条件》数学北师大版九年级上册教案第3课时
第四章图形的相似4.4 探索三角形相似的条件第3课时一、教学目标1.经历两个三角形相似条件的探索过程,增强发现问题、提出问题的意识,进一步体会类比、分类、归纳等思想与方法.2.了解相似三角形的判定定理3.3.能够运用三角形相似的条件解决简单的问题,发展应用意识.二、教学重点及难点重点:掌握判定定理3,会运用判定定理3判定两个三角形相似.难点:会准确运用三角形相似的判定定理3来判定两个三角形是否相似.三、教学用具多媒体课件、直尺或三角板.四、相关资《复习相似三角形判定AA、SAS》动画,《相似三角形判定SSS》动画,《相似三角形的判定》微课.五、教学过程【复习引入】1.我们学过的相似三角形的判定方法有哪些?它们分别是从哪个角度进行判别的?师生活动:教师出示问题,学生思考、讨论.讨论结果:我们学过的相似三角形的判定方法有:定义法;判定定理1(两个角分别相等的两个三角形是相似三角形);判定定理2(两边成比例且夹角相等的两个三角形相似).除此之外,是否还有其他的方法来判定两个三角形相似呢?这一问题就是本节课我们需要研究的问题.设计意图:通过复习相似三角形的判定方法,类比之后,学生猜测出其他判定方法,为本节课的学习做好铺垫.【探究新知】想一想现在我们考虑增加“另两边成比例”的条件,看△ABC和△A'B'C'一定相似吗?也就是如果两个三角形的三边成比例,那么这两个三角形一定相似吗?师生活动:教师出示问题,学生思考、讨论并完成“做一做”.做一做画△ABC与△A'B'C',使,和都等于给定的值k.设法比较∠A与∠A'的大小.△ABC与△A'B'C'相似吗?改变k值的大小,再试一试.(师生活动:教师引导学生用直尺和圆规任意画一个△ABC,再画一个△A'B'C',使,和都等于给定的值k.比较∠A与∠A'的大小来判定△ABC和△A'B'C'是否相似.改变k值的大小,再试一试.发现:三边成比例的两个三角形相似.设计意图:在教师的引导下,学生通过自己动手,探索新知,并与他人交流探讨,感受探索过程.【典例精析】例如图,在△ABC和△ADE中,,∠BAD=20°,求∠CAE的度数.师生活动:教师出示例题,学生思考、讨论,师生共同完成解题过程.解:∵,∴△ABC∽△ADE(三边成比例的两个三角形相似).∴∠BAC=∠DAE.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°.设计意图:培养学生分析问题、解决问题的意识和能力.【课堂练习】1.若△ABC的各边都分别扩大为原来的2倍,得到△A1B1C1,则下列结论正确的是().A.△ABC与△A1B1C1的对应角不相等B.△ABC与△A1B1C1不一定相似C.△ABC与△A1B1C1的相似比为D.△ABC与△A1B1C1的相似比为22.已知△ABC的三边长分别为6 cm,7.5 cm,9 cm,△DEF的一边长为4 cm.当△DEF 的另两边长为下列哪一组时,这两个三角形相似?应选().A.2 cm,3 cm B.4 cm,5 cmC.5 cm,6 cm D.6 cm,7 cm3.下列图形不一定相似的是().A.有一个角是100°的两个等腰三角形B.有一个角是60°的两个等腰三角形C.两个等腰直角三角形D.有一个角是45°的两个等腰三角形4.下列条件中,不能使△ABC和△A′B′C′相似的是().A.∠A=∠A′=45°,∠B=26°,∠B′=109°B.AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3C.∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3D.AB=3,AC=5,BC=7,A′B′=,A′C′=,B′C′=5.如下图,小正方形的边长均为l,则下列图中的三角形(阴影部分)与△ABC相似的是().6.如图,若A,B,C,D,E,F,G,H,O都是5×7方格纸中的格点,且每个方格都是边长为1的正方形,为使△DME∽△ABC,则点M应是F,G,H,O点中的().A.F B.G C.H D.O师生活动:教师出示练习,找几名学生代表回答,讲解出现的问题.设计意图:通过练习,激发学生的学习热情,调动学生的学习积极性,培养学生独立解决问题的能力.7.如图,已知.求证:AD·CE=BD·AE.师生活动:教师找几名学生板演,讲解出现的问题.参考答案1.C.2.C.3.D.4.D.5.B.6.B.7.证明:∵,∴△ABC∽△ADE.∴∠BAC=∠DAE.∴∠BAD=∠CAE.又∵,即,∴△ABD∽△ACE.∴.∴AD·CE=BD·AE.设计意图:通过学生自主练习,可以查看学生答题的情况,统计差错及目标达成率,也可以让学生真正地动手、动脑,从而达到很好地掌握知识的目的.六、课堂小结这节课我们主要学习了相似三角形的判定定理3:三边成比例的两个三角形相似.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计4.4 探索三角形相似的条件(3)1.相似三角形的判定定理3。
《探索三角形相似的条件》示范公开课教学设计【北师大版九年级数学上册】第1课时
第四章 图形的相似4.4 探索三角形相似的条件第1课时 教学设计一、教学目标1.经历两个三角形相似条件的探索过程,增强发现问题、提出问题的意识,进一步体会类比、分类、归纳等思想与方法.2.了解相似三角形的判定定理1.3.了解黄金分割.4.能够运用三角形相似的条件解决简单的问题,发展应用意识.二、教学重点及难点重点:相似三角形的判定定理及其探索过程.难点:相似三角形的判定定理的应用.三、教学用具多媒体课件、直尺或三角板.四、相关资源《相似三角形引入》视频,《相似的判定AA 》动画,《相似三角形的判定》微课.五、教学过程【复习引入】根据所学的相似多边形的定义,你能给相似三角形下个定义吗?师生活动:教师引导学生得出,如果两个三角形的三个角分别相等,三条边成比例,我们就说这两个三角形相似.相似用符号“∽”表示,读作“相似于”.例如,在△ABC 和△A'B'C'中,如果∠A =∠A',∠B =∠B',∠C =∠C',,我们就说△ABC 和△A'B'C'相似,相似比为k ,记作△ABC ∽△A'B'C'.设计意图:引导学生回顾旧知识,从而得出相似三角形的定义及写法.判定三角形全等,我们并不是验证六个条件,而是利用了几个简便的判定定理,那么三角形相似的判定我们又能找到哪些简便的方法呢? 设计意图:类比三角形全等的判定方法为我们探索三角形相似的判定方法提供了方向AB BC AC k A'B'B'C'A'C'===性的指导,从而揭示本节课的主题.【探究新知】想一想如果两个三角形只有一个角相等,它们一定相似吗?如果有两个角分别相等呢?师生活动:教师引导学生用直尺和圆规任意画一个三角形,再画一个三角形,使它的一个角与原来三角形的一个角相等,度量这两个三角形的三边及其他的两个角,看这两个三角形的三边是否成比例?其他的两个角是否相等?从而判定这两个三角形是否相似?再画一个三角形,使它的两个角与原来三角形的两个角相等,度量这两个三角形的三边和其他的一个角,看它们的三边是否成比例?其他的一个角是否相等?从而判定这两个三角形是否相似?做一做与同伴合作,两个人分别画△ABC和△A`B`C`,使得∠A和∠A`都等于∠α,∠B 和∠B`都等于∠β,此时∠C与∠C`相等吗?三边的比相等吗?这样的两个三角形相等吗?改变∠α和∠β的大小,再试一试。
数学九年级北师大版 4.4 探索三角形相似的条件教学设计
北师大版九年级数学上册第四章《图形的相似》4.探索三角形相似的条件(二)一、学生知识基础学生通过七年级下册第三章《三角形》的学习和本章前面几节中成比例线段、平行线分线段成比例、相似多边形等知识的学习,具有了探索三角形相似的条件的知识基础,同时本节第一课时对“两角对应相等的两个三角形相似”进行了探究学习,已经具有一定的探索经验、分析问题能力及归纳演绎的能力,具备了一定的合作与交流的能力,本节进一步探索相似三角形的条件---- “两边对应成比例且夹角相等的两个三角形相似”这个判定定理,为第三课时探究“三边对应成比例的两个三角形相似”奠定基础。
二、教学任务分析本节课将为学生创设动手操作和交流反思的情境,进一步发展学生的探索、交流能力,达到深入探索三角形相似条件的目的,并能够运用“两边对应成比例且夹角相等的两个三角形相似”这个判别三角形相似的条件来解决简单的问题。
本节课学生经历观察、操作、思考、交流、归纳的过程,进一步发展学生的空间观念,发展逻辑推理能力和语言表达能力,增强解决问题的能力,在活动中体会数学与生活的密切联系。
在教学方法上建议采用学生自主探索、分组讨论总结的方式,为后续章节的学习积累经验。
教学目标:1·经历探索活动,理解并掌握三角形相似的判定定理:“两边对应成比例且夹角相等的两个三角形相似”,并能借此解决实际问题。
2·活动中培养学生细心观察、积极思考、动手操作的能力,发展类比的数学思想、主动探索的意识,增强合情推理及语言表达能力。
3·使学生感悟几何知识在生活中的价值,体会数学与生活的联系,激发学生的求知欲。
教学重点:探索并掌握相似三角形的判定定理:“两边对应成比例且夹角相等的两个三角形相似”。
教学难点:相似三角形判定定理在实际问题中的灵活运用。
三、教学过程设计本节课设计了六个教学环节:第一环节:创设情境,引入新课;第二环节:明确任务,目标导向,;第三环节:活动探究,解疑答惑;第四环节:活学活用,巩固提高;第五环节:归纳反思,总结升华,;第六环节:达标检测,反馈矫正。
北师大版九年级数学上册4.4探索三角形相似的条件(教案)
1.理论介绍:首先,我们要了解三角形相似的基本概念。三角形相似是指两个三角形对应角相等、对应边成比例。它在几何学中具有重要地位,可例。通过分析三角形相似在实际中的应用,如求建筑物的高度、地图上的比例尺等,了解它如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形相似在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调SSS、SAS、ASA这两个判定定理。对于难点部分,如SAS判定定理,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相似相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用相似三角形的性质测量远处物体的高度。
然而,在实践活动和小组讨论环节,我发现部分学生参与度不高,可能是因为他们对三角形相似的应用场景不够熟悉,或者在小组讨论中未能充分发挥自己的优势。为此,我计划在今后的教学中,加强对学生的引导,鼓励他们积极参与讨论,提高团队合作能力。
此外,在重点难点解析部分,我发现有些学生对于SAS判定定理的理解仍然不够深入。在今后的教学中,我需要加强对这一部分内容的讲解和练习,通过更多实例的比较和分析,帮助学生彻底掌握这一判定定理。
-学会运用相似三角形的性质解决实际问题,如求线段长度、角度等。
-能够通过观察和分析,发现几何图形中相似三角形的特征。
北师大九年级上册4.4.2 探索三角形相似的条件 教学设计
4.4.2探索三角形相似的条件教学设计问题2 类比三角形全等的判定方法(SAS,SSS ),猜想可以添加什么条件来判定两个三角形相似? 相似做一做利用刻度尺和量角器画△ABC 和△A ′B ′C ′,使∠A =∠A ′,ABA ′B′=ACA ′C′,量出∠B 与∠B ′的大小(或∠C 与∠C ′的大小),△ABC 和△A ′B ′C ′相似吗?两个三角形相似利用刻度尺和量角器画△ABC 和△A ′B ′C ′,使∠B =∠B ′,ABA ′B′=BCB ′C′,量出∠A 与∠A ′的大小(或∠C 与∠C ′的大小),△ABC 和△A ′B ′C ′相似吗?两个三角形相似猜想:两边成比例,且夹角相等的两个三角形相似 验证猜想:如图,在△ABC 与△A ′B ′C ′中,已知∠A= ∠A ′,AB A ′B′=ACA ′C′,求证:△ABC ∽△A ′B ′C ′.证明:在 △A ′B ′C ′的边 A ′B ′上截取点D , 使 A ′D = AB .过点 D 作DE ∥B ′C ′, 交 A ′C ′于点 E. ∵ DE ∥B ′C ′,∴ △A ′DE ∽△A ′B ′C ′. ∴A ′DA ′B′=A ′EA ′C′∵ A ′D=AB ,ABA ′B′=ACA ′C′ ∴A ′DA ′B′=A ′EA ′C′=AC A ′C′ ∴ A ′E = AC . 又 ∠A ′ = ∠A. ∴ △A ′DE ≌ △ABC , ∴ △A ′B ′C ′ ∽ △ABC. 归纳总结相似三角形的判定定理2定理:两边成比例且夹角相等的两个三角形相似. 符号语言:在△ABC 与△DEF 中,∵∠A=∠D ,AB AC =DEDF , ∴△ABC ∽△DEF.例2 如图,D ,E 分别是△ABC 的边 AC ,AB 上的点,AE =1.5,AC =2,BC =3,且ADAB =34,求 DE 的长.解:∵AE=1.5,AC=2,∴AEAC =34∵ADAB =34∴ADAB=AEAC又∵∠EAD=∠CAB,∴△ADE∽△ABC∴DEBC =ADAB=34∵BC =3,∴DE=34BC=34×3=94想一想:在三角形全等的判定中,有两个边和其中一边的对角相等的两个三角形全都吗?那么有两边成比例,其中一边的对角相等的两个三角形相似吗?△ABC与△DEF的两边成比例,其中一边的对角相等,那么,这两个三角形相似吗?下图是小明和小丽画的两个三角形,由此你能得出什么结论?和“有两条边和其中一边的对角相等的两个三角形不一定全都”一样,有两边成比例,其中一边的对角相等的两个三角形也不一定相似.1.下列条件不能判定△ABC与△ADE相似的是( )A.AEAD =ACABB. ∠B=∠ADEC.AEAC =DEBCD. ∠C=∠AED2.如图,点D是△ABC的边AC上的一点,根据下列条件,可以得到△ABC∽△BDC的是 ( ) A.AB·CD=BD·BC B.AC·CB=CA·CD C.BC2=AC·DC D.BD2=CD·DA3.如图,已知ADAE =ACAB,AD=3 cm,AC=6 cm,BC=8 cm,则DE的长为________cm.4.如图所示,在△ABC中,AB=6,AC=4,P是AC的中点,过点P的直线交AB于点Q,若以A,P,Q为顶点的三角形和△ABC相似,则AQ的长为.5. 如图,∠DAB =∠CAE,且AB ·AD = AE·AC,求证△ABC ∽△AED.。
北师大版九年级数学上册说课稿:4.4探索三角形相似的条件
北师大版九年级数学上册说课稿:4.4 探索三角形相似的条件一. 教材分析《北师大版九年级数学上册》第四单元“相似三角形”的第四节“探索三角形相似的条件”是本单元的核心内容。
本节课主要让学生通过探究、归纳出三角形相似的判定方法,理解相似三角形的性质,为后续解决实际问题和进行几何证明打下基础。
教材从学生已知的图形出发,引导学生观察、思考、归纳,从而得出三角形相似的条件。
首先,通过两组三角形的图片,让学生直观地感受相似三角形的形状。
然后,引导学生通过测量三角形对应边的长度,比较对应角的大小,从而发现相似三角形的规律。
最后,通过几何图形的变换,让学生理解相似三角形的性质,并能够运用这些性质解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对三角形的相关概念有一定的了解。
但是,对于三角形相似的判定方法和性质,他们可能还比较陌生。
因此,在教学过程中,我将会引导学生从直观的图片出发,通过实际操作、观察、思考,逐步理解和掌握相似三角形的判定方法和性质。
三. 说教学目标1.知识与技能目标:让学生掌握三角形相似的判定方法,理解相似三角形的性质。
2.过程与方法目标:通过观察、操作、思考、归纳等过程,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:三角形相似的判定方法,相似三角形的性质。
2.教学难点:对相似三角形性质的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与、积极思考。
2.教学手段:利用多媒体课件、几何模型等辅助教学,提高教学效果。
六. 说教学过程1.导入:通过两组相似三角形的图片,让学生直观地感受相似三角形的形状,引发学生的兴趣。
2.探究:引导学生观察、测量三角形对应边的长度,比较对应角的大小,从而发现相似三角形的规律。
3.归纳:学生进行小组讨论,归纳出三角形相似的判定方法,并能够运用这些方法解决实际问题。
北师大版九年级数学上册4
(一)教学重难点
1.理解并掌握相似三角形的判定条件,特别ຫໍສະໝຸດ AAA、AA和SAS三种情况的运用。
2.能够运用相似三角形的性质解决实际问题,如求三角形中未知线段的长度、证明线段的比例关系等。
3.培养学生的几何直观和逻辑推理能力,提高他们解决几何问题的策略和方法。
(二)教学设想
1.创设情境,激发兴趣:通过引入生活实例,让学生感受到相似三角形在现实生活中的广泛应用,激发他们的学习兴趣。
4.小组合作探究题:以小组为单位,探讨相似三角形在实际问题中的应用,并撰写一篇小报告,内容包括:问题背景、解决方法、解题过程和结论。
作业布置要求:
1.学生在完成作业时,要注重解题思路的清晰性和逻辑性,力求简洁明了。
2.对于实际应用题,鼓励学生运用所学知识,结合生活经验,进行创新性解答。
3.小组合作探究题要求组内成员共同参与,分工合作,充分发挥团队协作精神。
1.充分发挥学生的主体作用,引导他们通过自主探索、合作交流,发现相似三角形的判定条件。
2.注重培养学生的直观想象力和逻辑推理能力,帮助他们将实际问题转化为数学问题,运用相似三角形的性质解决问题。
3.针对不同学生的学习水平,提供有针对性的指导,使他们在掌握基础知识的同时,提高解决实际问题的能力。
4.关注学生的情感态度,激发他们对数学学习的兴趣,培养他们勇于挑战、克服困难的精神。
2.培养学生的合作意识,让他们在团队中学会倾听、交流、互助,共同解决问题。
3.培养学生正确的数学观念,使他们认识到数学知识在实际生活中的重要性和实用性。
4.培养学生的审美情趣,让他们在探索相似三角形的过程中,发现数学图形的美。
教学设计:
1.导入:通过实际生活中的实例,如相似图形的设计、建筑物的布局等,引出相似三角形的定义及性质,激发学生的兴趣。
北师大版九年级数学上册4.4探索三角形相似的条件教学设计
-学生在完成练习后,对照答案进行自我检查,找出错误原因,及时修正。
-教师组织课堂小结,让学生复述相似三角形的判定方法和应用,巩固所学知识。
(三)情感态度与价值观
1.培养学生的审美观念,让学生体会相似三角形在几何图形中的美。
-教师引导学生通过几何画板或其他教具,观察相似三角形的特征,并总结规律。
-学生在小组内分享观察结果,讨论相似三角形的判定条件。
2.理论与实际结合:结合具体实例,让学生将相似三角形的性质应用于解决实际问题,提高学生解决问题的能力。
-教师设计具有实际背景的问题,指导学生运用相似三角形的性质进行求解。
-学生通过自主探究和小组合作,解决实际问题,体验数学知识在生活中的应用。
-教师引导学生发现相似三角形在自然界和生活中的应用,如建筑、艺术等,激发学生对几何美的追求。
2.培养学生合作交流的意识,增强团队协作能力。
-在小组合作活动中,学生学会倾听他人意见,表达自己的观点,共同解决问题。
3.增强学生的自信心,激发学习数学的兴趣。
-教师及时给予学生鼓励和肯定,让学生在解决实际问题的过程中感受到成功的喜悦,提高学习积极性。
2.提出问题:向学生提问:“你们觉得这些图形之间有什么联系?”、“如何判断两个三角形是否相似?”等问题,激发学生的思考,为新课的学习做好铺垫。
3.回顾相关知识:简要回顾全等三角形的判定方法,为学生学习相似三角形的判定方法打下基础。
(二)讲授新知
在这一环节,我将系统地讲解相似三角形的定义、判定方法及其应用:
-设计开放性问题和实际应用题,评价学生对相似三角形知识掌握的深度和广度。
教案类:北师大版数学《探索三角形相似的条件》+教学设计
《探索三角形相似的条件》(一)锁定问题1、提出问题:(1)什么是相似三角形?(2)你能说出三角形全等有哪些判定方法吗?这些结论是如何得到呢?(3)类比三角形全等的判定,你认为判定两个三角形相似至少需要哪些条件?问题提出以后,问题(1)、(2)由学生口答。
问题(3)组织学生分小组进行讨论,然后全班交流,并对学生提出的判断三角形相似的条件进行归纳整理,将猜想归纳整理为三类,即只与角有关的猜想;只与边有关的猜想;与边和角有关的猜想。
并指出本节课我们只研究与角有关的猜想。
(二)解决问题的途径和方法:1、分析猜想:(1)猜想一:一个角对应相等的两个三角形相似;(2)猜想二:两个角对应相等的两个三角形相似;(3)猜想三:三个角对应相等的两个三角形相似。
2、猜想结果:根据已有的数学知识和方法,设计方案并验证“两个角对应相等的两个三角形相似”。
对于猜想一,由学生举出反例说明不成立(例如:等边三角形与含60°角的直角三角形)。
对于猜想三,根据三角形内角和,可将猜想三与猜想二化归为同一个猜想。
对于猜想二,组织学生以四人小组为单位自主设计验证方案并进行验证。
首先,由小组讨论出验证方案,教师组织学生进行交流。
其次,由小组根据方案操作验证。
学生根据小组确定的对应相等的两对角画三角形时,可能会遇到不会画三角形的困难,教师对有困难的小组给予指导。
当三角形画出以后,学生有可能根据三角形的大小、形状,凭直觉来判断两个三角形相似,这时教师要引导学生回归到定义去判定,学生需要测量所画三角形三边的长度,并用科学计算器计算三对对应边的比,从而验证两个三角形是否相似。
最后,教师对各小组的成果进行点评。
1、利用多媒体课件演示,验证“有两个角对应相等的两个三角形相似”。
2、明晰:两角对应相等的两个三角形相似。
符号表述:∵ ∠B=∠B’,∠C=∠C’, ∴ △ABC ∽△A’B’C’.C'C B'BA'AC'C B'BA'A在用多媒体课件演示的过程中,引导学生注意从两个层次观察、思考: 在△ABC 和△A’B’C’中,在∠B=∠B’, ∠C=∠C’的条件下, (1)改变两个角∠B (或∠B’)和∠C (或∠C’)的大小时,观察第三对角是否相等,三角形的三对对应边的比是否相等,是否符合三角形相似的定义;(2)改变三角形的形状,当三角形分别是直角三角形、锐角三角形、钝角三角形时,判断两个三角形是否相似。
北师大版九上数学(教案)第四章:第四节《探索相似三角形的条件》第二课时
北师大版九年级上第四章《图形的相似》《探索相似三角形的条件》第二课时教案【教学目标】1.知识与技能(1).使学生掌握相似三角形判定定理2.(2).使学生初步掌握相似三角形的判定定理2的应用. 2.过程与方法经历探索相似三角形的条件,进一步发展学生归纳、类比、交流等方面的能力. 3.情感态度和价值观经历自主探究、合作交流等学习方式的学习及激励评价,让学生在学习中锻炼能力.【教学重点】相似三角形的判定定理2 【教学难点】相似三角形判定定理2及其应用. 【教学方法】 合作、探究 【课前准备】 多媒体课件 【教学过程】一、复习回顾 1、什么是相似三角形?三角对应相等,三边对应成比例的两个三角形相似。
2.相似三角形的判定1:两角对应相等的两个三角形相似 二、探究新知相似三角形的判定2 探究1:画一画①画△ABC,使∠A=60°,AB=3cm,AC=2cm. ②再画△A ′B ′C ′,使∠A ′=∠A, 且32''''===k C A AC B A AB③量出B ′C ′及BC 的长,计算''C B BC的值,并比较是否三边都对应成比例?通过测量得出BC=2.6cm,B'C'=3.9cm,且32''=C B BC . ④量出∠B 与∠B ′的度数,∠B ′=∠B 吗?由此可推出∠C ′=∠C 吗?为什么? ∠B ′=∠B ,∠C ′=∠C⑤由上面的画图,你能发现△A ′B ′C ′与△ABC 有何关系?与你周围的同学交流. 我发现这两个三角形是相似的.改变k 值的大小,再试一试.思考:我们能否用推理的方法得出这个结论?我们来证明一下前面得出的结论:'''C B A ABC ∽△△如图,在△ABC 与△A ′B ′C ′中,已知∠A= ∠A ′,''''CA ACB A AB =,求证'''C B A ABC ∽△△.证明:在△A ′B ′C ′的边A ′B ′上截取点D,使A ′D=AB .过点D 作DE ∥B ′C ′,交A ′C ′于点E.∵DE ∥B ′C ′,∴△A ′DE ∽△A ′B ′C ′..''''''∴C A E A B A D A = ∵A ′D=AB ,''''C A ACB A AB = .''''''''∴C A AC C A E A B AD A ==∴A ′E=AC.又∠A ′=∠A.∴△A ′DE ∽△ABC , ∴△A ′B ′C ′∽△ABC.由此得到三角形的判定定理2:两边成比例且夹角相等的两个三角形相似. 几何语言:∵∠A=∠A'''''CA ACB A AB = '''C B A ABC ∽△△∴探究2:观察下面图形,如果两个三角形两边对应成比例,有任意一角对应相等,那么,这两个三角形一定相似吗?两边对应成比例且其中一边所对的角对应相等的两个三角形不一定相似. 注意:两边对应成比例并且必须是夹角对应相等两三角形才一定相似哦. 三、例题讲解:例1.如图,每组中的两个三角形是否相似?为什么?解:(1)∵∠A=∠A,21==AC AF AB AE ∴△AEF ∽△ABC(2) ∵∠B=∠E ,EF BC DEAB ≠ ∴△ABC 与△DEF 不相似例2. 如图,D 是△ABC 一边BC 上一点,连接AD,使 △ABC ∽ △DBA 的条件是 ( D )A. AC:BC=AD:BDB. AC:BC=AB:ADC. AB 2=CD ·BCD. AB 2=BD ·BC 解析:∵∠B=∠B,需添加条件∴△ABC ∽ △DBA 故选D.例3:如图,D 、E 分别是△ABC 的边AC 、AB 上的点.AE=1.5,AC=2,BC=3, 求DE 的长.分析:要求DE 的长,需先证明△ADE ∽△ABC ,由相似三角形的判定2,两边对应成比例且夹角相等的两个三角形相似,可得证,再根据相似三角形的对应边的比例相等,求出DE 的长。
北师大版数学九年级上册4.4.2探索三角形相似的条件优秀教学案例
二、教学目标
五、案例亮点
1.生活情境的导入:本节课通过展示实际生活中的三角形相似现象,如建筑设计中的相似三角形应用,引导学生关注数学与现实生活的联系。这样的导入方式不仅激发了学生的学习兴趣,还让学生明白了相似三角形在实际生活中的应用价值,提高了学生的学习积极性。
2.问题导向的教学策略:本节课以问题为导向,引导学生提出问题并自主探索相似三角形的判定方法。在解决问题的过程中,教师及时给予反馈和指导,帮助学生克服困难,引导学生正确思考。这种教学策略不仅培养了学生的思维能力,还提高了学生解决问题的能力。
3.引导学生进行小组反思,让学生总结自己在解决问题过程中的收获和不足,促进学生的自我成长。
(四)反思与评价
1.让学生在课后进行自我反思,总结自己在本节课中学到了什么,还有什么需要改进的地方。
2.组织学生进行同伴评价,鼓励学生相互鼓励、相互学习,提高学生的学习积极性。
3.教师对学生的学习情况进行评价,关注学生的知识掌握情况、思维能力以及合作态度等方面,为下一步教学提供参考。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个生活中的实例,如建筑设计中的相似三角形应用,引导学生关注相似三角形的实际意义。
2.提出问题:“你们认为什么是相似三角形?它们有什么特点?”让学生进行思考,激发学生的学习兴趣。
3.总结相似三角形的定义,并提出本节课的学习目标,让学生4.4.2探索三角形相似的条件优秀教学案例
北师大版九年级上册数学4章《探索三角形相似的条件》教案
4.4探索三角形相似的条件第1课时两角分别相等的两个三角形相似【学习目标】1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.掌握由两角对应相等判定两个三角形相似的方法,并会运用这种判定三角形相似的方法解决简单问题.【学习重点】三角形相似的判定定理1及应用.【学习难点】三角形相似的判定定理1的证明.一、情景导入生成问题1.各角分别相等,各边成比例的两个多边形叫做相似多边形;相似多边形对应边的比叫做相似比.2.已知,如图两个四边形相似,则∠α的度数是(A)A.87°B.60°C.75°D.120°二、自学互研生成能力知识模块一探索三角形相似的判定定理1先阅读教材P89页的内容,然后完成下面的问题:1.相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,如△ABC 与△DEF相似,记作△ABC∽△DEF,其中对应顶点要写在相同位置上,如A与D,B与E,C与F相对应.AB∶DE等于BC∶EF.2.两角对应相等的两个三角形相似.探究内容:现有一块三角形玻璃ABC,不小心打碎了,只剩下∠A和∠B比较完整.如果用这两个角去配制一张完全一样的玻璃,能成功吗?问题情景出现后,让学生充分发表自己的想法.1.动手实验:现在,已量出∠A=60°,∠B=45°,请同学们当一当工人师傅,在纸上作∠A =60°,∠B=45°的△ABC,剪下与同桌所做的三角形比较,研究这两个三角形的关系.你有哪些发现?在小组内交流.学生经过画一画、剪一剪、量一量、算一算、拼一拼,在小组合作基础上,讨论交流,可能得出下面结论:①这样的两个三角形不一定全等;②两个三角形三个角都对应相等;③通过度量后计算,得到三边对应成比例;④通过拼置的方法发现这两个三角形可能相似.此时,教师鼓励学生大胆猜想,得出命题:猜想:两角对应相等,两三角形相似.归纳结论:两角分别相等的两个三角形相似.知识模块二相似三角形判定定理1的应用1.自学自研教材P89页的例1.2.完成教材P90页随堂练习.典例讲解:已知△ABC中,AB=AC,∠A=36°,BD是角平分线,求证:△ABC∽△BDC.分析:证明相似三角形应先找相等的角,显然∠C是公共角,而另一组相等的角则可以通过计算来求得.借助于计算也是一种常用的方法.证明:∵∠A=36°,△ABC是等腰三角形,∴∠ABC=∠C=72°,又BD平分∠ABC,则∠DBC=36°.在△ABC和△BDC中,∠C为公共角,∠A=∠DBC=36°,∴△ABC∽△BDC.对应练习:1.如图,E为平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F.若AB=5,AD=6,CF=2,求线段CE的长.解:设CE=x,证△ABE∽△FCE,由比例式求得CE=4.2.如图,在边长为4的等边三角形ABC中,D、E分别在线段BC,AC上运动,在运动过程中始终保持∠ADE=60°,求证:△ABD∽△DCE.证明:∵△ABC是等边三角形,∴∠B=∠C=60°.∴∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.∴△ABD∽△DCE.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一探索三角形相似的判定定理1知识模块二相似三角形判定定理1的应用四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:______________________________________________2.存在困惑:__________________________________________第2课时两边成比例且夹角相等的两个三角形相似【学习目标】1.理解并掌握三角形相似的判定定理:“两边对应成比例且夹角相等的两个三角形相似”.2.会运用三角形相似的判定方法解决简单问题.【学习重点】掌握“两边对应成比例且夹角相等的两个三角形相似”的判定方法.【学习难点】相似三角形判定定理在实际问题中的灵活运用.一、情景导入生成问题1.两角分别相等的两个三角形相似.2.下列说法中正确的个数是(C)①所有的等腰直角三角形都相似;②有一个角是80°的两个等腰三角形相似;③有一个角是100°的两个等腰三角形相似;④有一个角相等的两个等腰三角形相似.A.4B.3C.2D.13.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ADE沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为(B)A.12B.2 C.3 D.4二、自学互研生成能力知识模块一探索三角形相似的判定定理2先阅读教材P91页的内容,然后解答下列问题:1.两角对应相等的两个三角形相似.2. 两边对应成比例且夹角相等的两个三角形相似.3.如图,两个三角形中,其边长已在图上标注,那么这两个三角形是(选填“是”或“不是”)相似三角形.根据是有两边对应成比例且夹角相等的两个三角形相似.1.情境导入问题:(1)相似三角形的定义是什么?三边成比例,三角分别相等的两个三角形相似.(2)判断两个三角形相似,你有哪些方法?方法1:通过定义(不常用);方法2:通过平行线(条件特殊,使用起来有局限性);方法3:判定定理1,两角分别相等的两个三角形相似.2.思考探究完成教材P91页的做一做.归纳结论:两边成比例且夹角相等的两个三角形相似.知识模块二三角形相似判定定理2的应用1.自学自研教材P91页的例2.2.完成教材P92页的随堂练习.典例讲解:如图,已知△ABD∽△ACE.求证:△ABC∽△ADE.分析:由于△ABD∽△ACE,则∠BAD=∠CAE,因此∠BAC=∠DAE,再进一步证明BA AD=CAAE,则问题得证.证明:∵△ABD∽△ACE,∴∠BAD=∠CAE.又∵∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠BAC=∠DAE.∵△ABD∽△ACE,∴ABAD=ACAE.在△ABC和△ADE中,∵∠BAC=∠DAE,ABAD=ACAE,∴△ABC∽△ADE.对应练习:1.下列条件不能判定△ABC与△ADE相似的是(C)A. AE AD =AC AB B .∠B =∠ADE C. AE AC =DE BCD .∠C =∠AED2.如图,在△ABC 中,AB =AC ,D 为CB 延长线上一点,E 为BC 延长线上一点,且满足AB 2=DB·CE.求证:△ADB ∽△EAC.证明:∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABD =∠ACE.∵AB 2=DB·CE ,∴AB CE =DBAB ,即AB CE =DBAC ,∴△ADB ∽△EAC.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索三角形相似的判定定理2 知识模块二 三角形相似判定定理2的应用四、检测反馈 达成目标 见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:___________________________________________ 2.存在困惑:_______________________________________第3课时 三边成比例的两个三角形相似【学习目标】1.掌握三边对应成比例判定两个三角形相似的方法. 2.会选择合适的三角形相似的判定方法解决简单问题. 【学习重点】掌握相似三角形的判定定理:“三边成比例的两个三角形相似”. 【学习难点】会准确运用三角形相似的判定定理来判断、证明及计算.一、情景导入生成问题1.两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似.2.下列说法正确的是(C)A.有一个角相等的两个等腰三角形相似B.所有的直角三角形相似C.有一个锐角对应相等的两个直角三角形相似D.所有的等腰三角形相似3.已知△ABC如图所示,则与△ABC相似的是图中的(C)A B C D二、自学互研生成能力知识模块一探索三边成比例的两个三角形相似师:我们上两节课学过什么定理?师生共同回忆,在上两节课的探索中,我们知道:三角对应相等、三边对应成比例的两个三角形相似;两角分别相等的两个三角形相似;两边成比例及夹角相等的两个三角形相似.师:那么判定三角形相似还有没有其他条件呢?今天我们再次踏上探索之旅途.画△ABC与△A′B′C′,使ABA′B′、BCB′C′和CAC′A′都等于给定的值k.(1)设法比较∠A与∠A′的大小.(2)△ABC与△A′B′C′相似吗?说说你的理由.改变k值的大小,再试一试.生:按照上面的步骤进行,这里的k由自己定,为了节约时间,一个组取一个相同的k值,不同的组取不同的k值.内容:学生根据画出的相似三角形的图形及在画相似三角形中的“发现”进行相互交流,教师给予适当的帮助,后由学生展示、讲解画出来的相似三角形,展示自己探索的过程及自己得出的结论.师:经过大家的亲身参与体会,你们得出的结论是什么呢?生:结论为∠A=∠A′,△ABC∽△A′B′C′,理由是:∠A=∠A′,ABA′B′=CAC′A′.根据“两边成比例及夹角相等的两个三角形相似”可知:△ABC∽△A′B′C′.师:其他组的同学的结论相同吗?生:相同.师:经过大家的探讨,我们又掌握了一种相似三角形的判定方法.师:(演示课件)判定定理3:三条边成比例的两个三角形相似.知识模块二判定定理3的应用1.自学自研教材P94页的例3.2.完成教材P94的随堂练习.师:幻灯片展示:如图,△ABC与△A′B′C′相似吗?你有哪些判断方法?生:先独立思考,然后小组合作交流.解:△ABC∽△A′B′C′.判断方法有:1.三边成比例的两个三角形相似;2.两角分别相等的两个三角形相似;3.两边成比例且夹角相等的两个三角形相似;4.定义法.目的:巩固对本节知识的理解;并让学生将上两节课:相似三角形的判定定理1、2,与本课知识:相似三角形的判定定理3的内容系统的掌握.对应练习:1.教材P95页习题4.7第1题.解:∵86=43,107.5=43,129=43.∴86=107.5=129,∴这两个三角形相似.2.教材P95页习题4.7第2题.答:△ABC∽△EFG.利用判定定理3.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一探索三边成比例的两个三角形相似知识模块二判定定理3的应用四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:_____________________________________________2.存在困惑:_________________________________________第4课时黄金分割【学习目标】1.知道黄金分割的定义;会找一条线段的黄金分割点;会判断某一点是否为一条线段的黄金分割点.2.通过找一条线段的黄金分割点,培养学生的理解与动手能力.3.理解黄金分割的现实意义,并能动手找到和制作黄金分割点和图形,让学生认识数学与人类生活的密切联系.【学习重点】了解黄金分割的意义并能运用.【学习难点】找出黄金分割点和作黄金矩形.一、情景导入生成问题1.如图,在矩形ABCD中,E在AD上,EF⊥BE,交CD于F,连接BF,则图中与△ABE一定相似的三角形是(B)A.△EFB B.△DEFC.△CFB D.△EFB和△DEF2.如图,在边长为1的正方形网格中有点P,A,B,C,则图中所形成的三角形中,相似三角形是△APB∽△CPA.二、自学互研生成能力知识模块黄金分割的有关概念先阅读教材P95-96页的内容,然后解答下列问题:1.黄金分割的意义:如图,点C把线段AB分成两条线段AC和BC,如果ACAB=BCAC,那么称线段AB被点C黄金分割,其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比,近似数为0.618.2.黄金分割点的作法:如图所示,已知线段AB.(1)过B 作BD ⊥AB 使BD =12AB ;(2)连接AD ,在DA 上截取DE =DB ;(3)在AB 上截取AC =AE ,则点C 即为线段AB 的黄金分割点.1.动手量一量,五角星图案中,线段AC 、BC 的长度,然后计算AC AB 与BCAC,它们的值相等吗?教学说明:学生亲自动手操作,得到黄金比并加深对黄金分割的理解.归纳结论:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果AC AB =BCAC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.2.计算黄金比:见教材P 96页例4. 3.探究教材P 96页“想一想”.内容:古希腊时的巴台农神庙,将图中的虚线表示的矩形画成如图中的矩形ABCD ,以矩形ABCD 的宽为边在其内部作正方形AEFD ,那么,我们可以惊奇的发现BC BE =ABBC .提出问题:点E 是AB 的黄金分割点吗?矩形ABCD 宽与长的比是黄金比吗?观看多媒体演示的内容,观察与思考、交流、讨论、解决问题.问题解决:由BC BE =AB BC ,可以得到BC AB =BE BC 即AE AB =BEAE .所以点E 是AB 的黄金分割点. 对应练习:1.已知点C 是线段AB 的黄金分割点,且AC >BC ,则下列等式成立的是( C ) A .AB 2=AC·CB B .CB 2=AC·AB C .AC 2=CB·AB D .AC 2=2AB·BC2.如图,点C 把线段AB 分成两条线段AC 和BC ,如果AC AB =BCAC ,那么称线段AB 被点C 黄金分割,AC 与AB 的比叫做黄金比,其比值是( A )A.5-12B.3-52C.5+12D.3+523.已知C是线段AB的一个黄金分割点,则AC∶AB为(D)A.5-12B.3-52C.5+12D.5-12或3-52三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块黄金分割的有关概念四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:_________________________________________2.存在困惑:_____________________________________。
北师大版九年级数学上册4.4:探索三角形相似的条件优秀教学案例
3.利用小组合作学习,培养学生的团队合作精神,提高他们的沟通和协作能力。
(三)情感态度与价值观
1.通过探索三角形相似的条件,使学生感受到数学的趣味性和魅力,激发他们对数学学习的兴趣和热情。
2.培养学生勇于尝试、坚持不懈的精神,让他们在克服困难中获得成就感,增强自信心。
(一)知识与技能
1.让学生掌握三角形相似的定义和性质,理解相似三角形的判定方法,并能够运用这些知识解决实际问题。
2.培养学生运用图形计算器进行几何作图和计算的能力,提高他们的操作技能。
3.通过对三角形相似的学习,使学生能够掌握一种新的解决几何问题的方法,提高他们的数学解题能力。
(二)过程与方法
1.引导学生通过观察、操作、思考、讨论等方式,积极主动地参与到学习过程中,培养他们的数学思维能力和问题解决能力。
2.设计具有挑战性和开放性的合作任务,让学生在讨论和探究中共同解决问题,提高他们的沟通能力。
3.关注每个学生在小组合作中的表现,及时给予反馈和指导,提高他们的自信心。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习方法和经验,提高他们的自我认知能力。
2.设计具有针对性和全面性的评价指标,对学生进行多元化、Байду номын сангаас过程的评价,全面了解他们的学习情况。
北师大版九年级数学上册4.4:探索三角形相似的条件优秀教学案例
一、案例背景
本节内容为北师大版九年级数学上册4.4节“探索三角形相似的条件”,是学生在学习了三角形的基本概念、性质以及平行线等知识的基础上,进一步探究三角形相似的判定方法。通过本节课的学习,学生能够理解相似三角形的性质,掌握判定两个三角形相似的方法,并能够运用相似三角形的知识解决实际问题。
北师大版数学九年级上册4.4.3探索三角形相似的条件(三)教学设计
4.思维训练:鼓励学生多角度思考问题,培养其逻辑思维和几何直观。
(三)情感态度与价值观
1.培养学生对几何学习的兴趣,激发其探究精神和求知欲望。
2.培养学生团队合作意识,使其在小组活动中学会互相尊重、互相帮助。
4.知识拓展:教师引导学生思考,除了AAA相似定理外,还有哪些相似三角形的判定方法?它们之间是否存在联系?
(三)学生小组讨论
1.教学活动:学生分成小组,针对以下问题进行讨论:
a.总结已学的相似三角形判定方法。
b.探讨AAA相似定理在实际问题中的应用。
c.分析相似三角形性质在解决问题时的作用。
2.教师指导:教师巡回指导,解答学生的疑问,引导学生深入探讨相似三角形的性质和应用。
a.学生利用几何画板等教学软件,观察动态变化的相似三角形,发现并总结AAA相似定理。
b.教师巡回指导,给予学生及时反馈,纠正错误理解,引导其深入思考。
3.例题讲解,巩固知识:结合教材中的例题,讲解运用AAA相似定理分析和解决问题的方法,强调证明过程的严谨性。
4.拓展延伸,提高能力:设计不同层次的练习题,让学生在解决问题中巩固所学知识,提高几何直观和推理能力。
北师大版数学九年级上册4.4.3探索三角形相似的条件(三)教学设计
一、教学目标
(一)知识与技能
1.理解并掌握相似三角形的判定条件——AAA(角角角)相似定理,即若两个三角形的三组对应角相等,则这两个三角形相似。
2.能够运用AAA相似定理,识别并证明两个三角形之间的相似关系。
3.能够运用相似三角形的性质,解决实际问题,如求三角形未知边长或角度。
4.情感教育:教师鼓励学生树立信心,勇于面对几何学习中的困难,不断提高自己的几何素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学(上)第四章4.4.1探索三角形相似的条件导学案
一、 学习目标
1.理解相似三角形的定义,掌握定义中的两个条件.
2.掌握相似三角形判定定理1.
3.掌握相似三角形的判定定理1的应用. 二、温故知新
1、全等三角形的判定条
件: 、 、 、 、 。
2、相似多边形:各角 、各边 的两个多边形叫做相似多边形。
三、自主探究:阅读课本p 89—90 探究(一)相似三角形
根据相似多边形定义可得: 分别相等,三边 的两个三角形叫做相似三角形。
如图所示:△ABC 与'''C B A △相似,记做△ABC ∽'''C B A △,其中k C A AC
C B BC B A AB ==='
''''',k 为相似比。
注意:(1)对应性:两个三角形相似时通常把表示对应顶点的字母写在对应的位置上,这样写比较容易找到相似三角形的对应角和对应边。
(2)顺序性:相似三角形的相似比是有顺序的,如:△ABC ∽'''C B A △,它们的
相似比为k ,则'
'''''C A AC
C B BC B A AB k ===;如果写成'''C B A △∽△ABC ,它们的相似比为'k ,则AC
C A BC C B AB B A k '
''''''===,因此k k 1'=
(3)传递性:若△ABC ∽'''C B A △,'''C B A △∽''''''C B A △,则△ABC ∽''''''C B A △。
探究(二)如何判断两个三角形相似?
(1)如果两个三角形只有一个角相等,它们一定相似吗? (2)如果有两个角分别相等呢?
动手实验:,请同学们在纸上作∠A =60°,∠B =45°的△ABC ,剪下与同桌所做的三角形比较,研究这两个三角形的关系.你有哪些发现? 请同学们证明:两角对应相等的两个三角形相似。
议一议:
(1)有一个锐角相等的两个直角三角形是否相似?为什么? (2)顶角相等的两个等腰三角形是否相似?为什么?
例题:已知△ABC 中,AB =AC ,∠A =36°,BD 是角平分线, 求证:△ABC ∽△
BDC.
四、随堂练习
1、如图,D,E 分别是△ABC 的边AB,AC 上的点,DE ∥BC,AB=7,AD=5,DE=10,求BC 的长。
2.如图,E 为平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F.若AB =5,AD =6,CF =2,求线段CE 的长.
五:本课小结: 本节课知识点:
你还有什么收获或困惑? 六:当堂检测:
1.下面能够相似的一组三角形为( )
A .两个等腰三角形
B .两个直角三角形
C .两个等边三角形
D .以上都不对 2.如图,AB ∥CD ∥EF ,则图中相似三角形有( )
A .4对
B .3对
C .2对
D .1对
E F
O C D A B
A
123
D C B F E
第2题图 第3题图 第4题图 3.如图,∠AED=∠B ,一定可得( ) A.AD :AC=AE :AB B.DE :BC=AD :DB C.DE :BC=AE :AC D.AD :AB=AE :AC 4.如图,已知∠1=∠2=∠3,则下列表达式正确的是( ) A.AB DE AD BC = B.AC AD AE AB = C.AB AD AC AE = D.BC AE
DE AC
= 5.如图,锐角三角形ABC 的边AB ,AC 上的高线EC ,BF 相交于点D ,请写出图中的两对相似三角形 (用相似符号连接).
D E
F
C
B
A
课堂作业:P90: 习题4.5。
1、2、3、4、5
答案
四、随堂练习
1、解: ∵DE ∥BC ∴△ADE ∽△ABC ∴AD:A B=DE:BC
∵AB=7,AD=5,DE=10, ∴5:7=10:BC ∴BC=14
2.证明:∵四边形ABCD 是平行四边形, ∴∠B=∠D ,AD ∥BC , ∴∠DAF=∠E , ∴△ADF ∽△EAB , ∴AB DF BE AD = ∵AB =5,AD =6,CF =2 ∴CD=AB=5,BC=AD=6,DF=3 ∴5
366=+EC ∴EC=4 六:当堂检测: 1. C .
2.B .
3.A.
4.C.
5.△ABF ∽△ACE ,△BDE ∽△CDF ,△ABF ∽△DBE...。