高考数学考点11导数与函数的单调性试题解读与变式
高考数学复习、高中数学 导数与函数的单调性附答案解析
第2节 导数与函数的单调性课标要求 1.结合实例,借助几何直观了解函数的单调性与导数的关系,能利用导数研究函数的单调性;2.对于多项式函数,能求不超过三次的多项式函数的单调区间。
【知识衍化体验】知识梳理1.函数的导数与单调性的关系函数y =f (x )在某个区间内可导:(1)若f ′(x )>0,则f (x )在这个区间内 ; (2)若f ′(x )<0,则f (x )在这个区间内 ; (3)若f ′(x )=0,则f (x )在这个区间内是 . 【微点提醒】1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.基础自测 1.函数f(x)=ln x -x 的单调递增区间是( )A .(-∞,1)B .(0,1)C .(1,+∞)D .(0,+∞)2.函数f (x )=x 3-ax 为R 上增函数的一个充分不必要条件是( ) A .a ≤0 B .a <0 C .a ≥0 D .a >03.函数y =f(x)的导函数f′(x)的图象如下图,则函数y =f(x)的图象可能是( )4.若函数f(x)=ln x +ax 2-2在区间⎝ ⎛⎭⎪⎫12,2内单调递增,则实数a 的取值范围是( )A .(-∞,-2]B .(-2,+∞)C.⎝ ⎛⎭⎪⎫-2,-18 D.⎣⎢⎡⎭⎪⎫-18,+∞ 【考点聚焦突破】考点1利用导数求函数的单调区间【例1】已知函数f(x)=4e x (x +1)-x 2-4x ,讨论f (x )的单调性.规律方法当方程f′(x)=0可解时,确定函数的定义域,解方程f′(x)=0,求出实数根,把函数f(x)的间断点即f(x)的无定义点的横坐标和实根按从小到大的顺序排列起来,把定义域分成若干个小区间,确定f′(x)在各个区间内的符号,从而确定单调区间.【训练1】函数f(x)=axx2+1(a>0)的单调递增区间是( )A.(-∞,-1) B.(-1,1)C.(1,+∞)D.(-∞,-1)∪(1,+∞)2.函数f(x)=x+2cos x(x∈(0,π))的单调递减区间为________.考点2利用导数讨论函数的单调区间【例2】 (2015江苏节选)已知函数f(x)=x3+ax2+b(a,b∈R).试讨论f(x)的单调性.规律方法1.研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式因式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f x=x3,f′x=3x2≥0f′x=0在x=0时取到,f x在R上是增函数.【训练2】已知函数f(x)=e x(ax2-2x+2)(a>0),试讨论f(x)的单调性.考点3函数单调性的简单应用角度1比较大小或解不等式【例3-1】(1)已知函数f (x )=-xex +ln 2,则( )A .f ⎝ ⎛⎭⎪⎫1e =f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫1e <f ⎝ ⎛⎭⎪⎫12C .f ⎝ ⎛⎭⎪⎫1e >f ⎝ ⎛⎭⎪⎫12D .大小关系无法确定 (2)已知定义域为R 的函数f (x )满足f (4)=-3,且对任意的x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为________.角度2 根据函数的单调性求参数【例3-2】已知函数f (x )=x 3-ax -1.(Ⅰ)若f (x )在(-1,1)上为减函数,则实数a 的取值范围为 ; (Ⅱ)若f (x )的单调递减区间为(-1,1),则实数a 的值为 ; (Ⅲ)若f (x )在(-1,1)上不单调,则实数a 的取值范围为 .【训练3】(1)若函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞上是增函数,则a 的取值范围是________.(2)若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.(3)定义在R 上的奇函数f (x ),其导函数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),则满足13(2x -1)f (2x -1)<f (3)的实数x 的取值范围是________.规律方法1.利用导数比较大小或解不等式的常用技巧,利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.2. f(x)在区间D上单调递增(减),只要f′(x)≥0(≤0)在D上恒成立即可,如果能够分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.反思与感悟【思维升华】1.函数的导数与函数的单调性在一个区间上,f′(x)≥0(个别点取等号)⇔f(x)在此区间上为增函数.在一个区间上,f′(x)≤0(个别点取等号)⇔f(x)在此区间上为减函数.2.根据函数单调性求参数的一般思路:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解.【易错防范】1.解题时要注意区分求单调性和已知单调性的问题,处理好f′(x)=0时的情况;区分极值点和导数为0的点.2.研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.第2节 导数与函数的单调性【知识衍化体验】 知识梳理1.(1)单调递增;(2)单调递减;(3)常数函数.基础自测 1.B 2.B 3.D 4.D【考点聚焦突破】【例1】解:f ′(x )=4e x (x +2)-2(x +2)=2(x +2)(2e x-1).令f ′(x )=0,得x 1=-2,x 2=ln 12.当x 变化时, f (x ), f ′(x )的变化情况如下表:x (-∞,-2)-2 ⎝ ⎛⎭⎪⎫-2,ln 12 ln 12 ⎝ ⎛⎭⎪⎫ln 12,+∞ f ′(x ) +-+f (x )极大值极小值∴y =f (x )的单调递增区间为(-∞,-2),(ln 12,+∞),单调递减区间为⎝⎛⎭⎪⎫-2,ln 12.【训练1】B函数f (x )的定义域为R ,f ′(x )=a 1-x 2x 2+12=a 1-x 1+xx 2+12.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1).故选B.2.⎝ ⎛⎭⎪⎫π6,5π6解析 f ′(x )=1-2sin x ,令f ′(x )<0得sin x >12,故π6<x <5π6.【例2】解:由题意, f (x )的定义域为R , f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a 3当a =0时,有f ′(x )=3x 2≥0,所以函数f (x )在(-∞,+∞)上单调递增.当a >0时,令f ′(x )>0,得x ∈⎝ ⎛⎭⎪⎫-∞,- 2a 3∪(0,+∞);令f ′(x )<0,得x ∈⎝ ⎛⎭⎪⎫-2a 3,0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减.当a <0时,令f ′(x )>0,得x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞;令f ′(x )<0,得x ∈⎝ ⎛⎭⎪⎫0,-2a 3,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,-2a 3上单调递减.综上,当a=0时,f (x )在(-∞,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;当a <0时, f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎪⎫0,-2a 3上单调递减 【训练2】解 由题意得f ′(x )=e x[ax 2+(2a -2)x ](a >0),令f ′(x )=0,解得x 1=0,x 2=2-2a a.(1)当0<a <1时,f (x )的单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫2-2a a ,+∞,单调递减区间为⎝⎛⎭⎪⎫0,2-2a a ;(2)当a =1时,f (x )在(-∞,+∞)内单调递增;(3)当a >1时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,2-2a a 和(0,+∞),单调递减区间为⎝ ⎛⎭⎪⎫2-2a a ,0. 【例3-1】C 解析 f ′(x )=-e x--x exe x ·e x=x -1ex,当x <1时,f ′(x )<0,函数f (x )单调递减.∵1e <12<1,∴f ⎝ ⎛⎭⎪⎫1e >f ⎝ ⎛⎭⎪⎫12.故选C. (2) (4,+∞)令g (x )=f (x )-3x +15,则g ′(x )=f ′(x )-3<0,所以g (x )在R 上是减函数.又g (4)=f (4)-3×4+15=0,所以f (x )<3x -15的解集为(4,+∞).【例3-2】 解(Ⅰ)(法一)由题意,f ′(x )=3x 2-a ,由f (x )在(-1,1)上为减函数,得f ′(x )≤0在(-1,1)上恒成立,即a ≥3x 2恒成立.又因为当x ∈(-1,1)时,函数y =3x 2的值域是[0,3),所以实数a 的取值范围是[3,+∞).(法二)当a ≤0时, f ′(x )=3x 2-a ≥0,显然没有单调递减区间,不符合题意.当a >0时,令f ′(x )=3x 2-a =0,得x =±3a 3,易知当x ∈⎝ ⎛⎭⎪⎫-3a 3,3a 3时, f (x )单调递减.若f (x )在(-1,1)上为减函数,则(-1,1)应为⎝ ⎛⎭⎪⎫-3a 3,3a 3的子区间,即3a 3≥1,解得a ≥3,所以实数a 的取值范围是[3,+∞).(Ⅱ)由(Ⅰ)知f (x )的单调递减区间为( -3a 3, 3a 3),所以3a 3=1,解得a =3. (Ⅲ)由(Ⅰ)知,当a ≤0时,f (x )在R 上单调递增,不符合题意.当a >0时,由f ′(x )=0,得x =±3a 3,因为f (x )在(-1,1)上不单调,所以0<3a3<1,解得0<a <3,所以a 的取值范围是(0,3).【训练3】(1) [3,+∞)由条件知f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上恒成立.∵函数y =1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上为减函数,∴y max <1⎝ ⎛⎭⎪⎫122-2×12=3,∴a ≥3.(2)⎝ ⎛⎭⎪⎫-19,+∞ 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.(3)(-1,2)∵函数f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴由xf ′(x )<f (-x )可得xf ′(x )+f (x )<0,即[xf (x )]′<0,∵当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),∴当x ∈(-∞,0]时,恒有[xf (x )]′<0,设F (x )=xf (x ),则函数F (x )=xf (x )在(-∞,0]上为减函数,∵F (-x )=(-x )f (-x )=(-x )(-f (x ))=xf (x )=F (x ),∴函数F (x )为R 上的偶函数,∴函数F (x )=xf (x )为[0,+∞)上的增函数,∵13(2x -1)f (2x -1)<f (3),∴(2x -1)f (2x -1)<3f (3),∴F (2x -1)<F (3),∴|2x -1|<3,解得-1<x <2.。
【精编】高考数学导数及其应用与定积分:导数与函数的单调性
导数与函数的单调性【考点梳理】函数的导数与单调性的关系函数y =f (x )在某个区间内可导,则(1)若f ′(x )>0,则f (x )在这个区间内单调递增;(2)若f ′(x )<0,则f (x )在这个区间内单调递减;(3)若f ′(x )=0,则f (x )在这个区间内是常数函数.【考点突破】考点一、判断或证明函数的单调性【例1】已知函数已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性.[解析] f (x )的定义域为(0,+∞),f ′(x )=1x-a . 若a ≤0,则f ′(x )>0恒成立,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 【类题通法】用导数判断或证明函数f (x )在(a ,b )内的单调性的步骤(1)一求.求f ′(x );(2)二定.确认f ′(x )在(a ,b )内的符号;(3)三结论.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.【对点训练】已知函数f (x )=x 3+ax 2+b (a ,b ∈R),试讨论f (x )的单调性.[解析] f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a 3.当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x )在(-∞,+∞)上单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0, x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0, 所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减; 当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0, x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0, 所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎪⎫0,-2a 3上单调递减. 考点二、求函数的单调区间【例2】已知函数f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.[解析] 因为f (x )=x 22-a ln x ,所以x ∈(0,+∞), f ′(x )=x -a x =x 2-a x. (1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数.(2)当a >0时,f ′(x )=(x +a )(x -a )x,则有 ①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ).②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞).综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间.当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).【类题通法】求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间.【对点训练】已知函数f (x )=ax 2-a -ln x ,a ∈R ,求f (x )的单调区间.[解析] 由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0). 当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0有x =12a ,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,f ′(x )<0,所以f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12a . 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,所以f (x )的单调递增区间为⎝⎛⎭⎪⎫12a ,+∞. 综上所述,当a ≤0时,f (x )的单调递减区间为(0,+∞),无单调递增区间.当a >0时,函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12a ,单调递增区间为⎝ ⎛⎭⎪⎫12a ,+∞. 考点三、已知函数的单调性求参数【例3】已知函数f (x )=x 3-ax -1.若f (x )在R 上为增函数,求实数a 的取值范围.[解析] 因为f (x )在(-∞,+∞)上是增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立,即a ≤3x 2对x ∈R 恒成立.因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数,所以a ≤0,即实数a 的取值范围为(-∞,0].【变式1】函数f (x )不变,若f (x )在区间(1,+∞)上为增函数,求a 的取值范围.[解析] 因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立,所以a ≤3x 2在(1,+∞)上恒成立,所以a ≤3,即a 的取值范围为(-∞,3].【变式2】函数f (x )不变,若f (x )在区间(-1,1)上为减函数,试求a 的取值范围.[解析] 由f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,得a ≥3x 2在(-1,1)上恒成立. 因为-1<x <1,所以3x 2<3,所以a ≥3.即当a 的取值范围为[3,+∞)时,f (x )在(-1,1)上为减函数.【变式3】函数f (x )不变,若f (x )在区间(-1,1)上不单调,求a 的取值范围.[解析] ∵f (x )=x 3-ax -1,∴f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a 3(a ≥0). ∵f (x )在区间(-1,1)上不单调,∴0<3a 3<1,得0<a <3, 即a 的取值范围为(0,3).【类题通法】根据函数单调性求参数的一般方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.【对点训练】1.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( ) A .[-1,1] B .⎣⎢⎡⎦⎥⎤-1,13 C .⎣⎢⎡⎦⎥⎤-13,13 D .⎣⎢⎡⎦⎥⎤-1,-13 [答案] C[解析] 取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A ,B ,D.故选C.2.已知a ∈R ,若函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数)在(-1,1)上单调递增,求a 的取值范围.[解析] 因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0对x ∈(-1,1)都成立.因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.因为e x>0,所以-x 2+(a -2)x +a ≥0, 则a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立. 令g (x )=(x +1)-1x +1,则g ′(x )=1+1(x +1)2>0, 所以g (x )=(x +1)-1x +1在(-1,1)上单调递增, 所以g (x )<g (1)=(1+1)-11+1=32, 所以a ≥32,又当a =32时,当且仅当x =0时,f ′(x )=0, 所以a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。
高二数学利用导数研究函数的单调性试题答案及解析
高二数学利用导数研究函数的单调性试题答案及解析1.已知函数f(x)=x2+2alnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数在上是减函数,求实数a的取值范围.【答案】(Ⅰ)当a≥0时,递增区间为(0,+∞);当a<0时,递减区间是(0,);递增区间是(,+∞);(Ⅱ).【解析】解题思路:(Ⅰ)求定义域与导函数,因含有参数,分类讨论求出函数的单调区间;(Ⅱ)利用“函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立”,得到不等式恒成立;再分离参数,求函数的最值即可.规律总结:若函数在某区间上单调递增,则在该区间恒成立;“若函数在某区间上单调递减,则在该区间恒成立.试题解析:(Ⅰ)f′(x)=2x+=,函数f(x)的定义域为(0,+∞).①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);②当a<0时,f′(x)=.当x变化时,f′(x),f(x)的变化情况如下:x(0,)(,+∞)-0+由上表可知,函数f(x)的单调递减区间是(0,);单调递增区间是(,+∞).(Ⅱ)由g(x)=+x2+2aln x,得g′(x)=-+2x+,由已知函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立,即-+2x+≤0在[1,2]上恒成立.即a≤-x2在[1,2]上恒成立.令h(x)=-x2,在[1,2]上h′(x)=--2x=-(+2x)<0,=h(2)=-,所以a≤-.所以h(x)在[1,2]上为减函数,h(x)min故实数a的取值范围为{a|a≤-}.【考点】1.利用导数求函数的单调区间;2.根据函数的单调性求参数.2.函数的部分图象大致为( ).【答案】D【解析】,为奇函数,图像关于原点对称,排除选项B;,所以排除选项A;当时,,所以排除选项C;故选选项D.【考点】函数的图像.3.已知函数f(x)=ax2+bln x在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.【答案】(1);(2)减区间(0,1),增区间(1,+∞)【解析】(1)由函数f(x)=ax2+bln x在x=1处有极值可知,解得;(2)由(1)可知,其定义域是(0,+∞),由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).试题解析:(1)又函数f(x)=ax2+bln x在x=1处有极值,所以解得.(2)由(1)可知,其定义域是(0,+∞)由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).【考点】1.导数与极值;2.导数与单调性4.函数f(x)=ax3-x在R上为减函数,则()A.a≤0B.a<1C.a<0D.a≤1【答案】【解析】当时,在上为减函数,成立;当时, 的导函数为,根据题意可知, 在上恒成立,所以且,可得.综上可知.【考点】导数法判断函数的单调性;二次函数恒成立.5.已知在R上开导,且,若,则不等式的解集为()A.B.C.D.【答案】B【解析】令,则,由,则,在上为增函数,,所以的解集为,故选B.【考点】函数的单调性与导数的关系.6.设,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是 ( )A.B.C.D.【答案】D.【解析】先根据可确定,进而可得到在时单调递增,结合函数,分别是定义在上的奇函数和偶函数可确定在时也是增函数.于是构造函数知在上为奇函数且为单调递增的,又因为,所以,所以的解集为,故选D.【考点】利用导数研究函数的单调性.7.在上可导的函数的图形如图所示,则关于的不等式的解集为().A.B.C.D.【答案】A【解析】由图象可知f′(x)=0的解为x=-1和x=1函数f(x)在(-∞,-1)上增,在(-1,1)上减,在(1,+∞)上增∴f′(x)在(-∞,-1)上大于0,在(-1,1)小于0,在(1,+∞)大于0当x<0时,f′(x)>0解得x∈(-∞,-1)当x>0时,f′(x)<0解得x∈(0,1)综上所述,x∈(-∞,-1)∪(0,1),故选A.【考点】函数的图象;导数的运算;其他不等式的解法.8.函数,若对于区间[-3,2]上的任意x1,x2,都有 | f(x1)-f (x2)|≤ t,则实数t的最小值是()A.20B.18C.3D.0【答案】A【解析】所以在区间,单调递增,在区间单调递减.,,,,可知的最大值为20 .故的最小值为20.【考点】利用导数求函数的单调性与最值.9.设函数.(1)若在时有极值,求实数的值和的极大值;(2)若在定义域上是增函数,求实数的取值范围.【答案】(1)极大值为(2)【解析】(1)先求导,根据在时有极值,则,可求得的值。
高考数学(文)一轮复习文档:第二章 基本初等函数、导数及其应用 第11讲导数与函数的单调性 Word版含答案
第11讲导数与函数的单调性,)函数的单调性在(a,b)内函数f(x)可导,f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.辨明导数与函数单调性的关系(1)f′(x)>0(或<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)f′(x)≥0(或≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件.注意:由函数f(x)在区间内单调递增(或递减),可得f′(x)≥0(或≤0)在该区间恒成立,而不是f′(x)>0(或<0)恒成立,“=”不能少.1.教材习题改编函数f(x)的导函数f′(x)有下列信息:①f′(x)>0时,-1<x<2;②f′(x)<0时,x<-1或x>2;③f′(x)=0时,x=-1或x=2.则函数f(x)的大致图象是( )C 根据信息知,函数f(x)在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.2.教材习题改编函数f(x)=x3-3x+1的单调增区间是( )A.(-1,1) B.(-∞,1)C.(-1,+∞) D.(-∞,-1),(1,+∞)D f′(x)=3x2-3.由f′(x)>0得,x<-1或x>1.故单调增区间为(-∞,-1),(1,+∞),故选D.3.教材习题改编函数f(x)=cos x-x在(0,π)上的单调性是( )A.先增后减B.先减后增C.增函数D.减函数D 因为f ′(x )=-sin x -1<0. 所以f (x )在(0,π)上是减函数,故选D.4.教材习题改编函数f (x )=sin x +kx 在(0,π)上是增函数,则实数k 的取值范围为________.因为f ′(x )=cos x +k ≥0, 所以k ≥-cos x ,x ∈(0,π)恒成立. 当x ∈(0,π)时,-1<-cos x <1, 所以k ≥1.k ≥15.教材习题改编函数f (x )=x 2-ax -3在(1,+∞)上是增函数,则实数a 的取值范围是________.f ′(x )=2x -a ,因为f (x )在(1,+∞)上是增函数, 所以2x -a ≥0在(1,+∞)上恒成立. 即a ≤2x ,所以a ≤2.a ≤2利用导数判断或证明函数的单调性已知函数f (x )=ln x -ax 2+(2-a )x .讨论f (x )的单调性. 【解】 f (x )的定义域为(0,+∞).f ′(x )=1x-2ax +(2-a )=-(2x +1)(ax -1)x.①若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. ②若a >0,则由f ′(x )=0得x =1a,且当x ∈(0,1a)时,f ′(x )>0,当x >1a时,f ′(x )<0.所以f (x )在(0,1a )上单调递增,在(1a,+∞)上单调递减.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0,即a =22时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:(a +a 2-82,+∞)上单调递增.求函数的单调区间求函数f (x )=ln x -12x 2+x -12的单调区间.【解】 因为f (x )=ln x -12x 2+x -12,且定义域为(0,+∞),所以f ′(x )=1x -x +1=-(x -1-52)(x -1+52)x.令f ′(x )=0,所以x 1=1+52,x 2=1-52(舍去).当x ∈(0,1+52)时,f ′(x )>0;当x ∈(1+52,+∞)时,f ′(x )<0,所以函数f (x )的单调递增区间为(0,1+52),单调递减区间为(1+52,+∞).已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调区间. (1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x. 令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )的单调递减区间为(-∞,-4),(-1,0),单调递增区间为(-4,-1),(0,+∞).函数单调性的应用(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.高考对函数单调性的考查主要有以下两个命题角度: (1)已知函数单调性求参数的取值范围; (2)比较大小或解不等式.(1)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2]B .(-∞,-1]C . 因为函数f (x )=kx -ln x ,所以f ′(x )=k -1x,函数在区间(1,+∞)上单调递减,则f ′(x )≤0在(1,+∞)上恒成立,即k -1x≤0在区间(1,+∞)上恒成立,故k ≤1x在区间(1,+∞)上恒成立,因为在区间(1,+∞)上0<1x<1,故k ≤0.(1)利用函数的单调性求参数的取值范围的解题思路①由函数在区间上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间上恒成立列出不等式.②利用分离参数法或函数的性质求解恒成立问题.③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值.(2)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.(1)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.(2)注意函数的单调区间与函数在某区间上具有单调性是不同的.角度一 已知函数单调性求参数的取值范围1.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. (2,3]角度二 比较大小或解不等式2.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .D .(0,8)B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f ≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9., )——分类讨论思想研究函数的单调性已知函数f (x )=(ax 2-x +a )e x,试讨论函数f (x )的单调性. 【解】 f ′(x )=(x +1)(ax +a -1)e x.当a =0时,f ′(x )在(-∞,-1)上时,f ′(x )>0,f (x )在(-∞,-1)上单调递增;f ′(x )在(-1,+∞)上时,f ′(x )<0,f (x )在(-1,+∞)上单调递减.当a >0时,因为-1+1a >-1,所以f (x )在(-∞,-1)和(-1+1a,+∞)上单调递增,在(-1,-1+1a)上单调递减;当a <0时,因为-1+1a <-1,所以f (x )在(-∞,-1+1a)和(-1,+∞)上单调递减,在(-1+1a,-1)上单调递增.(1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.(2)本题求解中分a >0,a =0,a <0三种情况讨论.已知函数f (x )=a ln x +12x 2-(1+a )x .求函数f (x )的单调区间.f ′(x )=a x +x -(1+a )=x 2-(1+a )x +a x =(x -1)(x -a )x.当a ≤0时,若0<x <1,则f ′(x )<0,若x >1,则f ′(x )>0,故此时函数f (x )的单调递减区间是(0,1),单调递增区间是(1,+∞);当0<a <1时,f ′(x ),f (x )的变化情况如下表:当a =1时,f ′(x )=(x -1)2x≥0,所以函数f (x )的单调递增区间是(0,+∞);当a >1时,同0<a <1时的解法,可得函数f (x )的单调递增区间是(0,1),(a ,+∞),单调递减区间是(1,a )., )1.函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)D 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D.2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )D 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.3.若函数f (x )=x 3-tx 2+3x 在区间上单调递减,则实数t 的取值范围是( ) A .(-∞,518]B .(-∞,3]C .[518,+∞)D . f ′(x )=3x 2-2tx +3,由于f (x )在区间上单调递减,则有f ′(x )≤0在上恒成立,即3x 2-2tx +3≤0在上恒成立,则t ≥32(x +1x )在上恒成立,因为y =32(x +1x )在上单调递增,所以t ≥32(4+14)=518,故选C.4.已知函数f (x )=x sin x ,x ∈R ,则f ⎝ ⎛⎭⎪⎫π5,f (1),f ⎝ ⎛⎭⎪⎫-π3的大小关系为( )A .f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5B .f (1)>f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5C .f ⎝ ⎛⎭⎪⎫π5>f (1)>f ⎝ ⎛⎭⎪⎫-π3D .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5>f (1) A 因为f (x )=x ·sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ).所以函数f (x )是偶函数,所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3. 又x ∈⎝⎛⎭⎪⎫0,π2时,得f ′(x )=sin x +x cos x >0,所以此时函数是增函数.所以f ⎝ ⎛⎭⎪⎫π5<f (1)<f ⎝ ⎛⎭⎪⎫π3. 所以f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5,故选A. 5.(2017·郑州第一次质量预测) 已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图象如图所示,则不等式f (x )<1的解集是( )A .(-3,0)B .(-3,5)C .(0,5)D .(-∞,-3)∪(5,+∞)B 依题意得,当x >0时,f ′(x )>0,f (x )是增函数;当x <0时,f ′(x )<0,f (x )是减函数.又f (-3)=f (5)=1,因此不等式f (x )<1的解集是(-3,5).6.已知f (x )=ax 3,g (x )=9x 2+3x -1,当x ∈时,f (x )≥g (x )恒成立,则a 的取值范围为( )A .a ≥11B .a ≤11C .a ≥418D .a ≤418A f (x )≥g (x )恒成立,即ax 3≥9x 2+3x -1.因为x ∈,所以a ≥9x +3x 2-1x 3.令1x=t ,则当t ∈⎣⎢⎡⎦⎥⎤12,1时,a ≥9t +3t 2-t 3.令h (t )=9t +3t 2-t 3,h ′(t )=9+6t -3t 2=-3(t -1)2+12.所以h ′(t )在⎣⎢⎡⎦⎥⎤12,1上是增函数.所以h ′(t )min =h ′⎝ ⎛⎭⎪⎫12=-34+12>0. 所以h (t )在⎣⎢⎡⎦⎥⎤12,1上是增函数.所以a ≥h (1)=11,故选A.7.函数y =12x 2-ln x 的单调递减区间为________.对于函数y =12x 2-ln x ,易得其定义域为{x |x >0},y ′=x -1x =x 2-1x ,令x 2-1x<0,又x >0,所以x 2-1<0,解得0<x <1,即函数y =12x 2-ln x 的单调递减区间为(0,1).(0,1)8.若函数f (x )=13x 3-32x 2+ax +4恰在上单调递减,则实数a 的值为________.因为f (x )=13x 3-32x 2+ax +4,所以f ′(x )=x 2-3x +a ,又函数f (x )恰在上单调递减, 所以-1,4是f ′(x )=0的两根, 所以a =(-1)×4=-4. -49.(2017·石家庄二中开学考试)已知函数f (x )=ln x +2x,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.由题可得函数定义域为(0,+∞),f ′(x )=1x+2xln 2,所以在定义域内f ′(x )>0,函数单调递增,所以由f (x 2+2)<f (3x )得x 2+2<3x ,所以1<x <2.(1,2)10.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).(-3,0)∪(0,+∞)11.设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)求函数f (x )的单调区间.(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0. (2)由(1)得,f ′(x )=x 2-ax =x (x -a ).①当a =0时,f ′(x )=x 2≥0恒成立,即函数f (x )在(-∞,+∞)内为单调增函数. ②当a >0时,由f ′(x )>0得,x >a 或x <0;由f ′(x )<0得0<x <a .即函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). ③当a <0时,由f ′(x )>0得,x >0或x <a ;由f ′(x )<0得,a <x <0.即函数f (x )的单调递增区间为(-∞,a ),(0,+∞),单调递减区间为(a ,0).12.(2017·河北省衡水中学模拟)已知函数f (x )=⎝ ⎛⎭⎪⎫x +a x e x,a ∈R . (1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a =-1时,求证:f (x )在(0,+∞)上为增函数.函数f (x )的定义域为{x |x ≠0},f ′(x )=x 3+x 2+ax -a x 2e x . (1)当a =0时,f (x )=x ·e x ,f ′(x )=(x +1)e x,所以f (1)=e ,f ′(1)=2e.所以曲线y =f (x )在点(1,f (1))处的切线方程是y -e =2e(x -1),即2e x -y -e =0. (2)证明:当a =-1时,f ′(x )=x 3+x 2-x +1x 2e x (x >0). 设g (x )=x 3+x 2-x +1,则g ′(x )=3x 2+2x -1=(3x -1)(x +1).令g ′(x )=(3x -1)(x +1)>0,得x >13. 令g ′(x )=(3x -1)(x +1)<0,得0<x <13. 所以函数g (x )在⎝ ⎛⎭⎪⎫0,13上是减函数,在⎝ ⎛⎭⎪⎫13,+∞上是增函数, 所以函数g (x )在x =13处取得最小值, 且g ⎝ ⎛⎭⎪⎫13=2227>0. 所以g (x )在(0,+∞)上恒大于零.于是,当x ∈(0,+∞)时,f ′(x )=x 3+x 2-x +1x 2e x >0恒成立.所以当a=-1时,函数f(x)在(0,+∞)上为增函数.13.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)函数f(x)是否为R上的单调函数?若是,求出a的取值范围;若不是,请说明理由. (1)当a=2时,f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x<2,所以函数f(x)的单调递增区间是(-2,2).(2)若函数f(x)在R上单调递减,则f′(x)≤0对任意x∈R都成立.即e x≤0对任意x∈R都成立.因为e x>0,所以x2-(a-2)x-a≥0对任意x∈R都成立.所以Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故函数f(x)不可能在R上单调递减.若函数f(x)在R上单调递增,则f′(x)≥0对任意x∈R都成立,即e x≥0对任意x∈R都成立.因为e x>0,所以x2-(a-2)x-a≤0对任意x∈R都成立.而Δ=(a-2)2+4a=a2+4>0,故函数f(x)不可能在R上单调递增.综上可知函数f(x)不是R上的单调函数.。
高三数学利用导数研究函数的单调性试题
高三数学利用导数研究函数的单调性试题1.函数在内单调递减,则实数a的范围为.【答案】.【解析】∵函数f(x)=x3-ax2+4在(0,2)内单调递减,∴f′(x)=3x2-2ax≤0在(0,2)内恒成立,即在(0,2)内恒成立,∵∴,答案为.【考点】利用导数研究函数的单调性.2.设函数,其中(1)讨论在其定义域上的单调性;(2)当时,求取得最大值和最小值时的的值.【答案】(1)在和内单调递减,在内单调递增;(2)所以当时,在处取得最小值;当时,在和处同时取得最小只;当时,在处取得最小值.【解析】(1)对原函数进行求导,,令,解得,当或时;从而得出,当时,.故在和内单调递减,在内单调递增.(2)依据第(1)题,对进行讨论,①当时,,由(1)知,在上单调递增,所以在和处分别取得最小值和最大值.②当时,.由(1)知,在上单调递增,在上单调递减,因此在处取得最大值.又,所以当时,在处取得最小值;当时,在和处同时取得最小只;当时,在处取得最小值.(1)的定义域为,.令,得,所以.当或时;当时,.故在和内单调递减,在内单调递增.因为,所以.①当时,,由(1)知,在上单调递增,所以在和处分别取得最小值和最大值.②当时,.由(1)知,在上单调递增,在上单调递减,因此在处取得最大值.又,所以当时,在处取得最小值;当时,在和处同时取得最小只;当时,在处取得最小值.【考点】1.含参函数的单调性;2.含参函数的最值求解.3.设函数f(x)=ln x-ax,g(x)=e x-ax,其中a为实数.若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围.【答案】(e,+∞)【解析】解:令f′(x)=-a=<0,考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a-1,即f(x)在(a-1,+∞)上是单调减函数.同理,f(x)在(0,a-1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)⊆(a-1,+∞),从而a-1≤1,即a≥1.令g′(x)=e x-a=0,得x=ln a.当x<ln a时,g′(x)<0;当x>ln a时,g′(x)>0.又g(x)在(1,+∞)上有最小值,所以ln a>1,即a>e.综上,a的取值范围为(e,+∞).4.已知函数.(1)当时,求曲线在点处的切线方程;(2)求函数的单调区间;(3)若对任意的都有恒成立,求实数的取值范围.【解析】(1)当时,,求出导函数,所以曲线在处的切线斜率,又,进而得出切线方程;(2)易得函数的定义域为,对函数进行求导得,令并在定义域范围内解之,即,再对其分和进行分类讨论,求得函数的单调增区间,函数的单调增区间在定义域内的补集即为函数的单调减区间;由题意得:对任意,使得恒成立,只需在区间内,,对进行分类讨论,从而求出的取值范围.(1)时,曲线在点处的切线方程(2)①当时, 恒成立,函数的递增区间为②当时,令,解得或(舍去)x( 0,)-+所以函数的递增区间为,递减区间为(3)由题意知对任意的,,则只需对任意的,①当时,在上是增函数,所以只需,而,所以满足题意;②当时,,在上是增函数, 所以只需而,所以满足题意;③当时,,在上是减函数,上是增函数,所以只需即可,而,从而不满足题意;综合①②③实数的取值范围为.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;导数在最大值、最小值中的应用.5.函数f(x)=x3+ax2+3x﹣9,已知f(x)在x=﹣3时取得极值,则a=()A.2B.3C.4D.5【答案】D【解析】∵f′(x)=3x2+2ax+3,又f(x)在x=﹣3时取得极值∴f′(﹣3)=30﹣6a=0则a=5.故选D6.已知函数在区间[-1,2]上是减函数,那么b+c( )A.有最大值B.有最大值-C.有最小值D.有最小值-【答案】B【解析】由f(x)在[-1,2]上是减函数,知,x∈[-1,2],则15+2b+2c0b+c.7.已知函数.(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.【答案】(1)m=1(讨论见解析);(2)见解析.【解析】(1).由x=0是f(x)的极值点得f '(0)=0,所以m=1.于是f(x)=e x-ln(x+1),定义域为(-1,+∞),.函数在(-1,+∞)上单调递增,且f '(0)=0,因此当x∈(-1,0)时, f '(x)<0;当x∈(0,+∞)时, f '(x)>0.所以f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时, f(x)>0.当m=2时,函数在(-2,+∞)上单调递增.又f '(-1)<0, f '(0)>0,故f '(x)=0在(-2,+∞)上有唯一实根,且.当时, f '(x)<0;当时, f '(x)>0,从而当时,f(x)取得最小值.)=0得=,,由f '(x故.综上,当m≤2时, f(x)>0.8.已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是()A.①③B.①④C.②③D.②④【答案】C【解析】∵f(x)=x3-6x2+9x-abc.∴f′(x)=3x 2-12x+9=3(x-1)(x-3),令f′(x)=0,得x=1或x=3.依题意有,函数f(x)=x3-6x2+9x-abc的图象与x轴有三个不同的交点,故f(1)f(3)<0,即(1-6+9-abc)(33-6×32+9×3-abc)<0,∴0<abc<4,∴f(0)=-abc<0,f(1)=4-abc>0,f(3)=-abc<0,故②③是对的,应选C.9.函数f(x)=x2-ln x的单调递减区间为 ().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)【答案】B【解析】由题意知,函数的定义域为(0,+∞),又由f′(x)=x-≤0,解得0<x≤1,所以函数的单调递减区间为(0,1].10.已知f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围.【答案】(1)当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a,+∞).(2)(-∞,0].【解析】(1)∵f(x)=e x-ax-1(x∈R),∴f′(x)=e x-a.令f′(x)≥0,得e x≥a.当a≤0时,f′(x)>0在R上恒成立;当a>0时,有x≥ln a.综上,当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a,+∞).(2)由(1)知f′(x)=e x-a.∵f(x)在R上单调递增,∴f′(x)=e x-a≥0恒成立,即a≤e x在R上恒成立.∵x∈R时,e x>0,∴a≤0,即a的取值范围是(-∞,0].11.若函数存在极值,则实数的取值范围是( )A.B.C.D.【答案】A【解析】∵函数存在极值点,∴有解,∴∴∵时,,∴,故选A.【考点】应用导数研究函数的单调性、极值.12.已知函数的图象如图所示(其中是函数的导函数)下面四个图象中,的图象大致是 ( )【答案】C【解析】由函数的图象可知,当时,在上是增函数,同理可得在上是减函数,在上是减函数,故选C.【考点】导数与函数的单调性.13.已知R,函数e.(1)若函数没有零点,求实数的取值范围;(2)若函数存在极大值,并记为,求的表达式;(3)当时,求证:.【答案】(1);(2);(3)详见试题解析.【解析】(1)令得,∴.再利用求实数的取值范围;(2)先解,得可能的极值点或,再分讨论得函数极大值的表达式;(3)当时,,要证即证,亦即证,构造函数,利用导数证明不等式.试题解析:(1)令得,∴. 1分∵函数没有零点,∴,∴. 3分(2),令,得或. 4分当时,则,此时随变化,的变化情况如下表:当时,取得极大值; 6分当时,在上为增函数,∴无极大值. 7分当时,则,此时随变化,的变化情况如下表:当时,取得极大值,∴ 9分(3)证明:当时, 10分要证即证,即证 11分令,则. 12分∴当时,为增函数;当时为减函数,时取最小值,,∴.∴,∴. 14分【考点】1.函数的零点;2.函数的导数与极值;3.不等式的证明.14.若=上是减函数,则的取值范围是___________.【答案】【解析】转化为在上恒成立,即在上恒成立,令,所以,则的取值范围是.【考点】1.导数判断函数的单调性;2.不等式恒成立.15.已知为函数图象上一点,O为坐标原点,记直线的斜率.(1)若函数在区间上存在极值,求实数m的取值范围;(2)当时,不等式恒成立,求实数的取值范围;(3)求证:.【答案】(1);(2);(3)详见解析.【解析】(1)在函数定义域范围内求函数的极值,则极值点在内;(2)首先根据条件分离出变量,由转化成求的最小值(利用二次求导判单调性);(3)结合第(2)问构造出含的不等关系,利用裂项相消法进行化简求和.试题解析:(1)由题意, 1分所以 2分当时,;当时,.所以在上单调递增,在上单调递减,故在处取得极大值. 3分因为函数在区间(其中)上存在极值,所以,得.即实数的取值范围是. 4分(2)由得,令,则. 6分令,则,因为所以,故在上单调递增. 7分所以,从而在上单调递增,所以实数的取值范围是. 9分(3)由(2) 知恒成立,即 11分令则, 12分所以,, ,.将以上个式子相加得:,故. 14分【考点】1.函数极值、最值的求法;2.函数单调性的判定;3.恒成立问题的转化.16.已知函数,.(Ⅰ)求的极值;(Ⅱ)当时,若不等式在上恒成立,求的取值范围.【答案】(Ⅰ)有极大值为;(Ⅱ).【解析】(Ⅰ)首先明确函数的定义域,然后利用求导的方法研究函数的单调性,进而确定函数的极值;(Ⅱ)利用转化思想将原不等式转化为在上恒成立,然后借助构造函数求解函数的最大值进而探求的取值范围.试题解析:(Ⅰ)函数的定义域为。
利用导数求函数的单调性-高考数学大题精做之解答题题型全覆盖高端精品
高考数学大题精做之解答题题型全覆盖高端精品第六篇函数与导数专题02利用导数求函数的单调性类型对应典例不含参数的函数单调性典例1含参函数中主导函数是一次函数典例2含参函数中主导函数是类一次函数典例3含参函数中主导函数是二次函数(不能因式分解)典例4含参函数中主导函数是二次函数(能因式分解)典例5含参函数中主导函数是类二次函数典例6利用函数单调性求参数取值范围典例7【典例1】已知函数()()1ln f x x a R ax=+∈在1x =处的切线与直线210x y -+=平行.(1)求实数a 的值,并判断函数()f x 的单调性;(2)若函数()f x m =有两个零点1x ,2x ,且12x x <,求证:121x x +>.【典例2】已知函数op =−En −.(1)讨论函数op 的单调性.(2)若∀>0,op ≥0,求B 的最大值.【典例3】已知函数ln ()(,)x af x bx a b R x-=-∈.(1)当0b =时,讨论函数()f x 的单调性;(2)若函数()()f x g x x=在x =e 为自然对数的底)时取得极值,且函数()g x 在(0,)e 上有两个零点,求实数b 的取值范围.【典例4】已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-.(1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.【典例5】已知函数22()ln f x x ax a x =--.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()0f x ≥,求a 的取值范围.【典例6】已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.【典例7】已知函数()ln ()x e f x x x ax a R =-+∈.(1)若函数()f x 在[1,)+∞上单调递减,求实数a 的取值范围;(2)若1a =,求()f x 的最大值.1.已知函数()()22122()2xf x x x e ax a R =-+-∈.(1)当a e =时,求函数()f x 的单调区间;(2)证明:当2a ≤-时,()2f x ≥.2.已知函数()1f x ax lnx =--,a R ∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.3.已知函数()()2()1ln 1(0)f x a x x x ax a =++-->是减函数.(1)试确定a 的值;(2)已知数列{}()()*123ln 11n n n n n a a T a a a a n N n +==∈+ ,求证:()ln 212n nn T +<-⎡⎤⎣⎦.4.已知函数()22ln .f x a x x =-()1讨论函数()f x 的单调性;()2当0a >时,求函数()f x 在区间()21,e 上的零点个数.5.已知函数()()ln f x x ax a R =-∈.(1)讨论()f x 的单调性;(2)若1a =-,当0x >时,函数()()()220g x x mf x m =->有且只有一个零点,求m 的值.6.设22(),()11x e f x xe ax g x nx x x a=-=+-+-.(1)求()g x 的单调区间;(2)讨论()f x 零点的个数;(3)当0a >时,设()()()0h x f x ag x =-恒成立,求实数a 的取值范围.7.已知函数2()2ln ()f x x ax x a R =-+∈.(1)讨论()f x 的单调性;(2)若()f x 有两个极值点()1212,x x x x <,当a ≥()()21f x f x -的最大值.参考答案【典例1】【详解】(1)函数()f x 的定义域:()0,+∞,()11112f a =-=',解得2a =,()1ln 2f x x x ∴=+,()22112122x f x x x x -∴=-='令()0f x '<,解得102x <<,故()f x 在10,2⎛⎫⎪⎝⎭上是单调递减;令()0f x '>,解得12x >,故()f x 在1,2⎛⎫+∞ ⎪⎝⎭上是单调递增.(2)由12,x x 为函数()f x m =的两个零点,得121211ln ,ln 22x m x m x x +=+=两式相减,可得121211ln ln 022x x x x -+-=即112212ln 2x x x x x x -=,1212122ln x xx x x x -=,因此1211212ln x x x x x -=,2121212ln x x x x x -=令12x t x =,由12x x <,得01t <<.则121111+=2ln 2ln 2ln t t t t x x t t t---+=,构造函数()()12ln 01h t t t t t =--<<,则()()22211210t h t t t t -=+-=>'所以函数()h t 在()0,1上单调递增,故()()1h t h <,即12ln 0t t t--<,可知112ln t t t->.故命题121x x +>得证.【典例2】解:(1)函数op 的定义域为(0,+∞),由op =−En −,得n(p =1−=K,当≤0时,n(p >0,所以函数op 在(0,+∞)上单调递增.当>0时,则∈(0,p 时,n(p <0,函数op 在(0,p 上单调递减;∈(s +∞)时,n(p >0,函数op 在(s +∞)上单调递增.(2)由(1)可知,当<0时,函数op 在(0,+∞)上单调递增,当→0时,op →−∞与op ≥0相矛盾;当=0时,∀>0,op ≥0,所以≤0,此时B =0.当>0时,函数op 在(0,p 上单调递减,函数op 在(s +∞)上单调递增.op min =op =−En −≥0,即−En ≥,则B ≤2−2lno >0).令op =2−2lno >0),则n(p =o1−2lnp .令n(p >0,则0<<,令n(p <0,则>,当=时,op =2,即当=,=B 的最大值为2.综上,B 的最大值为2.【典例3】【详解】(1)当0b =时,()ln x af x x-=,()()221ln 1ln x x a a x x f x x x ⋅--+-==',令()0f x '=,得1a x e +=,当()10,ax e+∈时,()0f x '>,当()1,ax e+∈+∞时,()0f x '<.所以函数()f x 在()10,ae+上单调递增,在()1,ae++∞上单调递减.(2)()()2ln f x x a g x b x x-==-,()()2431ln 2122ln x x a xa x x g x x x ⋅--⋅-=='+,∵()g x在x =∴0g '=即1210a +-=,∴0a =.所以()2ln x g x b x =-,()312ln xg x x-'=,函数()g x在(上单调递增,在)+∞上单调递减,得函数的极大值12gb e=-,∴当函数()g x 在()0,e 上有两个零点时,必有()0,10,2g e b e ⎧<⎪⎨->⎪⎩得2112b e e<<.当2112b e e <<时,210g e b e ⎛⎫=--< ⎪⎝⎭.∴()g x的两个零点分别在区间1e ⎛ ⎝与)e 中.∴的取值范围是211,2e e ⎛⎫⎪⎝⎭.【典例4】【详解】(1)()f x 的定义域为()()()210,0x ax f x x x,+++∞=>',对于函数210y x ax =++≥,①当240a ∆=-≤时,即22a -≤≤时,210x ax ++≥在0x >恒成立.()210x ax f x x++∴=≥'在()0,+∞恒成立.()f x ∴在()0,+∞为增函数;②当0∆>,即2a <-或2a >时,当2a <-时,由()0f x '>,得42a x --<或42a x ->,44022a a --<<,()f x ∴在40,2a ⎛-- ⎪⎝⎭为增函数,44,22a a ⎛--+ ⎪⎝⎭减函数.,2a ⎛⎫-++∞⎪ ⎪⎝⎭为增函数,当2a >时,由()210x ax f x x++=>'在()0,+∞恒成立,()f x ∴在()0,+∞为增函数。
高考数学专题《函数与导数》解读
从新高考的考查情况来看,函数与导数一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点等问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查。
一般出现在选择题和填空题的后两题以及解答题中,难度较大,复习备考的过程中应引起重视。
通过导数研究函数的单调性、极值、最值问题,考查考生的分类讨论思想、等价转化思想以及数学运算、逻辑推理核心素养.1、研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (1)讨论分以下四个方面①二次项系数讨论;②根的有无讨论;③根的大小讨论;④根在不在定义域内讨论. (2)讨论时要根据上面四种情况,找准参数讨论的分类. (3)讨论完毕须写综述.2、研究函数零点或方程根的方法(1)通过最值(极值)判断零点个数的方法:借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点:①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法. 3、求与函数零点有关的参数范围的方法: 方程有实根函数的图象与轴有交点函数有零点.(1)参数分离法,构造新的函数,将问题转化为利用导数求新函数单调性与最值.(2)分类讨论法. 4、不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点()0f x =()y f x =x ()y f x =重难点06 函数与导数和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.恒成立问题的重要思路:(1)m≥f(x)恒成立⇒m≥f(x)max.(2)m≤f(x)恒成立⇒m≤f(x)min.存在性(有解)问题的重要思路:(1)存在m≥f(x) ⇒m≥f(x) min(2) 存在m≤f(x) ⇒m≤f(x) max.5、利用导数证明不等式f(x)>g(x)的基本方法:(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.无论不等式的证明还是解不等式,构造函数,运用函数的思想,利用导数研究函数的性质,达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.6、函数性质综合问题函数性质综合应用问题的常见类型及解题策略:(1)函数单调性与奇偶性的综合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.(4)应用奇函数图象关于原点对称,偶函数图象关于y轴对称.利用单调性比较大小、解不等式、研究函数的最值、函数单调性的讨论(含参)、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的;同时也要注意极值点偏移、双变量等热点问题。
高考数学导数与函数的单调性复习课件
上一页
返回导航
下一页
第四章 导数及其应用
17
2.已知函数 f(x)=ln x+a(1-x),讨论 f(x)的单调性.
解:函数 f(x)的定义域为(0,+∞),f′(x)=1x-a.
若 a≤0,则 f′(x)>0 恒成立,
所以 f(x)在(0,+∞)上单调递增.
若 a>0,则当 x∈0,1a时,f′(x)>0;当 x∈1a,+∞时,
()
A.在区间(-2,1)上 f(x)是增函数
√B.在区间(2,3)上 f(x)是减函数 √C.在区间(4,5)上 f(x)是增函数
D.在区间(3,5)上 f(x)是增函数
上一页
返回导航
下一页
第四章 导数及其应用
9
解析:在(4,5)上 f′(x)>0 恒成立,所以 f(x)是增函数.在(2,3)上 f′(x)<0 恒成 立,所以 f(x)是减函数.
7
2.函数 f(x)=cos x-x 在(0,π)上的单调性是( )
A.先增后减
B.先减后增
C.增函数
√D.减函数
解析:因为 f′(x)=-sin x-1<0.
所以 f(x)在(0,π)上是减函数,故选 D.
上一页
返回导航
下一页
第四章 导数及其应用
8
3.(多选)如图是函数 y=f(x)的导函数 y=f′(x)的图象,则下列判断正确的是
f′(x)<0,所以 f(x)在0,1a上单调递增,在1a,+∞上单调递减.
上一页
返回导航
下一页
第四章 导数及其应用
18
求函数的单调区间 (2021·东北三校第一次联考)已知函数 f(x)=(x+1)ln(x+1)-12ax2- x(a∈R).设 f′(x)为函数 f(x)的导函数,求函数 f′(x)的单调区间.
高考数学 导数与函数的单调性、极值与最值 教案 含解析题
第二节 导数在研究函数中的应用第1课时 系统知识牢基础——导数与函数的单调性、极值与最值知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系 (1)若f ′(x )>0,则f (x )在这个区间上单调递增. (2)若f ′(x )<0,则f (x )在这个区间上单调递减. (3)若f ′(x )=0,则f (x )在这个区间上是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间.[提醒] (1)讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(2)有相同单调性的单调区间不止一个时,用“,”隔开或用“和”连接,不能用“∪”连接. (3)若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[重温经典]1.(多选·教材改编题)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是( ) A .在区间(-2,1)上f (x )是增函数 B .在区间(2,3)上f (x )是减函数 C .在区间(4,5)上f (x )是增函数 D .当x =2时,f (x )取到极大值 答案:BCD2.(教材改编题)函数y =x 4-2x 2+5的单调递减区间为( ) A .(-∞,-1)和(0,1) B .[-1,0]和[1,+∞) C .[-1,1] D .(-∞,-1]和[1,+∞)答案:A3.(易错题)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( ) A.⎝⎛⎭⎫13,+∞ B .⎝⎛⎦⎤-∞,13C.⎣⎡⎭⎫13,+∞ D .⎝⎛⎭⎫-∞,13 解析:选C y ′=3x 2+2x +m ,由条件知y ′≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13.4.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D.5.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________.解析:∵y ′=-4x 2+a ,且y 有三个单调区间,∴方程y ′=-4x 2+a =0有两个不等的实根,∴Δ=02-4×(-4)×a >0,∴a >0. 答案:(0,+∞)6.设函数f (x )在(a ,b )上的导函数为f ′(x ),f ′(x )在(a ,b )上的导函数为f ″(x ),若在(a ,b )上,f ″(x )<0恒成立,则称函数f (x )在(a ,b )上为“凸函数”.已知f (x )=x 44-t 3x 3+32x 2在(1,4)上为“凸函数”,则实数t 的取值范围是________.解析:由f (x )=x 44-t 3x 3+32x 2可得f ′(x )=x 3-tx 2+3x ,f ″(x )=3x 2-2tx +3,∵f (x )在(1,4)上为“凸函数”,∴x ∈(1,4)时,3x 2-2tx +3<0恒成立,∴t >32⎝⎛⎭⎫x +1x 恒成立. 令g (x )=32⎝⎛⎭⎫x +1x ,∵g (x )在(1,4)上单调递增, ∴t ≥g (4)=518.∴实数t 的取值范围是⎣⎡⎭⎫518,+∞. 答案:⎣⎡⎭⎫518,+∞知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.[提醒] (1)极值点不是点,若函数f (x )在x 1处取得极大值,则x 1为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f ′(x 0)=0是x 0为f (x )的极值点的必要而非充分条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点.[重温经典]1.(多选)(2021·福州模拟)下列函数中,存在极值点的是( ) A .y =x -1xB .y =2|x |C .y =-2x 3-xD .y =x ln x解析:选BD 由题意函数y =x -1x ,则y ′=1+1x2>0,所以函数y =x -1x 在(-∞,0),(0,+∞)内单调递增,没有极值点;函数y =2|x |=⎩⎪⎨⎪⎧2x ,x ≥0,2-x ,x <0,根据指数函数的图象与性质可得,当x <0时,函数y =2|x |单调递减,当x >0时,函数y =2|x |单调递增,所以函数y =2|x |在x =0处取得极小值;函数y =-2x 3-x ,则y ′=-6x 2-1<0,所以函数y =-2x 3-x 在R 上单调递减,没有极值点;函数y =x ln x ,则y ′=ln x +1,当x ∈⎝⎛⎭⎫0,1e 时,y ′<0,函数单调递减,当x ∈⎝⎛⎭⎫1e ,+∞时,y ′>0,函数单调递增,当x =1e 时,函数取得极小值,故选B 、D.2.(教材改编题)如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( ) A .1 B .2 C .3D .4解析:选A 由图象及极值点的定义知,f (x )只有一个极小值点.3.(教材改编题)若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2a ×(-3)+3=0,解得a =5.4.(多选)材料:函数是描述客观世界变化规律的重要数学模型,在现行的高等数学与数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的,如函数f(x)=x x(x>0),我们可以作变形:f(x)=x x=eln x x=e x ln x=e t(t=x ln x),所以f(x)可看作是由函数f(t)=e t和g(x)=x ln x复合而成的,即f(x)=x x(x>0)为初等函数.根据以上材料,对于初等函数h(x)=x 1x(x>0)的说法正确的是()A.无极小值B.有极小值1C.无极大值D.有极大值e 1 e解析:选AD根据材料知:h(x)=x 1x=e1ln xx=e1ln xx,所以h′(x)=e 1ln xx·⎝⎛⎭⎫1x ln x′=e1ln xx·⎝⎛⎭⎫-1x2ln x+1x2=1x2e1ln xx(1-ln x),令h′(x)=0得x=e,当0<x<e时,h′(x)>0,此时函数h(x)单调递增;当x>e时,h′(x)<0,此时函数h(x)单调递减.所以h(x)有极大值且为h(e)=e 1e,无极小值.5.若x=-2是函数f(x)=(x2+ax-1)e x的极值点,则f′(-2)=________,f(x)的极小值为________.解析:由函数f(x)=(x2+ax-1)e x可得f′(x)=(2x+a)e x+(x2+ax-1)e x,因为x=-2是函数f(x)的极值点,所以f′(-2)=(-4+a)e-2+(4-2a-1)e-2=0,即-4+a+3-2a=0,解得a=-1.所以f′(x)=(x2+x-2)e x.令f′(x)=0可得x=-2或x=1.当x<-2或x>1时,f′(x)>0,此时函数f(x)为增函数,当-2<x<1时,f′(x)<0,此时函数f(x)为减函数,所以当x=1时函数f(x)取得极小值,极小值为f(1)=(12-1-1)×e1=-e.答案:0-e6.设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是________.解析:由题意得f′(x)=3x2-4ax+a2的两个零点x1,x2满足x1<2<x2,所以f′(2)=12-8a+a2<0,解得2<a<6.答案:(2,6)知识点三 函数的最值1.在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.2.若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.[提醒] 求函数最值时,易误认为极值点就是最值点,不通过比较就下结论,这种做法是错误的.[重温经典]1.(教材改编题)函数f (x )=ln x -x 在区间(0,e]上的最大值为( ) A .1-e B .-1 C .-eD .0解析:选B 因为f ′(x )=1x -1=1-x x ,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e]时,f ′(x )<0,所以f (x )的单调递增区间是(0,1),单调递减区间是(1,e],所以当x =1时,f (x )取得最大值f (1)=ln 1-1=-1.2.(教材改编题)函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值D .既无最大值,也无最小值解析:选D f ′(x )=4x 3-4=4(x -1)(x 2+x +1).令f ′(x )=0,得x =1.又x ∈(-1,1)且1∉(-1,1),∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D. 3.(教材改编题)函数y =x +2cos x 在区间⎣⎡⎦⎤0,π2上的最大值是________. 答案:3+π64.(易错题)已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________. 答案:(-4,-2)5.函数f (x )=x e -x ,x ∈[0,4]的最小值为________. 解析:f ′(x )=e -x -x e -x =e -x (1-x ). 令f ′(x )=0,得x =1(e -x >0), 又f (1)=1e >0,f (0)=0,f (4)=4e 4>0,所以f (x )的最小值为0. 答案:06.已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1).∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12时,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-332。
专题12 导数与函数的单调性--《2023年高考数学命题热点聚焦与扩展》【解析版】
【热点聚焦】单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具.在高考导数的综合题中,所给函数往往是一个含参数的函数,且导函数含有参数,在分析函数单调性时面临分类讨论.从高考命题看,对函数单调性的考查主要有:利用导数求函数的单调区间、判断单调性、已知单调性,求参数等.【重点知识回眸】(一)函数的单调性与导数的关系 条件 结论函数y =f (x )在区间(a ,b )上可导f ′(x )>0 f (x )在(a ,b )内单调递增 f ′(x )<0 f (x )在(a ,b )内单调递减 f ′(x )=0f (x )在(a ,b )内是常数函数优先”原则. (二)常用结论1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. 2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零. (三)常见问题解题方法1.导数求单调区间的步骤:利用导数求函数单调区间的方法,大致步骤可应用到解含参函数的单调区间.即确定定义域→求出导函数→令()'0f x >解不等式→得到递增区间后取定义域的补集(减区间)→单调性列出表格.2.求含参函数单调区间的实质——解含参不等式,而定义域对x 的限制有时会简化含参不等式的求解3.求单调区间首先确定定义域,并根据定义域将导数不等式中恒正恒负的项处理掉,以简化讨论的不等式4.含参数问题分类讨论的时机分类时机:并不是所有含参问题均需要分类讨论,当参数的不同取值对下一步的结果影响不相同时,就是分类讨论开始的时机.【典型考题解析】热点一 不含参数的函数的单调性【典例1】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)- B .(0,1)C .(1,)+∞D .(0,2)【答案】B【分析】求导,解不等式()0f x '<可得. 【详解】()f x 的定义域为(0,)+∞ 解不等式1(1)(1)()0x x f x x x x-+'=-=<,可得01x <<, 故函数21()ln 2f x x x =-的递减区间为(0,1). 故选:B .【典例2】(广东·高考真题(文))函数的单调递增区间是 ( )A .B .(0,3)C .(1,4)D .【答案】D 【解析】 【详解】试题分析:由题意得,()()(3)(3)(2)x x x f x x e x e x e '=-+-=-'',令()0f x '>,解得2x >,所以函数()f x 的单调递增区间为,故选D .【典例3】(2023·全国·高三专题练习)已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________. 【答案】(0,)6π,5(,)6ππ【分析】对()f x 求导,令f ′(x )=0,得x =6π或x =56π,求出()0f x '> 的解即可求出答案. 【详解】f ′(x )=1-2sin x ,x ∈(0,π).令f ′(x )=0,得x =6π或x =56π, 当0<x <6π时,f ′(x )>0, 当6π<x <56π时,f ′(x )<0,当56π<x <π时,f ′(x )>0, ∴f (x )在(0,)6π和5(,)6ππ上单调递增,在5(,)66ππ上单调递减.故答案为:(0,)6π,5(,)6ππ.【典例4】(2023·全国·高三专题练习)已知函数211,0()2,0x f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 【答案】20,2⎛⎫ ⎪ ⎪⎝⎭,[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<,所以当1≥x 时,12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增,当01x <<时,21122()loglog g x x x =-+,则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=,由()0g x '>,得1212log 0x -<,解得202x <<, 所以()g x 在20,2⎛⎫ ⎪ ⎪⎝⎭上递增, 综上得函数()g x 的单调递增区间为20,2⎛⎫⎪ ⎪⎝⎭,[1,)+∞. 故答案为:20,2⎛⎫⎪ ⎪⎝⎭,[1,)+∞. (1)函数的一阶导数可以用来研究函数图象的上升与下降,函数的二阶导数可以用来研究函数图象的陡峭及平缓程度,也可用来研究导函数图象的上升与下降. (2)求函数的单调区间时,一定要先确定函数的定义域,否则极易出错. 热点二 含参数的函数的单调性【典例5】(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【详解】(1)函数的定义域为()0,∞+, 又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.【典例6】(2023·全国·高三专题练习)已知函数()ln R kf x x k k x=--∈,,讨论函数()f x 在区间(1,e)内的单调性. 【答案】见解析 【分析】先求出2()x kf x x +'=-,然后分k -与(1,e)的关系进行分类讨论,从而得出答案. 【详解】由()ln kf x x k k R x=--∈,,(1,e)x ∈ 221()k x k f x x x x+'∴=--=- ①当1k -≤,即1k ≥-时,10x k x +≥->, ()0f x '∴< ,()f x ∴在(1,e)单调递减;②当e k -≥,即e k ≤-时,e 0x k x +≤-<, ()0f x '∴> ,()f x ∴在(1,e)单调递增;③当1e k <-<,即e 1k -<<-时,当1x k <<-时,()0f x '>,()f x 单调递增; 当e k x -<<时,()0f x '<,()f x 单调递减; 综上所述,当1k ≥-时,()f x 在(1,e)单调递减 当e k ≤-时,()f x 在(1,e)单调递增当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减.【方法总结】解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.热点三 已知函数的单调性求参数的取值范围【典例7】(全国·高考真题(文))若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是( ) A .(],2-∞- B .(],1-∞- C .[)2,+∞ D .[)1,+∞【答案】D 【解析】 【详解】 试题分析:,∵函数()ln f x kx x =-在区间()1,+∞单调递增,∴在区间()1,+∞上恒成立.∴,而在区间()1,+∞上单调递减,∴.∴的取值范围是[)1,+∞.故选D .【典例8】(全国·高考真题(理))若函数()cos 2sin f x x a x =+在区间(,)62ππ内是减函数,则实数a 的取值范围是_______. 【答案】2a ≤ 【解析】 【详解】试题分析:()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫=-+=-+=-+∈ ⎪⎝'⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【典例9】(2019·北京·高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】 -1; (],0-∞. 【解析】 【分析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的解析式可得a 的取值范围. 【详解】若函数()x xf x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x xf x e ae -=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞ 【规律方法】由函数的单调性求参数的取值范围的方法(1)可导函数在区间D 上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,从而构建不等式,求出参数的取值范围,要注意“=”是否可以取到.(2)可导函数在区间D 上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间D 上的单调性,区间端点含有参数时,可先求出f (x )的单调区间,令D 是其单调区间的子集,从而求出参数的取值范围. 热点四 函数单调性与函数图像【典例10】(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>,所以舍去C ;因此选B.【典例11】(2023·全国·高三专题练习)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )A .B .C .D .【答案】D【分析】根据导函数的图象判断原函数的单调性,即可判断选项.【详解】原函数先减再增,再减再增,且0x =位于增区间内.符合条件的只有D. 故选:D【典例12】(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【解析】 【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解. 【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,221202164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C. 故选:D. 【规律方法】有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 热点五 函数单调性与比较大小、解不等式 【典例13】(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭ 所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>, 故选:A【典例14】(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,211x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<时,()0h x <,所以当021x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.【典例15】(2022·重庆南开中学高三阶段练习)已知函数()()3log 912xf x x =+-+,则不等式()()21f x f x -<的解集为( ) A .()1,3 B .(),1-∞ C .[)1,+∞D .1,13⎛⎫⎪⎝⎭【答案】D【分析】根据导数判断出函数的单调性,根据解析式可判断函数为偶函数,从而可求不等式的解.【详解】函数的定义域为R ,()()()9ln 92991119191ln 391x x x x x x f x ⋅-'=-=-=+++,当0x <时,0f x ;当0x >时,0f x ,故()f x 在(),0-∞上为减函数,在()0,+∞上为增函数. 又()()3391log 912log 29x xx f x x x -+-=+++=++()()3log 9122x x x f x =+-++=,故()f x 为R 上的偶函数,故()()21f x f x -<等价于()()21f x f x -<, 即21x x -<,两边平方得23410x x -+<,故1,13x ⎛⎫∈ ⎪⎝⎭.故选:D.'()f x 当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞【答案】A 【解析】 【详解】构造新函数()()f x g x x=,()()()2'xf x f x g x x -=',当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =. 所以()()0f x g x x=>可得01x <<,此时()0f x >, 又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃. 故选A.【典例17】(2021·山东·临沂市兰山区教学研究室高三开学考试)已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()20f x x xf '+>,则不等式()()()220212021420x f x f +++-<的解集为( )A .()2019,+∞B .()2021,2019--C .(),2019-∞-D .()2019,0-【答案】C【分析】根据已知条件构造函数2()()g x x f x =,可得()g x 在(0,)+∞上为增函数,且()g x 为奇函数,然后将()()()220212021420x f x f +++-<可转化为(2021)(2)g x g +<,从而可求出不等式的解集.【详解】令2()()g x x f x =,则2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+, 因为当0x >时,有()()20f x x xf '+>, 所以当0x >时,()0g x '>, 所以()g x 在(0,)+∞上为增函数,因为()f x 为奇函数,所以()()f x f x -=-, 所以22()()()()()g x x f x x f x g x -=--=-=-, 所以()g x 为R 上的奇函数, 所以()g x 在R 上为增函数,由()()()220212021420x f x f +++-<,得()()()22021202142x f x f ++<--, ()()()2220212021(2)2x f x f ++<---,所以(2021)(2)g x g +<--,因为()g x 为奇函数,所以(2021)(2)g x g +<, 所以20212x +<,得2019x <-,所以不等式的解集为(),2019-∞-, 故选:C【典例18】(2022·湖北·襄阳五中高三阶段练习)设11166,2ln sin cos ,ln 5101055a b c ⎛⎫==+= ⎪⎝⎭,则,,a b c 的大小关系是___________. 【答案】.b a c <<【分析】利用导数研究函数()sin f x x x =-,()ln(1)g x x x =-+,6()ln(1)5h x x x =-+在(0,1)上的单调性,利用函数的单调性可比较,,a b c 的大小.【详解】由已知可得2111112ln sin cos ln sin cos ln(1sin )101010105b ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,设()sin f x x x =-,(0,1)x ∈,则()1cos 0f x x '=->, 所以()sin f x x x =-在(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,即11sin 55>,所以11ln 1sin ln 155b ⎛⎫⎛⎫=+<+ ⎪ ⎪⎝⎭⎝⎭,设()ln(1)g x x x =-+,(0,1)x ∈,则1()1011x g x x x '=-=>++, 所以()ln(1)g x x x =-+在(0,1)上单调递增,所以1(0)05g g ⎛⎫>= ⎪⎝⎭,即111ln 1ln 1sin 555⎛⎫⎛⎫>+>+ ⎪ ⎪⎝⎭⎝⎭,所以a b >,设6()ln(1)5h x x x =-+,(0,1)x ∈,则651()1551x h x x x -'=-=++,当105x ⎛⎫∈ ⎪⎝⎭,时,()0h x '<,当1,15x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,所以6()ln(1)5h x x x =-+在105⎛⎫⎪⎝⎭,上单调递减,在1,15⎛⎫ ⎪⎝⎭上单调递增,所以1(0)05h h ⎛⎫<= ⎪⎝⎭,即16166ln 1ln 55555⎛⎫<+= ⎪⎝⎭,所以a c <,所以.b a c << 故答案为:.b a c <<. 构造函数解不等式或比较大小一般地,在不等式中若同时含有f (x )与f ′(x ),常需要通过构造含f (x )与另一函数的和、差、积、商的新函数,再借助导数探索新函数的性质,进而求出结果. 常见构造的辅助函数形式有: (1)f (x )>g (x )→F (x )=f (x )-g (x );(2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→()[]'f x x; (4)f ′(x )+f (x )→[e x f (x )]′;(5)f ′(x )-f (x )→()[]'x f x e′.(6)()()f x f x '<→()()x f x g x e = (7)()()xf x f x '<→()()f x g x x=(8)()()0xf x f x '+<→()()g x xf x =.【精选精练】一、单选题1.(2022·全国·高三专题练习)函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,图像如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≥的解集为( )A .[)1,12,33⎡⎤-⎢⎥⎣⎦B .1481,,233⎡⎤⎡⎤-⋃⎢⎥⎢⎥⎣⎦⎣⎦C .[]31,1,223⎛⎤--⋃ ⎥⎝⎦D .3148,,2333⎛⎤⎡⎤--⋃ ⎥⎢⎥⎝⎦⎣⎦【答案】C【分析】()0f x '≥的解集即为()y f x =单调递增区间,结合图像理解判断. 【详解】()0f x '≥的解集即为()y f x =单调递增区间 结合图像可得()y f x =单调递增区间为[]31,,1,223⎛⎤-- ⎥⎝⎦则()0f x '≥的解集为[]31,1,223⎛⎤--⋃ ⎥⎝⎦故选:C .2.(2023·全国·高三专题练习)已知函数()f x 的导函数()f x '的图像如图所示,则下列判断正确的是( )A .在区间()1,1-上,()f x 是增函数B .在区间()3,2--上,()f x 是减函数C .2-为()f x 的极小值点D .2为()f x 的极大值点【答案】D【分析】利用函数与导函数的关系及其极值的定义即可求解. 【详解】由导函数()f x '的图像可知,在区间()1,0-上为单调递减,在区间()0,1上为单调递增,则选项A 不正确; 在区间()3,2--上,()0f x '>,则()f x 是增函数,则选项B 不正确;由图像可知()20f '-=,且()3,2--为单调递增区间,()2,0-为单调递减区间,则2-为()f x 的极大值点,则选项C 不正确;由图像可知()20f '=,且()1,2为单调递增区间,()2,3为单调递减区间,则2为()f x 的极大值点,则选项D 正确; 故选:D.3.(2023·全国·高三专题练习)函数()3221343f x x ax a x =---在()3,+∞上是增函数,则实数a 的取值范围是( ) A .0a ≥ B .1a ≥ C .3a ≤-或1a ≥ D .31a -≤≤【答案】D【分析】结合函数单调性得到()22230f x x ax a -'=-≥在()3,+∞上恒成立,分0a =,0a >和0a <三种情况,数形结合列出不等式,求出实数a 的取值范围. 【详解】∵函数()3221343f x x ax a x =---在()3,+∞上是增函数,∴()22230f x x ax a -'=-≥在()3,+∞上恒成立, ∵()()()22233f x x ax a x a x a =--=-+',∴当0a =时,()20f x x '=≥恒成立,满足题意;当0a >时,()0f x '>在()(),3,a a ∞∞--⋃+上恒成立,()0f x '<在(),3a a -上恒成立,故只需33a ≤,解得:1a ≤,故可得:(]0,1a ∈ 当0a <时,()0f x '>在()(),3,a a ∞∞-⋃-+上恒成立,()0f x '<在()3,a a -上恒成立,故只需3a -≤,解得:3a ≥-,故可得:[)3,0a ∈- 综上可得:实数a 的取值范围是[]3,1-, 故选:D .4.(2022·全国·长垣市第一中学高三开学考试(理))已知函数()12ln f x x x x=+-,则不等式()()211f x f x -<-的解集为( ) A .20,3⎛⎫ ⎪⎝⎭B .2,13⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .12,23⎛⎫ ⎪⎝⎭【答案】B【分析】利用导数说明函数的单调性,再根据函数的单调性及定义域将函数不等式转化为自变量的不等式,解得即可.【详解】解:由题意可知,函数()12ln f x x x x=+-的定义域为()0,∞+. 因为()22211110f x x x x ⎛⎫'=--=--≤ ⎪⎝⎭恒成立,所以()f x 在()0,∞+上单调递减.则由()()211f x f x -<-可得21010211x x x x->⎧⎪->⎨⎪->-⎩,解得213x <<,即原不等式的解集为2,13⎛⎫⎪⎝⎭.故选:B.a A .ln ln ab a b -<-e e B .ln ln b a a b < C .e a b ba-> D .sin sin 1a ba b-<-【答案】D【分析】由题设有0a b >>,分别构造e ln x y x =-、ln xy x=、e x y x =、sin y x x =-,利用导数研究在,()0x ∈+∞上的单调性,进而判断各项的正误. 【详解】由221a b >>,即0a b >>,A :若e ln x y x =-且,()0x ∈+∞,则1e x y x'=-,故12|e 20x y ='=-<,1|e 10x y ='=->,即y '在1(,1)2上存在零点且y '在(0,)+∞上递增,所以y 在(0,)+∞上不单调,则e ln e ln a b a b -<-不一定成立,排除; B :若ln x y x =且,()0x ∈+∞,则21ln xy x -'=, 所以(0,e)上0y '>,y 递增;(e,)+∞上0y '<,y 递减; 故y 在(0,)+∞上不单调,则ln ln a ba b<不一定成立,排除; C :若e x y x =且,()0x ∈+∞,则e (1)0x y x '=+>,即y 在(0,)+∞上递增, 所以e e a b a b >,即e a b ba-<,排除; D :若sin y x x =-且,()0x ∈+∞,则1cos 0y x '=-≥,即y 在(0,)+∞上递增, 所以sin sin a a b b ->-,即sin sin 1a ba b-<-,正确.故选:D6.(2022·四川成都·高三期末(理))若函数()在区间()上单调递增,则实数k 的取值范围是( ) A .[)1,+∞ B .[)2,+∞ C .(]0,1 D .(]0,2【答案】B【分析】根据已知条件等价为()20f x k x =-≥'在()1,+∞上恒成立,即2k x≥在()1,+∞上恒成立,求解()()21g x x x=>的取值情况即可得出结果. 【详解】()2ln f x kx x =-由题意,已知条件等价为()20f x k x=-≥'在()1,+∞上恒成立, 即2k x≥在()1,+∞上恒成立, 令()()21g x x x=>, ()g x 在()1,+∞上单调递减,()2g x ∴<,2k ∴≥,k ∴的取值范围是[)2,+∞.故选:B.7.(2023·全国·高三专题练习)已知函数()3ln 3f x x x ax =--在()2,+∞上单调递增,则实数a 的取值范围为( )A .72a >-B .72a ≥-C .72a <D .72a ≤【答案】D【分析】由已知可得()210f x x a x '=--≥在()2,+∞恒成立,从而进行参变分离求最值即可.【详解】解:()210f x x a x'=--≥,因为函数()31ln 3f x x x ax =--在()2,+∞上单调递增,所以()210f x x a x '=--≥在()2,+∞恒成立,即21a x x≤-在()2,+∞恒成立,令()()212g x x x x =->,则()2120g x x x '=+>在()2,+∞恒成立, 故()g x 在()2,+∞单调递增,所以()()722g x g >=, 故a 的取值范围是72⎛⎤-∞ ⎥⎝⎦,,故选:D .8.(2023·全国·高三专题练习)已知R α∈,则函数()ex x f x =的图象不可能是( )A .B .C .D .【答案】C【分析】令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】当12α=时,()e x xf x =且0x ≥,则12()e x x f x x-'=,所以1(0,)2上 ()0f x '>,()f x 递增;1(,)2+∞上 ()0f x '<,()f x 递减,且(0)0f =,所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=,所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上 ()0f x '>,()f x 递增,(2,)+∞上 ()0f x '<,()f x 递减,所以B 图象可能; 当1α=-时,1()e x f x x =且0x ≠,则21()e xxf x x +'=-,所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上 ()0f x '<,()f x 递减,(0,)+∞上 ()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >, 所以D 图象可能; 综上,排除A 、B 、D. 故选:C3232b b =,03c <<且33c c =,则( )A .a b c <<B .c b a <<C .b a c <<D .a c b <<【答案】A【分析】构造函数()ln xf x x=,求导,根据函数的单调性比大小即可. 【详解】由88a a =,两边同时以e 为底取对数得ln ln 88a a =, 同理可得ln ln 3232b b =,ln ln33c c =, 设()ln xf x x=,0x >,则()()8f a f =,()()32f b f =,()()3f c f =, ()21ln xf x x -'=,令()0f x '=,解得e x =,当()0,e x ∈时,()0f x '>,函数()f x 单调递增, 当()e,x ∈+∞时,()0f x '<,函数()f x 单调递减, 则(),,0,e a b c ∈,且()()()3832f f f >>, 所以()()()f c f a f b >>, 故c a b >>, 故选:A.10.(2022·江苏·扬中市第二高级中学高三开学考试)已知()f x '是函数()f x 的导数,且()()f x f x -=,当0x ≥时,()3f x x '>,则不等式3()(1)32f x f x x --<-的解集是( ) A .1(,0)2-B .1(,)2-∞-C .1(,)2+∞D .1(,)2-∞【答案】D【分析】构造函数23()()2g x f x x =-,根据导数判断单调性,再利用奇偶性求出解集.【详解】设23()()2g x f x x =-,则()()3g x f x x '='-,因为当0x ≥时,()3f x x '>,所以当0x ≥时,()0g x '>, 即()g x 在[0,)+∞上单调递增,因为()()f x f x -=,所以()f x 为偶函数,则()g x 也是偶函数,所以()g x 在(,0]-∞上单调递减. 因为3()(1)32f x f x x --<-,所以2233()(1)(1)22f x x f x x -<---, 即()(1)g x g x <-, 则1x x <-,解得12x <, 故选:D.b a b =下列正确的是( ) A .1ab >B .1(1)b a a b +<+C .11a b a b a a b b ++->-D .52+>a b 【答案】B【分析】利用指对数互化及对数的运算性质可得1b a =,进而可得1121a b b<=<<+,然后构造函数,利用函数的单调性即得. 【详解】由log b a a b =,可得1log log log b a b a b a==,所以log 1b a =,或log 1b a =-, ∴b a =(舍去),或1b a=,即1ab =,故A 错误; 又02b a b <<<,故120a a a<<<, ∴12a <<,对于函数()112y x x x=+<<, 则2221110x y x x-'=-=>,函数()112y x x x =+<<单调递增,∴1322,2a b a a ⎛⎫+=+∈ ⎪ ⎪⎝⎭,故D 错误; ∵02b a b <<<,112a b<=<, ∴1212a b b <<<+<, 令()()ln 12x g x x x=<<,则()21ln 0xg x x -'=>,∴函数()()ln 12xg x x x=<<单调递增, ∴()ln 1ln 1b a a b +<+,即()()1ln ln 1b a a b +<+, ∴()1ln ln 1ab a b +<+,即1(1)b a a b +<+,故B 正确; ∵011b a b <<<<+,∴函数,x x y a y b ==-单调递增,故函数x x y a b =-单调递增, ∴11a a b b a b a b ++-<-,即11a b a b a a b b ++-<-,故C 错误. 故选:B. 12.(2023·全国·高三专题练习)已知0a <,函数322()2f x x ax a x =+-+的单调递减区间是________ . 【答案】,3a a ⎛⎫- ⎪⎝⎭【分析】求出函数导数,由()0f x '<即可求出单调递减区间. 【详解】22()32(3)()f x x ax a x a x a '=+-=-+,令()0f x '<,解得3ax a <<- , 所以()f x 的单调递减区间为,3a a ⎛⎫- ⎪⎝⎭.故答案为:,3a a ⎛⎫- ⎪⎝⎭.13.(2021·河南宋基信阳实验中学高三开学考试(文))若函数4y x x=+在()0,a 上为单调减函数,则实数a 的取值范围是_________. 【答案】(]0,2【分析】由题可得函数4y x x=+在区间(0,2]上是减函数,结合条件即得. 【详解】对于函数4y x x=+,0x >, ∴()()222222441x x x y x x x+--'=-==,0x >, 由0y '<,可得02x <<, 因为函数4y x x=+在()0,a 上为单调减函数, 所以02a <≤,即实数a 的取值范围是(]0,2. 故答案为:(]0,2.14.(2022·江苏·扬中市第二高级中学高三开学考试)函数()2x x f x =的单调递增区间为__________. 【答案】2(0,)ln 2【分析】先求得导函数,并令'0f x ,再判断导函数的符号,由此可得函数的单调递增区间.【详解】函数2()2x xf x =,则()()()2'22ln 2ln 222222x x xxx fx x x x -⋅-⋅⋅⋅==,令()0f x '=解得20,ln 2x x ==, 当(),0x ∈-∞时,()0f x '<,函数()f x 单调递减,当20,ln 2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增,当2,ln 2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,函数()f x 单调递减, 故答案为:2(0,)ln 2. 15.(2023·全国·高三专题练习)()3211232f x x x ax =-++,若()f x 在,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______【答案】1,9⎛⎫-+∞ ⎪⎝⎭【分析】分析可知,2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()212a x x >-,求出函数()212y x x =-在2,3⎛⎫+∞ ⎪⎝⎭上的值域,可得出实数a 的取值范围.【详解】因为()3211232f x x x ax =-++,则()22f x x x a '=-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()0f x '>,即()212a x x >-,当()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-.故答案为:1,9⎛⎫-+∞ ⎪⎝⎭.16.(2022·重庆巴蜀中学高三阶段练习)已知奇函数()的定义域为R ,当0x >讨,()()20f x f x '+>,且()20f =,则不等式()0f x >的解集为___________.【答案】()(2,02,)-⋃+∞【分析】构造函数2()e ()=x g x f x ,利用导函数判断出当x >0时, ()g x 单调递增,得到当x >2时()0g x >,从而()0f x >;当02x <<时,()0g x <,从而()0f x <.由()f x 为奇函数得到不等式()0f x >的解集.【详解】构造函数2()e ()=x g x f x ,则当0x >时,[]2()e 2()()0xg x f x f x ''=+>,所以当x >0时()g x 单调递增.因为f (2)=0,所以()()42e 20g f ==,所以当x >2时()0g x >,从而()0f x >.当02x <<时,()0g x <,从而()0f x <.又奇函数()f x 的图像关于原点中心对称,所以()0f x >的解集为()(2,02,)-⋃+∞. 故答案为: ()(2,02,)-⋃+∞. 三、解答题17.(2022·四川成都·高三期末(理))设函数()()321113f x x x a x =-++--,其中a ∈R .若函数()f x 的图象在0x =处的切线与x 轴平行. (1)求a 的值;(2)求函数()f x 的单调区间. 【答案】(1)1a =(2)单调递增区间为()0,2;单调递减区间为(),0∞-,()2,+∞【分析】(1)根据导数的几何意义求解即可;(2)由(1)得()32113f x x x =-+-,再求导分析函数的单调区间即可(1)()221f x x x a '=-++-.∵函数()f x 的图象在0x =处的切线与x 轴平行,∴()010f a =-=',解得1a =.此时()010f =-≠,满足题意.∴1a =. (2)由(1)得()32113f x x x =-+-,故()()222f x x x x x '=-+=--.令()0f x '=,解得0x =或2x =.当x 变化时,()f x ',()f x 的变化情况如下表:x(),0∞-0 ()0,22 ()2,+∞()f x ' - 0 +0 -()f x单调递减1- 单调递增13单调递减∴函数()的单调递增区间为();单调递减区间为(),().18.(2023·全国·高三专题练习)已知函数()22ln x f x x a =-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程. (2)讨论函数()f x 的单调性; 【答案】(1)2ln 2y x =- (2)答案见解析【分析】(1)求得函数的导数,根据导数的几何意义即可求得切线方程;(2)求出函数的导数,分类讨论a 的取值,判断导数的正负,从而确定函数的单调性. (1)当2a =时,()22ln 2x f x x =-,所以()22n2l 2f =-,()2f x x x'=-,所以()22212f '=-=,所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-. (2)()f x 的定义域为(0)+∞,, 22()x f x a x'=-,当0a <时, ()0f x '<恒成立,所以()f x 在(0)+∞,上单调递减; 当0a > 时, ()()222()x f x x a x a a x ax'=-=+-,在()0,a 上,()0f x '<,所以()f x 单调递减;在(),a +∞上,()0f x '>,所以()f x 单调递增.。
高考数学利用导数研究函数的单调性、极值与最值问题(解析版)题型一:利用导数研究函数的单调性
题型一:利用导数研究函数的单调性1、讨论函数的单调性(或区间)1.已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R . (1)讨论函数的单调性;【答案】(1)答案见解析;(2)0a ≤.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-= 当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增. (2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x 在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.2.已知函数32()f x x x mx =+-.(1)若函数()f x 在2x =处取到极值,求曲线()y f x =在(1,())f x 处的切线方程;(2)讨论函数()f x 的单调性.【答案】(1)113y x =--;(2)()f x 在⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 【详解】(1)依题意,2()32f x x x m '=+-,(2)1240f m '=+-=,解得16m =,经检验,16m =符合题意;故32()16f x x x x =+-,2()3216f x x x '=+-,故(1)21614f =-=-,(1)11f '=-,故所求切线方程为1411(1)y x +=--,即113y x =--;(2)依题意2()32f x x x m '=+-,412m ∆=+,若0∆,即13m -时,()0f x ',()f x 在R 上单调递增;若0∆>,即13m >-时,令()0,f x x '===令12x x == 故当()1,x x ∈-∞时,()0f x '>,当()12,x x x ∈时,()0f x '<,当()2,x x ∈+∞时,()0f x '>,故函数()f x 在⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 3.已知函数()ln a f x x x=+(a 为常数) (1)讨论函数()f x 的单调性;【答案】(1)0a ≤时,(0,)+∞递增,0a >时,在(0,)a 递减,(,)a +∞递增;【详解】(1)函数定义域是(0,)+∞,221()a x a f x x x x-'=-=, 0a ≤时,()0f x '>恒成立,()f x 在(0,)+∞上是增函数;0a <时,0x a <<时,()0f x '<,()f x 递减,x a >时,()0f x '>,()f x 递增.2、根据函数的单调性求参数的取值范围1.已知函数321()23f x ax x x =+-+,其中a R ∈. (1)若函数()f x 恰好有三个单调区间,求实数a 的取值范围;【答案】(1)()()1,00,a ∈-+∞; 【详解】(1)由321()23f x ax x x =+-+,得2()21f x ax x '=+-. ∵()f x 存在三个单调区间∴()0f x '=有两个不相等的实数根,即2210ax x .∴00a ≠⎧⎨∆>⎩,即0440a a ≠⎧⎨+>⎩,故()()1,00,a ∈-+∞.2.已知函数()321f x x ax =++,a R ∈. (1)讨论函数()f x 的单调区间;(2)若函数()f x 在区间2,03⎛⎫- ⎪⎝⎭内是减函数,求a 的取值范围; (3)若函数()f x 的单调减区间是2,03⎛⎫- ⎪⎝⎭,求a 的值. 【答案】(1)答案见解析(2)[)1,+∞(3)1(1) 由题意知,22()323()3a f x x ax x x '=+=+, 当0a =时,2()30f x x '=≥恒成立,所以()f x 的单调递增区间是()-∞+∞,; 当0a >时,令2()0()(0)3a f x x '>⇒∈-∞-+∞,,,令2()0(0)3a f x x '<⇒∈-,, 所以()f x 的单调递增区间为2(),(0)3a -∞-+∞,,,单调递减区间为2(0)3a -,, 当0a <时,令2()0(0)()3a f x x '>⇒∈-∞-+∞,,,令2()0(0)3a f x x '<⇒∈-,, 所以()f x 的单调递增区间为2(0)()3a -∞-+∞,,,,单调递减区间为2(0)3a -,; (2)由(1)知,当0a >时,有22(0)(0)33a -⊆-,,,所以2233a -≤-, 解得1a ≥,即a 的取值范围为[1)+∞,; (3)由(1)知,当0a >时,有22(0)(0)33a -=-,,,所以2233a -=-, 解得1a =.3.已知函数()3f x x ax =-+,a R ∈(1)若()f x 在)1,⎡+∞⎣上为单调减函数,求实数a 取值范围;【答案】(1)3a ≤;(2)最大值为0,最小值为16-.【详解】解:(1)因为()3f x x ax =-+,则()'23f x x a =-+.依题意得()'230f x x a =-+≤在[)1,x ∈+∞恒成立,∴23a x ≤在[)1,x ∈+∞恒成立. 因为当1≥x 时,233x ≥,所以 3a ≤.(2)当12a =时,()312f x x x =-+,()()()'2312322f x x x x =-+=-+-,令'0f x 得[]123,0x =∉-,22x =-,所以当32x -<<-时,()'0f x <,()f x 单调递减,当20x -<<时,()'>0f x ,()f x 单调递增,又()327369f -=-=-,()282416f -=-=-,()00f =.∴()f x 在[]3,0-上最大值为0,最小值为16-.。
导数与函数的单调性(高三一轮复习)
例1 (1)(多选)下列选项中,在(-∞,+∞)上单调递增的函数有( BD )
A.f(x)=x4
B.f(x)=x-sin x
C.f(x)=xex
D.f(x)=ex-e-x
数学 N 必备知识 自主学习 关键能力 互动探究 (2)函数y=f′(x)的图象如图所示,则函数y=f(x)的大致图象是( A )
∞),∴a≤2.又a>0,∴0<a≤2.
解法二:y′=1-
a2 x2
,依题意知1-
a2 x2
≥0,即a2≤x2在x∈[2,+∞)上恒成立,
∵x∈[2,+∞),∴x2≥4,∴a2≤4,又a>0,∴0<a≤2.
数学 N 必备知识 自主学习 关键能力 互动探究
— 11 —
关键能力 互动探究
命题点1 不含参函数的单调性
数学 N 必备知识 自主学习 关键能力 互动探究
— 6—
基|础|自|测
1.思考辨析(正确的打“√”,错误的打“×”) (1)如果函数f(x)在某个区间内恒有f′(x)≥0,则f(x)在此区间内单调递增.( ×) (2)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函 数.( √ ) (3)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内不具有单调 性.( √ )
— 16 —
思维点睛►
讨论函数f(x)单调性的步骤 (1)确定函数f(x)的定义域. (2)求导数f′(x),并求方程f′(x)=0的根. (3)利用f′(x)=0的根将函数的定义域分成若干个子区间,在这些子区间上讨论 f′(x)的正负,由符号确定f(x)在该区间上的单调性.
数学 N 必备知识 自主学习 关键能力 互动探究
2024年高考数学高频考点题型总结一轮复习 导数与函数的单调性(精练:基础+重难点)
2024年高考数学高频考点题型归纳与方法总结第15练导数与函数的单调性(精练)一、解答题【A组在基础中考查功底】一、单选题A .B .C ..【答案】A【分析】根据函数的单调性与导函数的关系判断即可;【详解】解:由()f x 的图象可知,当(),0x ∈-∞时函数单调递增,则()f x ',故排除C 、D ;当()0,x ∈+∞时()f x 先递减、再递增最后递减,所以所对应的导数值应该先小于,再大于0,最后小于B ;故选:A4.(2023·全国·高三专题练习)若函数ln y x a x =+在区间[)1,+∞内单调递增,则a 的取值范围是()A .(),2-∞-B .),1-∞-C .[)+∞D .[1,-【答案】D【分析】根据函数单调性与导数的关系进行求解即可【详解】由ln 1a y x a x x=+⇒=+,因为函数ln y x a x =+在区间[)1,+∞内单调递增,所以有0y '≥在[)1,+∞上恒成立,即10ax+≥在[1,+∞上恒成立,因为[)1,x ∞∈+,所以由100x a a ≥⇒+≥⇒≥,因为[)1,x ∞∈+,所以,1]x --∞-,于是有1a ≥-二、多选题f x为偶函数A.()f x为奇函数B.()f x的最小值为a C.()三、填空题四、解答题【B组在综合中考查能力】一、解答题二、单选题而函数()3g x a ax =-恒过点(3,0C 象应介于直线AC 与直线BC 之间(可以为直线又()1,1A ,()2,2ln 21B +,∴011312AC k -==--,0(2ln 3BC k -=三、填空题故1x =为函数极小值点,此时函数也取得最小值,最小值为(1)e g =-,故e,e m m -≤-∴≥,经验证,当e m =时,()()21e 0xf x m x x '=+--≥在R 上恒成立,仅在1x =时取等号,适合题意,故实数m 的取值范围是[e,)+∞,故答案为:[e,)+∞【C 组在创新中考查思维】一、解答题令()0f x ¢>,解得()0,x ∈+∞;令()0f x '<,解得(),0x ∈-∞,所以()f x 的单调增区间为()0,∞+,单调减区间为(),0∞-,当1a <-时,令()0f x '=,解得:0x =或()ln 1x a =--,①当()ln 10a --=时,即2a =-,()()2e 10xf x '=-≥,所以()f x 在(),-∞+∞上单增.②当()ln 10a -->时,即2a <-,由()0f x ¢>解得:()()(),0ln 1,x a ∈-∞--+∞ ;由()0f x '<解得:()()0,ln 1x a ∈--,所以()f x 的单调增区间为()()(),0,ln 1,a -∞--+∞,()f x 的单调减区间为()()0,ln 1a --.③当()ln 10a --<时,即21a -<<-,由()0f x ¢>解得:()()(),ln 10,x a ∈-∞--+∞ ;由()0f x '<解得:()()ln 1,0x a ∈--,所以()f x 的单调增区间为()()(),ln 1,0,a -∞--+∞,()f x 的单调减区间为()()ln 1,0a --.综上:当1a ≥-时,()f x 的单调增区间为()0,∞+,单调减区间为(),0∞-;当21a -<<-时,()f x 的单调增区间为()()(),ln 1,0,a -∞--+∞,()f x 的单调减区间为()()ln 1,0a --;当2a =-时,()f x 在(),-∞+∞上单增;当2a <-时,()f x 的单调增区间为()()(),0,ln 1,a -∞--+∞,()f x 的单调减区间为()()0,ln 1a --.二、单选题三、多选题四、填空题。
导数与函数的单调性-高考数学重难点题型(新高考地区专用)(解析版)
专题3.3 导数与函数的单调性-重难点题型精讲1.函数的单调性与导数的关系条件 恒有 结论函数y =f (x )在区间(a,b)上可导f ′(x )>0 f (x )在(a ,b )内单调递增 f ′(x )<0 f (x )在(a ,b )内单调递减 f ′(x )=0f (x )在(a ,b )内是常数函数2一般地,如果一个函数在某一范围内导数的绝对值较大,那么在这个范围内函数值变化得快,这时,函数的图象就比较“陡峭”(向上或向下);如果一个函数在某一范围内导数的绝对值较小,那么在这个范围内函数值变化得慢,函数的图象就“平缓”一些. 常见的对应情况如下表所示.【题型1 不含参函数的单调性】 【方法点拨】确定不含参函数的单调性、单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间;(4)由此可得出函数f (x )的单调性;【例1】(2022•扬州开学)下列函数中,在(1,+∞)上为增函数的是( ) A .y =x 3﹣3xB .y =lnx ﹣xC .y =x +4xD .y =x 2﹣3x +1【解题思路】根据题意,依次分析选项中函数的单调性,即可得答案. 【解答过程】解:根据题意,依次分析选项:对于A ,y =x 3﹣3x ,其导数y ′=3x 2﹣3,在区间(1,+∞)上,y ′>0,函数为增函数,符合题意, 对于B ,y =lnx ﹣x ,其导数y ′=1x −1=1−xx ,在区间(1,+∞)上,y ′<0,函数为减函数,不符合题意,对于C ,y =x +4x,其导数y ′=1−4x 2,在区间(1,2)上,y ′<0,函数为减函数,不符合题意, 对于D ,y =x 2﹣3x +1是二次函数,在区间(1,32)上为减函数,不符合题意, 故选:A .【变式1-1】(2022春•湖北期末)函数f (x )=−12x 2﹣lnx 的递减区间为( ) A .(﹣∞,1)B .(0,1)C .(1,+∞)D .(0,+∞)【解题思路】先对函数求导,然后结合导数与单调性关系可求. 【解答过程】解:f ′(x )=﹣x −1x<0,x >0, 故函数的单调递减区间为(0,+∞). 故选:D .【变式1-2】(2022春•长寿区期末)函数f(x)=x −6x −5lnx 的单调递减区间为( ) A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)【解题思路】求出函数的导数,解关于导函数的不等式,求出函数的递减区间即可.【解答过程】解:∵f(x)=x −6x−5lnx ,定义域是(0,+∞),∴f ′(x )=1+6x 2−5x =x 2−5x+6x 2=(x−2)(x−3)x 2,令f ′(x )<0,解得2<x <3, 故f (x )的递减区间是(2,3), 故选:B .【变式1-3】(2022春•吉林期末)函数f (x )=﹣lnx +x 的递增区间是( ) A .(﹣∞,0)∪(1,+∞) B .(﹣∞,0)和(1,+∞)C .(1,+∞)D .(﹣1,+∞)【解题思路】先写出函数的定义域,求导后,再解不等式f '(x )>0,即可.【解答过程】解:因为f (x )=﹣lnx +x ,所以f '(x )=−1x +1,定义域为(0,+∞), 令f '(x )>0,则−1x +1>0,解得x >1, 所以f (x )的递增区间为(1,+∞). 故选:C .【题型2 含参函数的单调性】 【方法点拨】(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点. 【例2】(2022春•巴宜区校级期末)已知函数f (x )=2x 3﹣ax 2+b . (1)若函数f (x )在x =1处取得极小值﹣4,求实数a ,b 的值; (2)讨论f (x )的单调性. 【解题思路】(1)根据题可得{f ′(1)=0f(1)=−4,解得a ,b .(2)求导并令f ′(x )=0,得x =0或x =a 3,分三种情况:当a =0时,当a <0时,当a >0时,讨论f (x )的单调性.【解答过程】解:(1)f ′(x )=6x 2﹣2ax , 则{f ′(1)=0f(1)=−4,即{6−2a =02−a +b =−4,解得{a =3b =−3.(2)f ′(x )=6x 2﹣2ax =2x (3x ﹣a ), 令f ′(x )=0,得x =0或x =a 3,当a =0时,f ′(x )≥0,f (x )在(﹣∞,+∞)上单调递增,当a <0时,在(﹣∞,a3),(0,+∞)上f ′(x )>0,f (x )单调递增,在(a3,0)上f ′(x )<0,f (x )单调递减,当a >0时,在(﹣∞,0),(a3,+∞)上f ′(x )>0,f (x )单调递增,在(0,a3)上f ′(x )<0,f (x )单调递减,综上所述,当a =0时,f (x )在(﹣∞,+∞)上单调递增,当a <0时,f (x )在(﹣∞,a3),(0,+∞)上单调递增,在(a3,0)上单调递减,当a >0时,f (x )在(﹣∞,0),(a 3,+∞)上单调递增,在(0,a3)上单调递减.【变式2-1】(2022春•满洲里市校级期末)已知函数f (x )=x 2﹣(a +2)x +alnx (a ∈R ). (1)a =﹣2,求函数f (x )在(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.【解题思路】(1)当a =﹣2时,求出f (x )的解析式,对f (x )求导,利用导数的几何意义求出切线斜率,求出f (1),利用点斜式即可求得切线方程;(2)对f (x )求导,再对a 分类讨论,利用导数与单调性的关系求解即可. 【解答过程】解:(1)当a =﹣2时,f (x )=x 2﹣2lnx ,f ′(x)=2x −2x切线的斜率k =f ′(1)=0,f (1)=1,则切线方程为y ﹣1=0,即y =1. (2)函数f (x )的定义域为(0,+∞),且f ′(x)=2x −(a +2)+ax =(2x−a)(x−1)x , ①当a ≤0时,a 2≤0,由f ′(x )>0,得x >1;由f ′(x )<0,得0<x <1. 则函数f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).②当0<a2<1,即0<a <2时,由f ′(x )>0,得0<x <a2或x >1;由f ′(x )<0,得a2<x <1.则函数f (x )的单调递增区间为(0,a2),(1,+∞), 函数f (x )的单调递减区间为(a2,1).③当a 2=1,即a =2时,f ′(x )≥0恒成立,则函数f (x )的单调递增区间为(0,+∞).④当a2>1,即a >2时,由f ′(x )>0,得0<x <1或x >a 2;由f ′(x )<0,得1<x <a2, 则函数f (x )的单调递增区间为(0,1),(a2,+∞),函数f (x )的单调递减区间为(1,a2). 综上所述,当a ≤0时,函数f (x )在(1,+∞)上单调递增,在(0,1)上单调递减; 当0<a <2时,函数f (x )在(0,a2)和(1,+∞)上单调递增,在(a2,1)上单调递减; 当a =2时,函数f (x )在(0,+∞)上单调递增;当a >2时,函数f (x )在(0,1)和(a 2,+∞)上单调递增,在(1,a 2)上单调递减. 【变式2-2】(2022春•蓝田县期末)已知函数f (x )=alnx ﹣ax ﹣3(a ≠0). (Ⅰ)讨论函数f (x )的单调性;(Ⅱ)当a =﹣1时,证明:在(1,+∞)上,f (x )+2>0. 【解题思路】(Ⅰ)先求导,再分类讨论导函数的符号即可求解;(Ⅱ)构造函数g (x )=f (x )+2,再利用导数求出g (x )的最值,从而得证. 【解答过程】解:(Ⅰ)∵f ′(x)=a x −a =a(1−x)x ,x >0, ①当a >0时,x ∈(0,1),f ′(x )>0;x ∈(1,+∞),f ′(x )<0, ∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; ②当a <0时,x ∈(0,1),f ′(x )<0;x ∈(1,+∞),f ′(x )>0, ∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.综合可得:当a >0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a <0时,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增. (Ⅱ)证明:当a =﹣1时,令g (x )=f (x )+2=﹣lnx +x ﹣1,x >1, ∴g ′(x)=−1x +1=x−1x >0, ∴g (x )在(1,+∞)上单调递增, ∴g (x )>g (1)=0,故在(1,+∞)上,f (x )+2>0.【变式2-3】(2022春•南沙区期末)已知函数f (x )=2lnx ﹣ax 2﹣2(a ﹣1)x +1(a ∈R ).(1)求函数f(x)的单调区间;(2)若函数f(x)有两个不同的零点x1,x2,求实数a的取值范围.【解题思路】(1)先对函数求导,然后结合导数与单调性关系对a进行分类讨论,进而可求函数的单调区间;(2)结合(1)中单调性的讨论及函数零点存在条件可建立关于a的不等式,结合函数的性质解不等式可求a的范围.【解答过程】解:(1)f′(x)=2x−2ax﹣2(a﹣1)=−2ax2−2(a−1)x+2x=−2(ax−1)(x+1)x,因为x>0,x+1>0,故当a≤0时,f′(x)>0,此时f(x)在(0,+∞)上单调递增,当a>0时,x>1a时,f′(x)<0,0<x<1a时,f′(x)>0,故f(x)在(0,1a )上单调递增,在(1a,+∞)上单调递减,综上,当a≤0时,f(x)的单调递增区间为(0,+∞),没有单调递减区间,当a>0时,f(x)的单调递增区间为(0,1a ),单调递减区间为(1a,+∞);(2)当a≤0时,f(x)的单调递增区间为(0,+∞),没有单调递减区间,此时函数最多一个零点,不符合题意;当a>0时,f(x)的单调递增区间为(0,1a ),单调递减区间为(1a,+∞),又x→+∞时,f(x)→﹣∞,x→0且x>0时,f(x)→﹣∞,若使f(x)有2个零点,则f(1a )=−2lna+1a−1=2ln1a+1a−1>0,令t=1a,则t>0,即2lnt+t﹣1>0,令g(t)=2lnt+t﹣1,则g(t)在t>0时单调递增且g(1)=0,所以t>1,所以0<a<1,故a的取值范围为(0,1).【题型3 利用函数的单调性比较大小】【方法点拨】根据题目条件,构造函数,利用导数研究函数的单调性,利用函数的单调性来比较大小,即可得解. 【例3】(2022春•眉山期末)已知实数x ,y ,z 满足e y lnx ﹣ye x =0,ze x −e x ln 1x =0,若y >1,则( ) A .x >y >zB .y >x >zC .y >z >xD .x >z >y【解题思路】首先根据题中的条件得到e y y+e z z=0,从而得到z <0;再根据x >1时,x >lnx 得到e y y>e xx,结合函数g(x)=e xx (x >1)的单调性得到y >x ,从而得到y >x >z . 【解答过程】解:由e y lnx ﹣ye x =0,得e y y =e x lnx ;由ze x −e zln 1x =0,得e z z =e x ln1x,两式相加得e y y+e z z=0,因为y >1,e y >0,所以e z z <0,又因为e z >0,所以z <0;因为e yy =e x lnx,y >1,所以e xlnx>0,即lnx >0,所以x >1.令f (x )=x ﹣lnx (x >1),则f ′(x)=1−1x =x−1x , 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )=x ﹣lnx 在(1,+∞)内单调递增,即x >lnx , 所以e y y=e x lnx>e x x,即e y y>e x x,又令g(x)=e x x (x >1),则g ′(x)=xe x −e x x 2=(x−1)e xx 2(x >1),当x >1时,g ′(x )>0,所以g(x)=e xx在(1,+∞)内单调递增,所以由e y y>e x x,得到y >x .所以y >x >z . 故选:B .【变式3-1】(2022春•绍兴期末)已知a =e 0.2﹣1,b =ln 1.2,c =tan0.2,其中e =2.71828⋯为自然对数的底数,则( ) A .c >a >bB .a >c >bC .b >a >cD .a >b >c【解题思路】观察a =e 0.2﹣1,b =ln 1.2,c =tan0.2,发现都含有0.2,把0.2换成x ,自变量在(0,1)或其子集范围内构造函数,利用导数证明其单调性,比较a ,b ,c 的大小. 【解答过程】解:令f(x)=e x −1−tanx =cosxe x −cosx−sinx cosx ,0<x <π4,令g(x)=cos xe x﹣cos x﹣sin x,则g′(x)=(e x﹣1)(cos x﹣sin x),当0<x<π4时,g′(x)>0,g(x)单调递增,又g(0)=1﹣1=0,所以g(x)>0,又cos x>0,所以f(x)>0,在(0,π4)成立,所以f(0.2)>0,即a>c,令ℎ(x)=ln(x+1)−x,ℎ′(x)=1x+1−1=−xx+1,ℎ(x)在x∈(0,π2)为减函数,所以h(x)<h(0)=0,即ln(x+1)<x,令m(x)=x−tanx,m′(x)=1−1cos2x,m(x)在x∈(0,π2)为减函数,所以m(x)<m(0)=0,即x<tan x,所以ln(x+1)<x<tanx,x∈(0,π2)成立,令x=0.2,则上式变为ln(0.2+1)<0.2<tan0.2,所以b<0.2<c所以b<c,所以b<c<a.故选:B.【变式3-2】(2022春•渭南期末)已知函数f(x)=sin x+cos x﹣2x,a=f(﹣π),b=f(20),c=f(ln2),则a,b,c的大小关系是()A.a>c>b B.a>b>c C.b>a>c D.c>b>a【解题思路】利用导数判断函数f(x)的单调性,进而可比较函数值的大小.【解答过程】解:因为函数f(x)=sin x+cos x﹣2x,所以f′(x)=cos x﹣sin x﹣2=√2cos(x+π4)﹣2<0,所以f(x)为R上的减函数,因为﹣π<ln2<1=20,所以f(﹣π)>f(ln2)>f(20),即a>c>b.故选:A.【变式3-3】(2022•山东开学)已知0<a<4,0<b<2,0<c<3,且16lna=a2ln4,4lnb=b2ln2,9lnc=c2ln3,则()A.c>b>a B.c>a>b C.a>c>b D.b>c>a【解题思路】根据等式关系进行转化,然后构造函数f(x)=lnxx2,研究函数的单调性和图象,利用数形结合进行判断即可.【解答过程】解:由16lna =a 2ln 4,4lnb =b 2ln 2,9lnc =c 2ln 3, 得lna a 2=ln442,lnb b 2=ln222,lnc c 2=ln332,构造函数f (x )=lnxx 2, 得f (a )=f (4),f (b )=f (2),f (c )=f (3), f ′(x )=1x ⋅x 2−2xlnxx 4=x−2xlnx x 4=1−2lnxx 3, 由f ′(x )=0得1﹣2lnx =0,得lnx =12,即x =√e当x >√e 时,1﹣2lnx <0,即f ′(x )<0,则f (x )在(√e ,+∞)上为减函数, 当0<x <√e 时,1﹣2lnx >0,即f ′(x )>0,则f (x )在(0,√e )上为增函数, 则f (2)>f (3)>f (4), 即f (b )>f (c )>f (a ), ∵f (x )在(0,√e )上为增函数, ∴√e >b >c >a >0, 故选:D .【题型4 利用函数的单调性解不等式】 【方法点拨】要充分挖掘条件关系,恰当构造函数,与题设形成解题链条,利用导数研究新函数的单调性,从而转化求 解不等式.【例4】(2021秋•重庆月考)已知f (x )是定义在R 上的可导函数,其导函数为f ′(x ),且f '(x )﹣2f (x )>0,f (12)=e (e 为自然对数的底数),则关于x 的不等式f (lnx )<x 2的解集为( )A .(0,e2)B .(0,√e )C .(1e,e2)D .(e2,√e )【解题思路】令F (x )=f(x)e x ,求导分析单调性,不等式f (lnx )<x 2,可转化为f(lnx)e2lnx <f(12)e 2×12,即g (lnx )<g (12),即可得出答案. 【解答过程】解:令g (x )=f(x)e x ,g ′(x )=e 2x f′(x)−2e 2x f(x)e 4x =f′(x)−2f(x)e 2x>0,所以g (x )在R 上单调递增, 不等式f (lnx )<x 2,则f(lnx)x 2<1,又f (12)=e ,所以f(lnx)e 2lnx<f(12)e 2×12,即g (lnx )<g (12),所以lnx <12, 解得0<x <√e , 故选:B .【变式4-1】(2022春•新邵县期末)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f '(x )g (x )﹣f (x )g '(x )>0,且f (2)=0,则不等式f (x )g (x )>0的解集是( ) A .(﹣∞,﹣2)∪(0,2) B .(﹣2,0)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(2,+∞)【解题思路】令F (x )=f(x)g(x),求导分析F (x )的单调性,根据题意可得F (x )的奇偶性,由f (2)=0,得F (2)=0,则不等式f (x )g (x )>0的解集为F (x )>F (2)解集,即可得出答案. 【解答过程】解:令F (x )=f(x)g(x), F ′(x )=f′(x)g(x)−f(x)g′(x)g 2(x),因为当x <0时,f '(x )g (x )﹣f (x )g '(x )>0, 所以当x <0时,F ′(x )>0, 所以F (x )在(﹣∞,0)上为增函数,因为f (x ),g (x )分别是定义在R 上的奇函数和偶函数, 所以f (﹣x )=﹣f (x ),g (﹣x )=g (x ),所以F(﹣x)=f(−x)g(−x)=−f(x)g(x)=−F(x),所以F(x)在(﹣∞,+∞)上为奇函数,所以F(x)在(0,+∞)上为增函数,因为f(2)=0,所以F(2)=f(2)g(2)=0,所以不等式f(x)g(x)>0的解集为F(x)>0的解集,所以F(x)>F(2),所以x>2或﹣2<x<0,故选:D.【变式4-2】(2022春•辽宁月考)已知函数f(x)在R上存在导函数f'(x),对∀x∈R满足f(x)+f(﹣x)=2x2,在x∈(0,+∞)上,f'(x)<2x若f(2﹣m)﹣f(m)≥4﹣4m,实数m的取值范围是()A.[﹣1,1]B.(﹣∞,1]C.[1,+∞)D.(﹣∞,﹣1]∪[1,+∞)【解题思路】构造函数g(x)=f(x)﹣x2,推出g(x)为奇函数,再由导数判断g(x)的单调性,把不等式f(2﹣m)﹣f(m)≥4﹣4m转化为关于m的一次不等式求解.【解答过程】解:∵f(x)+f(﹣x)=2x2,∴f(x)﹣2x2+f(﹣x)=0,令g(x)=f(x)﹣x2,则g(﹣x)+g(x)=f(﹣x)﹣x2+f(x)﹣x2=0,∴函数g(x)为奇函数.∵x∈(0,+∞)时,g′(x)=f′(x)﹣2x<0,故函数g(x)在(0,+∞)上是单调递减函数,则函数g(x)在(﹣∞,0)上也是单调递减函数.由f(0)=0,得g(0)=0,可得g(x)在R上是单调递减.则f(2﹣m)﹣f(m)≥4﹣4m⇔f(2﹣m)﹣(2﹣m)2≥f(m)﹣m2,即g(2﹣m)≥g(m),∴2﹣m≤m,解得m≥1,∴实数m的取值范围是[1,+∞).故选:C .【变式4-3】(2022春•赣州期末)已知定义在R 上的函数f (x ),其导函数为f '(x ).若f (x )=﹣f (﹣x )﹣cos x ,且当x ≤0时,f ′(x)−12sinx >0,则不等式f (π﹣x )>f (x )+cos x 的解集为( )A .(−∞,π2)B .(π2,+∞) C .(﹣∞,π) D .(π,+∞) 【解题思路】构造函数g(x)=f(x)+12cosx ,然后判断g (x )的奇偶性,然后再由导数分析g (x )的单调性,结合单调性及奇偶性可求.【解答过程】解:设g(x)=f(x)+12cosx ,因为f (x )=﹣f (﹣x )﹣cos x ,所以f (﹣x )=﹣f (x )﹣cos x ,所以g(−x)=f(−x)+12cosx =−f (x )﹣cos x +12cos x =﹣f (x )−12cos x ,即g (x )为奇函数,而g ′(x)=f ′(x)−12sinx >0,则g (x )在R 上单调递增,f (π﹣x )>f (x )+cos x ,即f(π−x)−12cosx >f(x)+12cosx ⇒f(π−x)+12cos(π−x)>f(x)+12cosx ,即g(π−x)>g(x)⇒π−x >x ⇒x <π2,所以x 的范围为(﹣∞,π2). 故选:A .【题型5 函数单调性与导函数图象的关系】【例5】(2022•赫山区校级开学)如图所示是函数f (x )的导函数f ′(x )的图象,则下列判断中正确的是( )A .函数f (x )在区间(﹣3,0)上是减函数B .函数f (x )在区间(﹣3,2)上是减函数C.函数f(x)在区间(0,2)上是减函数D.函数f(x)在区间(﹣3,2)上是单调函数【解题思路】根据函数y=f(x)的导函数f′(x)>0时单调递增,f'(x)<0时单调递减,依次判断选项即可.【解答过程】解:由函数y=f(x)的导函数f′(x)的图像知,A.x∈(﹣3,0)时,f'(x)<0,函数f(x)单调递减,故A正确;B.x∈(﹣3,2)时,f'(x)<0或f'(x)>0,所以函数f(x)先单调递减,再单调递增,故B错误;C.x∈(0,2)时,f'(x)>0,函数f(x)单调递增,故C错误;D.x∈(﹣3,2)时,f'(x)<0或f'(x)>0,所以函数f(x)先单调递减,再单调递增,不是单调函数,故D错误.故选:A.【变式5-1】(2022春•平顶山期末)已知函数y=f(x)的部分图象如图所示,且f'(x)是f(x)的导函数,则()A.f'(﹣1)=f'(﹣2)<0<f'(1)<f'(2)B.0>f'(2)>f'(1)>f'(﹣1)=f'(﹣2)C.f'(2)<f'(1)<0<f'(﹣1)=f'(﹣2)D.f'(2)<f'(1)<0<f'(﹣2)<f'(﹣1)【解题思路】根据函数图象的特征,判断函数的单调性,进而判断导数的变化情况,即可得答案.【解答过程】解:由函数图象可知,当x≤0时,函数y=f(x)匀速递增,故f′(x)是一个大于0的常数,当x≥0时,函数y=f(x)递减,且递减幅度越来越快,∴f′(x)<0,且y=f′(x)单调递减,则f′(2)<f′(1)<0<f′(﹣1)=f′(﹣2),故选:C.【变式5-2】(2022春•莆田期末)定义在(﹣1,3)上的函数y=f(x),其导函数y=f'(x)图象如右图所示,则y=f(x)的单调递减区间是()A.(﹣1,0)B.(﹣1,1)C.(0,2)D.(2,3)【解题思路】利用导函数的图像,即可得出答案.【解答过程】解:由f′(x)的图像可知在(0,2)上,f′(x)<0,f(x)单调递减,故选:C.【变式5-3】(2022春•遵义期末)函数f(x)的导函数为f'(x)的图象如图所示,关于函数f(x),下列说法不正确的是()A.函数在(﹣1,1),(3,+∞)上单调递增B.函数在(﹣∞,﹣1),(1,3)上单调递减C.函数存在两个极值点D.函数有最小值,但是无最大值【解题思路】由导函数的图像,分析原函数f(x)的单调性,最值,极值,即可得出答案.【解答过程】解:由图像可知在(﹣∞,﹣1),(1,3)上,f′(x)<0,f(x)单调递减,在(﹣1,1),(3,+∞)上,f′(x)>0,f(x)单调递增,故A、B正确;在x=﹣1,x=3处函数f(x)取得极小值,在x=1处函数f(x)取得极大值,故C错误;函数的最小值为f(﹣1)和f(3)中的最小值,因为x→+∞时,函数f(x)→+∞,所以函数f(x)无最大值,故D正确,故选:C.【题型6 根据函数的单调性求参数】【方法点拨】根据函数单调性求参数的一般思路:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增(减)函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0(f′(x)≤0)且在(a,b)内的任一非空子区间上,f′(x)不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.【例6】(2022•安徽开学)已知函数f(x)=4cosx−13mx3在[3π4,2π]上单调递增,则实数m的取值范围为()A.(−∞,−16√39π]B.(−∞,−16√29π2]C.(−∞,−32√39π]D.(−∞,−32√29π2]【解题思路】由函数的单调性可知导数f′(x)≥0在[3π4,2π]上恒成立,分离参数后,利用导数求g(x)=−4sinxx2的最小值即可得解.【解答过程】解:由题意得,f′(x)=﹣4sin x﹣mx2,又f′(x)≥0在[3π4,2π]上,则﹣4sin x﹣mx2≥0,∴−4sinxx2≥m.令g(x)=−4sinxx2,可知当x∈[3π4,π)时,g(x)<0,当x∈[π,2π]时,g(x)≥0,当x∈[3π4,π)时,g′(x)=4x3(2sinx−xcosx)>0,∴函数g(x)在[3π4,π)上单调递增,∴g(x)min=g(3π4)=−32√29π2,则m≤−32√29π2,∴实数m的取值范围为(−∞,−32√29π2).故选:D.【变式6-1】(2022春•清远期末)已知函数f (x )=alnx +2x 在[1,+∞)上单调递增,则实数a 的最小值为( )A .﹣2B .2C .﹣1D .1【解题思路】求出原函数的导函数,问题转化为a ≥﹣2x 在x ∈[1,+∞)时恒成立,再求出﹣2x 在[1,+∞)上的最大值得答案.【解答过程】解:由f (x )=alnx +2x ,得f ′(x )=a x +2,∵函数f (x )=alnx +2x 在[1,+∞)上单调递增,∴a x +2≥0,即a ≥﹣2x 在x ∈[1,+∞)时恒成立, 而﹣2x 在[1,+∞)上的最大值为﹣2,∴a ≥﹣2,即实数a 的最小值为﹣2.故选:A .【变式6-2】(2022春•中山市校级月考)设函数f(x)=13x 3−27lnx 在区间[a ﹣1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .[4,+∞)C .(﹣∞,2]D .(0,3] 【解题思路】利用导数求函数的单调递减区间,再结合区间的包含关系,列式求实数a 的取值范围.【解答过程】解:f′(x)=x 2−27x =x 3−27x ,x >0,令f '(x )≤0,得0<x ≤3, 因为函数f(x)=13x 3−27lnx 在区间[a ﹣1,a +1]上单调递减,所以{a −1>0a +1≤3,故1<a ≤2, 所以a 的取值范围为(1,2].故选:A .【变式6-3】(2022春•道里区校级月考)若函数f (x )=(x 2﹣ax ﹣a )e x 在区间(﹣2,0)内单调递减,则实数a 的取值范围是( )A .[1,+∞)B .[0,+∞)C .(﹣∞,0]D .(﹣∞,1]【解题思路】结合导数与单调性关系可把问题转化为f ′(x )=[x 2+(2﹣a )x ﹣2a ]e x ≤0在(﹣2,0)上恒成立,分离常数后可求.【解答过程】解:由题意得f ′(x )=[x 2+(2﹣a )x ﹣2a ]e x ≤0在(﹣2,0)上恒成立,因为e x >0,即x2+(2﹣a)x﹣2a≤0在(﹣2,0)上恒成立,所以(x﹣a)(x+2)≤0在(﹣2,0)上恒成立,所以x﹣a≤0在(﹣2,0)上恒成立,所以a≥x在(﹣2,0)上恒成立,所以a≥0.故选:B.。
2020届江苏高考数学(文)总复习讲义:导数与函数的单调性
导数与函数的单调性__ry=^^ 前0肆籟• •>必过教材美函数的单调性在(a, b)内可导函数f(x), f' (x)在(a, b)任意子区间内都不恒等于O.f' (x)> 0? f(x)在(a, b)上为增函数.f' (x)w 0? f(x)在(a, b)上为减函数.[小题体验]1 .函数f(x) = e x—x的减区间为________ .答案:(—R, 0)2.已知a>0,函数f(x)= x3—ax在[1 , +m)上是增函数,则实数a的取值范围为答案:(0,3]••>必过易措关1. 求函数单调区间与函数极值时没有列表的习惯,会造成问题不能直观且有条理的解决.2. 注意两种表述"函数f(x)在(a, b)上为减函数”与"函数f(x)的减区间为(a, b)”的区别.[小题纠偏]11 .函数y=只2—In x的单调递减区间为__________ .1 x —1 x—1x+1 ”一解析:y = x—1= = * (x> 0),令y' v 0 得0 v x v 1.所以函数的单调递减区间为(0,1).答案:(0,1)1 22.已知函数f(x)=—?x + bln x在区间[2 , )上是减函数,则b的取值范围是解析:由题意得,f' (x)=—x + 0在[2,+ s )上恒成立,即b< x2在[2 ,+s)上恒成立,•••函数g(x)= x2在[2 , + s )上单调递增,••• g(x)min= g(2) = 4 ,••• b W 4.答案:(—s, 4]考点一判断函数的单调性重点保分型考点一一师生共研[典例引领]2 _(2018南京学情调研)已知函数f(x)= ax — bx + In x , a , b € R . (1) 当a = b = 1时,求曲线 y = f(x)在x = 1处的切线方程; ⑵当b = 2a + 1时,讨论函数f(x)的单调性. 解:⑴因为 a = b = 1,所以 f(x)= x 2— x + In x ,1从而 f ' (x)= 2x — 1+ . x因为 f(1) = 0, f (1) = 2,所以曲线 y = f(x)在x = 1处的切线方程为 y — 0= 2(x — 1),即2x — y — 2= 0. (2) 因为 b = 2a + 1,所以 f(x) = ax 2— (2a + 1)x + In x(x > 0),21 2ax — 2a + 1 x + 1 2ax — 1 x — 1从而 f (x)= 2ax — (2a + 1) + -= -------- ------- 1--- -- ------------ > ------ [x x x 当 a w 0 时,由 f ' (x)> 0,得 0v x v 1;由 f ' (x)v 0,得 x > 1, 所以f(x)在(0,1)上单调递增,在(1, + g )上单调递减.1 11 当 0 v a v 了时,由 f ' (x) > 0,得 0v x v 1 或 x > —;由 f ' (x)v 0,得 1 v x <丁,2 2a2a当a = *时,因为f ' (x)A 0(当且仅当x = 1时取等号),所以f(x)在(0, +^)上单调递增. 1 1 1当 a >1 时,由 f ' (x)>0,得 0v x v —或 x > 1 ;由 f ' (x)v 0 得丁v x v 1,2 2a 2a 所以f(x)在0,2a 和(1,+m)上单调递增,在2a ,1上单调递减.[由题悟法]判断函数单调性的步骤 (1) 确定函数f(x)的定义域;(2) 求导数f ' (x),并求方程f ' (x)= 0的根;⑶利用f ' (x)= 0的根将函数的定义域分成若干个子区间,在这些子区间上讨论 f ' (x)的正负,由f ' (x)的正负确定f(x)在相应子区间上的单调性.[提醒]研究含参数函数的单调性时, 需注意依据参数取值对不等式解集的影响进行分 类讨论.[即时应用]已知函数f(x)= x 3— ax — 1,讨论f(x)的单调性. 解:f(x)所以f(x)在(0,1)和 右+上单调递增,在1,2a 上单调递减.的定义域为R f' (x)= 3x2— a.①当a w 0时,f' (x)A 0恒成立,所以f(x)在R上为增函数.②当a>0 时,令3x2—a= 0,得x = ±^,3当x>—^或xv ---------3a时,f' (x)>0;3 3当一晋V x时,f' (x)v 0.3 3因此f(x)在—a,—乎,今,+ m上为增函数,在—-^,呼上为减函数.综上可知,当a w 0时,f(x)在R上为增函数;当a> 0时,f(x)在子,+ 上为增函数,在,哼上为减函数.考点二求函数的单调区间重点保分型考点一一师生共研[典例引领]已知函数f(x)= (x2+ ax+ a)e x,其中a€ R, e是自然对数的底数.(1) 当a= 1时,求曲线y= f(x)在x= 0处的切线方程;⑵求函数f(x)的单调减区间.解:(1)当a= 1 时,f(x)= (x2+ x + 1)e x,所以f(0) = 1. 因为f' (x)= (x2+ 3x + 2)e x,所以f' (0)=2.所以切线方程为y— 1 = 2(x—0),即卩2x —y+1 = 0.(2) 因为f' (x)= [x + (a+ 2)x+ 2a]e x= (x+ a)(x+ 2)e x,当a = 2时,f' (x)= (x + 2)2e x>0,所以f(x)无单调减区间. 当一a>—2,即卩a v 2时,列表如下:x (—m,—2)—2(—2,—a)—a(—a,+ a)f' (x)+ 0一0+f(x)极大值极小值所以f(x)的单调减区间是(一2, —a). 当一a v—2,即卩a>2时,列表如下:x(—a,—a)—a(—a, —2)—2(—2,+ a )f' (x)+ 0一0+f(x)极大值极小值所以f(x)的单调减区间是(一a, —2).综上,当a = 2时,f(x)无单调减区间;当a v 2时,f(x)的单调减区间是(一2,—a);当a>2时,f(x)的单调减区间是(一a, —2).[由题悟法]求函数的单调区间的2方法法一:⑴确定函数y= f(x)的定义域;(2) 求导数f' (x);(3) 解不等式f' (x) > 0,解集在定义域内的部分为单调递增区间;(4) 解不等式f' (x) V 0,解集在定义域内的部分为单调递减区间.法二:(1)确定函数y= f(x)的定义域;(2)求导数f' (x),令f' (x)= 0,解此方程,求出在定义区间内的一切实根;⑶把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f' (x)在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.[即时应用]2 21. (2018常州期中)已知函数f(x)= x - ax—ainx.(1) 求f(x)的单调区间;⑵若f(x)> 0恒成立,求实数a的取值范围.解:⑴函数f(x)的定义域为(0,+^),fx —a 'f2x+ a \ f' (x)= —由f' (x)= 0,可得x= a 或x = —a,①当a = 0时,f' (x)> 0在(0 ,+s)上恒成立,••• f(x)的单调递增区间是(0 ,+R),无单调递减区间.②当a> 0时,由f' (x)> 0,解得x> a,函数f(x)单调递增;由f' (x)v 0,解得0V x v a,函数f(x)单调递减,•f(x)的单调递减区间是(0, a),单调递增区间是(a, + m).③当a v 0时,由f' (x)> 0,解得x>—:,函数f(x)单调递增;由f' (x)v 0,解得0v x v —2,函数f(x)单调递减,•f(x)的单调递减区间是0,—;,单调递增区间是一a>+.(2) f(x) > 0恒成立等价于f(x)min > 0,由⑴知,①当a = 0时,f(x) = x2> 0,符合题意;②当a>0时,f(x)的单调递减区间是(0, a),单调递增区间是(a, + ),2 2 2…f(x)min = f(a)= a —a —a in a》0,解得0 v a< 1;2. (2019苏州十中检测)设函数f(x)= 2x 2 + e x — xe X . ⑴求f(x)的单调区间;⑵若x € [ — 2,2]时,不等式f(x)>m 恒成立,求实数 m 的取值范围.解:(1)f ' (x)= x + e x — (e x + xe x)= x(1 — e x ). 若 x v 0,贝U 1 — e x >0,所以 f ' (x)v 0; 若 x >0,贝U 1 — e x v 0,所以 f ' (x)v 0; 若 x = 0,则 f ' (x) = 0.所以f(x)在(—m ,+ m )上为减函数,即f(x)的单调减区间为(―m,+m ). ⑵因为x € [ — 2,2]时,不等式f(x)>m 恒成立,所以 m v f(x)min ; 由⑴知f(x)在[—2,2]上单调递减,所以 f(x)min = f(2) = 2— e 2. 所以当m v 2— e 2时,不等式f(x)> m 恒成立. 故实数m 的取值范围为(一m, 2— e 2). 考点三由函数的单调性求参数的取值范围重点保分型考点一一师生共研[典例引领](2019木渎高级中学模拟)已知函数f(x) = 2xln x — x 2+ ax(a € R 是常数).(1) 当a = 2时,求曲线y = f(x)在点(1, f(1))处的切线方程;_1 "| 一(2) 若f(x)在区间匚,e 内单调递增,求a 的取值范围. 解:(1)因为 a = 2时,f(x) = 2xln x — x 2 + 2x , f ' (x)= 2(ln x + 1)— 2x + 2 = 2ln x — 2x + 4, 所以 f ' (1) = 2, f(1) = 1,故切线方程是 y — 1 = 2(x — 1),即2x — y — 1 = 0.③当a v 0时,f(x)的单调递减区间是 0,单调递增区间是 -f(X )min = fa ,- + m ,2 '十,2 2—a = a_ + a_.2丿4十23解得—2e 4 < a v 0. 综上,实数a 的取值范围是 3 [—2e 4, 1].0, a 2ln(2)f ' (x) = 2ln x — 2x + a + 2,1 e 内单调递增,则 a + 2> 2(x — In x)在区间设 h(x)= x — In x , x € -, e ,贝U h ' (x) = 1 —1若f(x)在区间e ,e 内恒成立,1 x — 1 X ==,1由 h ' (x)> 0,得 1 v x < e ; 由 h ' (x)v 0,得一 w x v 1,e 故h(x)在e ,1 '内单调递减,在(1, e ]内单调递增, 而h 1 + 1 v h(e)= e - 1,3 e故 a + 2> 2e - 2,解得 a > 2e -4, 所以a 的取值范围是[2e -4,+^).[由题悟法]由函数单调性求参数的一般思路即“若函数单调递增, 则f ' (x)A 0;若函数单调递减,则f ' (x)w 0”来求解.[提醒]f(x)为增函数的充要条件是对任意的 x € (a , b)都有f ' (x)>0,且在(a , b)内的任一非空子区间上f ' (x)不恒为0.应注意此时式子中的等号不能省略,否则漏解.[即时应用]已知函数 f(x)= e x - ax — 1. (1) 求f(x)的单调递增区间;(2) 是否存在实数a ,使f(x)在(—2,3)上单调递减?若存在,求出 a 的取值范围;若不存 在,请说明理由.解:f ' (x) = e x - a.(1)若 a w 0,则 f ' (x)= e x - a > 0 恒成立, 即f(x)在R 上单调递增;若 a >0,令 e x - a > 0,解得 x > In a , 即f(x)在[In a ,+ a )上单调递增,因此当a w 0时,f(x)的单调递增区间为 R ; 当a >0时,f(x)的单调递增区间为[ln a ,+ a ). (2)存在实数a 满足条件.因为 f ' (x)= e x - a w 0 在(-2,3)上恒成立, 所以a > e x 在(—2,3)上恒成立.又因为—2v x v 3,所以e -2v e x v e 3,要使a > e x 在(—2,3)上恒成立,只需 a > e 3.故存在实数a € [e 3,+ a ),使f (x)在(-2,3)上单调递减.(1)利用集合间的包含关系处理: 的子集.y = f(x)在(a , b)上单调,则区间(a , b)是相应单调区间(2)转化为不等式的恒成立问题,0 口1=1一抓基础,多练小题做到眼疾手快1. ______________________________________ 函数f(x) = x—In x的单调减区间为.1 x 一1解析:函数的定义域是(0,+g),且f' (x)= 1 —-= ---------------- ,令f' (x) v 0,得0 v x v 1.答案:(0,1)2. (2018 •东中学检测)已知函数f(x)= x —1 —(e—1)ln x,其中e为自然对数的底数,则满足f(e x)v 0的x的取值范围为 __________ .e—1 解析:由f' (x)= 1—一 = 0(x>0),得x= e—1.当x € (0, e—1)时,f' (x) v 0,函数f(x)单调递减;当x € (e—1,+ g )时,函数f(x)单调递增.又f(1) = f(e)= 0,1 v e—1 v e,所以由f(e x)v 0得1v e x v e,解得0v x v 1.答案:(0,1)1 3 一k3. (2019盐城中学检测)若函数f(x)= 4x+ —厂+ In x在区间[1,2]上单调递增,则实数k的取值范围是 _________ .1 —一k解析:•••函数f(x) = 1x + 一;厂+ In x在区间[1,2]上单调递增,4 x1 k—— 1二f' (x) = ;+ — +1> 0 在[1,2]上恒成立,4 x x1 2k> —1x —x+ —,4••• y=—良2—x+ —在[1,2]上单调递减,4••• k> £答案:7,+g /4. ___________________ 定义在R上的可导函数f(x),已知y= e f'⑷的图象如图所示, 则y= f(x)的增区间是 .解析:由题意及题图知f' (x) > 0的区间是(一g, 2), 故函数y= f(x)的增区间是(一g, 2).答案:(—g, 2)5. (2019响水中学模拟)若函数f(x)= ax———x在区间(一1, 1)上为单调减函数,则a的取值范围是_____________ .解析:若函数f(x) = ax———x在(—1,1)上为单调减函数,则f' (x)w 0在(—1,1)上恒成立,即—ax2——< 0在(—1,1)上恒成立,即ax2< 1在(—1,1)上恒成立.若a w 0,满足条件.若a>0,则只要当x= 1或x =—1时,满足条件即可,此时a w 1,即卩0v a< 1.综上a w 1.答案:(—3 1]二保咼考,全练题型做到咼考达标1 •若幕函数f(x)的图象过点寓2,1 j则函数g(x)= e x f(x)的单调递减区间为_____________ .解析:设幕函数f(x)= x a,因为图象过点俘,2丿,所以卜密r,a=2,所以f(x)= x2,故g(x) = e x x2,令g' (x)= e x x2+ 2e x x= e x(x2+ 2x)v 0,得—2v x v0,故函数g(x)的单调递减区间为(一2,0)•答案:(—2,0)2.函数f(x) = (x —3)e x的单调递增区间为_________ •解析:函数f(x)= (x—3)e x的导数为f' (x)= [(x —3)e x]' = e x+ (x —3)e x= (x —2)e x.由函数导数与函数单调性的关系,得当f' (x)>0时,函数f(x)单调递增,此时由不等式f' (x)=(x—2)e x> 0,解得x> 2.答案:(2,+s )3•若函数f(x) = 3x3+ x2—ax+ 3a在区间[1,2]上单调递增,则实数a的取值范围是解析:因为f' (x) = x2+ 2x—a,且函数f(x)在区间[1,2]上单调递增,所以f' (x)> 0在[1,2]上恒成立,所以a w (x2+ 2x)min = 3,所以a w 3.答案:(—^, 3]4. (2018淮安期末)若函数f(x) = ^x2—aln x在其定义域内的一个子区间(a —2, a+ 2)上不单调,则实数a的取值范围是 _________ .解析:函数f(x)的定义域是(0, + ),故a— 2 > 0,解得a > 2,而f' (x)= x —a,令x—a= 0,解得x= a.x x因为f(x)在(a—2, a+ 2)上不单调,所以 a —2v a v a + 2,解得0 w a v 4.综上,a € [2,4).答案:[2,4)5. (2018姜堰中学学情调研)函数f(x)在定义域R内可导,若f(x)= f(2 —x),且当x €(— 8,1)时,(x — 1)f ' (x)v 0,设 a = f(0) ,b = f 1 ,C = f(3),则 a,b,c 的大小关系为 ______________ .解析:依题意得,当x v 1时,f ' (x)>0, f(x)在(—8, 1)上为增函数.又f(3) = f(— 1), 且一1v 0v 1v 1,因此 f( — 1)v f(0) v f 1,即 f(3) v f(0)v f 2 , c v a v b.答案:c v a v b6. ______________________________________________ (2018东台中学期末)已知f(x)是定义在R 上的函数,f ' (x)是f(x)的导函数,若f ' (x) + f(x)>0,且f(0) = 1,则不等式f(x) v e —x 的解集为 _______________________________________________________ .解析:令 g(x)= e x f(x),则 g ' (x) = e x [ f'x) + f(x)]>0, 所以g(x)在 R 上单调递增,而f(0) = 1,故g(0) = 1. f(x)v e —x 等价于 e x f(x)v 1,则 g(x)v g(0),解得 x v 0. 答案:( — 8, 0)7. _______________ 已知定义在 R 上的可导函数f(x)满足f ' (x) v 1,若f(2 — m) — f(m) v 2— 2m ,则实数 m 的取值范围是.解析:令g(x)= f(x)— x ,所以g ' (x) = f ' (x) — 1 v 0,即g(x)在R 上单调递减,由题可 知 f(2 — m)— f(m) v 2— 2m , 即卩 f(2 — m)— (2 — m)v f(m)— m ,也即 g(2 — m) v g(m),所以 2 — m > m ,即得 m v 1.答案:( — 8, 1)1 2x 218. _______ 已知函数f(x)(x € R )满足f(1) = 1,且f(x)的导数f ' (x)v 2则不等式f(x )v - + -2的 解集为 .1 1解析:设 F(x)= f(x) — 2x ,所以 F ' (x)= f ' (x)— ^,因为 1xx 1—1 v 0,即函数F(x)在R 上单调递减.因为f(x 2) v — +1F(x 2) v F(1),而函数F(x)在R 上单调递减,所以 x 2> 1,即 答案:(一8, — 1) U (1 ,+8 )9.已知函数f(x) = 4+ In x — 2其中a € R,且曲线y = f(x)在点(1, f(1))处的切线垂 直于直线 y =[.(1)求a 的值;⑵求函数f(x)的单调区间. 解:(1)对f(x)求导得f ' (x)v 1,所以 F ' (x) = f ' (x) x21所以 f(x 2)— : v f(1)—;所以x € ( — 8,— 1) u (1, + 8 ).f' (x)=41 35 由f(x)在点(1, f(1))处的切线垂直于直线y=;x 知f ' (1)=—匚一a =- 2,解得a =.2 44x 53(2)由(1)知 f(x)=4+ 4X —ln x —2,令 f ' (x)= 0,解得 x =— 1 或 x = 5.因为x =— 1不在f(x)的定义域(0,+s )内,故舍去. 当 x € (0,5)时,f ' (x)< 0, 故f(x)在(0,5)内为减函数; 当 x € (5, + g )时,f ' (x) > 0, 故f(x)在(5, + g )内为增函数.综上,f(x)的单调增区间为(5, + g ),单调减区间为(0,5).1 210. (2018前黄高级中学期末)已知函数f(x)= ^ax + 2x — ln x(a € R ). (1) 当a = 3时,求函数f(x)的单调区间;(2) 若函数存在单调增区间,求实数 a 的取值范围.解:(1)当 a = 3 时,f(x)= 3x 2 + 2x — ln x ,其定义域为(0, + g ). 1 (3x — 1 fx + 1 \••• f ' (x) = 3x + 2 —=x x 当 x € 0, 3 时,f ' (x)< 0, f(x)单调递减; 当 x € 3,+ g 时,f ' (x)> 0, f(x)单调递增. • f (x)的单调减区间为0,3,单调增区间为3,+ g . 1(2)f(x) = ?ax 2+ 2x — In x ,其定义域为(0,+g ),1(x) = ax + 2 —= x若函数存在单调增区间,则f ' (x) > 0在区间(0 ,+g )上有解,即ax 2 + 2x — 1 > 0在区间(0,+g )上有解.1 一 2x 1 — 2x分离参数得a > x 2,令g(x) = x 2 ,则依题意,只需 a > g(x)min 即可. 一 g (x)=屮 x -12-1,•- g(x)min =— 1,则 f ' (x) =2x — 4x — 54xax 2+ 2x — 1 x• f '故所求a的取值范围为(一1,+ g).三上台阶,自主选做志在冲刺名校11.已知函数f'(X)是函数f(x)的导函数,f(1)=-,对任意实数X,都有f(x)—f' (x)> 0, e则不等式f(x)v e x—2的解集为__________ .解析:设g(x) = fF,•••对任意实数X,都有f(x) —f' (x) > 0,••• g' (x) v 0, 即g(x)为R上的减函数.由不等式f(x)v e x—2,得号v e"=古,即卩g(x) v g(1).•/ g(x)为R上的减函数,• x> 1,•不等式f(x)v e x—2的解集为(1 ,+^).答案:(1 ,+^ )2.已知函数f(x)= aln x—ax—3(a€ R).(1) 求函数f(x)的单调区间;⑵若函数y= f(x)的图象在点(2, f(2))处的切线的倾斜角为45°对于任意的t€ [1,2], 函数g(x) = x3+ x2 f (x片m在区间(t,3)上总不是单调函数,求m的取值范围.解:⑴函数f(x)的定义域为(0 ,+^),且f' (x)= a 1 —x .当a>0时,f(x)的增区间为(0,1),减区间为(1,+ );当a v 0时,f(x)的增区间为(1,+ g),减区间为(0,1);当a = 0时,f(x)不是单调函数.(2) 由(1)及题意得f' (2)=—扌=1,即a =—2,2x 一2所以f(x)=—2ln x + 2x—3, f' (x)= -------- .所以g(x)= x3+ m + 2 x2—2x,所以g' (x)= 3x2+ (m+ 4)x — 2.因为g(x)在区间(t,3)上总不是单调函数,r /即g' (x)= 0在区间(t,3)上有变号零点.由于g' (0) =—2,所以卩(t v 0,当g,(t) v 0, 即3t2+ (m + 4)t—2v0 对任意t€ [1,2]恒成立,由于g' (0)< 0,故只要g,(1) v 0 且g,(2)v 0,即m v—5 且m v—9,即m v—9 ;由g,(3)>0,即m>-所以一37v m v—9.3即实数m的取值范围是373 .-37,- 9.。
高考数学《函数的单调区间》基础知识与专项练习题(含答案解析)
高考数学《函数的单调区间》基础知识与专项练习题(含答案解析)单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具。
求一个已知函数的单调区间是每一个学生的必备本领,在求解的过程中也要学会一些方法和技巧。
一、基础知识:1、函数的单调性:设()f x 的定义域为D ,区间I D ⊆,若对于1212,,x x I x x ∀∈<,有()()12f x f x <,则称()f x 在I 上单调递增,I 称为单调递增区间。
若对于1212,,x x I x x ∀∈<,有()()12f x f x >,则称()f x 在I 上单调递减,I 称为单调递减区间。
2、导数与单调区间的联系(1)函数()f x 在(),a b 可导,那么()f x 在(),a b 上单调递增()',()0x a b f x ⇒∀∈≥,此结论可以这样理解:对于递增的函数,其图像有三种类型: ,无论是哪种图形,其上面任意一点的切线斜率均大于零。
等号成立的情况:一是单调区间分界点导数有可能为零,例如:()2f x x =的单调递增区间为[)0+∞,,而()'00f =,另一种是位于单调区间内但导数值等于零的点,典型的一个例子为()3f x x =在0x =处的导数为0,但是()0,0位于单调区间内。
(2)函数()f x 在(),a b 可导,则()f x 在(),a b 上单调递减()',()0x a b f x ⇒∀∈≤,(3)前面我们发现了函数的单调性可以决定其导数的符号,那么由()',()x a b f x ∀∈,的符号能否推出()f x 在(),a b 的单调性呢?如果()f x 不是常值函数,那么便可由导数的符号对应推出函数的单调性。
(这也是求函数单调区间的理论基础) 3、利用导数求函数单调区间的步骤 (1)确定函数的定义域(2)求出()f x 的导函数'()f x(3)令'()0f x >(或0<),求出x 的解集,即为()f x 的单调增(或减)区间(4)列出表格4、求单调区间的一些技巧(1)强调先求定义域,一方面定义域对单调区间有限制作用(单调区间为定义域的子集)。
(完整版)函数的单调性知识点与题型归纳
设函数 y= f(x)在某区间 D 内可导.如果 f ′x()>0,则 f (x)在区间 D 内为增函数;如果 f ′x()<0,则 f(x)在区间 D 内为减函数. 注意: (补充 ) ( 1)若使得 f ′x()=0 的 x 的值只有有限个,
一、知识梳理 《名师一号》 P15 注意:
研究函数单调性必须 先求函数的定义域, 函数的单调区间是 定义域的子集 单调区间 不能并 !
知识点一 函数的单调性 1. 单调函数的定义
1
2.单调性、单调区间的定义
若函数 f(x)在区间 D 上是 增函数或减函数 ,则称函数 f(x) 在这一区间上具有 (严格的 )单调性, 区间 D 叫做 f (x)的单 调区间 .
法一:定义法
设- 1<x1<x2,
ax1 ax2 则 f(x1)-f (x2)=x1+ 1- x2+1
ax1 x2+ 1 - ax2 x1+ 1
=
x1+1 x2+ 1
a x1-x2
= x1+ 1
x2+ 1
∵- 1<x1<x2,
∴x1- x2<0, x1+1>0,x2+ 1>0.
6
∴当 a>0 时, f(x1)- f(x2)<0, 即 f(x1)<f(x2), ∴函数 y=f (x)在(-1,+ ∞)上单调递增. 同理当 a<0 时, f (x1)-f (x2)>0, 即 f(x1)>f(x2), ∴函数 y=f (x)在(-1,+ ∞)上单调递减.
[答案 ] C [解析 ] f ′x()=3x2-6a, 若 a≤0,则 f ′x() ≥0,∴ f(x)单调增,排除 A ; 若 a>0,则由 f ′x()=0 得 x= ± 2a,当 x<- 2a和 x> 2a 时,f ′x()>0,f(x)单调增,当- 2a<x < 2a时,f (x)单调减, ∴f (x)的单调减区间为 (- 2a, 2a),从而 2a=2, ∴a= 2.
高考数学一轮复习考点知识专题讲解15---导数与函数的单调性
高考数学一轮复习考点知识专题讲解导数与函数的单调性考点要求1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).知识梳理1.函数的单调性与导数的关系条件恒有结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在区间(a,b)上单调递增f′(x)<0f(x)在区间(a,b)上单调递减f′(x)=f(x)在区间(a,b)上是常数函数2.利用导数判断函数单调性的步骤第1步,确定函数的定义域;第2步,求出导数f′(x)的零点;第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.常用结论1.若函数f(x)在(a,b)上单调递增,则x∈(a,b)时,f′(x)≥0恒成立;若函数f(x)在(a,b)上单调递减,则x∈(a,b)时,f′(x)≤0恒成立.2.若函数f(x)在(a,b)上存在单调递增区间,则x∈(a,b)时,f′(x)>0有解;若函数f(x)在(a,b)上存在单调递减区间,则x∈(a,b)时,f′(x)<0有解.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(2)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内单调递减.(√)(3)若函数f(x)在定义域上都有f′(x)>0,则f(x)在定义域上一定单调递增.(×)(4)函数f(x)=x-sin x在R上是增函数.(√)教材改编题1.f′(x)是f(x)的导函数,若f′(x)的图象如图所示,则f(x)的图象可能是()答案C解析由f′(x)的图象知,当x∈(-∞,0)时,f′(x)>0,∴f(x)单调递增;当x ∈(0,x 1)时,f ′(x )<0,∴f (x )单调递减; 当x ∈(x 1,+∞)时,f ′(x )>0, ∴f (x )单调递增.2.函数f (x )=(x -2)e x 的单调递增区间为________. 答案(1,+∞)解析f (x )的定义域为R ,f ′(x )=(x -1)e x , 令f ′(x )=0,得x =1, 当x ∈(1,+∞)时,f ′(x )>0; 当x ∈(-∞,1)时,f ′(x )<0, ∴f (x )的单调递增区间为(1,+∞).3.若函数f (x )=13x 3-32x 2+ax +4的单调递减区间为[-1,4],则实数a 的值为________.答案-4解析f ′(x )=x 2-3x +a ,且f (x )的单调递减区间为[-1,4],∴f ′(x )=x 2-3x +a ≤0的解集为[-1,4],∴-1,4是方程f ′(x )=0的两根, 则a =(-1)×4=-4.题型一 不含参数的函数的单调性 例1(1)函数y =4x 2+1x的单调递增区间为()A .(0,+∞) B.⎝ ⎛⎭⎪⎫12,+∞C .(-∞,-1) D.⎝ ⎛⎭⎪⎫-∞,-12答案B解析由y =4x 2+1x,得y ′=8x -1x2(x ≠0),令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 的单调递增区间为⎝⎛⎭⎪⎫12,+∞. (2)已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为__________________. 答案⎝ ⎛⎭⎪⎫0,π6,⎝⎛⎭⎪⎫5π6,π 解析f ′(x )=1-2sin x ,x ∈(0,π). 令f ′(x )=0,得x =π6或x =5π6, 当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0, 当5π6<x <π时,f ′(x )>0, ∴f (x )在⎝ ⎛⎭⎪⎫0,π6和⎝⎛⎭⎪⎫5π6,π上单调递增,在⎝ ⎛⎭⎪⎫π6,5π6上单调递减.教师备选 若函数f (x )=ln x +1e x,则函数f (x )的单调递减区间为________. 答案(1,+∞)解析f (x )的定义域为(0,+∞),f ′(x )=1x-ln x -1e x,令φ(x )=1x-ln x -1(x >0),φ′(x )=-1x 2-1x<0,φ(x )在(0,+∞)上单调递减,且φ(1)=0, ∴当x ∈(0,1)时,φ(x )>0, 当x ∈(1,+∞)时,φ(x )<0,∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.思维升华确定不含参的函数的单调性,按照判断函数单调性的步骤即可,但应注意一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.跟踪训练1(1)函数f (x )=x 2-2ln x 的单调递减区间是() A .(0,1) B .(1,+∞) C .(-∞,1) D .(-1,1) 答案A解析∵f ′(x )=2x -2x=2(x +1)(x -1)x(x >0),令f ′(x )=0,得x =1,∴当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.(2)函数f (x )=(x -1)e x -x 2的单调递增区间为________,单调递减区间为________. 答案(-∞,0),(ln2,+∞)(0,ln2) 解析f (x )的定义域为R ,f ′(x )=x e x -2x =x (e x -2), 令f ′(x )=0,得x =0或x =ln2,当x 变化时,f ′(x ),f (x )的变化情况如下表,∴f (x )的单调递增区间为(-∞,0),(ln2,+∞),单调递减区间为(0,ln2). 题型二 含参数的函数的单调性例2已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解函数的定义域为(0,+∞),f ′(x )=ax -(a +1)+1x =ax 2-(a +1)x +1x=(ax -1)(x -1)x.令f ′(x )=0,得x =1a或x =1.①当0<a <1时,1a>1,∴x ∈(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )>0;x ∈⎝⎛⎭⎪⎫1,1a 时,f ′(x )<0, ∴函数f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;②当a =1时,1a=1,∴f ′(x )≥0在(0,+∞)上恒成立, ∴函数f (x )在(0,+∞)上单调递增; ③当a >1时,0<1a<1,∴x ∈⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)时,f ′(x )>0;x ∈⎝ ⎛⎭⎪⎫1a ,1时,f ′(x )<0, ∴函数f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减. 综上,当0<a <1时,函数f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.延伸探究若将本例中参数a 的范围改为a ∈R ,其他条件不变,试讨论f (x )的单调性? 解当a >0时,讨论同上; 当a ≤0时,ax -1<0, ∴x ∈(0,1)时,f ′(x )>0;x ∈(1,+∞)时,f ′(x )<0,∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.综上,当a ≤0时,函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <1时,函数f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在⎝⎛⎭⎪⎫0,1a 和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.教师备选已知函数f (x )=x -2x+a (2-ln x ),a >0.讨论f (x )的单调性.解由题知,f (x )的定义域是(0,+∞),f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2,g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增.②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根,x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增, 在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.跟踪训练2讨论下列函数的单调性.(1)f(x)=x-a ln x;(2)g(x)=13x3+ax2-3a2x.解(1)f(x)的定义域为(0,+∞),f′(x)=1-ax=x-ax,令f′(x)=0,得x=a,①当a≤0时,f′(x)>0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上单调递增.②当a>0时,x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,∴f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.综上,当a≤0时,f(x)在(0,+∞)上单调递增,当a>0时,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(2)g(x)的定义域为R,g′(x)=x2+2ax-3a2=(x+3a)(x-a),当a=0时,g′(x)≥0,∴g(x)在R上单调递增.当a>0时,x∈(-∞,-3a)∪(a,+∞)时,g′(x)>0,g(x)单调递增,x∈(-3a,a)时,g′(x)<0,g(x)单调递减.当a<0时,x∈(-∞,a)∪(-3a,+∞)时,g′(x)>0,g(x)单调递增,x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 题型三 函数单调性的应用 命题点1比较大小或解不等式例3(1)已知函数f (x )=x sin x ,x ∈R ,则f ⎝ ⎛⎭⎪⎫π5,f (1),f ⎝ ⎛⎭⎪⎫-π3的大小关系为() A .f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5B .f (1)>f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5C .f ⎝ ⎛⎭⎪⎫π5>f (1)>f ⎝ ⎛⎭⎪⎫-π3D .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5>f (1)答案A解析因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3.又当x ∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,π2上单调递增,所以 f ⎝ ⎛⎭⎪⎫π5<f (1)<f ⎝ ⎛⎭⎪⎫π3,即f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5.(2)已知函数f (x )=e x -1ex -2x +1,则不等式f (2x -3)>1的解集为________.答案⎝ ⎛⎭⎪⎫32,+∞解析f (x )=e x -1ex -2x +1,定义域为R ,f ′(x )=e x +1e x -2≥2e x ·1ex -2=0,当且仅当x =0时取“=”, ∴f (x )在R 上单调递增, 又f (0)=1,∴原不等式可化为f (2x -3)>f (0), 即2x -3>0,解得x >32,∴原不等式的解集为⎝ ⎛⎭⎪⎫32,+∞.命题点2根据函数的单调性求参数的范围例4已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上单调递增,则实数a 的取值范围为________. 答案⎣⎢⎡⎭⎪⎫43,+∞解析由题意知f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,∵⎝⎛⎭⎪⎫-x +1x max =83,∴2a ≥83,即a ≥43.延伸探究在本例中,把“f (x )在区间⎣⎢⎡⎦⎥⎤13,2上单调递增”改为“f (x )在区间⎣⎢⎡⎦⎥⎤13,2上存在单调递增区间”,求a 的取值范围. 解f ′(x )=x +2a -1x,若f (x )在⎣⎢⎡⎦⎥⎤13,2上存在单调递增区间,则当x ∈⎣⎢⎡⎦⎥⎤13,2时,f ′(x )>0有解,即2a >-x +1x有解,∵x ∈⎣⎢⎡⎦⎥⎤13,2,∴⎝ ⎛⎭⎪⎫-x +1x min =-2+12=-32,∴2a >-32,即a >-34,故a 的取值范围是⎝ ⎛⎭⎪⎫-34,+∞.教师备选1.若函数f (x )=e x (sin x +a )在区间⎝ ⎛⎭⎪⎫-π2,π2上单调递增,则实数a 的取值范围是()A .(1,+∞) B.[2,+∞) C .[1,+∞) D.(-2,+∞) 答案C 解析由题意得f ′(x )=e x (sin x +a )+e x cos x=e x ⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫x +π4+a ,∵f (x )在⎝ ⎛⎭⎪⎫-π2,π2上单调递增,∴f ′(x )≥0在⎝ ⎛⎭⎪⎫-π2,π2上恒成立,又e x >0,∴2sin ⎝ ⎛⎭⎪⎫x +π4+a ≥0在⎝ ⎛⎭⎪⎫-π2,π2上恒成立,当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,x +π4∈⎝ ⎛⎭⎪⎫-π4,3π4,∴sin ⎝ ⎛⎭⎪⎫x +π4∈⎝ ⎛⎦⎥⎤-22,1,∴2sin ⎝⎛⎭⎪⎫x +π4+a ∈(-1+a ,2+a ], ∴-1+a ≥0,解得a ≥1,即a ∈[1,+∞).2.(2022·江西鹰潭一中月考)若函数f (x )=ax 3+x 恰有3个单调区间,则a 的取值范围为________. 答案(-∞,0)解析由f (x )=ax 3+x ,得f ′(x )=3ax 2+1.若a ≥0,则f ′(x )>0恒成立,此时f (x )在(-∞,+∞)上为增函数,不满足题意; 若a <0,由f ′(x )>0得 --13a<x <-13a, 由f ′(x )<0,得x <--13a或x >-13a,即当a <0时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫--13a,-13a , 单调递减区间为⎝⎛⎭⎪⎫-∞,--13a ,⎝⎛⎭⎪⎫-13a ,+∞,满足题意. 思维升华 根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增(减)函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0(f ′(x )≤0),且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.跟踪训练3(1)已知定义域为R 的连续函数f (x )的导函数为f ′(x ),且满足f ′(x )m (x -3)<0,当m <0时,下列关系中一定成立的是() A .f (1)+f (3)=2f (2) B .f (0)·f (3)=0 C .f (4)+f (3)<2f (2) D .f (2)+f (4)>2f (3) 答案D 解析由f ′(x )m (x -3)<0,得m (x -3)f ′(x )<0,又m <0,则(x -3)f ′(x )>0,当x >3时,f ′(x )>0,f (x )单调递增; 当x <3时,f ′(x )<0,f (x )单调递减;所以f (2)>f (3),f (4)>f (3), 所以f (2)+f (4)>2f (3).(2)(2022·安徽省泗县第一中学质检)函数f (x )=ln xx在(a ,a +1)上单调递增,则实数a的取值范围为________. 答案[0,e -1] 解析由函数f (x )=ln x x,得f ′(x )=1-ln xx 2(x >0),由f ′(x )>0得0<x <e ,由f ′(x )<0得x >e.所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, 又函数f (x )=ln xx在(a ,a +1)上单调递增,则(a ,a +1)⊆(0,e),则⎩⎨⎧a ≥0,a +1≤e,解得0≤a ≤e-1.课时精练1.函数f (x )=x ln x +1的单调递减区间是() A.⎝ ⎛⎭⎪⎫-∞,1e B.⎝ ⎛⎭⎪⎫1e ,+∞C.⎝⎛⎭⎪⎫0,1e D .(e ,+∞)答案C解析f (x )的定义域为(0,+∞),f ′(x )=1+ln x , 令f ′(x )<0,得0<x <1e,所以f (x )的单调递减区间为⎝⎛⎭⎪⎫0,1e .2.下列函数中,在(0,+∞)上单调递增的是() A .f (x )=2sin x cos x B .g (x )=x 3-x C .h (x )=x e xD .m (x )=-x +ln x 答案C解析h (x )=x e x ,定义域为R ,∴h ′(x )=(x +1)e x ,当x >0时,h ′(x )>0, ∴h (x )在(0,+∞)上单调递增.3.(2022·渭南调研)已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数).下面四个图象中y =f (x )的图象大致是()答案C解析列表如下:x (-∞,-1) (-1,0)(0,1)(1,+∞)xf′(x)-+-+f′(x)+--+f(x)单调递增单调递减单调递减单调递增故函数f(x)的单调递增区间为(-∞,-1),(1,+∞),单调递减区间为(-1,1).故函数f(x)的图象是C选项中的图象.4.(2022·遵义质检)若函数f(x)=-x2+4x+b ln x在区间(0,+∞)上是减函数,则实数b的取值范围是()A.[-1,+∞) B.(-∞,-1]C.(-∞,-2] D.[-2,+∞)答案C解析∵f(x)=-x2+4x+b ln x在(0,+∞)上是减函数,∴f′(x)≤0在(0,+∞)上恒成立,即f′(x)=-2x+4+bx≤0,即b ≤2x 2-4x ,∵2x 2-4x =2(x -1)2-2≥-2,∴b ≤-2.5.已知函数f (x )=sin x +cos x -2x ,a =f (-π),b =f (2e ),c =f (ln2),则a ,b ,c 的大小关系是() A .a >c >b B .a >b >c C .b >a >c D .c >b >a 答案A解析f (x )的定义域为R ,f ′(x )=cos x -sin x -2 =2cos⎝ ⎛⎭⎪⎫x +π4-2<0, ∴f (x )在R 上单调递减,又2e >1,0<ln2<1,∴-π<ln2<2e , 故f (-π)>f (ln2)>f (2e ), 即a >c >b .6.如果函数f (x )对定义域内的任意两实数x 1,x 2(x 1≠x 2)都有x 1f (x 1)-x 2f (x 2)x 1-x 2>0,则称函数y =f (x )为“F 函数”.下列函数是“F 函数”的是() A .f (x )=e x B .f (x )=x 2 C .f (x )=ln x D .f (x )=sin x 答案B解析依题意,函数g (x )=xf (x )为定义域上的增函数. 对于A ,g (x )=x e x ,g ′(x )=(x +1)e x ,当x ∈(-∞,-1)时,g ′(x )<0,∴g (x )在(-∞,-1)上单调递减,故A 中函数不是“F 函数”; 对于B ,g (x )=x 3在R 上单调递增,故B 中函数为“F 函数”; 对于C ,g (x )=x ln x ,g ′(x )=1+ln x , 当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0,故C 中函数不是“F 函数”;对于D ,g (x )=x sin x ,g ′(x )=sin x +x cos x , 当x ∈⎝ ⎛⎭⎪⎫-π2,0时,g ′(x )<0,故D 中函数不是“F 函数”.7.(2022·长沙市长郡中学月考)已知函数f (x )=13x 3+mx 2+nx +1的单调递减区间是(-3,1),则m +n 的值为________. 答案-2解析由题设,f ′(x )=x 2+2mx +n , 由f (x )的单调递减区间是(-3,1), 得f ′(x )<0的解集为(-3,1), 则-3,1是f ′(x )=0的解,∴-2m =-3+1=-2,n =1×(-3)=-3, 可得m =1,n =-3,故m +n =-2.8.(2021·新高考全国Ⅱ)写出一个同时具有下列性质①②③的函数f (x ):________. ①f (x 1x 2)=f (x 1)f (x 2);②当x ∈(0,+∞)时,f ′(x )>0;③f ′(x )是奇函数.答案f (x )=x 4(答案不唯一,f (x )=x 2n (n ∈N *)均满足)解析取f (x )=x 4,则f (x 1x 2)=(x 1x 2)4=x 41x 42=f (x 1)f (x 2),满足①,f ′(x )=4x 3,x >0时有f ′(x )>0,满足②,f ′(x )=4x 3的定义域为R ,又f ′(-x )=-4x 3=-f ′(x ),故f ′(x )是奇函数,满足③.9.已知函数f (x )=12x 2-2a ln x +(a -2)x . (1)当a =-1时,求函数f (x )的单调区间;(2)若函数g (x )=f (x )-ax 在(0,+∞)上单调递增,求实数a 的取值范围. 解(1)当a =-1时,f (x )=12x 2+2ln x -3x ,则f ′(x )=x +2x -3=x 2-3x +2x =(x -1)(x -2)x(x >0). 当0<x <1或x >2时,f ′(x )>0,f (x )单调递增;当1<x <2时,f ′(x )<0,f (x )单调递减.所以f (x )的单调递增区间为(0,1)和(2,+∞),单调递减区间为(1,2).(2)g (x )=f (x )-ax 在(0,+∞)上单调递增,则g ′(x )=f ′(x )-a =x -2a x-2≥0在x ∈(0,+∞)上恒成立.即x 2-2x -2a x≥0在x ∈(0,+∞)上恒成立. 所以x 2-2x -2a ≥0在x ∈(0,+∞)上恒成立,所以a ≤12(x 2-2x )=12(x -1)2-12恒成立. 令φ(x )=12(x -1)2-12,x ∈(0,+∞), 则其最小值为-12,故a ≤-12. 所以实数a 的取值范围是⎝⎛⎦⎥⎤-∞,-12. 10.(2022·宜春质检)已知函数f (x )=x 3-6ax .(1)当a =-1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求函数y =f (x )的单调区间.解(1)当a =-1时,f (x )=x 3+6x ,则f ′(x )=3x 2+6,所以f (1)=7,f ′(1)=9,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -7=9(x -1),即9x -y -2=0.(2)函数f (x )=x 3-6ax 的定义域为R , f ′(x )=3x 2-6a =3(x 2-2a ).当a ≤0时,对任意的x ∈R ,f ′(x )≥0且不恒为零,此时函数f (x )的单调递增区间为(-∞,+∞),无单调递减区间;当a >0时,由f ′(x )<0, 可得-2a <x <2a ,由f ′(x )>0,可得x <-2a 或x >2a ,此时函数f (x )的单调递增区间为(-∞,-2a ),(2a ,+∞),单调递减区间为(-2a ,2a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(-∞,+∞),无单调递减区间; 当a >0时,函数f (x )的单调递增区间为(-∞,-2a ),(2a ,+∞),单调递减区间为(-2a ,2a ).11.若函数h (x )=ln x -12ax 2-2x 在[1,4]上存在单调递减区间,则实数a 的取值范围为() A.⎣⎢⎡⎭⎪⎫-716,+∞B .(-1,+∞) C .[-1,+∞) D.⎝ ⎛⎭⎪⎫-716,+∞ 答案B解析因为h (x )在[1,4]上存在单调递减区间,所以h ′(x )=1x-ax -2<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解, 而当x ∈[1,4]时,1x 2-2x =⎝ ⎛⎭⎪⎫1x -12-1, ⎝ ⎛⎭⎪⎫1x 2-2x min =-1(此时x =1), 所以a >-1,所以a 的取值范围是(-1,+∞).12.设函数f (x )=x sin x +cos x +x 2,若a =f (-2),b =f (ln2),c =f (e),则a ,b ,c的大小关系为()A.b<a<c B.c<a<bC.b<c<a D.a<b<c答案C解析f(-x)=(-x)sin(-x)+cos(-x)+(-x)2=x sin x+cos x+x2=f(x),∴f(x)为偶函数,∴a=f(-2)=f(2),又f′(x)=x cos x+2x=x(cos x+2),当x>0时,f′(x)>0,∴f(x)在(0,+∞)上单调递增,又2>e>ln2,∴f(2)>f(e)>f(ln2),即b<c<a.13.(2022·韩城质检)设a>0,若函数f(x)=1+ln xx在区间⎝⎛⎭⎪⎫a,a+23上不单调,则a的取值范围是________.答案13<a<1解析函数f(x)=1+ln xx,f′(x)=-ln xx2,当x∈(0,1)时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,因为函数f(x)=1+ln xx在区间⎝⎛⎭⎪⎫a,a+23上不单调,则a <1<a +23,解得13<a <1. 14.已知函数f (x )=x 5+10x +sin x ,若f (t )+f (1-3t )<0,则实数t 的取值范围是________.答案⎝ ⎛⎭⎪⎫12,+∞ 解析因为函数f (x )的定义域为R ,f (-x )=(-x )5+10(-x )+sin(-x )=-(x 5+10x +sin x )=-f (x ),所以f (x )为奇函数;又因为f ′(x )=5x 4+10+cos x >0,所以函数f (x )在R 上单调递增;又因为f (t )+f (1-3t )<0,所以f (t )<-f (1-3t )=f (3t -1),所以3t -1>t ,即t >12.15.(2022·河北衡水中学月考)下列不等式成立的是________.(填序号)①2ln 32<32ln2; ②2ln 3<3ln 2;③5ln4<4ln5;④π>elnπ.答案①④解析设f (x )=ln x x (x >0),则f ′(x )=1-ln xx 2,所以当0<x <e 时,f ′(x )>0,函数f (x )单调递增;当x >e 时,f ′(x )<0,函数f (x )单调递减.因为32<2<e , 所以f ⎝ ⎛⎭⎪⎫32<f (2), 即2ln 32<32ln2,故①正确; 因为2<3<e ,所以f (2)<f (3), 即2ln 3>3ln 2,故②不正确;因为e<4<5,所以f (4)>f (5),即5ln4>4ln5,故③不正确;因为e<π,所以f (e)>f (π),即π>elnπ,故④正确.16.(2022·宁夏银川一中质检)已知函数f (x )=a e x x. (1)若a >0,求f (x )的单调区间;(2)若对∀x 1,x 2∈(1,3),x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<2恒成立,求实数a 的取值范围. 解(1)f (x )的定义域为{x |x ≠0},f′(x)=a e x(x-1)x2,∵a>0,∴当x∈(-∞,0)∪(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,∴f(x)的单调递减区间为(-∞,0),(0,1),单调递增区间为(1,+∞).(2)不妨令x1>x2,∴f(x1)-f(x2)x1-x2<2,可化为f(x1)-f(x2)<2(x1-x2),即f(x1)-2x1<f(x2)-2x2,即函数g(x)=f(x)-2x在区间(1,3)上单调递减,又∵g′(x)=f′(x)-2=a e x(x-1)x2-2,∴a e x(x-1)x2-2≤0在(1,3)上恒成立,当x∈(1,3)时,不等式a e x(x-1)x2-2≤0可化为a≤2x2(x-1)e x,令h(x)=2x2(x-1)e x,则h′(x)=4x(x-1)e x-2x3e x (x-1)2e2x=-2x3+4x2-4x (x-1)2e x=-2x(x2-2x+2) (x-1)2e x=-2x [(x -1)2+1](x -1)2e x<0在区间x ∈(1,3)上恒成立, ∴函数h (x )=2x 2(x -1)e x 在区间x ∈(1,3)上单调递减, ∴h (x )min =h (3)=2×32(3-1)e 3=9e 3,∴a ≤9e 3,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,9e 3.。
导数与函数的单调性-2025高考数学复习
第三章 导数及其应用
高考一轮总复习 • 数学
返回导航
x<1),则 g′(x)=(x+1)ex+x-1 1=x2-x-1e1x+1.令 h(x)=ex(x2-1)+1,h′(x) =ex(x2+2x-1),当 0<x< 2-1 时,h′(x)<0,函数 h(x)=ex(x2-1)+1 单 调递减,当 2-1<x<1 时,h′(x)>0,函数 h(x)=ex(x2-1)+1 单调递增, 又 h(0)=0,所以当 0<x< 2-1 时,h(x)<0,所以当 0<x< 2-1 时,g′(x)>0, 函数 g(x)=xex+ln(1-x)单调递增,所以 g(0.1)>g(0)=0,即 0.1e0.1>-ln 0.9, 所以 a>c,故选 C.
当 x∈0,1a时,f′(x)<0;
当 x∈1a,+∞时,f′(x)>0,
∴函数 f(x)在0,1a上单调递减,在1a,+∞上单调递增.
第三章 导数及其应用
高考一轮总复习 • 数学
返回导航
(2)∵y=f(x)的图象与x轴没有公共点, ∴函数f(x)在(0,+∞)上没有零点, 由(1)可得函数 f(x)在0,1a上单调递减,在1a,+∞上单调递增, ∴f(x)min=f1a=3-3ln 1a=3+3ln a>0,∴ln a>-1,解得 a>1e, 故实数 a 的取值范围是1e,+∞.
高考一轮总复习 • 数学
返回导航
[解析] 设 f(x)=ln(1+x)-x(x>-1),因为 f′(x)=1+1 x-1=-1+x x. 当 x∈(-1,0)时,f′(x)>0,当 x∈(0,+∞)时 f′(x)<0,所以函数 f(x)=ln(1 +x)-x 在(0,+∞)上单调递减,在(-1,0)上单调递增,所以 f19<f(0)=0, 所以 ln 190-19<0,故19>ln 190=-ln 0.9,即 b>c,所以 f-110<f(0)=0,所 以 ln 190+110<0,故190<e-110,所以110e110<19,故 a<b.设 g(x)=xex+ln(1-x)(0<
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点十一: 导数与函数的单调性【考纲要求】(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 【命题规律】利用导数研究函数的单调性是高考的热点问题,常常会考查利用导数研究含参函数的单调性,极值.预计2017年的高考将会在大题中考查利用导数研究函数单调性的问题,命题形式会更加灵活、新颖. 【典型高考试题变式】(一)原函数与其导函数的图像问题例 1.【2017浙江高考】函数()y f x =的导函数()y f x '=的图像如图所示,则函数()y f x =的图像可能是( ).【答案】D【解析】导数大于零,原函数递增,导数小于零,原函数递减,对照导函数图像和原函数图像.故选D .【方法技巧归纳】在(,)a b 内可导函数()f x ,'()f x 在(,)a b 任意子区间内都不恒等于0.'()0()f x f x ≥⇔在(,)a b 上为增函数.'()0()f x f x ≤⇔在(,)a b上为减函数.且导函C.数单调性可以判原函数图像的凹凸性:若)('x f 大于0且递增,则原函数)(x f 图像递增且下凹;若大于0且递减,则原函数)(x f 图像递增且上凸.【变式1】【改编例题中条件,通过原函数的性质判断导函数的图像】【2018河北内丘中学8月月考(理)】设函数()f x 的导函数为()f x ',若()f x 为偶函数,且在()0,1上存在极大值,则()f x '的图象可能为( )A. B. C. D.【答案】C【解析】根据题意,若f (x )为偶函数,则其导数f ′(x )为奇函数,结合函数图象可以排除B . D ,又由函数f (x )在(0,1)上存在极大值,则其导数图象在(0,1)上存在零点,且零点左侧导数值符号为正,右侧导数值符号为负,结合选项可以排除A ,只有C 选项符合题意;本题选择C 选项.【变式2】【改编例题中条件,给定解析式,判断其导函数的图像】【2017陕西渭南市二质检】函数()2sin 20142x f x x =++,则()'f x 的大致图象是 ( ) A. B. C. D.【答案】B(二)用导数求不含参数的单调区间例2.【2017全国2卷(文)】设函数()()21e xf x x =-.(1)讨论()f x 的单调性.【答案】()f x 在区间(),21-∞,()21,+∞是减函数,在区间()221-是增函数.【解析】(1)()()()222e 1e 12e x x x f x x x x x '=-+-=--, 令()0f x '=得2210x x +-=,解得121x =-,221x =, 所以()f x 在区间(),21-∞-,)21,+∞是减函数,在区间()221-是增函数.【方法技巧归纳】利用导数求不含参数的单调性容易出错的地方就是:求导,求解不等式,写出单调区间.单调性相同的两个区间一般要用“和”或“,”连接,不能用“或”或“ ”.【变式1】【改编函数条件,函数中含分式】【2016全国2卷(理)】(1)讨论函数2()e 2xx f x x -=+的单调性,并证明当0x >时,(2)e 20;x x x -++> 【答案】()f x 在()()22,-∞--+∞,和上单调递增,在]2,2(-上单调递减.(三)用导数求含参函数的单调区间例3.【2017全国1卷(理)】已知函数()()2e 2e xx f x a a x =+--.(1)讨论()f x 的单调性;【答案】见解析【解析】(1)由于()()2e 2e x x f x a a x =+--,故()()()()22e 2e 1e 12e 1x x x xf x a a a '=+--=-+.①当0≤a 时,e 10x a -<,2e 10x +>.从而()0f x '<恒成立. ()f x 在R 上单调递减.②当0a >时,令()0f x '=,从而e 10x a -=,得ln x a =-.x()ln a -∞-, ln a -()ln a -+∞,()f x ′ -+()f x极小值综上,当0≤a 当0a >时,()f x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增.【方法技巧归纳】1.求函数的单调区间方法一:①确定函数()y f x =的定义域; ②求导数''()y f x =;③解不等式'()0f x ≥,解集在定义域内的部分为单调递增区间; ④解不等式'()0f x ≤,解集在定义域内的部分为单调递减区间. 2.求函数的单调区间方法二:①确定函数()y f x =的定义域;②求导数''()y f x =,令f′(x)=0,解此方程,求出在定义区间内的一切实根; ③把函数()f x 的间断点(即()f x 的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义区间分成若干个小区间;④确定'()f x 在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.【变式1】【例题中函数变为求导函数的“主导”函数为二次函数型】【2017全国3卷(文)改编】已知函数()()2ln 21f x x ax a x =+++.(1)讨论()f x 的单调性; 【答案】见解析【变式2】【例题中函数变为求导函数的“主导”函数为类二次函数型】【2016全国1卷(文)改编】已知函数2()(2)e (1)xf x x a x =-+-.(Ⅰ)讨论()f x 的单调性; 【答案】(Ⅰ)见解析; 【解析】试题分析:(Ⅰ)先求得()()()'1e 2.x f x x a =-+再根据1,0,2a 的大小进行分类确定()f x 的单调性;试题解析:(Ⅰ)()()()()()'1e 211e 2.x x f x x a x x a =-+-=-+(Ⅰ)设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >. 所以f (x )在(),1-∞单调递减,在()1,+∞单调递增.【变式3】【例题中函数变为求导函数的“主导”函数为指对数型函数】【2015天津卷(理)改编】已知函数()n ,nf x x x x R =-∈,其中*n ,n 2N ∈≥.(Ⅰ)讨论()f x 的单调性;【答案】(Ⅰ) 当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.【解析】(Ⅰ)由()nf x nx x =-,可得,其中*n N ∈且2n ≥, 下面分两种情况讨论: (1)当n 为奇数时:令()0f x '=,解得1x =或1x =-,当x 变化时,(),()f x f x '的变化情况如下表:所以,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增. (2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.【变式4】【例题中函数变为求导函数的“主导”函数需要二次求导型】【2016北京卷(理)】设函数()ea xf x x bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+.(Ⅰ)求a ,b 的值; (Ⅱ)求()f x 的单调区间.【答案】(Ⅰ)2,e a b ==;(Ⅱ) ),(+∞-∞ 【解析】试题分析:(Ⅰ)根据题意求出)(x f ',根据(2)2e 2,(2)e 1f f '=+=-求a,b 的值即可; (Ⅱ)由题意判断)(x f '的符号,即判断1()1e x g x x -=-+的单调性,知g(x)>0,即)(x f '>0,由此求得f(x)的单调区间.(Ⅱ)由(Ⅰ)知2()e e xf x x x -=+.由21()e(1e )xx f x x --'=-+及2e 0x ->知,)(x f '与11e x x --+同号.令1()1e x g x x -=-+,则1()1ex g x -'=-+.所以,当)1,(-∞∈x 时,0)(<'x g ,)(x g 在区间)1,(-∞上单调递减; 当),1(+∞∈x 时,0)(>'x g ,)(x g 在区间),1(+∞上单调递增. 故1)1(=g 是)(x g 在区间),(+∞-∞上的最小值, 从而),(,0)(+∞-∞∈>x x g .综上可知,0)(>'x f ,),(+∞-∞∈x .故)(x f 的单调递增区间为),(+∞-∞. 【数学思想】分类讨论思想1.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法,这种思想在简化研究对象,发展思维方面起着重要作用,因此,有关分类讨论的思想的数学命题在高考试题中占有重要地位. 所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.2.分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的; ⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.【处理导数与单调性问题注意点】解答此类问题,应该首先确定函数的定义域,否则,写出的单调区间易出错;另外,函数的单调区间不能出现“并”的错误写法. 【典例试题演练】1.【2018河南郑州一中测试题】如果函数()y f x =在区间I 上是增函数,而函数()f x y x=在区间I 上是减函数,那么称函数()y f x =是区间I 上“缓增函数”,区间I 叫做“缓增区间”.若函数()21322f x x x =-+是区间I 上“缓增函数”,则“缓增区间”I 为 ( )A. [)1,+∞ B. 0,3⎡⎤⎣⎦C. []0,1 D. 1,3⎡⎤⎣⎦【答案】D【解析】因()()''213131,[](1)2222f x f x x x x x x =-=-+=-',故210{ 310x x-≥-≤,解之得13x ≤≤,应选答案D.2.【2018河南南阳一中上学期第二次考试(文)】已知函数()252ln f x x x x =-+,则函数()f x 的单调递增区间是__________.【答案】10,2⎛⎫ ⎪⎝⎭和()2,+∞3.【2018辽宁沈阳市东北育才学校上学期一模(文)改编】 已知函数()()222xx a x af x e +-+-=, 0a ≤(e 为自然对数的底数).(Ⅰ)讨论()f x 的单调性;【答案】(Ⅰ)当0a =时, ()f x 在(),-∞+∞上为减函数;当0a <时,则()f x 在(][),,0,a -∞+∞上为减函数;在[],0a 上为增函数;【解析】(Ⅰ) ()()xa x xf x e-'=,令()1200,f x x x a =⇒==';①0a =时,则()0f x '≤(当且仅当0x =时取等号)()f x ⇒在(),-∞+∞上为减函数; ②当0a <时,则()()()(),0,0x a f x f x ∈-∞⋃+∞<⇒'⇒在(][),,0,a -∞+∞上为减函数; ()()(),00x a f x f x '∈⇒>⇒在[],0a 上为增函数;4.【2017陕西省西安市长安区第一中学4月模考(理)】已知函数()ln f x x =,()()2g x f x ax bx =++,其中函数()y g x =的图象在点()()1,1g 处的切线平行于x 轴.(1)确定a 与b 的关系;若0a ≥,并试讨论函数()g x 的单调性;(2)设斜率为k 的直线与函数()y f x =的图象交于两点()()1122,,,A x y B x y12()x x <,求证:2111k x x <<. 【答案】(1) 21b a =-- ,单调性见解析;(2)证明见解析.【解析】试题分析:(1)求导,利用导数的几何意义确定a 与b 的关系,再利用导函数的符号变换和分类讨论思想确定函数的单调性;(2)先利用直线的斜率公式确定不等关系,再构造函数,利用导数求函数的最值即可求解 . 试题解析:(1)()()22ln g x f x ax bx x ax bx =++=++, ()12g x ax b x∴=++', 由题意得()1120g a b '=++=, 21b a ∴=--;()()()211112221(0)ax x g x ax b ax a x x x x--=++=+--=>', ①当0a =时, ()()1(0)x g x x x'--=>,当1x >时, ()0g x '<, ∴函数()g x 在()1,+∞单调减;当01x <<时, ()0g x '>, ∴函数()g x 在()0,1单调增;④当12a >时.即112a<, ()()1212(0)a x x a g x x x ⎛⎫-- ⎪⎭'⎝=>, ∴函数()g x 在1,12a ⎛⎫⎪⎝⎭单调减区间;函数()g x 在()1,+∞和10,2a ⎛⎫ ⎪⎝⎭单调增;(2)由题设210x x >>,21212211ln ln 1111x x k x x x x x x -∴<<⇔<<- 21212121ln ln x x x xx x x x --⇔<-< 22211111ln 1x x x x x x ⇔-<<- ① 令()ln 1(1)h x x x x =-+>,则()111(1)x h x x x x-'=-=>, 1x ∴>时, ()0h x '<, ∴函数()g x 在()1,+∞是减函数,而()10h =, 1x ∴>时, ()()10h x h <=210x x >>, 211x x ∴>, 222111ln 10x x x h x x x ⎛⎫∴=-+< ⎪⎝⎭,即2211ln 1x xx x <-, ②令()1ln 1(1)H x x x x =+->,则()22111(1)x H x x x x x-=-=>', 1x ∴>时, ()0H x '>, ∴ ()H x 在()1,+∞是增函数, 1x ∴>时, ()()10H x H >=, 2221111ln 10x x H x x x x ⎛⎫∴=+->⎪⎝⎭, 即221111ln x x x x -< ③由①②③得2111k x x <<. 5.【2017陕西省西安市铁一中学高三上学期第五次模拟考试(理)】已知函数()244ln x f x k x k x -⎛⎫=++ ⎪⎝⎭,其中常数0k >.(Ⅰ)讨论()f x 在()0,2上的单调性; 【答案】(Ⅰ)见解析;【解析】试题分析:(1)求导数,对k 分类讨论,利用导数的正负,即可得到()f x 在区间()0,2上的单调性;试题解析:(Ⅰ)由已知得, ()f x 的定义域为()0,∞+,且()()222244444(0)x k x x k x k k k k f x k x x x x ⎛⎫⎛⎫-++--+ ⎪ ⎪⎝⎭⎝⎭='=-=->, ①当02k <<时,40k k >>,且42k>, 所以()0,x k ∈时, ()0f x '<; (),2x k ∈时, ()0f x '>. 所以,函数()f x 在()0,k 上是减函数,在(),2k 上是增函数; ②当2k =时,42k k==, ()0f x '<在区间()0,2内恒成立, 所以()f x 在()0,2上是减函数; ③当2k >时, 4402,k k k<, 所以40,x k ⎛⎫∈ ⎪⎝⎭时, ()0f x '<; 4,2x k ⎛⎫∈ ⎪⎝⎭时, ()0f x '>所以函数在40,k ⎛⎫ ⎪⎝⎭上是减函数,在4,2k ⎛⎫ ⎪⎝⎭上是增函数. 6.函数.(Ⅰ)讨论的单调性;【答案】(Ⅰ)当时, 时,单调递减;当时,单调递增;当时, 时,单调递增;当时, 单调递减;【解析】试题分析:(1)求出()'f x , 讨论两种情况分别令()'0f x >可得增区间,()'0f x <可得得减区间;7.【2018河北省石家庄二中八月高三模拟数学(文科)】已知函数()()()212ln f x ax a x x a R =+--∈.(Ⅰ)若0a <,讨论()f x 的单调性; 【答案】(Ⅰ)当12a =-时, ()f x 的减区间是()0,+∞,无增区间,当102a -<<时, ()f x 的增区间是11,2a ⎛⎫-⎪⎝⎭,减区间是()10,1,,2a ⎛⎫-+∞ ⎪⎝⎭,当12a <-时, ()f x 的增区间是1,12a⎛⎫-⎪⎝⎭,减区间是()10,,1,2a⎛⎫-+∞⎪⎝⎭.【解析】(Ⅰ)()f x的定义域为()0,+∞,当0a<时,()()()221211212ax a xf x ax ax x+--=+--='()()()1212112a x xax x ax x⎛⎫+-⎪+-⎝⎭==,(ⅲ)若112a-<,即12a<-,1,12xa⎛⎫∈-⎪⎝⎭时,()0f x'>,()f x是增函数,10,2xa⎛⎫∈-⎪⎝⎭时,()0f x'<,()f x是减函数,()1,x∈+∞时,()0f x'<,()f x是减函数;综上可得,当12a=-时,()f x的减区间是()0,+∞,无增区间,当12a-<<时,()f x的增区间是11,2a⎛⎫-⎪⎝⎭,减区间是()10,1,,2a⎛⎫-+∞⎪⎝⎭,当12a<-时,()f x的增区间是1,12a⎛⎫-⎪⎝⎭,减区间是()10,,1,2a⎛⎫-+∞⎪⎝⎭.8.【2017湖北省浠水县实验高级中学测试题(文)】已知函数()11lnf x m x xm x⎛⎫=++-⎪⎝⎭,其中常数0m>.(1)当2m =时,求()f x 的极大值; (2)试讨论()f x 在区间()0,1上的单调性. 【答案】(1)()532ln222f=-;(2)当01m <<时, ()f x 在()0,m 上单调递减,在(),1m 上单调递增;当1m =时, ()f x 在()0,1上单调递减;当1m >时, ()f x 在10,m ⎛⎫⎪⎝⎭上单调递减,在1,1m ⎛⎫⎪⎝⎭上单调递增. 【解析】试题分析:(1)借助题设条件将2m =代入函数解析式可得()51ln 2f x x x x =+-,进而求导,运用导数与函数的单调性之间的关系求解;(2)先对函数()11ln f x m x x m x⎛⎫=++- ⎪⎝⎭求导,再借助分类整合思想及导数与函数的单调性之间的关系进行分类求其单调区间:(2)()()()2211110,0x m x m m m f x x m x x x⎛⎫--+⎪⎝⎭=->'--=>, 当01m <<时, ()f x 在()0,m 上单调递减,在(),1m 上单调递增; 当1m =时, ()f x 在()0,1上单调递减;当1m >时, ()f x 在10,m ⎛⎫ ⎪⎝⎭上单调递减,在1,1m ⎛⎫ ⎪⎝⎭上单调递增. 9.【2017湖北省浠水县实验高级中学测试题(文)】已知函数()()211ln 2f x x a x a x =+--. (Ⅰ)讨论()f x 的单调性; 【答案】(Ⅰ)见解析;【解析】试题分析:(Ⅰ)求出()f x 的定义域为()0,+∞,求导数,若0a ≤,若0a >,判断导函数的符号,然后推出函数的单调性;试题解析:(Ⅰ) ()f x 的定义域为()0,+∞,求导数,得()()()()211'1x a x a x x a a f x x a x x x+--+-=+--==.若0a ≤,则()'0f x >,此时()f x 在()0,+∞上单调递增,若0a >,则由()'0f x =,得x a =.当0x a <<时, ()'0f x <;但x a >时, ()'0f x >,此时()f x 在()0,a 上单调递减,在(),a +∞上单调递增.10.【2017河北省唐山市三模(理)改编】已知函数()()2ln 1f x x ax =++, 0a >.(1)讨论函数()f x 的单调性; 【答案】(Ⅰ)见解析【解析】试题分析:(Ⅰ)求导得()2221'1ax ax f x x ++=+, 分0∆<, 0∆=, 0∆>,三种情况讨论可得单调区间.试题解析:(Ⅰ) ()21221'211ax ax f x ax x x ++=+=++, 1x >-, 令()2221g x ax ax =++, ()24842a a a a ∆=-=-,若0∆<,即02a <<,则()0g x >,当()1,x ∈-+∞时, ()'0f x >, ()f x 单调递增,若0∆=,即2a =,则()0g x ≥,仅当12x =-时,等号成立, 当()1,x ∈-+∞时, ()'0f x ≥, ()f x 单调递增. 若0∆>,即2a >,则()g x 有两个零点1x =,2x =由()()1010g g -==>, 102g ⎛⎫-< ⎪⎝⎭得121102x x -<<-<<, 当()11,x x ∈-时, ()0g x >, ()'0f x >, ()f x 单调递增; 当()12,x x x ∈时, ()0g x <, ()'0f x <, ()f x 单调递减; 当()2,x x ∈+∞时, ()0g x >, ()'0f x >, ()f x 单调递增. 综上所述,当02a <≤时, ()f x 在()1,-+∞上单调递增;当2a >时, ()f x在⎛ - ⎝⎭和⎫⎪+∞⎪⎝⎭上单调递增,在⎝⎭上单调递减. 11.【2018河北省武邑中学第一次月考(理)改编】已知函数()e xf x ax =-(R a ∈,e 为自然对数的底数).(1)讨论函数()f x 的单调性; 【答案】(1)见解析【解析】试题分析:(1)求函数的导数()x f x e a '=- 通过0a ≤和0a > 两种情况分类讨论,分别判断函数的单调性.12.【2018湖南省岳阳市一中第一次月考(理)改编】已知函数()()()21ln 102f x a x a x x a =-++->. (1)讨论()f x 的单调性;【答案】(1) 当1a =时, ()f x 在()0,+∞上单调递减;当01a <<, ()f x 的单调递增区间为(),1a ;单调递减区间是()0a ,和()1,+∞;当1a >, ()f x 的单调递增区间为()1,a ,单调递减区间是()01,和(),a +∞;【解析】试题分析:(1)求出()f x 的导数,通过1,01,1a a a =<的讨论,分别令()'0f x >得增区间, ()'0f x <得减区间;试题解析:(1)()()()()2111x a x a x a x af x a x x x x-++---+=-++-==',()()()()11x a x af x a x x x---=++-=-', ①当1a =时, ()()()10x a x f x x---'=≤,∴()f x 在()0,+∞上单调递减;②当01a <<,由()0f x '>解得1a x <<,∴()f x 的单调递增区间为(),1a , 单调递减区间是()0a ,和()1,+∞;③当1a >,同理可得()f x 的单调递增区间为()1,a ,单调递减区间是()01,和(),a +∞.。