高考数学二轮复习专题二数列第一讲小题考法等差数列与等比数列课件理

合集下载

2023新教材高考数学二轮专题复习第一部分专题攻略专题一小题专攻第一讲集合常用逻辑用语不等式课件

2023新教材高考数学二轮专题复习第一部分专题攻略专题一小题专攻第一讲集合常用逻辑用语不等式课件

则A∪B=( )
A.(0,1)
B.(1,2)
C.(-∞,2)
D.(0,+∞)
答案: C 解析:因为B={x|x(x-2)<0}={x|0<x<2},则A∪B={x|x<2}.
3.[2022·新高考Ⅱ卷]已知集合A={-1,1,2,4},B={x||x-
1|≤1},则A∩B=( )
A.{-1,2}
B.{1,2}
3.[2022·浙江卷]设x∈R,则“sin x=1”是“cos x=0”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
答案:A
解析:由sin x=1,得cos x=0,因此“sin x=1”是“cos x=0”的充分条件, 当cos x=0时,x=π2+kπ(k∈Z).当k为偶数时,sin x=1;当k为奇数时,sin x=- 1,因此“sin x=1”不是“cos x=0”的必要条件.所以“sin x=1”是“cos x=0” 的充分不必要条件.故选A.
则A∩B={x|x<-1或1<x<2}∩{x|x>-2}={x|-2<x<-1或1<x<2}.
(2)[2022·山东济南二模]已知集合A={1,2},B={2,4},C={z|z=
xy,x∈A,y∈B},则C中元素的个数为( )
A.1
B.2
C.3
D.4
答案:C
解析:由题意,当x=1时,z=xy=1,当x=2,y=2时,z=xy=4, 当x=2,y=4时,z=xy=16, 即C中有三个元素.
保分题 1.[2022·山东肥城模拟]命题p:有的等差数列是等比数列,则( ) A.¬p:有的等差数列不是等比数列 B.¬p:有的等比数列是等差数列 C.¬p:所有的等差数列都是等比数列 D.¬p:所有的等差数列都不是等比数列

第一部分专题二 数列-2021届高三数学二轮专题复习课件

第一部分专题二 数列-2021届高三数学二轮专题复习课件

第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
专题二 数 列
真题研析 命题分析 知识方法
所以 an=2n. (2)由于 21=2,22=4,23=8,24=16,25=32,26= 64,27=128, 所以 b1 对应的区间为:(0,1],则 b1=0; b2,b3 对应的区间分别为:(0,2],(0,3]则 b2=b3=1, 即有 2 个 1; b4,b5,b6,b7 对应的区间分别为:(0,4],(0,5],(0, 6],(0,7],则 b4=b5=b6=b7=2,即有 22 个 2;
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
专题二 数 列
真题研析 命题分析 知识方法
b8,b9,…,b15 对应的区间分别为:(0,8],(0,9],…, (0,15],则 b8=b9=…=b15=3,即有 23 个 3;
b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
(1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
(2)求{an}和{bn}的通项公式. (1)证明:由题设得 4(an+1+bn+1)=2(an+bn),即 an+1+ bn+1=12(an+bn). 又因为 a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得 4(an+1-bn+1)=4(an-bn)+8,即 an+1-bn+1= an-bn+2.
专题二 数 列
真题研析 命题分析 知识方法
-2Sn=1×(-2)+2×(-2)2+3×(-2)3+…(n-1)(- 2)n-1+n(-2)n,②

2019届高考数学二轮复习专题二数列第1讲等差数列与等比数列课件理20190105192

2019届高考数学二轮复习专题二数列第1讲等差数列与等比数列课件理20190105192

【训练 2】 (1)(2018· 湖南六校联考)在等差数列{an}中,其前 n 项和为 Sn,若 a5,a7 是方程 x2+10x-16=0 的两个根,那么 S11 的值为( A.44 C.55 B.-44 D.-55 )
(2)(2018· 石家庄质检)等比数列{an}中,a4= 2,a5= 5,则数列{lg an}的前 8 项和 S8 为( A.4 ) B.2 C.3 D.5
第1讲 等差数列与等比数列
高考定位
1.等差、等比数列基本运算和性质的考查是高考热点,经常以选择题、
填空题的形式出现;2.数列的通项也是高考热点,常在解答题中的第(1)问出现,难
度中档以下.
真 题 感 悟 1.(2017· 全国Ⅲ卷)等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}
∴a2=(2+λ)· 20=2a1=4,∴λ=2.
故存在λ=2,此时an=2n,数列{an}是等比数列.
探究提高 证
1.判定等差(比)数列的主要方法:(1)定义法:对于任意 n≥1,n∈N*,验 n 无关的一常数;(2)中项公式法.
an+1 an+1-an 或 为与正整数 a n
答案 D
3.(2018· 全国Ⅰ卷)记Sn为数列{an}的前n项和.若Sn=2an+1,则S6=________. 解析 因为Sn=2an+1,所以当n=1时,a1=2a1+1,解得a1=-1,
当 n≥2 时,an=Sn-Sn-1=2an+1-(2an-1+1),所以 an=2an-1,所以数列{an}是以-1
①若a3+b3=5,求{bn}的通项公式;
②若T3=21,求S3. 解 ①设{an}公差为d,{bn}公比为q,
-1+d+q=2, d=1, d=3, 由题设得 解得 或 (舍去), 2 -1+2d+q =5 q=2 q=0

【高考数学】4-1二轮复习讲义:等差数列、等比数列

【高考数学】4-1二轮复习讲义:等差数列、等比数列

专题四数列第一讲等差数列、等比数列高考考点考点解读本部分内容在备考时应注意以下几个方面:(1)加强对等差(比)数列概念的理解,掌握等差(比)数列的判定与证明方法.(2)掌握等差(比)数列的通项公式、前n项和公式,并会应用.(3)掌握等差(比)数列的简单性质并会应用.预测2020年命题热点为:(1)在解答题中,涉及等差、等比数列有关量的计算、求解. (2)已知数列满足的关系式,判定或证明该数列为等差(比)数列.(3)给出等差(比)数列某些项或项与项之间的关系或某些项的和,求某一项或某些项的和.Z 知识整合hi shi zheng he1.重要公式(1)等差数列通项公式:a n =a 1+(n -1)d .(2)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(3)等比数列通项公式:a n =a 1q n -1. (4)等比数列前n 项和公式: S n =⎪⎨⎪⎧na 1(q =1)a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).(5)等差中项公式:2a n =a n -1+a n +1(n ∈N *,n ≥2).(6)等比中项公式:a 2n =a n -1·a n +1(n ∈N *,n ≥2).(7)数列{a n }的前n 项和S n 与通项a n 之间的关系:a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.2.重要结论(1)通项公式的推广:等差数列中,a n =a m +(n -m )d ; 等比数列中,a n =a m ·q n-m.(2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列.②等比数列中,若a 1>0且q >1或a 1<0且0<q <1,则数列为递增数列;若a 1>0且0<q <1或a 1<0且q >1,则数列为递减数列.(3)等差数列{a n }中,S n 为前n 项和.S n ,S 2n -S n ,S 3n -S 2n ,…仍成等差数列;等比数列{b n }中,T n 为前n 项和.T n ,T 2n -T n ,T 3n -T 2n ,…一般仍成等比数列.,Y 易错警示i cuo jing shi1.忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件. 2.漏掉等比中项:正数a ,b 的等比中项是±ab ,容易漏掉-ab .3.忽略对等比数列的公比的讨论:应用等比数列前n 项和公式时应首先讨论公式q 是否等于1. 4.a n -a n -1=d 或a na n -1=q 中注意n 的范围限制.5.易忽略公式a n =S n -S n -1成立的条件是n ≥2.6.证明一个数列是等差或等比数列时,由数列的前n 项和想当然得到数列的通项公式,易出错,必须用定义证明.7.等差数列的单调性只取决于公差d 的正负,而等比数列的单调性既要考虑公比q ,又要考虑首项a 1的正负.1.(2018·全国卷Ⅰ,4)记S n 为等差数列{}a n 的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( B )A .-12B .-10C .10D .12[解析] 3⎝⎛⎭⎫3a 1+3×22×d =2a 1+d +4a 1+4×32×d ⇒9a 1+9d =6a 1+7d ⇒3a 1+2d =0⇒6+2d =0⇒d =-3,所以a 5=a 1+4d =2+4×(-3)=-10.2.(2018·北京卷,4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( D )A .32f B .322f C .1225f D .1227f[解析] 选D .由已知,单音的频率构成一个首项为f ,公比为122的等比数列,记为{b n },共有13项.由等比数列通项公式可知,b 8=b 1q 7=f ×(122)7=1227f .3.(2017·全国卷Ⅰ,4)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( C )A .1B .2C .4D .8[解析] 设{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48, 解得d =4. 故选C .4.(2017·全国卷Ⅲ,9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }的前6项和为( A )A .-24B .-3C .3D .8[解析] 由已知条件可得a 1=1,d ≠0,由a 23=a 2a 6可得(1+2d )2=(1+d )(1+5d ),解得d =-2.所以S 6=6×1+6×5×(-2)2=-24.故选A .5.(2016·全国卷Ⅰ,3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( C ) A .100 B .99 C .98D .97[解析] 设等差数列{a n }的公差为d ,因为{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98,选C .6.(2018·全国卷Ⅰ,14)记S n 为数列{}a n 的前n 项和.若S n =2a n +1,则S 6=-63..[解析] 依题意,⎩⎪⎨⎪⎧S n =2a n +1,S n +1=2a n +1+1,作差得a n +1=2a n ,所以数列{a n }是公比为2的等比数列, 又因为a 1=S 1=2a 1+1, 所以a 1=-1,所以a n =-2n -1, 所以S 6=-1·(1-26)1-2=-63.7.(2018·全国卷Ⅱ,16)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式. (2)求S n ,并求S n 的最小值.[解析] (1)设等差数列{a n }的公差为d ,由题意得3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.命题方向1 等差、等比数列的基本运算例1 (1)已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为( B )A .152B .135C .80D .16[解析] 设等比数列{a n }的公比为q ,由a 1+a 3=30,a 2+a 4=S 4-(a 1+a 3)=90,所以公比q =a 2+a 4a 1+a 3=3,首项a 1=301+q 2=3,所以a n =3n ,b n =1+log 33n =1+n ,则数列{b n }是等差数列,前15项的和为15×(2+16)2=135.故选B .(2)(2018·丰台二模)已知{a n }为等差数列,S n 为其前n 项和.若a 2=2,S 9=9,则a 8=0. [解析] 因为{a n }为等差数列,S n 为其前n 项和. a 2=2,S 9=9,设其首项为a 1,公差为d , 所以⎩⎪⎨⎪⎧a 2=a 1+d =2,S 9=9a 1+9×82d =9, 解得d =-13,a 1=73,所以a 8=a 1+7d =0.『规律总结』等差(比)数列基本运算的解题思路 (1)设基本量a 1和公差d (公比q ).(2)列、解方程(组):把条件转化为关于a 1和d (q )的方程(组),求出a 1和d (q )后代入相应的公式计算.(3)注意整体思想,如在与等比数列前n 项和有关的计算中,两式相除就是常用的计算方法,整体运算可以有效简化运算.G 跟踪训练en zong xun lian1.(2018·邵阳模拟)等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( B )A .29B .31C .33D .36[解析] 设等比数列{a n }的公比为q ,因为a 2a 3=2a 1,所以a 21q 3=2a 1,①因为a 4与2a 7的等差中项为54,所以a 4+2a 7=52,即a 1q 3+2a 1q 6=52,②联立①②可解得a 1=16,q =12,所以S 5=a 1(1-q 5)1-q=31.2.(文)等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则数列{a n }的公比为13. [解析] 由题意知S 1+3S 3=4S 2,即a 1+3(a 1+a 2+a 3)=4(a 1+a 2),即3a 3=a 2, 所以a 3a 2=13,即公比q =13.(理)已知在数列{a n }中,a 1=1,a n +1=a n +3,S n 为{a n }的前n 项和,若S n =51,则n =6.[解析] 由a 1=1,a n +1=a n +3, 得a n +1-a n =3,所以数列{a n }是首项为1,公差为3的等差数列. 由S n =n +n (n -1)2×3=51,即(3n +17)(n -6)=0, 解得n =6或n =-173(舍).命题方向2 等差、等比数列的基本性质例2 (1)(2018·汉中二模)已知等比数列{a n }的前n 项积为T n ,若log 2a 2+log 2a 8=2,则T 9的值为( A )A .±512B .512C .±1 024D .1 024[解析] log 2a 2+log 2a 8=2,可得log 2(a 2a 8)=2,可得:a 2a 8=4,则a 5=±2, 等比数列{a n }的前9项积为T 9=a 1a 2…a 8a 9=(a 5)9=±512.(2)若S n 是等差数列{a n }的前n 项和,且S 8-S 3=20,则S 11的值为( A ) A .44B .22C .2003D .88[解析] 因为S 8-S 3=a 4+a 5+a 6+a 7+a 8=20,由等差数列的性质可得,5a 6=20,所以a 6=4.由等差数列的求和公式得S 11=11(a 1+a 11)2=11a 6=44.(3)设等差数列{a n }的前n 项和为S n ,且满足S 15>0,S 16<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的项为( C )A .S 6a 6B .S 7a 7C .S 8a 8D .S 9a 9[解析] 由S 15=15(a 1+a 15)2=15×2a 82=15a 8>0,S 16=16(a 1+a 16)2=16×a 8+a 92<0,可得a 8>0,a 9<0,d <0,故S n 最大为S 8.又d <0,所以{a n }单调递减,因为前8项中S n 递增,所以S n 最大且a n 取最小正值时S n a n 有最大值,即S 8a 8最大.故选C .『规律总结』等差、等比数列性质的应用策略(1)项数是关键:解题时特别关注条件中项的下标即项数的关系,寻找项与项之间、多项之间的关系选择恰当的性质解题.(2)整体代入:计算时要注意整体思想,如求S n 可以将与a 1+a n 相等的式子整体代入,不一定非要求出具体的项.(3)构造不等式函数:可以构造不等式函数利用函数性质求范围或最值. G 跟踪训练en zong xun lian1.(2017·沈阳模拟)已知各项不为0的等差数列{a n }满足2a 2-a 27+2a 12=0,数列{b n}是等比数列,且b 7=a 7,则b 3b 11等于( A )A .16B .8C .4D .2[解析] ∵{a n }是等差数列, ∴a 2+a 12=2a 7,∴2a 2-a 27+2a 12=4a 7-a 27=0. 又a 7≠0, ∴a 7=4.又{b n }是等比数列,∴b 3b 11=b 27=a 27=16.2.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=( C ) A .1 B .2 C .3D .2或4[解析] ∵{a n }为等比数列,∴a 5+a 7是a 1+a 3与a 9+a 11的等比中项, ∴(a 5+a 7)2=(a 1+a 3)(a 9+a 11),故a 9+a 11=(a 5+a 7)2a 1+a 3=428=2.同理a 9+a 11是a 5+a 7与a 13+a 15的等比中项, ∴(a 9+a 11)2=(a 5+a 7)(a 13+a 15),故a 13+a 15=(a 9+a 11)2a 5+a 7=224=1.∴a 9+a 11+a 13+a 15=2+1=3.命题方向3 等差、等比数列的判断与证明例3 已知数列{a n }的前n 项和S n =1+λa n .其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.[解析] (1)由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0且λ≠1得a n ≠0, 所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ(λλ-1)n -1.(2)由(1)得S n =1-(λ1-λ)n .由S 5=3132得1-(λλ-1)5=3132,即(λλ-1)5=132.解得λ=-1.『规律总结』判断和证明数列是等差(比)数列的方法(1)定义法:对于n ≥1的任意自然数,验证a n +1-a n (或a n +1a n )为与正整数n 无关的一常数.(2)构造法:通过对含有a n ,a n -1的式子的整体变形,如取倒数,两边加减常数等方法,构造出要证数列的第n 项与第n -1项的关系,从而证明等差(比)数列 .(3)中项公式法:①若2a n =a n -1+a n +1(n ∈N *,n ≥2),则{a n }为等差数列;②若a 2n =a n -1·a n +1(n ∈N *,n ≥2),则{a n }为等比数列.G 跟踪训练en zong xun lian(2017·全国卷Ⅰ,17)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. [解析] (1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2[-23+(-1)n2n +13]=2S n ,故S n +1,S n ,S n +2成等差数列.A 组1.(2018·唐山模拟)等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( D ) A .18 B .12 C .9D .6[解析] 本题主要考查等差数列的通项公式及前n 项和公式.由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d+a 1+6d +a 1+7d =3(a 1+5d )=6,故选D .2.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( C ) A .31 B .32 C .63D .64[解析] 解法一:由条件知:a n >0,且⎩⎪⎨⎪⎧ a 1+a 2=3,a 1+a 2+a 3+a 4=15,∴⎩⎪⎨⎪⎧a 1(1+q )=3,a 1(1+q +q 2+q 3)=15, ∴q =2.∴a 1=1,∴S 6=1-261-2=63.解法二:由题意知,S 2,S 4-S 2,S 6-S 4成等比数列,即(S 4-S 2)2=S 2(S 6-S 4),即122=3(S 6-15),∴S 6=63.3.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( D )A .6B .7C .8D .9[解析] 由题可得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,所以a >0,b >0,不妨设a >b ,所以等比数列为a ,-2,b 或b ,-2,a 从而得到ab =4=q ,等差数列为a ,b ,-2或-2,b ,a 从而得到2b =a -2,两式联立解出a =4,b =1,所以p =a +b =5,所以p +q =4+5=9.4.(2017·山西四校联考)已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( C )A .1+ 2B .1-2C .3+2 2D .3-22[解析] 本题主要考查等差数列、等比数列. ∵a 1,12a 3,2a 2成等差数列,∴12a 3×2=a 1+2a 2,即a 1q 2=a 1+2a 1q ,∴q 2=1+2q ,解得q =1+2或q =1-2(舍), ∴a 9+a 10a 7+a 8=a 1q 8(1+q )a 1q 6(1+q )=q 2=(1+2)2=3+2 2. 5.正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m ·a n =16a 21,m ,n ∈N *,则1m +9n的最小值为( C ) A .2 B .16 C .114D .32[解析] 设数列{a n }的公比为q ,a 3=a 2+2a 1⇒q 2=q +2⇒q =-1(舍)或q =2,∴a n =a 1·2n-1,a m ·a n =16a 21⇒a 21·2m +n -2=16a 21⇒m +n =6,∵m ,n ∈N *,∴(m ,n )可取的数值组合为(1,5),(2,4),(3,3),(4,2),(5,1),计算可得,当m =2,n =4时,1m +9n 取最小值114.6.已知{a n }是等差数列,公差d 不为零,若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=23,d =-1.[解析] 由题可得(a 1+2d )2=(a 1+d )(a 1+6d ),故有3a 1+2d =0,又因为2a 1+a 2=1,即3a 1+d =1,联立可得d =-1,a 1=23.7.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N ,S n +1+S n -1=2(S n +1)都成立,则S 10=91.[解析] 因为任意的n >1,n ∈N ,S n +1+S n -1=2(S n +1)都成立,所以S n +1-S n =S n -S n -1+2,所以a n +1=a n +2,因为a 3=a 2+2=4,所以a n =a 2+(n -2)×2=2+(n -2)×2=2n -2,n ≥2,所以S 10=a 1+a 2+a 3…+a 10=1+2+4+…+18=1+2×9+9×82×2=91.8.(2018·江苏无锡一模)设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为2.[解析] ∵等比数列{a n }的前n 项和为S n ,S 3,S 9,S 6成等差数列,且a 2+a 5=4, ∴⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q a 1q +a 1q 4=4, 解得a 1q =8,q 3=-12,∴a 8=a 1q 7=(a 1q )(q 3)2=8×14=2.9.设数列{a n }的前n 项和为S n ,且S n =4a n -p (n ∈N *),其中p 是不为零的常数. (1)证明:数列{a n }是等比数列;(2)当p =3时,若数列{b n }满足b n +1=a n +b n (n ∈N *),b 1=2,求数列{b n }的通项公式. [解析] (1)证明:因为S n =4a n -p (n ∈N *), 则S n -1=4a n -1-p (n ∈N *,n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p3.所以{a n }是首项为p 3,公比为43的等比数列.(2)因为a 1=1,则a n =(43)n -1,由b n +1=a n +b n (n =1,2,…),得b n +1-b n =(43)n -1,当n ≥2时,由累加法得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =2+1-(43)n -11-43=3·(43)n -1-1,当n =1时,上式也成立.∴b n =3·(43)n -1-1.10.(文)(2017·蚌埠质检)已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9.(1)求数列{a n }的通项公式;(2)设b n =log 23a 2n +3,且{b n }为递增数列,若c n =4b n ·b n +1,求证:c 1+c 2+c 3+…+c n <1.[解析] (1)设该等比数列的公比为q , 则根据题意有3·(1+1q +1q 2)=9,从而2q 2-q -1=0, 解得q =1或q =-12.当q =1时,a n =3; 当q =-12时,a n =3·(-12)n -3.(2)证明:若a n =3,则b n =0,与题意不符, 故a n =3(-12)n -3,此时a 2n +3=3·(-12)2n ,∴b n =2n ,符合题意. ∴c n =42n ·(2n +2)=1n ·(n +1)=1n -1n +1, 从而c 1+c 2+c 3+…+c n =1-1n +1<1.(理)设n ∈N *,x n 是曲线y =x 2n +2+1在点(1,2)处的切线与x 轴交点的横坐标. (1)求数列{x n }的通项公式;(2)记T n =x 21x 23…x 22n -1,证明:T n ≥14n. [解析] (1)y ′=(x 2n +2+1)′=(2n +2)x 2n +1,曲线y =x 2n +2+1在点(1,2)处的切线斜率为2n +2,从而切线方程为y -2=(2n +2)(x -1).令y =0,解得切线与x 轴交点的横坐标 x n =1-1n +1=n n +1.(2)证明:由题设和(1)中的计算结果知T n =x 21x 23…x 22n -1=⎝⎛⎭⎫122⎝⎛⎭⎫342…⎝⎛⎭⎫2n -12n 2. 当n =1时,T 1=14;当n ≥2时, 因为x 22n -1=⎝⎛⎭⎫2n -12n 2=(2n -1)2(2n )2>(2n -1)2-1(2n )2=2n -22n =n -1n ,所以T n >⎝⎛⎭⎫122×12×23×…×n -1n =14n . 综上可得,对任意的n ∈N *,均有T n ≥14n.B 组1.已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( A )A .94B .32C .53D .4[解析] 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.2.(文)设S n 为等比数列{a n }的前n 项和,且4a 3-a 6=0,则S 6S 3=( D )A .-5B .-3C .3D .5[解析] ∵4a 3-a 6=0,∴4a 1q 2=a 1q 5,∵a 1≠0,q ≠0,∴q 3=4,∴S 6S 3=a 1(1-q 6)1-q a 1(1-q 3)1-q=1-q 61-q 3=1+q 3=5.(理)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( C ) A .13B .-13C .19D .-19[解析] ∵S 3=a 2+10a 1,∴a 1+a 2+a 3=a 2+10a 1, a 3=9a 1=a 1q 2,∴q 2=9,又∵a 5=9,∴9=a 3·q 2=9a 3,∴a 3=1, 又a 3=9a 1,故a 1=19.3.(2018·湖南岳阳一模)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =(n +1)a n2,则a 2018=( B )A .2017B .2018C .4034D .4036[解析] ∵a 1=1,S n =(n +1)a n2,∴当n ≥2时,a n =S n -S n -1=(n +1)a n 2-na n -12, 即a n n =a n -1n -1, ∴a n n =a n -1n -1=…=a 11=1,∴a n =n . ∴a 2018=2018.4.(2018·浙江卷,10)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( B )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4[解析] 由x >0,ln x ≤x -1,得a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1,a 4≤-1,所以公比q <0,当q ≤-1时,a 1+a 2+a 3+a 4=a 1(1+q )(1+q 2)<0,此时a 1+a 2+a 3=a 1(1+q +q 2)≥a 1>1,ln(a 1+a 2+a 3)>0,矛盾,所以-1<q <0,所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0.5.(2018·南昌二模)数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( D )A .10B .15C .-5D .20[解析] 当n ≥2时,a n =S n -S n -1=2n 2-3n -2(n -1)2+3n -3=4n -5,a 1=S 1=-1适合上式,所以a n =4n -5,所以a p -a q =4(p -q ),因为p -q =5,所以a p -a q =20.6.(2017·吉林长春质量监测)设数列{a n }的前n 和为S n ,且a 1=a 2=1,{nS n +(n +2)a n }为等差数列,则a n =( A )A .n 2n -1B .n +12n -1+1C .2n -12n -1D .n +12n +1[解析] 设b n =nS n +(n +2)a n ,则b 1=4,b 2=8, {b n }为等差数列,所以b n =4n ,即nS n +(n +2)a n =4n , S n +(1+2n)a n =4.当n ≥2时,S n -S n -1+(1+2n )a n -(1+2n -1)a n -1=0,所以2(n +1)n a n =n +1n -1·a n -1,即2·a nn =a n -1n -1,又因为a 11=1,所以{a n n }是首项为1,公比为12的等比数列,所以a n n =(12)n -1(n ∈N *),a n =n2n -1(n ∈N *).故选A .7.设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=2S n +3,则S 4=66. [解析] 本题主要考查数列的通项公式与求和.依题a n =2S n -1+3(n ≥2),与原式作差得,a n +1-a n =2a n ,n ≥2,即a n +1=3a n ,n ≥2,可见,数列{a n }从第二项起是公比为3的等比数列,a 2=5,所以S 4=1+5×(1-33)1-3=66.8.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=50.[解析] ∵a 10a 11+a 9a 12=2e 5,∴a 1·a 20=e 5. 又∵ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20) =ln[(a 1a 20)(a 2a 19)…(a 10a 11)] =ln(e 5)10=ln e 50=50.注意等比数列性质:若m +n =p +q ,则a m ·a n =a p ·a q ,对数的性质log a m n =n log a m . 9.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.[解析] (1)由已知S n =2a n -a 1, 有a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2). 从而a 2=2a 1,a 3=4a 1.又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1). 所以a 1+4a 1=2(2a 1+1),解得a 1=2.所以数列{a n }是首项为2,公比为2的等比数列. 故a n =2n . (2)由(1)得1a n =12n .所以T n =12+122+123+…+12n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-12n .由|T n -1|<11 000得⎪⎪⎪⎪1-12n -1<11 000,即2n >1 000. 因为29=512<1 000<1 024=210, 所以n ≥10. 于是,使|T n -1|<11 000成立的n 的最小值为10. 10.已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,且满足S n +1=qS n +1,其中q >0,n ∈N *,又2a 2,a 3,a 2+2成等差数列.(1)求数列{a n }的通项公式;(2)记b n =2a n -λ(log 2a n +1)2,若数列{b n }为递增数列,求λ的取值范围. [解析] (1)由S n +1=qS n +1 ① 可得,当n ≥2时,S n =qS n -1+1 ② ①-②得:a n +1=qa n . 又S 2=qS 1+1且a 1=1, 所以a 2=q =q ·a 1,所以数列{a n }是以1为首项,q 为公比的等比数列. 又2a 2,a 3,a 2+2成等差数列, 所以2a 3=2a 2+a 2+2=3a 2+2,即2q 2=3q +2. 所以2q 2-3q -2=0, 解得q =2或q =-12(舍),所以数列{a n }的通项公式为:a n =2n -1(n ∈N *). (2)由题意得:b n =2·2n -1-λ(log 22n )2=2n -λn 2, 若数列{b n }为递增数列,则有 b n +1-b n =2n +1-λ(n +1)2-2n +λn 2=2n -2nλ-λ>0,即λ<2n 2n +1. 因为2n +12n +32n 2n +1=4n +22n +3>1,所以数列{2n2n +1}为递增数列.所以2n 2n +1≥23,所以λ<23.。

高考数学二轮复习专题4数列第1讲等差数列与等比数列理

高考数学二轮复习专题4数列第1讲等差数列与等比数列理

第1讲等差数列与等比数列等差、等比数列的基本运算1.(2015新课标全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10等于( B )(A)(B)(C)10 (D)12解析:设等差数列{a n}的首项为a1,公差为d.由题设知d=1,S8=4S4,所以8a1+28=4(4a1+6),解得a1=,所以a10=+9=,选B.2.(2015辽宁省锦州市质量检测(一))已知各项不为0的等差数列{a n}满足a4-2+3a8=0,数列{b n}是等比数列,且b7=a7,则b2b8b11等于( D )(A)1 (B)2 (C)4 (D)8解析:因为a4-2+3a8=0,所以a1+3d-2+3(a1+7d)=0,所以4(a1+6d)-2=0,即4a7-2=0,又a7≠0,所以a7=2,所以b7=2,所以b2b8b11=b1q·b1q7·b1q10=(b1q6)3==8.故选D.3.(2015河南郑州第二次质量预测)设等比数列{a n}的前n项和为S n,若27a3-a6=0,则= .解析:设等比数列公比为q(q≠1),因为27a3-a6=0,所以27a3-a3q3=0,所以q3=27,q=3,所以====28.答案:28等差、等比数列的性质及应用4.(2015河南省六市第二次联考)已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为( C )(A)10 (B)20 (C)100 (D)200解析:a7(a1+2a3)+a3a9=a1a7+2a3a7+a3a9=+2a4a6+=(a4+a6)2=102=100.故选C.5.设等比数列{a n}中,前n项和为S n,已知S3=8,S6=7,则a7+a8+a9等于( A )(A)(B)-(C)(D)解析:因为a7+a8+a9=S9-S6,在等比数列中S3,S6-S3,S9-S6也成等比数列,即8,-1,S9-S6成等比数列,所以有8(S9-S6)=1,即S9-S6=.故选A.6.(2015新课标全国卷Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4-1),则a2等于( C )(A)2 (B)1 (C)(D)解析:法一根据等比数列的性质,结合已知条件求出a4,q后求解.因为a3a5=,a3a5=4(a4-1),所以=4(a4-1),所以-4a4+4=0,所以a4=2.又因为q3===8,所以q=2,所以a2=a1q=×2=.故选C.法二直接利用等比数列的通项公式,结合已知条件求出q后求解.因为a3a5=4(a4-1),所以a1q2·a1q4=4(a1q3-1),将a1=代入上式并整理,得q6-16q3+64=0,解得q=2,所以a2=a1q=.故选C.7.(2015哈师大附中、东北师大附中、辽宁实验中学第一次联合模拟)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n等于( B )(A)6 (B)7 (C)8 (D)9解析:依题意得S9-S5=a6+a7+a8+a9=0,所以2(a7+a8)=0,所以a7+a8=0,又a1>0,所以该等差数列的前7项为正数,从第8项开始为负数.所以当S n最大时,n=7.故选B.8.(2015东北三校第一次联合模拟)若等差数列{a n}中,满足a4+a6+a2010+a2012=8,则S2015= .解析:因为a4+a6+a2010+a2012=8,所以2(a4+a2012)=8,所以a4+a2012=4.所以S2015===4030.答案:4030等差、等比数列的综合问题9.(2015甘肃二诊)设等差数列{a n}的前n项和为S n,且满足S17>0,S18<0,则,,…,中最大的项为( C )(A)(B)(C)(D)解析:因为S17==17a9>0,S18==9(a10+a9)<0,所以a9>0,a10+a9<0,所以a10<0.所以等差数列为递减数列,则a1,a2,…,a9为正,a10,a11,…为负,S1,S2,…,S17为正,S18,S19,…为负,所以>0,>0,…,>0,<0,<0,…,<0,又S1<S2<…<S9,a1>a2>…>a9,所以,,…,中最大的项为.故选C.10.(2014辽宁卷)设等差数列{a n}的公差为d,若数列{}为递减数列,则( C )(A)d<0 (B)d>0(C)a1d<0 (D)a1d>0解析:因为数列{}为递减数列,a1a n=a1[a1+(n-1)d]=a1dn+a1(a1-d),等式右边为关于n的一次函数,所以a1d<0.11.(2015兰州高三诊断)在等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的前n项和S n.解:(1)因为{a n}为等比数列,所以=q3=8;所以q=2.所以a n=2·2n-1=2n.(2)b3=a3=23=8,b5=a5=25=32,又因为{b n}为等差数列,所以b5-b3=24=2d,所以d=12,b1=a3-2d=-16,所以S n=-16n+×12=6n2-22n.一、选择题1.(2015云南第二次检测)设S n是等差数列{a n}的前n项和,若a1∶a2=1∶2,则S1∶S3等于( D )(A)1∶3 (B)1∶4 (C)1∶5 (D)1∶6解析:S1∶S3=a1∶(a1+a2+a3)=a1∶3a2,又a1∶a2=1∶2,所以S1∶S3=1∶6.故选D.2.(2015银川九中月考)已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n等于( B )(A)2n-1 (B)()n-1(C)()n-1(D)解析:由S n=2a n+1得S n=2(S n+1-S n),所以S n+1=S n.所以{S n}是以S1=a1=1为首项,为公比的等比数列.所以S n=()n-1.故选B.3.(2015河北石家庄二模)等比数列{a n}的前n项和为S n,已知S3=a2+5a1,a7=2,则a5等于( A )(A)(B)-(C)2 (D)-2解析:设公比为q,因为S3=a2+5a1,所以a1+a2+a3=a2+5a1,所以a3=4a1,所以q2==4,又a7=2,所以a5===.故选A.4.已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10等于( D )(A)7 (B)5 (C)-5 (D)-7解析:法一利用等比数列的通项公式求解.由题意得所以或所以a1+a10=a1(1+q9)=-7.法二利用等比数列的性质求解.由解得或所以或所以a1+a10=a1(1+q9)=-7.故选D.5.(2015兰州高三诊断)已知等差数列{a n}的前n项和为S n,若a4=18-a5,则S8等于( D )(A)18 (B)36 (C)54 (D)72解析:因为a4=18-a5,所以a4+a5=18,所以S8====72.故选D.6.(2014郑州市第二次质量预测)在数列{a n}中,a n+1=ca n(c为非零常数),前n项和为S n=3n+k,则实数k为( A )(A)-1 (B)0 (C)1 (D)2解析:由a n+1=ca n,可知{a n}是等比数列,设公比q,由S n=,得S n=-·q n+.由S n=3n+k,知k=-1.故选A.7.设{a n}是公差不为零的等差数列,满足+=+,则该数列的前10项和等于( C )(A)-10 (B)-5 (C)0 (D)5解析:设等差数列{a n}的首项为a1,公差为d(d≠0),由+=+得,(a1+3d)2+(a1+4d)2=(a1+5d)2+(a1+6d)2,整理得2a1+9d=0,即a1+a10=0,所以S10==0.故选C.8.(2015北京卷)设{a n}是等差数列,下列结论中正确的是( C )(A)若a1+a2>0,则a2+a3>0(B)若a1+a3<0,则a1+a2<0(C)若0<a1<a2,则a2>(D)若a1<0,则(a2-a1)(a2-a3)>0解析:因为{a n}为等差数列,所以2a2=a1+a3.当a2>a1>0时,得公差d>0,所以a3>0,所以a1+a3>2,所以2a2>2,即a2>,故选C.9.(2015大连市二模)已知等差数列{a n}的前n项和为S n,a2=4,S10=110,则的最小值为( C )(A)7 (B)(C)(D)8解析:设等差数列{a n}的公差为d,则解得所以a n=2+2(n-1)=2n,S n=2n+×2=n2+n,所以==++≥2+=.当且仅当=,即n=8时取等号.故选C.10.(2015福建卷)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( D ) (A)6 (B)7 (C)8 (D)9解析:由题可知a,b是x2-px+q=0的两根,所以a+b=p>0,ab=q>0,故a,b均为正数.因为a,b,-2适当排序后成等比数列,所以-2是a,b的等比中项,得ab=4,所以q=4.又a,b,-2适当排序后成等差数列,所以-2是第一项或第三项,不妨设a<b,则-2,a,b成递增的等差数列,所以2a=b-2,联立消去b得a2+a-2=0,得a=1或a=-2,又a>0,所以a=1,此时b=4,所以p=a+b=5,所以p+q=9.故选D.二、填空题11.(2015黑龙江高三模拟)等差数列{a n}中,a4+a8+a12=6,则a9-a11= .解析:设等差数列{a n}公差为d,因为a4+a8+a12=6,所以3a8=6,即a8=a1+7d=2,所以a9-a11=a1+8d-(a1+10d)=a1+ d=(a1+7d)=×2=.答案:12.(2015宁夏石嘴山高三联考)若正项数列{a n}满足a2=,a6=,且=(n≥2,n∈N*),则log2a4= .解析:因为=(n≥2,n∈N*),所以=a n-1·a n+1,所以数列{a n}为等比数列.又a2=,a6=,所以q4==.因为数列为正项数列,所以q>0,所以q=.所以a4=a2q2=×=,所以log2a4=log2=-3.答案:-313.(2015安徽卷)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.解析:因为a1=1,a n=a n-1+(n≥2),所以数列{a n}是首项为1、公差为的等差数列,所以前9项和S9=9+×=27.答案:2714.(2015湖南卷)设S n为等比数列{a n}的前n项和.若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:设等比数列{a n}的公比为q(q≠0),依题意得a2=a1·q=q,a3=a1q2=q2, S1=a1=1,S2=1+q,S3=1+q+q2.又3S1,2S2,S3成等差数列,所以4S2=3S1+S3,即4(1+q)=3+1+q+q2,所以q=3(q=0舍去).所以a n=a1q n-1=3n-1.答案:3n-1。

高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理PPT课件

高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理PPT课件
所以 an=a1+(n-1)d=2n-1. 故 Sn=1+3+…+(2n-1) =n(a12+an)=n(1+22n-1)=n2.
(2)由(1)得,a4=7,S4=16. 因为 q2-(a4+1)q+S4=0,即 q2-8q+16=0, 所以(q-4)2=0,从而 q=4. 又因 b1=2,{bn}是公比 q=4 的等比数列,所以 bn=b1qn -1=2·4n-1=22n-1.
3.等差、等比数列的综合问题,多以解答题的形 式考查,主要考查考生综合数学知识解决问题的能力, 为中挡题.
例 1 已知数列{an}是一个等差数列,且 a2=1, a5=-5.
(1)求{an}的通项 an. (2)设 cn=5-2an,bn=2cn,求 T=log2b1+log2b2+ log2b3+…+log2bn 的值.
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
从而{bn}的前 n 项和 Tn=b1(11--qqn)=32(4n-1).
已知等差数列中的某几项成等比数列(或已知等比数列 中的某几项成等差数列),往往是先设公差为 d(或公比为 q), 用待定系数法求出 d(或 q)与首项之间的关系,进而再解决 问题.
3.在等比数列{an}中,a2=3,a5=81. (1)求 an; (2)设 bn=log3an,求数列{bn}的前 n 项和 Sn.
=ban-b2·-2bn
=ban-2-1 b2n. ∴an-2-1 b·2n=a1-2-2 b·bn-1=2(21--bb)bn-1.
∴an=2-1 b[2n+(2-2b)bn-1]. ∵a1=2 适合上式, ∴an=2-1 b[2n+(2-2b)bn-1].

高考数学第二轮专题复习数列教案

高考数学第二轮专题复习数列教案

高考数学第二轮专题复习数列教案二、高考要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差〔比〕数列的概念,掌握等差〔比〕数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题.3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明〞这一思想方法.三、热点分析1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四那么运算法那么、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势〔1〕数列是特殊的函数,而不等式那么是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点〔2〕数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。

〔3〕加强了数列与极限的综合考查题3.熟练掌握、灵活运用等差、等比数列的性质。

等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a2a4=a32,a4a6=a52,从而有a32+2aa53+a52=25,即〔a3+a5〕2=25.4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中表达,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。

高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理

高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理

高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理第一讲 等差数列与等比数列1.等差数列的定义.数列{a n }满足a n +1-a n =d (其中n∈N *,d 为与n 值无关的常数)⇔{a n }是等差数列. 2.等差数列的通项公式.若等差数列的首项为a 1,公差为d ,则a n =a 1+(n -1)d =a m +(n -m )d (n ,m ∈N *). 3.等差中项.若x ,A ,y 成等差数列,则A =x +y2,其中A 为x ,y 的等差中项.4.等差数列的前n 项和公式.若等差数列首项为a 1,公差为d ,则其前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.1.等比数列的定义. 数列{a n }满足a n +1a n=q (其中a n ≠0,q 是与n 值无关且不为零的常数,n ∈N *)⇔{a n }为等比数列.2.等比数列的通项公式.若等比数列的首项为a 1,公比为q ,则a n =a 1·q n -1=a m ·qn -m(n ,m ∈N *).3.等比中项.若x ,G ,y 成等比数列,则G 2=xy ,其中G 为x ,y 的等比中项,G 值有两个. 4.等比数列的前n 项和公式.设等比数列的首项为a 1,公比为q ,则S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.判断下面结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√) (3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.(×) (4)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.(×) (5)G 为a ,b 的等比中项⇔G 2=ab .(×) (6)1+b +b 2+b 3+b 4+b 5=1-b51-b.(×)1.在等差数列{a n }中,a 2=1,a 4=5,则数列{a n }的前5项和S 5=(B ) A .7 B .15 C .20 D .25解析:2d =a 4-a 2=5-1=4⇒d =2,a 1=a 2-d =1-2=-1,a 5=a 2+3d =1+6=7,故S 5=(a 1+a 5)×52=6×52=15.2. (2015·北京卷)设{a n }是等差数列,下列结论中正确的是(C ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:设等差数列{a n}的公差为d,若a1+a2>0,a2+a3=a1+d+a2+d=(a1+a2)+2d,由于d正负不确定,因而a2+a3符号不确定,故选项A错;若a1+a3<0,a1+a2=a1+a3-d=(a1+a3)-d,由于d正负不确定,因而a1+a2符号不确定,故选项B错;若0<a1<a2,可知a1>0,d>0,a2>0,a3>0,∴a22-a1a3=(a1+d)2-a1(a1+2d)=d2>0,∴a2>a1a3,故选项C正确;若a1<0,则(a2-a1)(a2-a3)=d·(-d)=-d2≤0,故选项D错.3.(2015·新课标Ⅱ卷)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=(B)A.21 B.42C.63 D.84解析:∵ a1=3,a1+a3+a5=21,∴ 3+3q2+3q4=21.∴ 1+q2+q4=7.解得q2=2或q2=-3(舍去).∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.故选B.4.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是(B)A.90 B.100C.145 D.190解析:设公差为d,则(1+d)2=1·(1+4d).∵d≠0,解得d=2,∴S10=100.一、选择题1.已知等差数列{a n}中,前n项和为S n,若a3+a9=6,则S11=(B)A.12 B.33 C.66 D.99解析:∵{a n}为等差数列且a3+a9=6,∴a 6+a 6=a 3+a 9=6. ∴a 6=3. ∴S 11=a 1+a 112×11=a 6+a 62×11=11a 6=11×3=33.2.在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则数列{a n }的前6项和S 6=(B ) A .120 B .140 C .160 D .180 解析:∵{a n }为等比数列,∴a 1+a 2,a 3+a 4,a 5+a 6为等比数列. ∴(a 3+a 4)2=(a 1+a 2)(a 5+a 6). 即a 5+a 6=(a 3+a 4)2a 1+a 2=40220=80.∴S 6=a 1+a 2+a 3+a 4+a 5+a 6=20+40+80=140.3.已知数列{a n }的前n 项和S n =n 2-2n -1,则a 3+a 17=(C ) A .15 B .17 C .34 D .398 解析:∵S n =n 2-2n -1, ∴a 1=S 1=12-2-1=-2. 当n ≥2时,a n =S n -S n -1=n 2-2n -1-[(n -1)2-2(n -1)-1] =n 2-(n -1)2+2(n -1)-2n -1+1 =n 2-n 2+2n -1+2n -2-2n =2n -3.∴a n =⎩⎪⎨⎪⎧-2,n =1,2n -3,n ≥2.∴a 3+a 17=(2×3-3)+(2×17-3)=3+31=34. 4.(2014·陕西卷)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 解析:由a n +a n +12<a n ⇒a n +1<a n ⇒{a n }为递减数列,所以原命题为真命题;逆命题:若{a n }为递减数列,则a n +a n +12<a n ,n ∈N +;若{a n }为递减数列,则a n +1<a n ,即a n +a n +12<a n ,所以逆命题为真;否命题:若a n +a n +12≥a n ,n ∈N +,则{a n }不为递减数列;由a n +a n +12≥a n ⇒a n ≤a n +1⇒{a n }不为递减数列,所以否命题为真;因为逆否命题的真假为原命题的真假相同,所以逆否命题也为真命题. 故选A.5.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为(C )A .5B .7C .9D .11解析:由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入m =9,因此选C.二、填空题6.(2015·安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于27.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.7.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =32. 解析:将S 2=3a 2+2,S 4=3a 4+2两个式子全部转化成用a 1,q 表示的式子,即⎩⎪⎨⎪⎧a 1+a 1q =3a 1q +2,a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2,两式作差得:a 1q 2+a 1q 3=3a 1q (q 2-1),即:2q 2-q -3=0,解得q =32或q =-1(舍去).8.(2014·广东卷)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.解析:由题意知a 1a 5=a 23=4,且数列{a n }的各项均为正数,所以a 3=2, ∴a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=(a 23)2·a 3=a 53=25,∴log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 三、解答题9.已知数列{a n }满足,a 1=1,a 2=2,a n +2 =a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 解析:(1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, 当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1.所以a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).10.(2015·安徽卷)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解析:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.。

高考数学二轮复习第一部分微专题强化练习题:等差数列与等比数列含解析

高考数学二轮复习第一部分微专题强化练习题:等差数列与等比数列含解析

第一部分 一 9一、选择题1.(文)(2014·东北三省三校联考)等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6 =12,则S 7的值是( )A .21B .24C .28D .7[答案] C[解析] ∵a 2+a 4+a 6=3a 4=12,∴a 4=4, ∴2a 4=a 1+a 7=8,∴S 7=7(a 1+a 7)2=7×82=28.[方法点拨] 1.熟记等差、等比数列的求和公式. 2.形如a n +1=a n +f (n )的递推关系用累加法可求出通项; 3.形如a n +1=a n f (n )的递推关系可考虑用累乘法求通项a n ;4.形如a n +1=ka n +b (k 、b 为常数)可通过变形,设b n =a n +bk -1构造等比数列求通项a n .(理)在等比数列{a n }中,a 1=a ,前n 项和为S n ,若数列{a n +1}成等差数列,则S n 等于( ) A .a n +1-a B .n (a +1) C .na D .(a +1)n -1[答案] C[解析] 利用常数列a ,a ,a ,…判断,则存在等差数列a +1,a +1,a +1,…或通过下列运算得到:2(aq +1)=(a +1)+(aq 2+1),∴q =1,S n =na .2.(文)已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53 D .4[答案] A[解析] 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.(理)(2014·全国大纲文,8)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .64[答案] C[解析] 解法1:由条件知:a n >0,且⎩⎪⎨⎪⎧a 1+a 2=3,a 1+a 2+a 3+a 4=15, ∴⎩⎪⎨⎪⎧a 1(1+q )=3,a 1(1+q +q 2+q 3)=15,∴q =2. ∴a 1=1,∴S 6=1-261-2=63.解法2:由题意知,S 2,S 4-S 2,S 6-S 4成等比数列,即(S 4-S 2)2=S 2(S 6-S 4),即122=3(S 6-15),∴S 6=63.[方法点拨] 下标成等差的等差、等比数列的项或前n 项和的问题,常考虑应用等差、等比数列的性质求解.3.(2015·浙江理,3)已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0 [答案] B[解析] 考查等差数列的通项公式及其前n 项和;等比数列的概念. ∵{a n }为等差数列,且a 3,a 4,a 8成等比数列, ∴(a 1+3d )2=(a 1+2d )(a 1+7d )⇒ a 1=-53d ,∴S 4=2(a 1+a 4)=2(a 1+a 1+3d )=-23d ,∴a 1d =-53d 2<0,dS 4=-23d 2<0,故选B.4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13C.19 D .-19[答案] C[解析] ∵S 3=a 2+10a 1,∴a 1+a 2+a 3=a 2+10a 1,a 3=9a 1=a 1q 2,∴q 2=9, 又∵a 5=9,∴9=a 3·q 2=9a 3,∴a 3=1, 又a 3=9a 1,故a 1=19.[方法点拨] 求基本量的问题,熟记等差、等比数列的定义、通项及前n 项和公式,利用公式、结合条件,建立方程求解.5.(2015·江西省质检)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n (n ∈N *),则数列{a n }的前2015项的和S 2015等于( )A .31008-2B .31008-3C .32015-2D .32015-3[答案] A[解析] 因为a 1=1,a 2=3,a n +2a n=3, 所以S 2015=(a 1+a 3+…+a 2015)+(a 2+a 4+…+a 2014)=1-310081-3+3(1-31007)1-3=31008-2.6.(文)(2014·新乡、许昌、平顶山调研)设{a n }是等比数列,S n 是{a n }的前n 项和,对任意正整数n ,有a n +2a n +1+a n +2=0,又a 1=2,则S 101的值为( )A .2B .200C .-2D .0[答案] A[解析] 设公比为q ,∵a n +2a n +1+a n +2=0,∴a 1+2a 2+a 3=0,∴a 1+2a 1q +a 1q 2=0,∴q 2+2q +1=0,∴q =-1,又∵a 1=2,∴S 101=a 1(1-q 101)1-q =2[1-(-1)101]1+1=2.(理)(2014·哈三中二模)等比数列{a n },满足a 1+a 2+a 3+a 4+a 5=3,a 21+a 22+a 23+a 24+a 25=15,则a 1-a 2+a 3-a 4+a 5的值是( )A .3 B. 5 C .- 5 D .5[答案] D[解析] 由条件知⎩⎪⎨⎪⎧a 1(1-q 5)1-q=3a 21(1-q10)1-q2=15,∴a 1(1+q 5)1+q=5,∴a 1-a 2+a 3-a 4+a 5=a 1[1-(-q )5]1-(-q )=a 1(1+q 5)1+q=5.7.(文)在等差数列{a n }中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600[答案] B[解析] 由a 1+a 2+a 3=3,a 18+a 19+a 20=87得, a 1+a 20=30,∴S 20=20×(a 1+a 20)2=300.(理)已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( )A .1+ 2B .1- 2C .3+2 2D .3-2 2 [答案] C[解析] 由条件知a 3=a 1+2a 2, ∴a 1q 2=a 1+2a 1q , ∵a 1≠0,∴q 2-2q -1=0, ∵q >0,∴q =1+2, ∴a 8+a 9a 6+a 7=q 2=3+2 2. 8.(2015·福建理,8)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .9[答案] D[解析] 由韦达定理得a +b =p ,a ·b =q ,因为p >0,q >0,则a >0,b >0,当a ,b ,-2适当排序后成等比数列时,-2必为等比中项,故a ·b =(-2)2=4,故q =4,b =4a .当适当排序后成等差数列时,-2必不是等差中项,当a 是等差中项时,2a =4a -2,解得a =1,b =4,;当b 是等差中项时,8a =a -2,解得a =4,b =1,综上所述,a +b =p =5,所以p +q =9,选D.9.已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=2,n ∈N +,则数列{ba n }的前10项的和为( )A.43(49-1) B.43(410-1) C.13(49-1) D.13(410-1) [答案] D[解析] 由a 1=1,a n +1-a n =2得,a n =2n -1, 由b n +1b n=2,b 1=1得b n =2n -1, ∴ba n =2a n -1=22(n -1)=4n -1,∴数列{ba n }前10项和为1×(410-1)4-1=13(410-1).10.(文)若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1等于( )A .1-14nB.23(1-14n ) C .1-12nD.23(1-12n ) [答案] B[解析] 因为a n =1×2n -1=2n -1,所以a n ·a n +1=2n -1·2n =2×4n -1, 所以1a n a n +1=12×(14)n -1,所以{1a n a n +1}也是等比数列,所以T n =1a 1a 2+1a 2a 3+…+1a n a n +1=12×1×(1-14n )1-14=23(1-14n ),故选B.(理)(2014·唐山市一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n( )A .4n -1B .4n -1 C .2n -1 D .2n -1[答案] C[解析] 设公比为q ,则a 1(1+q 2)=52,a 2(1+q 2)=54,∴q =12,∴a 1+14a 1=52,∴a 1=2.∴a n =a 1q n -1=2×(12)n -1,S n =2[1-(12)n ]1-12=4[1-(12)n ],∴S n a n =4[1-(12)n ]2×(12)n -1=2(2n -1-12)=2n -1.[点评] 用一般解法解出a 1、q ,计算量大,若注意到等比数列的性质及求S na n,可简明解答如下:∵a 2+a 4=q (a 1+a 3),∴q =12,∴S na n =a 1(1-q n )1-q a 1q n -1=1-q n (1-q )·qn -1=1-12n 12·12n -1=2n -1. 11.给出数列11,12,21,13,22,31,…,1k ,2k -1,…,k1,…,在这个数列中,第50个值等于1的项的序号..是( ) A .4900 B .4901 C .5000 D .5001[答案] B[解析] 根据条件找规律,第1个1是分子、分母的和为2,第2个1是分子、分母的和为4,第3个1是分子、分母的和为6,…,第50个1是分子、分母的和为100,而分子、分母的和为2的有1项,分子、分母的和为3的有2项,分子、分母的和为4的有3项,…,分子、分母的和为99的有98项,分子、分母的和为100的项依次是:199,298,397,…,5050,5149,…,991,第50个1是其中第50项,在数列中的序号为1+2+3+…+98+50=98(1+98)2+50=4901.[点评] 本题考查归纳能力,由已知项找到规律,“1”所在项的特点以及项数与分子、分母的和之间的关系,再利用等差数列求和公式即可.二、填空题12.(文)(2015·广东理,10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.[答案] 10[解析] 本题考查等差数列的性质及简单运算,属于容易题.因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25 即a 5=5,a 2+a 8=2a 5=10.(理)(2015·湖南理,14)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.[答案] 3n -1[解析] 考查等差数列与等比数列的性质.∵3S 1,2S 2,S 3成等差数列,∴4S 2=3S 1+S 3,∴4(a 1+a 2)=3a 1+a 1+a 2+a 3⇒a 3=3a 2⇒q =3.又∵{a n }为等比数列,∴a n =a 1q n -1=3n -1.[方法点拨] 条件或结论中涉及等差或等比数列中的两项或多项的关系时,先观察分析下标之间的关系,再考虑能否应用性质解决,要特别注意等差、等比数列性质的区别.13.(文)(2015·安徽理,14)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.[答案] 2n -1[解析] 考查1.等比数列的性质;2.等比数列的前n 项和公式.由题意,⎩⎪⎨⎪⎧ a 1+a 4=9,a 2·a 3=8.∴⎩⎪⎨⎪⎧a 1+a 4=9,a 1·a 4=8,解得a 1=1,a 4=8或者a 1=8,a 4=1,而数列{a n }是递增的等比数列,所以a 1=1,a 4=8,即q 3=a 4a 1=8,所以q =2,因而数列{a n }的前n 项和S n =a 1(1-q n )1-q =1-2n 1-2=2n -1.(理)(2015·江苏,11)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.[答案]2011[解析] 考查数列通项,裂项求和.由题意得:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n (n +1)2,所以1a n =2(1n -1n +1),S n =2(1-12)+2(12-13)+…+2(1n -1n +1)=2(1-1n +1)=2nn +1,S 10=2011.三、解答题14.(文)设数列{a n }的前n 项和为S n ,且S n =4a n -p (n ∈N *),其中p 是不为零的常数. (1)证明:数列{a n }是等比数列;(2)当p =3时,若数列{b n }满足b n +1=a n +b n (n ∈N *),b 1=2,求数列{b n }的通项公式. [解析] (1)证明:因为S n =4a n -p (n ∈N *), 则S n -1=4a n -1-p (n ∈N *,n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p3.所以{a n }是首项为p 3,公比为43的等比数列.(2)因为a 1=1,则a n =(43)n -1,由b n +1=a n +b n (n =1,2,…),得b n +1-b n =(43)n -1,当n ≥2时,由累加法得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =2+1-(43)n -11-43=3(43)n -1-1,当n =1时,上式也成立.∴b n =3·(43)n -1-1.[方法点拨] 证明数列是等差(等比)数列时,应用定义分析条件,结合性质进行等价转化. (理)(2015·河南高考适应性测试)已知数列{a n }的各项均为正数,且a 1=2,a n =a 2n +1+4a n +1+2.(1)令b n =log 2(a n +2),证明:数列{b n }是等比数列. (2)设c n =nb n ,求数列{c n }的前n 项和S n .[解析] (1)由a n =a 2n +1+4a n +1+2,得a n +2=a 2n +1+4a n +1+4=(a n +1+2)2.因为a n >0,所以a n +2=a n +1+2. 因为b n +1b n =log 2(a n +1+2)log 2(a n +2)=log 2a n +2log 2(a n +2)=12,又b 1=log 2(a 1+2)=2,所以数列{b n }是首项为2,公比为12的等比数列.(2)由(1)知,b n =2·⎝⎛⎭⎫12n -1,则c n =2n ⎝⎛⎭⎫12n -1. S n =2×⎝⎛⎭⎫120+4×⎝⎛⎭⎫121+…+2(n -1)⎝⎛⎭⎫12n -2+2n ⎝⎛⎭⎫12n -1,① 12S n =2×⎝⎛⎭⎫121+4×⎝⎛⎭⎫122+…+2(n -1)⎝⎛⎭⎫12n -1+2n ⎝⎛⎭⎫12n .② ①-②得:12S n =2×⎝⎛⎭⎫120+2×⎝⎛⎭⎫121+2×⎝⎛⎭⎫122+…+2×⎝⎛⎭⎫12n -1-2n ·⎝⎛⎭⎫12n =21-⎝⎛⎭⎫12n1-12-2n ·⎝⎛⎭⎫12n =4-(4+2n )⎝⎛⎭⎫12n . 所以S n =8-(n +2)⎝⎛⎭⎫12n -2.15.(2015·南昌市一模)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围.[解析] (1)等差数列{a n },a 1=1,S 3=6,∴d =1,故a n =n⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n (1)b 1·b 2·b 3·…·b n -1=2S n -1 (2),(1)÷(2)得b n =2S n -S n -1=2a n =2n (n ≥2), b 1=2S 1=21=2,满足通项公式,故b n =2n(2) 设λb n >a n 恒成立⇒λ>n 2n 恒成立,设c n =n 2n ⇒c n +1c n =n +12n当n ≥2时,c n <1,{c n }单调递减, ∴(c n )max =c 1=12,故λ>12.16.(文)(2014·湖北理,18)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.[分析] (1)设数列{a n }的公差为d ,利用等比数列的性质得到a 22=a 1·a 5,并用a 1、d 表示a 2、a 5,列等式求解公差d ,进而求出通项,注意对公差d 分类讨论;(2)利用(1)的结论,对数列{a n }的通项分类讨论,分别利用通项公式及等差数列的前n 项和公式求解S n ,然后根据S n >60n +800列不等式求解.[解析] (1)设数列{a n }的公差为d ,依题意,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ).化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立, 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2,令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去).此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.[方法点拨] 存在型探索性问题解答时先假设存在,依据相关知识(概念、定理、公式、法则、性质等),结合所给条件进行推理或运算,直到得出结果或一个明显成立或错误的结论,从而断定存在与否.(理)(2014·新课标Ⅰ理,17)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.[分析](1)利用a n+1=S n+1-S n用配凑法可获证;(2)假设存在λ,则a1,a2,a3应成等差数列求出λ的值,然后依据a n+2-a n=λ推证{a n}为等差数列.[解析](1)由题设:a n a n+1=λS n-1,a n+1a n+2=λS n+1-1,两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1,令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.。

高考数学大二轮复习专题二数列第一讲等差数列等比数列限时规范训练理

高考数学大二轮复习专题二数列第一讲等差数列等比数列限时规范训练理

第一讲 等差数列、等比数列1.(2019·宽城区校级期末)在等差数列{a n }中,已知a 2+a 5+a 12+a 15=36,则S 16=( ) A .288 B .144 C .572D .72解析:a 2+a 5+a 12+a 15=2(a 2+a 15)=36, ∴a 1+a 16=a 2+a 15=18, ∴S 16=16(a 1+a 16)2=8×18=144,故选B. 答案:B2.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2 解析:由题意知⎩⎪⎨⎪⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.答案:C3.(2019·咸阳二模)《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为( )A .15.5尺B .12.5尺C .10.5尺D .9.5尺解析:设此等差数列{a n }的公差为d ,则a 1+a 4+a 7=3a 1+9d =37.5,a 1+11d =4.5, 解得:d =-1,a 1=15.5. 故选A. 答案:A4.(2019·德州一模)在等比数列{a n }中,a 1=1,a 5+a 7a 2+a 4=8,则a 6的值为( ) A .4 B .8 C .16D .32解析:设等比数列{a n }的公比为q , ∵a 1=1,a 5+a 7a 2+a 4=8, ∴a 1(q 4+q 6)a 1(q +q 3)=8,解得q =2. 则a 6=25=32. 故选D. 答案:D5.(2019·信州区校级月考)已知等差数列{a n }的首项a 1=2,前n 项和为S n ,若S 8=S 10,则a 18=( )A .-4B .-2C .0D .2解析:∵等差数列{a n }的首项a 1=2,前n 项和为S n ,S 8=S 10, ∴8a 1+7×82d =10a 1+10×92d ,即16+28d =20+45d ,解得d =-417,∴a 18=a 1+17d =2+17×⎝ ⎛⎭⎪⎫-417=-2.故选B. 答案:B6.(2019·南充模拟)已知等比数列{a n }中的各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 10+a 11a 8+a 9=( ) A .1+ 2 B .1- 2 C .3+2 2D .3-2 2解析:等比数列{a n }中的各项都是正数, 公比设为q ,q >0,a 1,12a 3,2a 2成等差数列,可得a 3=a 1+2a 2, 即a 1q 2=a 1+2a 1q , 即q 2-2q -1=0,解得q =1+2(负的舍去),则a 10+a 11a 8+a 9=q 2(a 8+a 9)a 8+a 9=q 2=3+2 2. 故选C. 答案:C7.(2019·林州市校级月考)在正数x 、y 之间插入数a ,使x ,a ,y 成为等差数列,又在x ,y 之间插入数b 、c ,且x ,b ,c ,y 成等比数列,则有( )A .a 2≤bc B .a 2>bc C .a 2=bcD .a 2≥bc解析:在正数x 、y 之间插入数a ,使x ,a ,y 成为等差数列, 又在x ,y 之间插入数b 、c ,且x ,b ,c ,y 成等比数列,∴⎩⎨⎧2a =x +y ≥2xy ,xy =bc ,∴a 2≥bc . 故选D. 答案:D8.(2019·龙岩期末测试)等差数列{a n }中,若a 4+a 7=2,则2a 1·2a 2·2a 3·…·2a 10=( )A .256B .512C .1 024D .2 048解析:等差数列{a n }中,若a 4+a 7=2, 可得a 1+a 10=a 4+a 7=2, 则2a 1·2a 2·2a 3·…·2a 10=2a 1+a 2+…+a 10=212×10(a 1+a 10)=25×2=1 024.故选C. 答案:C9.(2019·长春模拟)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( )A .6B .7C .8D .9 解析:由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值,故选C.答案:C10.(2019·合肥质检)已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n=1+a n a n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1, 因为b n =1+a n a n =1+1a n,又对任意的n ∈N *都有b n ≥b 8成立, 所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7. 答案:A11.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),4a 5=a 3.设T n=S n -1S n,则数列{T n }中最大项的值为( )A.34B.45C.56D.78解析:设等比数列{a n }的公比为q ,则q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12,故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n-1=(-1)n -1×32n,S n=1-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对任意的n ∈N *,总有-712≤S n -1S n <0或0<S n -1S n ≤56,即数列{T n }中最大项的值为56.故选C.答案:C12.(2019·合肥二模)“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是100-200⎝ ⎛⎭⎪⎫910n万元,则n 的值为( )A .7B .8C .9D .10解析:由题意可得第n 层的货物的价格为a n =n ·⎝ ⎛⎭⎪⎫910n -1,设这堆货物总价是S n =1·⎝ ⎛⎭⎪⎫9100+2·⎝ ⎛⎭⎪⎫9101+3·⎝ ⎛⎭⎪⎫9102+…+n ·⎝ ⎛⎭⎪⎫910n -1,①由①×910可得910S n =1·⎝ ⎛⎭⎪⎫9101+2·⎝ ⎛⎭⎪⎫9102+3·⎝ ⎛⎭⎪⎫9103+…+n ·⎝ ⎛⎭⎪⎫910n,②由①-②可得110S n =1+⎝ ⎛⎭⎪⎫9101+⎝ ⎛⎭⎪⎫9102+⎝ ⎛⎭⎪⎫9103+…+⎝ ⎛⎭⎪⎫910n -1-n ·⎝ ⎛⎭⎪⎫910n =1-⎝ ⎛⎭⎪⎫910n1-910-n ·⎝ ⎛⎭⎪⎫910n=10-(10+n )·⎝ ⎛⎭⎪⎫910n,∴S n =100-10(10+n )·⎝ ⎛⎭⎪⎫910n,∵这堆货物总价是100-200⎝ ⎛⎭⎪⎫910n万元,∴n =10, 故选D. 答案:D13.(2019·高考全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________.解析:∵{a n }为等差数列,a 3=5,a 7=13, ∴公差d =a 7-a 37-3=13-54=2,首项a 1=a 3-2d =5-2×2=1, ∴S 10=10a 1+10×92d =100.答案:10014.(2019·安徽合肥二模)已知各项均为正数的数列{a n }前n 项和为S n ,若S 1=2,3S 2n -2a n +1S n =a 2n +1,则a n =________.解析:由S 1=2,得a 1=S 1=2. 由3S 2n -2a n +1S n =a 2n +1, 得4S 2n =(S n +a n +1)2.又a n >0,∴2S n =S n +a n +1,即S n =a n +1. 当n ≥2时,S n -1=a n , 两式作差得a n =a n +1-a n ,即a n +1a n=2. 又由S 1=2,3S 21-2a 2S 1=a 22,求得a 2=2. ∴当n ≥2时,a n =2×2n -2=2n -1.验证当n =1时不成立,∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.答案:⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥215.已知数列{a n }满足a n +2-2a n +1+a n =0,且a 4=π2,若函数f (x )=sin 2x +2cos 2x 2,记y n =f (a n ),则数列{y n }的前7项和为________.解析:根据题意,数列{a n }满足a n +2-2a n +1+a n =0,则数列{a n }是等差数列, 又由a 4=π2,则a 1+a 7=a 2+a 6=a 3+a 5=2a 4=π,函数f (x )=sin 2x +2cos 2x2=sin 2x +cos x +1,f (a 1)+f (a 7)=sin 2a 1+cos a 1+1+sin 2a 7+cos a 7+1=sin 2a 1+cos a 1+1+sin 2(π-a 1)+cos (π-a 1)+1=2,同理可得:f (a 2)+f (a 6)=f (a 3)+f (a 5)=2,f (a 4)=sin π+cos π2+1=1,则数列{y n }的前7项和f (a 1)+f (a 2)+f (a 3)+f (a 4)+f (a 5)+f (a 6)+f (a 7)=7; 故答案为7. 答案:716.如图,点D 为△ABC 的边BC 上一点,BD →=2DC →,E n (n ∈N )为AC 上一列点,且满足:E n A →=(4a n -1)E n D →+14a n +1-5E n B →,其中实数列{a n }满足4a n -1≠0,且a 1=2,则1a 1-1+1a 2-1+1a 3-1+…+1a n -1=________.解析:点D 为△ABC 的边BC 上一点, BD →=2DC →,E n D →-E n B →=2(E n C →-E n D →),∴E n C →=32E n D →-12E n B →又E n A →=λE n C →=3λ2E n D →-λ2E n B →,4a n -1=-3×14a n +1-5,∴4a n +1-5=-34a n -1,4a n +1-4=1-34a n -1=4a n -44a n -1,a n +1-1=a n -14a n -1, 1a n +1-1=4a n -1a n -1=4+3a n -1,∴1a n +1-1+2=3⎝ ⎛⎭⎪⎫1a n -1+2,∴1a n -1+2=3n, 1a n -1=3n-2. S n =3×(1-3n)1-3-2n =3n +1-3-4n2. 故答案为:3n +1-3-4n2. 答案:3n +1-3-4n2。

板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)

板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)

等差数列的通项公式:an=a1+(n-1)d; 等比数列的通项公式:an=a1·qn-1.
na1+an
nn-1
等差数列的求和公式:Sn= 2 =na1+ 2 d;
等比数列的求和公式:Sn=a111--qqn=a11--aqnq,q≠1, na1,q=1.
2.等差数列、等比数列问题的求解策略 (1)抓住基本量,首项a1、公差d或公比q; (2)熟悉一些结构特征,如前n项和为Sn=an2+bn(a,b是常数)的形式的数列为等差 数列,通项公式为an=p·qn-1(p,q≠0)的形式的数列为等比数列; (3)由于等比数列的通项公式、前n项和公式中变量n在指数位置,所以常用两式相 除(即比值的方式)进行相关计算.
热点三 等差数列、等比数列的综合问题
解决数列的综合问题的失分点
(1)公式an=Sn-Sn-1适用于所有数列,但易忽略n≥2这个前提;
(2)对含有字母的等比数列求和时要注意
q=1

q≠1
的情况,公式
a11-qn Sn= 1-q
只适用于 q≠1 的情况.
例3 (1)已知Sn为等差数列{an}的前n项和,a3+S5=18,a5=7.若a3,a6,am成等 比数列,则m=_1_5__.
跟踪演练3 (1)(2019·黄冈、华师附中等八校联考)已知公差不为0的等差数列{an}
的首项a1=3,且a2,a4,a7成等比数列,数列{bn}的前n项和Sn满足Sn=2n(n∈N*),
数列{cn}满足cn=anbn(n∈N*),则数列{cn}的前3项和为
A.31
√B.34
C.62
D.59
解析 由于 a2,a4,a7 成等比数列,故 a24=a2·a7,
解析 数列an是正项等比数列且q≠1, 由a6=a5+2a4,得q2=q+2, 解得q=2(负根舍去).

高考数学二轮复习 第二部分 专题二 数列 第1讲 等差数列与等比数列课件 理

高考数学二轮复习 第二部分 专题二 数列 第1讲 等差数列与等比数列课件 理

因此an=1(,λ+n=1)1,·2n-2,n≥2. 若数列{an}是等比数列,则a2=1+λ=2a1=2. 所以λ=1,经验证当λ=1时,数列{an}是等比数 列.
[迁移探究] 若本例中条件“a1=1”改为“a1= 2”,其他条件不变,试求解第(2)问.
解:由本例(2),得an+1=2an(n≥2,n∈N*).
所以{an+bn}是首项为1,公比为12的等比数列. 由题设得4(an+1-bn+1)=4(an-bn)+8, 即an+1-bn+1=an-bn+2. 又因为a1-b1=1, 所以{an-bn}是首项为1,公差为2的等差数列. (2)解:由(1)知,an+bn=2n1-1,an-bn=2n-1, 所以an=12[(an+bn)+(an-bn)]=21n+n-12, bn=12[(an+bn)-(an-bn)]=21n-n+12.
由S1n=b2n-bn2+1,得Sn=2(bbnn+b1n-+1bn).
当n≥2时,由bn=Sn-Sn-1,得 bn=2(bbnn+b1n-+1bn)-2(bbnn--1bbnn-1),
整理得bn+1+bn-1=2bn. 所以数列{bn}是首项和公差均为1的等差数列. 因此,数列{bn}的通项公式为bn=n(n∈N*).
又S4=a1(1+q+q2+q3)=15,所以a1=1. 故a3=a1q2=4. 答案:C
2.(2019·全国卷Ⅲ)记Sn为等差数列{an}的前n项 和.若a1≠0,a2=3a1,则SS150=________.
解析:由a1≠0,a2=3a1,可得d=2a1, 所以S10=10a1+10× 2 9d=100a1, S5=5a1+5×2 4d=25a1,所以SS150=4. 答案:4
专题二 数 列
第1讲 等差数列与等比数列

2020届高考数学大二轮复习刷题首选卷第一部分刷考点考点十一等差数列与等比数列(理)

2020届高考数学大二轮复习刷题首选卷第一部分刷考点考点十一等差数列与等比数列(理)

考点十一 等差数列与等比数列一、选择题1.已知数列{a n }为等比数列,且a 3=-4,a 7=-16,则a 5=( ) A .-8 B .8 C .±8 D .±4 2答案 A解析 由a 7a 3=q 4得q 4=4,则q 2=2,所以a 5=a 3·q 2=-4×2=-8,故选A. 2.已知正项数列{a n }中,a 1=1,a 2=2,2a 2n +1=a 2n +2+a 2n ,则a 6=( ) A .16 B .8 C .4 D .2 2答案 C解析 由2a 2n +1=a 2n +2+a 2n 知,数列{a 2n }是等差数列,前两项为1,4,所以公差d =3,故a 26=1+5×3=16,所以a 6=4,故选C.3.在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 若a n =2a n -1,n =2,3,4,…,则此数列可以为0,0,0,0,0,…,此时{a n }不是等比数列;若{a n }是公比为2的等比数列,则由等比数列的定义可知a n =2a n -1,n =2,3,4,….故选B.4.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n答案 A解析 设等差数列{a n }的首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n n -12×2=n 2-4n .故选A.5.(2019·湖南六校联考)已知公差d ≠0的等差数列{a n }满足a 1=1,且a 2,a 4-2,a 6成等比数列,若正整数m ,n 满足m -n =10,则a m -a n =( )A .10B .20C .30D .5或40答案 C解析 由题知(a 4-2)2=a 2a 6,因为{a n }为等差数列,所以(3d -1)2=(1+d )(1+5d ),因为d ≠0,解得d =3,从而a m -a n =(m -n )d =30,故选C.6.(2019·河南百校联盟仿真试卷)已知等差数列{a n }满足a 1=32,a 2+a 3=40,则{|a n |}的前12项和为( )A .-144B .80C .144D .304答案 D解析 a 2+a 3=2a 1+3d =64+3d =40⇒d =-8,所以a n =40-8n .所以|a n |=|40-8n |=⎩⎪⎨⎪⎧40-8n ,n ≤5,8n -40,n >5,所以前12项和为5×32+02+7×8+562=80+224=304.7.已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R )且a 2=3,a 6=11,则S 7等于( ) A .13 B .49 C .35 D .63答案 B解析 由S n =an 2+bn (a ,b ∈R )可知数列{a n }是等差数列,所以S 7=7a 1+a 72=7a 2+a 62=7×142=49.选B. 8.已知等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9答案 A解析 由a 4+a 6=2a 5=-6得a 5=-3,则公差为-3+115-1=2,所以由a n =-11+(n -1)×2=2n -13≤0得n ≤132,所以前6项和最小,选A.二、填空题9.设等差数列{a n }的前n 项和为S n ,若a 6a 3=2,则S 6S 3=________. 答案 72解析 设等差数列{a n }的公差为d ,a 6a 3=2,即a 3+3d =2a 3,a 3=3d ,S 6S 3=3a 3+a 43a 2=a 3+a 3+d a 3-d =3d +3d +d 3d -d =72.10.等比数列{a n }的前n 项和为S n ,已知a 3=32,S 3=92,则公比q =________.答案 1或-12解析因为⎩⎪⎨⎪⎧a 3=32,a 1+a 2+a 3=92,所以⎩⎪⎨⎪⎧a 3=32,a 1+a 2=3,即⎩⎪⎨⎪⎧a 1q 2=32,a 1+a 1q =3,即1+qq 2=2,所以2q 2-q -1=0,解得q =1或q =-12.11.(2019·广东广州天河区综合测试一)在等差数列{a n }中,首项a 1=0,公差d ≠0,若a m =a 1+a 2+a 3+…+a 20,则m =________.答案 191解析 等差数列{a n }中,首项a 1=0,公差d ≠0,a m =a 1+a 2+a 3+…+a 20,则a m =d +2d +…+19d =19×1+192d =190d =a 191,m =191.12.(2019·河南新乡第一次模拟)设S n 是数列{a n }的前n 项和,且a 1=1,(n +1)a n +1=(n -1)S n ,则S n =________.答案2n -1n解析 ∵(n +1)a n +1=(n -1)S n ,∴na n +1+S n +1=nS n ,∴n (S n +1-S n )+S n +1=nS n ,∴n +1S n +1nS n =2,∴{nS n }是首项为1,公比为2的等比数列,则nS n =2n -1,∴S n =2n -1n.三、解答题13.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设等差数列{a n }的首项为a 1,公差为d , 根据题意有⎩⎪⎨⎪⎧9a 1+9×82d =-a 1+4d ,a 1+2d =4,解得⎩⎪⎨⎪⎧a 1=8,d =-2,所以a n =8+(n -1)×(-2)=-2n +10.(2)由(1)知a 5=0,即a 5=a 1+4d =0,即a 1=-4d , 又a 1>0,所以d <0, 由S n ≥a n 得na 1+n n -12d ≥a 1+(n -1)d ,整理得(n 2-9n )d ≥(2n -10)d , 因为d <0,所以n 2-9n ≤2n -10, 即n 2-11n +10≤0,解得1≤n ≤10, 所以n 的取值范围是1≤n ≤10(n ∈N *).14.已知数列{a n }是等差数列,a 2=6,前n 项和为S n ,{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19.(1)求{a n },{b n }的通项公式; (2)求数列{b n cos(a n π)}的前n 项和T n . 解 (1)∵数列{a n }是等差数列,a 2=6, ∴S 3+b 1=3a 2+b 1=18+b 1=19,∴b 1=1, ∵b 2=2,数列{b n }是等比数列,∴b n =2n -1.∴b 3=4,∵a 1b 3=12,∴a 1=3, ∵a 2=6,数列{a n }是等差数列, ∴a n =3n .(2)由(1)得,令C n =b n cos(a n π)=(-1)n 2n -1,∴C n +1=(-1)n +12n,∴C n +1C n=-2,又C 1=-1, ∴数列{b n cos(a n π)}是以-1为首项、-2为公比的等比数列, ∴T n =-1×[1--2n]1+2=-13[1-(-2)n]=-2n-13.一、选择题1.设等比数列{a n }的前n 项和为S n ,若S n =2n +1+λ,则λ=( )A .-2B .-1C .1D .2答案 A解析 解法一:a 2=S 2-S 1=23-22=4,a 3=S 3-S 2=24-23=8,所以a 1=a 22a 3=2,所以S 1=22+λ=2,故λ=-2.解法二:S n =2n +1+λ=2·2n+λ,根据等比数列前n 项和公式的结构知λ=-2.2.《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有女子善织布,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一个月(按30天计)共织390尺布.则该女最后一天织多少尺布?( )A .18B .20C .21D .25答案 C解析 依题意得,织女每天所织的布的尺数依次排列形成一个等差数列,设为{a n },其中a 1=5,前30项和为390,于是有305+a 302=390,解得a 30=21,即该织女最后一天织21尺布,选C.3.若等比数列的前n 项和,前2n 项和,前3n 项和分别为A ,B ,C ,则( ) A .A +B =C B .B 2=ACC .A +B -C =B 3D .A 2+B 2=A (B +C )答案 D解析 由等比数列的性质可知,当公比q ≠-1时,A ,B -A ,C -B 成等比数列,所以(B -A )2=A (C -B ),所以A 2+B 2=AC +AB =A (B +C ),当q =-1时,易验证此等式成立,故选D.4.设等差数列{a n }的前n 项和为S n ,a 1=4,S 5≥S 4≥S 6,则公差d 的取值范围是( ) A .⎣⎢⎡⎦⎥⎤-1,-89 B .⎣⎢⎡⎦⎥⎤-1,-45C .⎣⎢⎡⎦⎥⎤-89,-45D .[]-1,0答案 A解析 因为S 5≥S 4≥S 6,所以S 4+a 5≥S 4≥S 4+a 5+a 6,所以a 5≥0≥a 5+a 6,又a 1=4,所以⎩⎪⎨⎪⎧4+4d ≥0,8+9d ≤0,解得-1≤d ≤-89.5.数列{a n }中,已知对任意自然数n ,a 1+a 2+…+a n =2n-1,则a 21+a 22+…+a 2n 等于( ) A .(2n-1)2B .13(2n-1) C .4n-1 D .13(4n-1) 答案 D解析 当n =1时,a 1=2-1=1;当n ≥2,n ∈N *时,a n =(2n -1)-(2n -1-1)=2n -1,n =1时也符合,所以a n =2n -1(n ∈N *).所以a 2n =4n -1(n ∈N *)也是等比数列,所以a 21+a 22+…+a 2n =1+4+42+…+4n -1=1-4n1-4=4n-13,故选D.6.已知数列{a n }是等差数列,r ,s ,t 为正整数,则“r +t =2s ”是“a r +a t =2a s ”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件答案 C解析 设{a n }的公差为d ,由a r +a t =2a s 得(r +t -2)d =(2s -2)d ,即r +t =2s 或d =0,则“r +t =2s ”是“r +t =2s 或d =0”的充分不必要条件.故选C.7.已知在公比不为1的等比数列{a n }中,a 2a 4=9,且2a 3为3a 2和a 4的等差中项,设数列{a n }的前n 项积为T n ,则T 8=( )A .12×37-16 B .310C .318D .320答案 D解析 由题意,得a 23=9,设等比数列的公比为q ,由2a 3为3a 2和a 4的等差中项,得3·a 3q+a 3q =4·a 3,由公比不为1,解得q =3,所以T 8=a 1·a 2·…·a 8=a 81q 28=a 81q 16·q 12=(a 1q 2)8·q 12=(a 23)4q 12=94×312=320.8.已知正项数列{a n }满足a 2n +1-2a 2n -a n +1a n =0,设b n =log 2a n +1a 1,则数列{b n }的前n 项和为( )A .nB .n n -12C .n n +12D .n +1n +22答案 C解析 因为a 2n +1-2a 2n -a n +1a n =0,所以(a n +1+a n )·(2a n -a n +1)=0,又因为a n >0,所以2a n -a n +1=0,即a n +1a n =2,所以数列{a n }是公比为2的等比数列,a n +1a 1=a 1q n a 1=2n ,所以b n =log 2a n +1a 1=log 22n=n ,所以数列{b n }的前n 项和S n =1+2+3+…+n =n n +12.二、填空题9.(2019·江西抚州七校联考)等比数列{a n }的前n 项和为S n ,若S 10=10,S 30=30,则S 20=________.答案 20解析 因为等比数列{a n }的前n 项和为S n ,所以S 10,S 20-S 10,S 30-S 20成等比数列,因为S 10=10,S 30=30,所以(S 20-10)2=10×(30-S 20),解得S 20=20或S 20=-10,因为S 20-S 10=q 10S 10>0,所以S 20>0,则S 20=20.10.(2019·广东深圳适应性考试)等差数列{a n }中,a 4=10且a 3,a 6,a 10成等比数列,数列{a n }的前20项和S 20=________.答案 200或330解析 设数列{a n }的公差为d ,则a 3=a 4-d =10-d ,a 6=a 4+2d =10+2d ,a 10=a 4+6d =10+6d ,又a 3a 10=a 26,即(10-d )(10+6d )=(10+2d )2,整理得10d 2-10d =0,解得d =0或d =1.当d =0时,S 20=20a 4=200;当d =1时,a 1=a 4-3d =10-3×1=7,于是,S 20=20a 1+20×192d =20×7+190=330. 11.(2019·河北唐山质检)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n=________.答案 -1n解析 由已知得a n +1=S n +1-S n =S n +1S n ,两边同时除以S n +1S n ,得1S n +1-1S n=-1,故数列⎩⎨⎧⎭⎬⎫1S n 是以-1为首项,-1为公差的等差数列,则1S n =-1-(n -1)=-n ,所以S n =-1n.12.(2019·山东德州第一次考试)数列{a n }的前n 项和为S n ,若a 1=1,a n ≠0,3S n =a n a n+1+1,则a 2019=________. 答案 3028解析 数列{a n }的前n 项和为S n ,若a 1=1,3S n =a n a n +1+1 ①,当n =1时,整理得3S 1=3a 1=a 1·a 2+1,解得a 2=2,当n ≥2时,3S n -1=a n -1·a n +1 ②,①-②得,3a n =a n (a n +1-a n -1),由于a n ≠0,故a n +1-a n -1=3(常数),故数列{a n }的奇数项为首项为1,公差为3的等差数列,则a n =1+3⎝⎛⎭⎪⎫n +12-1.数列{a n }的偶数项为首项为2,公差为3的等差数列,a n=2+3⎝ ⎛⎭⎪⎫n2-1,所以a 2019=1+3⎝⎛⎭⎪⎫2019+12-1=3028. 三、解答题13.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m . 解 (1)设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1--2n3.由S m =63得(-2)m=-188,此方程没有正整数解.若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6. 综上,m =6.14.(2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解 (1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2.又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1,所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.。

[优选]等差数列与等比数列课件(共PPT)高考数学大二轮专题复习讲义(新高考)

[优选]等差数列与等比数列课件(共PPT)高考数学大二轮专题复习讲义(新高考)
【 (名校 师课 整堂 理】课获本奖专P题PT)-专等题差四数等列差与数等 列比与数等列 比课数件列(共课P件PT()共高P考PT数) 学推大荐二山 轮东专省题高 复考习数讲学 义大(二新轮 高专考题)复p习p讲t优义质(说新课高稿考()精推选荐)(最 新版本 )推荐
【 (名校 师课 整堂 理】课获本奖专P题PT)-专等题差四数等列差与数等 列比与数等列 比课数件列(共课P件PT()共高P考PT数) 学推大荐二山 轮东专省题高 复考习数讲学 义大(二新轮 高专考题)复p习p讲t优义质(说新课高稿考()精推选荐)(最 新版本 )推荐
3.等差数列的性质(n,m,l,k,p 均为正整数) (1)若 m+n=l+k,则 01 _a_m_+__a_n_=__a_l+__a_k_(反之不一定成立);特别地, 当 m+n=2p 时,有 02 __a_m_+__a_n=__2_a_p___. (2)若{an},{bn}是等差数列,则{kan+tbn}(k,t 是非零常数)是 03 _等__差_ 数列. (3)等差数列“依次 m 项的和”即 Sm, 04 _S_2_m_-__S_m_, 05 _S_3_m_-__S2_m_,… 仍是等差数列.
第二编 讲专题
专题四 数列 第1讲 等差数列与等比数列
「考情研析」 1.从具体内容上,主要考查等差数列、等比数列的基本 计算和基本性质及等差、等比数列中项的性质、判定与证明. 2.从高考特 点上,难度以中、低档题为主,一般设置一道选择题和一道解答题.
1
PART ONE
核心知识回顾
(名师整理课本专题)等差数列与等 比数列 课件(共 PPT) 高考数 学大二 轮专题 复习讲 义(新 高考)p pt优质 说课稿 (精选 )
(4)等差数列{an},当项数为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欢迎来到数学课堂
专题二 数 列
攻重点 高考考什么,怎么考——1讲破小题,1讲攻大题 扫盲点 何处易失分,欠缺什么能力——4层面优化提升
[全国卷3年考情分析]
第一讲 小题考法
——等差数列与等比数列
考点(一) 数列的递推关系式
主要考查方式有两种:一是利用an与Sn的关系求通项an或前 n项和Sn;二是利用an与an+1的关系求通项an或前n项和Sn.
答案:B
2.已知函数f(x)对任意实数x,y满足f(x)+f(y)=f(x+y),若数列
{an}的前n项和Sn=f(n)(n∈N*)且a1=1,那么a2 018=( )
A.-1
B.1
C.-2 018
D.2 018
解析:法一:∵Sn=f(n),∴S2=2S1=a1+a2,∴a2=1,
∵S3=S1+S2=3,∴a3=1,∵S4=S1+S3=4,
解析:由题意可知,数列an满足条件12a1+212a2+213a3+…+
1 2n
an=2n+5,则n≥2时,有
1 2
a1+
1 22
a2+
1 23
a3+…+
1 2n-1
an-1
=2(n-1)+5,n≥2,
两式相减可得,a2nn=2n+5-2(n-1)-5=2, ∴an=2n+1,n≥2,n∈N*. 当n=1时,a21=7,∴a1=14, 综上可知,数列an的通项公式为 an=124n+,1,n=n≥1,2.
3,∴a1=-3.当n≥2时,3an=3Sn-3Sn-1=(2an-3n)-(2an-1
-3n+3),∴an=-2an-1-3,∴an+1=-2(an-1+1),∴数
列{an+1}是以-2为首项,-2为公比的等比数列,∴an+1=
-2×(-2)n-1=(-2)n,∴an=(-2)n-1,∴a2 018=(-2)2 018-
∴a4=1,…,∴a2 018=1.
法二:令x=1,y=n,则Sn+S1=Sn+1. 当n≥2时,Sn-1+S1=Sn,
∴Sn+1-Sn=Sn-Sn-1,故an+1=an,
∵a1=1,可求出a2=1,∴a2 018=1.
答案:B
3.(2018·全国卷Ⅰ)记Sn为数列{an}的前n项和.若Sn=2an+ 1,则S6=________. 解析:∵Sn=2an+1, ∴当n≥2时,Sn-1=2an-1+1, ∴an=Sn-Sn-1=2an-2an-1,即an=2an-1. 当n=1时,a1=S1=2a1+1,得a1=-1. ∴数列{an}是首项a1为-1,公比q为2的等比数列, ∴Sn=a111--qqn=-11-1-2 2n=1-2n, ∴S6=1-26=-63. 答案:-63
a2nn
是以
1 2
为首项,
1 2
为公差的等差数列,
∴a2nn=12+(n-1)×12=n2,∴an=n·2n-1.
[答案] n·2n-1
(3)(2018·昆明模拟)在数列{an}中,a1=5,(an+1-2)(an-2) =3(n∈N*),则该数列的前2 01)(2018·合肥一模)已知数列{an}的前n项和为Sn,若
3Sn=2an-3n,则a2 018=
()
A.22 018-1
B.32 018-6
C.122 018-72
D.132 018-130
[解析] ∵3Sn=2an-3n,∴当n=1时,3S1=3a1=2a1-
4.已知数列{an}的前n项和为Sn=3+2n,则数列{an}的通项公 式为________.
解析:当n=1时,a1=S1=3+2=5;当n≥2时,an=Sn-Sn-1 =3+2n-(3+2n-1)=2n-2n-1=2n-1.因为当n=1时,不符合an =2n-1,所以数列{an}的通项公式为an=52, n-1n,=n1≥,2. 答案:an=52, n-1n,=n1≥,2
[答案] 8 072
[方法技巧] 由an与Sn的关系求通项公式的注意点 (1)应重视分类讨论思想的应用,分n=1和n≥2两种情况 讨论,特别注意an=Sn-Sn-1成立的前提是n≥2. (2)由Sn-Sn-1=an推得an,当n=1时,a1也适合,则需统 一表示(“合写”). (3)由Sn-Sn-1=an推得an,当n=1时,a1不适合,则数列 的通项公式应分段表示(“分写”),即an=SS1n-n=Sn1-1,n≥2.
[解析] 依题意得(an+1-2)(an-2)=3,(an+2-2)·(an+1-2) =3,因此an+2-2=an-2,即an+2=an,所以数列{an}是以2为 周期的数列.又a1=5,因此(a2-2)(a1-2)=3(a2-2)=3,故a2 =3,a1+a2=8.又因为2 018=2×1 009,所以该数列的前2 018项的和等于1 009(a1+a2)=8 072.
则由aS46+=a458=,24,
[演练冲关]
1.(2019届高三·洛阳四校联考)已知数列
a
n

满足条件
1 2
a1+
1 22
a2
+213a3+…+21nan=2n+5,则数列an的通项公式为(
)
A.an=2n+1
B.an=124n+,1,n=n≥1,2
C.an=2n
D.an=2n+2
考点(二)
等差、等比数列 的基本运算
主要考查与等差比数列的通项公式、前n项和 公式有关的五个基本量间的“知三求二”运算.
[典例感悟]
[典例] (1)(2017·全国卷Ⅰ)记Sn为等差数列{an}的前n项
和.若a4+a5=24,S6=48,则{an}的公差为
()
A.1
B.2
C.4
D.8
[解析] 设等差数列{an}的公差为d,
1=22 018-1.故选A.
[答案] A
(2)(2018·惠州模拟)已知数列{an}满足a1=1,an+1-2an= 2n(n∈N*),则数列{an}的通项公式an=________.
[解析]
an+1-2an=2n两边同除以2n+1,可得
an+1 2n+1

an 2n

12,又
a1 2

1 2
,∴数列
相关文档
最新文档