2019-2020学年成都市新都区高一下期末数学试卷(有答案)(已纠错)
四川省成都市新都区2023-2024学年高一下学期期末测试数学试题(含答案)
成都市新都区2023-2024学年高一下学期期末测试数学试题本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.注意事项:1.答题前,务必将姓名、考场号、座位号填写在答题卡规定的位置上,并将考生条形码粘贴在规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷带走,仅将答题卡交回.第Ⅰ卷(选择题,满分58分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 满足:(i 为虚数单位),则z 为( )A .B .C.D .2.在直角坐标平面内,的三顶点的坐标分别为,,,则的面积为()A .120B .60C .30D .153.将函数图像上的所有点的横坐标变为原来的倍(纵坐标不变),再将图象向左平移后得函数的图象,则函数的解析式为( )A .B .C .D .4.在正四棱锥的所有棱长均相等,E 为PC 的中点,则异面直线BE 与AC 所成角的余弦值为()()20241i 23i z +=+31i 2-31i 2+15i 22+51i 22+ABC △()1,1A --()7,2B -()3,7C ABC △()sin f x x =12π6()g x ()g x ()1πsin 26g x x ⎛⎫=-⎪⎝⎭()πsin 23g x x ⎛⎫=-⎪⎝⎭()πsin 26g x x ⎛⎫=+⎪⎝⎭()πsin 23g x x ⎛⎫=+⎪⎝⎭P ABCD -ABCD5.在直角坐标平面内,已知,,,,以y 轴为旋转轴,将四边形ABCD 旋转一周,得一个旋转体,则此旋转体的表面积为()A .B .C .D .6.中,角A ,B ,C 所对的边分别为a ,b ,c ,,交AC 于点D ,且,则a 的值为()A .BC .6D .37.八角星纹是大汶口文化中期彩陶纹样中具有鲜明特色的花纹.八角星纹常绘于彩陶盆和豆的上腹,先于器外的上腹施一圈红色底衬,然后在上面绘并列的八角星形的单独纹样.八角星纹以白彩绘成,黑线勾边,中为方形或圆形,且有向四面八方扩张的感觉,八角星纹延续的时间较长,传播范围亦广,在长江以南的时间稍晚的崧泽文化的陶豆座上也屡见刻有八角大汶口文化八角星纹.图2是图1抽象出来的图形,在图2中圆中各个三角形(如)为等腰直角三角形,点O 为圆心,中间部分是正方形且边长为2,定点A ,B 所在位置如图所示,则的值为( )A .14B .12C .10D .88.四面体ABCD 中,若,,,则此四面体的外接球的表面积()0,1A -()4,1B --()4,4C -()0,1D 16π36π76π96πABC △120ABC ∠=︒c =BD BC ⊥1BD =ACD △AB AO ⋅DA DB DC ===3BC =5π6BAC ∠=为( )A .B .C .D .二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.)9.设都是复数,i 是虚数单位,则下列结论中一定成立的是( )A .方程无复数解B .若,则C.D .10.下列命题正确的是( )A .一个三棱锥被过三条侧棱的中点的平面所截,截得的两部分为一个三棱台和一个小三棱锥,则此三棱台与小三棱锥的体积比为7B .圆锥被过其顶点的某平面所截,截面形状为一个三角形,若圆锥的底面半径,高,则截面三角形面积的最大值为48C .圆锥被过其顶点的某平面所截,截面形状为一个三角形,若圆锥的底面半径,高,则截面三角形面积的最大值为48D .若一个平行六面体被某平面所截,所得截面形状为四边形,则此四边形至少有一组对边互相平行11.的内心为P ,外心为O ,重心为G ,若,,下列结论正确的是()A .的内切圆半径为B .C .D .第Ⅱ卷(非选择题,满分92分)三、填空题(本题共3小题,每小题5分,共15分,把答案填在答题卡上)12.若,则的值为______.13.欧拉公式:(i 是虚数单位,)是由瑞士著名数学家欧拉发现的,被誉为“数学中的天桥”.根据欧拉公式,可求出的最大值为______.14.如图,平面四边形ABCD 中,,,,,沿AC 将折起成直二面角(折起后原来平面图形的D 点变为空间图形的P 点),则折起后四面体PABC 的内切球半径为______.四、解答题(本题共5小题,共77分.解答应写文字说明、证明过程或验算步骤.)48π16π12π4π12,,z z z 2350z z -+=368i z z -=+32i z =+1212z z z z =22z z=8r =6h =6r =8h =ABC △5AB AC ==6BC =ABC △32r =6550PA PB PC ++= 6550OA OB OC ++= 1124OG =5sin cos 4αα+=sin 2αi cos isin x e x x =+x ∈R i 1x e -3AD BC ==4AB =AB BC ⊥AD AC ⊥ADC △P AC B --已知函数,其中,且函数的图像的对称中心与对称轴的距离的最小值为.(1)求的解析式;(2)求在区间上的值域.16.(本小题15分)如图,边长为6的正中,点D 在边AC 上,且,点M 在线段BD 上.(1)若,求的值;(2)若,求x 及的值.17.(本小题15分)在中,角A ,B ,C 的对边分别为a ,b ,c ,若.(1)求角C 的大小;(2)设D 是AB 上一点,且,,且,求的面积.18.(本小题17分)如图,四棱锥中,底面ABCD 是边长为4的菱形,,,E 为PA 中点,AC 与BD 交点为O .(1)求证:平面EBD ;(2).求证:平面平面PAC ;(3)若,求点C 到平面ABE 的距离.()21cos cos 2f x x x x ωωω=+-0ω>()f x π4()f x ()f x π0,2⎡⎤⎢⎥⎣⎦ABC △2AD DC =BD m AB nAC =+m n +2AM xAB xAC =+cos AMC ∠ABC △cos 2cos B b aC c c+=2BD DA =1CD =2sin 3sin B A =ABC △P ABCD -4PD PB ==60BAD ∠=︒PC ∥EBD ⊥PA PC =(1)若对恒成立,求的值;(2)求的值域;(3)正五棱锥的所有棱长均为2,求此正五棱锥的表面积.成都市新都区2023-2024学年高一下学期期末测试数学试题参考答案一、单选题:1~8.B C D D C BA A 二、多选题:9.BC 10.ACD 11.ABD三、填空题:12. 13.2 14.四、解答题:15.【详解】(1).函数的图像的对称中心与对称轴的距离的最小值为.周期为,则,∵,∴所以即为所求函数的解析式.(2)∵,∴由正弦型函数的图像可得即为所求值域.16.【详解】(1)∵,而∴,则即为所求.(2)∵,得,∴,又∵,∴()2sin 3sin cos x x p x q =+x ∀∈R p q +()sin 5sin xf x x=91623()211πcos cos 2cos 2sin 2226f x x x x x x x ωωωωωω⎛⎫=+-=+=+ ⎪⎝⎭()f x π44ππ4T ==2ππ2ω=0ω>1ω=()πsin 26f x x ⎛⎫=+⎪⎝⎭()f x π0,2x ⎡⎤∈⎢⎥⎣⎦ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦()π1sin 2,162f x x ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎝⎭⎣⎦23BD AD AB AB AC =-=-+BD m AB nAC=+ 123m n =-⎧⎪⎨=⎪⎩13m n +=-2AD DC =2AD DC = 32AC AD =2AM xAB xAC =+ 3232AM xAB x AD xAB xAD=+⋅=+∵M 、B 、D 三点共线,∴,则即为所求x 的值.则,∴∴∴,同理可求:∴∴即为所求.【注:也可以利用余弦定理解三角形求解.】17.【详解】(1)∵,由正弦定理知:∴∵,,∴,∵,.(2)由题意得,,,,【法一】在中,,在中,,∵,∴,化简得.31x x +=14x =1142AM AB AC =+ 1142CM AM AC AB AC=-=- ()()()222211111634216444AMAB AC AB ACAB AC ⎛⎫=+=++⋅= ⎪⎝⎭AM = CM =()()2211271644AM CM AB AC ⋅=-=-cos cos ,AM CM AMC AM CM AM CM⋅∠===⋅cos 2cos B b a C c c +=cos sin 2sin cos sin sin B B AC C C+=()sin cos sin sin cos sin 2sin sin cos sin cos sin cos sin B C B C B C A AC C C C C C C++===sin 0A ≠sin 0C ≠1cos 2C =0πC <<π3C =13AD c =23DB c =1CD =ACD △22119cos 23c b ADC c +-∠=BCD △22419cos 43c a CDB c +-∠=πADC BDC ∠+∠=cos cos ADC BDC ∠=-∠2222233a b c +-=在中,,∴,整理得.【注:此法还可以抓住顶点A 或B 在相应的两个三角形分别使用余弦定理可得,只要正确,都应相应给分.】【法二】∵,∴∴∵且得:又∵,则,∴,则∴,即为的面积.18.【详解】(1)设,连结EO ,∵E 为PA 中点,O 为AC 中点,∴,又∵平面EBD ,平面EBD ,∴平面EBD ;(2)连结PO ,∵,O 为BD中点,∴,又∵底面ABCD 为菱形,∴,∵,∴平面PAC ,又∵平面EBD ,∴平面平面PAC ;(3)由(2)得:,由,同理可得:∴面ABCD 可求:,∴而中,,可求:,ABC △222222cos c a b ab C ab ab =+-=+-()22222233a b a b ab +-=+-22429a b ab ++=2BD DA =()123CD CA CB=+ ()()()()22222211124444cos 999CD CA CB CA CBCA CB b a ab C ⎡⎤⎡⎤=+=++⋅=++⎣⎦⎢⎥⎣⎦1CD = π3C =22429a b ab ++=2sin 3sin B A =23b a =2139a =2913a =21sin 2ABC S ab C ===△ABC △AC BD O = EO PC ∥EO ⊂PC ⊄PC ∥PD PB =PO BD ⊥AC BD ⊥PO AC O = BD ⊥BD ⊂EBD ⊥PO BD ⊥PA PC =PO AC ⊥PO ⊥AC =4BD =PO =111243226C ABE E ABC PO V V AC OB --==⨯⨯⨯⨯=⨯=PAB △4AB =PA =4PB =可求:而,则则C 到平面ABE 的距离.19.【详解】(1)∵∴,则.即为所求.【注:还可以代值,构造方程组求解】如:时,;时,,解得,则.即为所求.(2)由,【或】∵,∴,【或】∴即为所求值域.(3)∵,∵,∴,∴(舍)或(舍)或,∴∴12EAB PAB S S ==△△13C ABE EAB C ABE V S d --=△4C ABE -=C ABE d -=()sin 3sin 2sin 2cos cos 2sin x x x x x x x=+=+()()2222sin cos 2cos 1sin sin 4cos 1x x x x x =+-=-41p q =⎧⎨=-⎩3p q +=π2x =10q -=+π6x =13124p q ⎛⎫=+ ⎪⎝⎭41p q =⎧⎨=-⎩3p q +=()()42sin 23sin 516cos 12cos 1sin sin x x x f x x x x x+===⋅⋅⋅⋅⋅⋅=-+()()2sin 44cos 22cos 21sin x x f x x x x+==⋅⋅⋅⋅⋅⋅=+-sin 0x ≠[)2cos 0,1x ∈[)cos 21,1x ∈-()5,54f x ⎡⎫∈-⎪⎢⎣⎭3sin 34sin 3sin θθθ=-+3ππ2π2πsin sin cos 1021010⎛⎫=-= ⎪⎝⎭32πππ4sin 3sin 12sin 101010-+=-πsin110=πsin 10=πsin 10=πcos5=πcot 5=∴,而∴12π52cot 225S ⎡⎤=⋅⋅=⎢⎥⎣⎦底252S ==侧S S S =+=表底侧。
2019-2020学年高一数学下学期期末考试试卷(含解析)
2019-2020学年高一数学下学期期末考试试卷(含解析)一、选择题(每个小题5分,共12个题)1.已知集合,则的子集个数为()A. 2B. 4C. 7D. 8【答案】D【解析】【分析】根据集合交集的定义和集合中子集的个数的计算公式,即可求解答案.【详解】由题意集合,∴,∴的子集个数为.故选D.【点睛】本题主要考查了集合的交集运算及子集个数的判定,其中熟记集合交集的运算和集合中子集个数的计算公式是解答的关键,着重考查了推理与计算能力,属于基础题.2.函数的定义域是( )A. (-1,+∞)B. [-1,+∞)C. (-1,1)∪(1,+∞)D. [-1,1)∪(1,+∞)【答案】C【解析】由题意得,∴,故选C.3.一个直角三角形绕其最长边旋转一周所形成的空间几何体是()A. 一个棱锥B. 一个圆锥C. 两个圆锥的组合体D. 无法确定【答案】C【解析】一个直角三角形绕其最长边AC旋转一周所形成的空间几何体是以斜边的高BD为半径的底面圆,以斜边被垂足D分得的两段长AD,CD为高的两个倒扣的圆锥的组合体故选C4.已知一个几何体的三视图如图所示,则这个几何体的体积是()A. B. C. D.【答案】B【解析】【分析】根据几何体的三视图,得到该几何体为一个圆柱去掉一个内接圆锥,利用圆柱和圆锥的体积公式,即可求解.【详解】由题意,根据给定的三视图可知,该几何体为一个圆柱去掉一个内接圆锥,所以体积为,故选B.【点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.5.为了得到函数的图像,可以将函数的图像()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】B【解析】【分析】先化简函数,再根据三角函数的图象变换,即可求解.【详解】由题意,函数,所以为了得到函数的图象,可以将函数的图象向右平移个单位长度,故选B.【点睛】本题考查三角函数的图象的平移与伸缩变换,注意先伸缩后平移时的系数是解题的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.若直线过点(1,2),(4,2+)则此直线的倾斜角是()A. B. C. D.【答案】A【解析】【分析】设直线的倾斜角为,根据直线的斜率和倾斜角的关系,即可求解.【详解】设直线的倾斜角为,则,又∵,所以,故选A.【点睛】本题主要考查直线的斜率与倾斜角,属于简单题. 求直线的倾斜角往往先求出直线的斜率,求直线斜率的常见方法有一以下三种,(1)已知直线上两点的坐标求斜率:利用;(2)已知直线方程求斜率:化成点斜式即可;(2)利用导数的几何意义求曲线切点处的切线斜率.7.圆的圆心坐标和半径分别是A. B. C. D.【答案】D【解析】【分析】把圆的一般方程化简为圆的标准方程,即可求解圆的圆心坐标和半径,得到答案.【详解】依题意可得:∴圆的圆心坐标和半径分别是,,故选:D【点睛】本题主要考查了圆的方程的应用,其中熟记圆的标准方程和圆的一般的形式和互化是解答的关键,着重考查了推理与运算能力,属于基础题.8.直线截圆所得的弦长为A. B.C. D.【答案】D【解析】【分析】由题意,求得圆的圆心坐标和半径,利用圆的弦长公式,即可求解.【详解】由题意圆的方程,可知圆心,半径,则圆心到直线的距离为,所以弦长为,故选D.【点睛】本题主要考查了圆的弦长公式应用,其中解答中熟记直线与圆的位置关系和直线与圆的弦长公式是解答的关键,着重考查了推理与运算能力,属于基础题.9.中,角的对边分别为,已知,,,则()A. B. C. D.【答案】C【解析】【分析】在三角形中,利用正弦定理,即可求解.【详解】在△ABC中,,∴则,∴由正弦定理可得:故选C【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.在中,通常涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.10.在中,角的对边分别为,若,则( )A. 60°B. 120°C. 45°D. 30°【答案】B【解析】【分析】根据题意,由余弦定理求得,即可求解答案.【详解】因为,由余弦定理得,又∵,所以,故选B.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.在中,通常涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.11.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A. B. 1 C. - D. -1【答案】D【解析】【分析】利用等差数列的通项公式,列出方程组,求得的值,得到答案.【详解】等差数列中,,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D.【点睛】本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质与前项和的关系,利用整体代换思想解答.12.数列的前项和为,若,则等于()A. 1B.C.D.【答案】C【解析】试题分析:由题意得,数列的通项公式,所以,故选B.考点:数列的求和.【方法点晴】本题主要考查了数列的求和问题,其中解答中涉及到数列通项公式的列项、数列的列项相消求和,着重考查了学生分析问题和解答问题的能力,以及退了与运算能力,试题比较基础,属于基础题,本题解答中吧数列的通项公式化简为是解答的关键,平时注意总结和积累.二、填空题(共20分)13.已知,且是第二象限角,则___________.【答案】【解析】【分析】根据角为第二象限角,得,再由三角函数的基本关系式,即可求解.【详解】因为是第二象限角,∴,又,由三角函数的基本关系式可得.【点睛】本题主要考查了同角三角函数的基本关系的化简求值问题,其中根据角的象限,判定三角函数的符号是解答的一个易错点,同时熟记三角函数的基本关系式是解答的关键,着重考查了推理与运算能力.14.已知点与点,则的中点坐标为__________.【答案】【解析】【分析】根据题意与点,根据中点的坐标公式,即可求解.【详解】由题意点与点,根据中点坐标公式可得的中点坐标为,即的中点坐标为.【点睛】本题主要考查了空间向量的坐标表示及中点中点坐标公式的应用,其中解答中熟记空间向量的坐标表示和中点的坐标公式是解答的关键,着重考查了推理与运算能力,属于基础题.15.函数,则的值为__________.【答案】1【解析】【分析】根据分段函数的解析式,代入即可求解.【详解】当时,,,当时,,.【点睛】本题主要考查了分段函数的求函数值问题,其中把握分段函数的分段条件,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.16.直线与直线互相垂直,则实数等于________.【答案】2【解析】【分析】利用两条直线互相垂直,列出方程,即求解.【详解】直线与直线互相垂直,则,∴,故答案为2【点睛】本题主要考查了两条直线的位置关系的应用,其中熟记两条直线的位置关系,列出方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题(共70分,17题10分其各题每题12分,要求写出必要的解题步骤)17.在等差数列{a n}中,a12=23,a42=143,a n=239,求n及公差d.【答案】n=66,d=4【解析】试题分析:由题意结合等差数列的定义可先求公差,再列关于n的方程,解方程可得试题解析:由题意可得,d==4,∴a1=﹣21∵a n=a1+(n﹣1)d=﹣21+4(n﹣1)=239,解得n=66综上,n=66,d=4.点睛:本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质()与前项和的关系,利用整体代换思想解答.18.已知等比数列{a n}满足记其前n项和为(1)求数列{a n}的通项公式a n;(2)若,求n.【答案】(1);(2)5.【解析】【分析】(1)设出等比数列的公比,由条件得到关于的方程组,求得便可得到数列的通项公式;(2)根据前n项和得到关于n的方程,解方程可得解.【详解】(1)设等比数列{a n}的公比为,由条件得,解得,∴ an=a1q n−1=.即数列{a n}的通项公式为.(2)由题意得,解得:.【点睛】本题主要考查了等比数列的通项公式及等比数列的前项和公式的应用,其中熟记等比数列的通项公式和前项和公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.19.如图,在中,,是边上一点,且.(1)求的长;(2)若,求的长及的面积.【答案】(1) (2)【解析】【分析】(1)在中由正弦定理可求得AD的长;(2)在中,由余弦定理可得,利用可得所求面积.【详解】(1)在中,由正弦定理得,即,∴(2)∵,∴在中,由余弦定理得∴∴.综上,的面积为.【点睛】本题主要考查了利用正弦定理和余弦定理、三角形的面积公式求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.20.在中,内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若,求.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)利用正弦定理可对进行化简,即可得到的值;(Ⅱ)利用正弦定理对进行化简,可得到,再利用的余弦定理,可求出的值.【详解】(Ⅰ)由及正弦定理,得.在中,..(Ⅱ)由及正弦定理,得,①由余弦定理得,,即,②由①②,解得.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.在中,通常涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.21.已知直线经过点,且斜率为.(1)求直线的方程.(2)求与直线平行,且过点的直线方程.(3)求与直线垂直,且过点的直线方程.【答案】(1) (2) (3)【解析】【分析】(1)写出直线的点斜式方程,整理成一般方程即可.(2)可设直线的一般方程为,代入点求出的值,即可答案.(3)可设所求直线的方程为,代入点,求得的值,即可求解直线的方程;所求直线的斜率为,写出直线的点斜式方程,整理成一般方程即可.【详解】(1)由题设,根据直线的点斜式方程可得,整理得.(2)由题意,所以求直线与平行,设所求直线方程为,代入点,解得,所以直线方程为.(3)由题意,所以求直线与垂直,设所求直线的方程为,代入点,解得,所以直线方程为.【点睛】本题主要考查了直线方程的求解,其中熟记直线的点斜式方程、直线的一般式方程等形式,合理应用和准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.22.如图,在五面体中,已知平面,,,,.(1)求证:;(2)求三棱锥的体积.【答案】(1)详见解析,(2)【解析】【分析】(1)由题意,利用线面平行的性质定理与判定定理进行转化,可作出证明;(2)由平面,所以有面平面,则作就可得平面,确定是三棱锥的高,利用三棱锥的体积公式,可求解.【详解】(1)因为,平面,平面,所以平面,又平面,平面平面,所以.(2)在平面内作于点,因为平面,平面,所以,又,平面,,所以平面,所以是三棱锥的高.在直角三角形中,,,所以,因为平面,平面,所以,又由(1)知,,且,所以,所以,所以三棱锥的体积.【点睛】本题主要考查了线面平行判定定理与性质定理,线面垂直判定定理与性质定理及三棱锥体积,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.欢迎您的下载,资料仅供参考!资料仅供参考!!!。
2019-2020学年四川省成都市新都区高一下学期期末考试化学试题(解析版)
四川省成都市新都区2019-2020学年高一下学期期末考试试题本试卷分为选择题和非选择题两部分。
第Ⅰ卷(选择题)1至4页,笫Ⅱ卷(非选择题)5至8页,共8页;满分100分,考试时间90分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号涂填写在试卷答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题部分必须使用0.5毫米黑色签字笔书写,将答案书写在规定的位置上。
4.所有题目必须在答题卡上作答,在试卷上答题无效。
5.考试结束后,只将答题卡交回。
可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 Mg-24 Al-27 S-32Cl-35.5 Cr-52 Mn-55 Fe-56 Co-59 W-184第Ⅰ卷(共40分)选择题(每小题只有一个....选项符合题意,每题2分,共40分)1.“笔、墨、纸、砚”在中国传统文化中被称为“文房四宝”,下列说法中错误的是()『答案』C『解析』『详解』A.羊毛主要成分是蛋白质,灼烧会产生特殊的气味,假的羊毫是化学纤维,所以用灼烧法可鉴别毛笔羊毫的真伪,A选项正确;B.墨的主要成分是碳单质,碳的化学性质稳定在空气中不易反应,所以用墨写字画画可长久不褪色,B选项正确;C.纸的原料是木材,主要成分是纤维素,则纸及造纸原料的主要成分均是纤维素,C选项错误;D.存在新物质的变化是化学变化,用石材制作砚台的过程没有新物质生成,属于物理变化,D选项正确;答案选C。
2.23592U是重要的工业原料,铀浓缩一直为国际社会关注。
下列有关23592U的说法正确的是()A. 23592U原子核中含有92个中子 B. 23592U原子核外有143个电子C. 23592U与23892U为同一核素 D. 23592U与23892U互为同位素『答案』D『解析』『分析』元素符号左上角数字表示质量数,左下角数字表示质子数,质量数-质子数=中子数,原子序数=质子数=核电荷数=原子核外电子数。
2019-2020学年四川省成都市高一第二学期期末考试数学(理)试题(解析版)
【解析】(1)利用同角三角函数的基本关系求得 的值,然后利用二倍角的正切公式可求 的值;
(2)利用两角差的正弦公式求得 的值,结合角 的取值范围,进而可求得角 的值.
【解】
(1) , , ,
,因此, ;
(2) , ,
, ,
,
, .
【点睛】
本题考查利用同角三角函数的基本关系以及二倍角的正切公式求值,同时也考查了利用三角函数值求角,考查计算能力,属于中等题.
20.已知函数 .
(1)当 时,求当 时,函数 的值域;
(2)解关于 的不等式 .
【答案】(1) ;(2)答案见解析.
【解析】(1)利用 代入化简 ,再用基本不等式求值域即可;
(2)对 因式分解得到两根,对两根分类讨论写不等式解集即可.
【详解】
解:(1)当 时,
∵ ,∴
当且仅当 时,即 时,上式取“ ”,
10.若数列 满足 ( , ),且 ,则 ()
A. B. C. D.
【答案】A
【解析】在等式 两边取倒数,可推导出数列 为等差数列,确定该数列的首项和公差,进而可求得 .
【详解】
当 且 ,在等式 两边取倒数得 ,
,且 ,所以,数列 为等差数列,且首项为 ,公差为 ,
因此, .
故选:A.
【点睛】
本题考查利用倒数法求数列通项,考查计算能力,属于基础题.
本题主要考查等差数列的通项公式及性质.
16.已知 、 、 为△ 的三内角,且角 为锐角,若 ,则 的最小值为______.
【答案】
【解析】由三角形内角的性质结合 ,可得 ,由目标函数式 并利用基本不等式即可求得其最小值,注意基本不等式的使用条件“一正二定三相等”,其中 为锐角,
2019—2020成都市高一数学期末考试卷含答案解析
2019—2019—2020成都市高一数学期末考试卷含答案解析一、选择题:1. 集合{1;2;3}的真子集共有( )A .5个B .6个C .7个D .8个 2. 已知角α的终边过点P (-4;3) ;则2sin cos αα+ 的值是( ) A .-1 B .1 C .52-D . 253. 已知扇形OAB 的圆心角为rad 4;其面积是2cm 2则该扇形的周长是( )cm.A .8B .6C .4D .2 4. 已知集合{}2,0x M y y x ==>;{})2lg(2x x y x N -==;则M N I 为( )A .(1,2)B .(1,)+∞C .[)+∞,2D .[)+∞,16. 函数 )252sin(π+=x y 是 ( ) A.周期为π的奇函数 B.周期为π的偶函数C.周期为2π的奇函数 D.周期为2π的偶函数 7. 右图是函数)sin(ϕω+=x A y 在一个周期内的图象;此函数的解析式为可为( )A .)32sin(2π+=x y B .)322sin(2π+=x y C .)32sin(2π-=x y ) D .)32sin(2π-=x y8.已知函数)3(log )(22a ax x x f +-=在区间[2;+∞)上是增函数; 则a 的取值范围是( )A .(]4,∞-B .(]2,∞-C .(]4,4-D .(]2,4-9. 已知函数()f x 对任意x R ∈都有(6)()2(3),(1)f x f x f y f x ++==-的图象关于点(1,0)对称;则(2013)f =( )A .10B .5-C .5D .010. 已知函数21(0)(),()(1)(0)x x f x f x x a f x x -⎧-≤==+⎨->⎩若方程有且只有两个不相等的实数根;则实数a 的取 值范围为( )A .(,0]-∞B .(,1)-∞C .[0,1)D .[0,)+∞二、填空题:11.sin 600︒= __________.12. 函数()lg 21y x =+的定义域是__________. 13. 若2510a b ==;则=+ba 11__________. 14. 函数12()3sin log f x x x π=-的零点的个数是__________.15. 函数()f x 的定义域为D ;若存在闭区间[,]a b D ⊆;使得函数()f x 满足:①()f x 在[,]a b 内是单调函数;②()f x 在[,]a b 上的值域为[2,2]a b ;则称区间[,]a b 为()y f x =的“倍值区间”.下列函数中存在“倍值区间”的有________①)0()(2≥=x x x f ;②()()xf x e x =∈R ; ③)0(14)(2≥+=x x xx f ; ④()sin 2()f x x x R =∈三、解答题16. 已知31tan =α; (1)求:ααααsin cos 5cos 2sin -+的值(2)求:1cos sin -αα的值3讨论关于x 的方程m x f =)(解的个数。
四川省成都市2019~2020学年度下学期期末高一年级调研考试理科数学试题 (含解析)
四川省成都市2019-2020学年高一第二学期期末考试数学试卷(理科)一、选择题(共12小题).1.cos75°cos15°﹣sin75°sin15°的值是()A.0 B.C.D.﹣2.二次不等式ax2+bx+c≥0的解为全体实数的条件是()A.B.C.D.3.已知sinα=,则cos2α=()A.B.﹣C.D.﹣4.已知单调递减的等比数列{a n}中,a1>0,则该数列的公比q的取值范围是()A.q=1 B.q<0 C.q>1 D.0<q<15.在△ABC中,角A,B,C所对的边分别为a,b,c,若a:b:c=4:5:7,则△ABC 为()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形6.若a<b<c,则下列说法正确的是()A.lna<lnb B.a2<b2C.D.7.把四边形ABCD按斜二测画法得到平行四边形A'B'C'D'(如图所示),其中B'O'=O'C'=2,O'D'=,则四边形ABCD一定是一个()A.菱形B.矩形C.正方形D.梯形8.在△ABC中,若角B=,AC=,AB=,则角C=()A.B.C.或D.或9.体积为的某三棱锥的三视图如图所示(其三个视图均为直角三角形),则该三棱锥四个面的面积中,最大值为()A.B.2C.D.610.若数列{a n}满足a n=(n≥2,n∈N*),且a1=,则a n=()A.B.C.D.11.夏季是暴雨和洪水高发季节,需要做好各项防汛工作.为更好地考察防汛工作实际情况,某校高一数学兴趣小组前往某水库实地测量其大坝相关数据.如图所示,CE是该大坝的坡面,该小组在坝底所在水平地面的A处测得坝顶E的仰角为θ,对着大坝在水平地面上前进30m后到达B处,测得仰角为原来的2倍,继续在水平地面上前进10m后到达坡底C处,测得仰角为原来的4倍,则该大坝的高度为()A.10m B.15m C.20m D.5m12.下列四个说法中,错误的是()①若a,b均为正数,则;②若x∈(0,),则sin x+的最小值为2;③若a>b>1,则;④a>b>0,则a+>b+.A.①②③B.①③C.②③D.②④二、填空题(共4小题).13.等比数列{a n}中,a1=1,q=﹣3,则a5=(用数字作答).14.将2sin2x+2sin x cos x化简为A sin(ωx+φ)+B(A>0,ω>0,|φ|<)的形式为.15.二十四节气作为我国古代订立的一种补充历法,在我国传统农耕文化中占有极其重要的位置,是古代劳动人民对天文、气象进行长期观察、研究的产物,凝聚了古代劳动人民的智慧.古代数学著作《周髀算经》中记载有这样一个问题:从夏至之日起,小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降、立冬、小雪、大雪这十二个节气的日影子长依次成等差数列,若大暑、立秋、处暑的日影子长的和为18尺,立冬的日影子长为10.8尺,则夏至的日影子长为尺.16.已知A、B、C为△ABC的三内角,且角A为锐角,若tan B=2tan A,则的最小值为.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.图形ABCDE由矩形ABCD和扇形ADE组合而成(如图所示),AD⊥DE,AB=2AD =2.求将该图形沿CE旋转一周后所形成的几何体的表面积和体积.18.已知等差数列{a n}中,a1+a3+a5=18,a5+a7=0.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n的最大值.19.已知sinβ=,cos(α+β)=﹣,0<α<β<.(1)求tan2β的值;(2)求角α的大小.20.已知函数f(x)=x2﹣5x﹣a(a﹣5).(1)当a=1时,求当x∈(0,+∞)时,函数g(x)=的值域;(2)解关于x的不等式f(x)≤0.21.已知数列{a n}的前n项和为S n,且满足2S n=3a n﹣3.(1)证明数列{a n}是等比数列;(2)若数列{b n}满足b n=log3a n,记数列{}的前n项和为T n,证明:<T n<.22.2020年5月6日,成都东部新区正式挂牌,标志着经过三年的规划设计,一个承接成渝地区双城经济圈建设、落实成都东进战略的新区正式成立.为落实东部新区“双城一园、一轴一带”的空间布局,某部门规划了一个如图所示的三角形(△ABC)产业园区,其中AC•sin A=BC•cos B.(1)求角B的大小;(2)若在该产业园区内再规划一个核心功能区△ADE(D、E是边BC上的点),且C =,∠DAE=,AC=200米,求核心功能区△ADE面积的最小值.四川省成都市2019-2020学年高一第二学期期末考试数学试卷(理科)参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos75°cos15°﹣sin75°sin15°的值是()A.0 B.C.D.﹣【分析】由两角和的余弦公式的逆用,再由特殊角的三角函数值,即可得到.解:cos75°•cos15°﹣sin75°sin15°=cos(75°+15°)=cos90°=0.故选:A.2.二次不等式ax2+bx+c≥0的解为全体实数的条件是()A.B.C.D.【分析】设f(x)=ax2+bx+c,a≠0,讨论a>0,a<0,结合二次函数的图象和判别式的符号,即可得到结论.解:设f(x)=ax2+bx+c,a≠0,当a>0,△≤0时,f(x)≥0的解为全体实数;当a<0时,f(x)≥0的解不为全体实数.综上,二次不等式的解为全体实数的条件是.故选:B.3.已知sinα=,则cos2α=()A.B.﹣C.D.﹣【分析】由已知利用二倍角的余弦函数公式即可求解.解:∵sinα=,∴cos2α=1﹣2sin2α=1﹣2×()2=.故选:A.4.已知单调递减的等比数列{a n}中,a1>0,则该数列的公比q的取值范围是()A.q=1 B.q<0 C.q>1 D.0<q<1【分析】利用等比数列的性质直接求解.解:单调递减的等比数列{a n}中,a1>0,则该数列的公比q的取值范围是0<q<1.故选:D.5.在△ABC中,角A,B,C所对的边分别为a,b,c,若a:b:c=4:5:7,则△ABC 为()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形【分析】易判断最大角为C,直接由余弦定理可求cos C,结合cos C的取值来判断该三角形的形状.解:由a:b:c=4:5:7,知最大角为C,∵cos C===﹣,由于cos C=﹣<0,0<C<π,∴<C<π,∴△ABC为钝角三角形.故选:C.6.若a<b<c,则下列说法正确的是()A.lna<lnb B.a2<b2C.D.【分析】根据a<b<c,取c=1,b=0,a=﹣1,则可排除错误选项.解:根据a<b<c,取c=1,b=0,a=﹣1,则可排除ABD.故选:C.7.把四边形ABCD按斜二测画法得到平行四边形A'B'C'D'(如图所示),其中B'O'=O'C'=2,O'D'=,则四边形ABCD一定是一个()A.菱形B.矩形C.正方形D.梯形【分析】根据斜二测画法把直观图还原回原图形,即可得到四边形ABCD一定是一个菱形.解:把平行四边形A'B'C'D'换元回原图形,过程如下:在平面直角坐标系中,在x轴上截取BC=4,且使O为BC的中点,在y轴上截取OD=,过D向左左x轴的平行线段DA,使DA=4,连接AB,CD,可得平行四边形ABCD.∵OC=2,OD=2,∴CD=.∴平行四边形ABCD为菱形.故选:A.8.在△ABC中,若角B=,AC=,AB=,则角C=()A.B.C.或D.或【分析】由正弦定理,则有sin C=,从而可求C解:由正弦定理可得:,则sin C===,因为AC<AB,所以B<C,故C=或,故选:D.9.体积为的某三棱锥的三视图如图所示(其三个视图均为直角三角形),则该三棱锥四个面的面积中,最大值为()A.B.2C.D.6【分析】判断三棱锥的形状,利用几何体的体积求法x,然后求解四个面面积的最大值.解:由题意可知,三棱锥是正方体的一个角的三棱锥,三棱锥O﹣ABC.所以=,解得x=2,所以面积的最大值为:S△ABC==2.故选:B.10.若数列{a n}满足a n=(n≥2,n∈N*),且a1=,则a n=()A.B.C.D.【分析】由数列{a n}满足a n=(n≥2,n∈N*),且a1=,求出{a n}的前四项,由此猜想数列的通项公式,再由数学归纳法进行证明.解:∵数列{a n}满足a n=(n≥2,n∈N*),且a1=,∴=,=,=,由此猜想a n=,下面用数学归纳法证明:①当n=1时,,成立;②假设n=k时成立,即,则当n=k+1时,===,成立.由①②,得a n=.故选:A.11.夏季是暴雨和洪水高发季节,需要做好各项防汛工作.为更好地考察防汛工作实际情况,某校高一数学兴趣小组前往某水库实地测量其大坝相关数据.如图所示,CE是该大坝的坡面,该小组在坝底所在水平地面的A处测得坝顶E的仰角为θ,对着大坝在水平地面上前进30m后到达B处,测得仰角为原来的2倍,继续在水平地面上前进10m后到达坡底C处,测得仰角为原来的4倍,则该大坝的高度为()A.10m B.15m C.20m D.5m【分析】先根据条件得到BA=AD﹣BD=DE(cotθ﹣cot2θ)和BC=DE(cot2θ﹣cot4θ);求出其比值,结合三角函数的性质求得θ,进而求得结论.解:由题可得:AB=30,BC=10,在RT△ADE中,AD=DE cotθ;在RT△CBD中,BD=DE cot2θ;故BA=AD﹣BD=DE(cotθ﹣cot2θ);同理可得:BC=DE(cot2θ﹣cot4θ);∴===;∵cotθ﹣cot2θ=﹣==;同理cot2θ﹣cot4θ=;∴==2cos2θ;∴cos2θ=,结合题意可得2θ=30°⇒θ=15°;故DE==BA sin2θ=15.故选:B.12.下列四个说法中,错误的是()①若a,b均为正数,则;②若x∈(0,),则sin x+的最小值为2;③若a>b>1,则;④a>b>0,则a+>b+.A.①②③B.①③C.②③D.②④【分析】利用不等式的性质以及基本不等式判断选项的正误即可.解:①若a,b均为正数,则;满足基本不等式的性质,所以①正确.②若x∈(0,],则sin x+≥2,当且仅当x=时,表达式取得最小值为2;导数条件缺少x=,所以②不正确;③∵a>b>1,∴>1,>即>,1﹣>1﹣,即.所以;不正确;所以③不正确;④a>b>0,可知,所以a+>b+.所以④正确;故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.等比数列{a n}中,a1=1,q=﹣3,则a5=81(用数字作答).【分析】利用等比数列的通项公式即可得出.解:∵a1=1,q=﹣3,∴a5=(﹣3)4=81.故答案为:81.14.将2sin2x+2sin x cos x化简为A sin(ωx+φ)+B(A>0,ω>0,|φ|<)的形式为2sin (x﹣)+1.【分析】利用二倍角公式、两角差的正弦函数化简函数为一个角的一个三角函数的形式,即可得解.解:2sin2x+2sin x cos x=2×+sin2x=sin2x﹣cos2x+1=2sin(x﹣)+1.故答案为:2sin(x﹣)+1.15.二十四节气作为我国古代订立的一种补充历法,在我国传统农耕文化中占有极其重要的位置,是古代劳动人民对天文、气象进行长期观察、研究的产物,凝聚了古代劳动人民的智慧.古代数学著作《周髀算经》中记载有这样一个问题:从夏至之日起,小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降、立冬、小雪、大雪这十二个节气的日影子长依次成等差数列,若大暑、立秋、处暑的日影子长的和为18尺,立冬的日影子长为10.8尺,则夏至的日影子长为 3.6尺.【分析】由已知结合等差数列的通项公式即可直接求解.解:设夏至之日起,小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降、立冬、小雪、大雪这十二个节气的日影子长依次成等差数列{a n},则a3+a4+a5=3a4=18,a10=10.8,∴a4=6,a10=10.8,d==0.8,a1=3.6则夏至的日影子a1=3.6故答案为:3.616.已知A、B、C为△ABC的三内角,且角A为锐角,若tan B=2tan A,则的最小值为.【分析】由已知利用同角三角函数基本关系式,两角和的正弦函数公式化简已知等式可得sin C=3sin A cos B,利用三角函数恒等变换的应用可求=,利用正弦函数的性质进而求解.解:∵tan B=2tan A,可得:,可得:2sin A cos B=cos A sin B,∴sin C=sin A cos B+cos A sin B=3sin A cos B,∴=+======,∵角A为锐角,若tan B=2tan A>0,可得B为锐角,∴=≤,当且仅当2B=时,即B=时等号成立.故答案为:.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.图形ABCDE由矩形ABCD和扇形ADE组合而成(如图所示),AD⊥DE,AB=2AD =2.求将该图形沿CE旋转一周后所形成的几何体的表面积和体积.【分析】该几何体是由一个圆柱和半球拼接而成的组合体,其中圆柱和半球的底面半径均为1,圆柱高为2,由此能求出将该图形沿CE旋转一周后所形成的几何体的表面积和体积.解:由题意得,该几何体是由一个圆柱和半球拼接而成的组合体,其中圆柱和半球的底面半径均为1,圆柱高为2,圆柱的底面积S1=πr2=π,圆柱的侧面积S2=2πrh=4π,半球球冠的表面积S3==2π,∴将该图形沿CE旋转一周后所形成的几何体的表面积为:S=S1+S2+S3=π+4π+2π=7π,圆柱的体积V1=Sh=S1×2=2π,半球的体积V2==,∴将该图形沿CE旋转一周后所形成的几何体的体积为:V=V1+V2=2=.18.已知等差数列{a n}中,a1+a3+a5=18,a5+a7=0.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n的最大值.【分析】(1)利用等差数列通项公式列方程组,解得a1=10,d=﹣2,由此能求出{a n}的通项公式.(2)S n=﹣n2﹣11n=﹣(n﹣)2+,由此能求出{a n}的前n项和S n的最大值.解:(1)∵等差数列{a n}中,a1+a3+a5=18,a5+a7=0.∴,解得a1=10,d=﹣2,∴{a n}的通项公式为a n=10﹣2(n﹣1)=12﹣2n.(2)由(1)得:S n===﹣n2﹣11n=﹣(n﹣)2+,∴当n=5或n=6时,{a n}的前n项和S n取最大值S5=S6=30.19.已知sinβ=,cos(α+β)=﹣,0<α<β<.(1)求tan2β的值;(2)求角α的大小.【分析】(1)利用同角三角函数基本关系式可求cosβ,tanβ,进而根据两角和的正切函数公式即可求解.(2)由已知可得0<α+β<π,利用同角三角函数基本关系式可求sin(α+β),由α=(α+β)﹣β,利用两角差的正弦函数公式可求sinα=,结合范围0,可求α=.解:(1)∵sinβ=,0<β<.∴cosβ==,tanβ==4,∴tan2β===﹣.(2)∵0<α<β<,∴0<α+β<π,∵cos(α+β)=﹣,∴sin(α+β)==,∴sinα=sin[(α+β)﹣β]=sin(α+β)cosβ﹣cos(α+β)sinβ=﹣(﹣)×=,∵0,∴α=.20.已知函数f(x)=x2﹣5x﹣a(a﹣5).(1)当a=1时,求当x∈(0,+∞)时,函数g(x)=的值域;(2)解关于x的不等式f(x)≤0.【分析】(1)根据题意得g(x)=x+﹣5 (x>0),由基本不等式可得x+≥2=4(当且仅当x=时,即x=2时,上式取“=“)进而可得g(x)的值域.(2)令f(x)=(x﹣a)[x﹣(5﹣a)]=0,得x=a或x=5﹣a,再分①当a=5﹣a,②当a<5﹣a,③当a>5﹣a,三种情况讨论,不等式的解集.解:(1)当a=1时,g(x)===x+﹣5,因为x∈(0,+∞),所以x+≥2=4,当且仅当x=时,即x=2时,上式取“=“,所以g(x)的值域为[﹣1,+∞).(2)f(x)=x2﹣5x﹣a(a﹣5)=(x﹣a)[x﹣(5﹣a)],令f(x)=0,得x=a或x=5﹣a,①当a=5﹣a,即a=时,由f(x)≤0,解得x=,②当a<5﹣a,即a<时,由f(x)≤0,解得a≤x≤5﹣a,③当a>5﹣a,即a>时,由f(x)≤0,解得5﹣a≤x≤a,综上所述,当a=时,原不等式的解集为{},当a<时,原不等式的解集为{x|a≤x≤5﹣a},当a>时,原不等式的解集为{x|5﹣a≤x≤a}.21.已知数列{a n}的前n项和为S n,且满足2S n=3a n﹣3.(1)证明数列{a n}是等比数列;(2)若数列{b n}满足b n=log3a n,记数列{}的前n项和为T n,证明:<T n<.【分析】(1)易知,a1=3≠0.由2S n=3a n﹣3,可知2S n﹣1=3a n﹣1﹣3,两式相减整理得a n=3a n﹣1,即(n≥2),为常数.故数列{a n}是以3为首项,3为公比的等比数列;(2)由(1)可知a n=3n,b n=n,于是=,然后采用错位相减法可求得T n=<;当n≥2时,采用作差法可证得T n﹣T n﹣1>0,即数列{T n}为递增数列,T n>T1=,故而得证.【解答】证明:(1)因为2S n=3a n﹣3,所以2S n﹣1=3a n﹣1﹣3,两式相减得,2a n=3a n﹣3a n﹣1(n≥2),即a n=3a n﹣1(n≥2),在2S n=3a n﹣3中,令n=1,则2a1=2S1=3a1﹣3,解得a1=3≠0,故数列{a n}是以3为首项,3为公比的等比数列.(2)由(1)可知a n=3n.所以b n=log3a n=log33n=n,所以=.所以T n=+++……++,T n=+++……++,两式相减得,T n=+++……+﹣=﹣=,所以T n==<,当n≥2时,T n﹣T n﹣1==>0,故数列{T n}为递增数列,T n>T1=.综上所述,<T n<.22.2020年5月6日,成都东部新区正式挂牌,标志着经过三年的规划设计,一个承接成渝地区双城经济圈建设、落实成都东进战略的新区正式成立.为落实东部新区“双城一园、一轴一带”的空间布局,某部门规划了一个如图所示的三角形(△ABC)产业园区,其中AC•sin A=BC•cos B.(1)求角B的大小;(2)若在该产业园区内再规划一个核心功能区△ADE(D、E是边BC上的点),且C =,∠DAE=,AC=200米,求核心功能区△ADE面积的最小值.【分析】(1)由正弦定理可得sin B sin A=sin A cos B,结合sin A≠0,利用同角三角函数基本关系式可求得tan B=,结合范围B∈(0,π),可求B的值.(2)由已知及(1)可求AB的值,记∠BAD=α,则,则∠BDA=﹣α,利用正弦定理可得AD=,AE=,利用三角形面积公式,三角函数恒等变换的应用可求△ADE的面积S=,结合范围,可求范围2α∈[0,],利用正弦函数的性质即可求解.解:(1)∵AC•sin A=BC•cos B,∴由正弦定理可得sin B sin A=sin A cos B,∵A∈(0,π),∴sin A≠0,∴sin B=cos B,可得tan B=,∵B∈(0,π),∴B=…5分(2)由已知及(1)可知,∠BAC=,∵AC=200米,∴AB=200米,…6分记∠BAD=α,则,则∠BDA=﹣α,∴在△ABD中,=,可得AD=,…7分由∠CAE=﹣α,C=,则∠CEA=+α,∴在△ACE中,=,可得AE=,…8分∴△ADE的面积S=AD•AE•sin∠DAE=××sin=×==,…11分当时,2α∈[0,],当α=时,sin2α取得最大值1,此时△ADE 面积的最小值30000(2﹣)平方米…12分。
【2019精品高一期末】-2019年成都高一(下)数学期末试卷+答案
2019成都高一(下)数学期末试卷一、选择题(共12个小题,每小题5分,共60分.)1.已知等差数列{}n a 的前n 项和为n S ,若4518a a =-,则8S =( )A . 18B .36C .54D .722.已知点(),P x y 的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,则22x y +的最大值为( )AB . 8C . 10D . 163.已知等比数列{}n a 为递增数列,且()251021,25n n n a a a a a ++=+=,则数列{}n a 的通项公式n a =( )A .2nB . 3nC .2n -D . 3n -4.如图0,,,45AB AC BAD CAD αβαβ⊥⊂⊂∠=∠=,则BAC ∠=( )A .90°B . 60° C. 45° D .30°5.若直线()()2130a x a y ++--=与直线()()12320a x a y -+++=互相垂直,则a 的值为( )A . 1B . -1 C. 1± D .32- 6.若ABC ∆的内角AB C 、、的对边分别为a b c 、、,且s i n s i n s i n a A c C C b B +-=,则B 等于( )A . 6πB .4π C. 3π D .34π 7.直线10ax y ++=与连接()()2,33,2A B -、的线段相交,则a 的取值范围是( )A .[]1,2-B . [)(]2,,1+∞-∞- C. []2,1- D .(][),21,-∞-+∞8.已知某几何体的三视图中,正视图、侧视图均由直角三角形与半圆构成,俯视图由圆与其内接直角三角形构成,如图所示,根据图中的数据可得几何体的体积为( )A . 132+B .4136π+ C. 166+ D .2132π+ 9. ()()001tan171tan 28++的值是( )A .-1B .0 C. 1 D . 210.设0002012tan15cos 2sin 2,,221tan 15a b c =-==+,则有( ) A .c a b << B .a b c << C. b c a << D .a c b <<11.若sin cos 24παα⎛⎫-=- ⎪⎝⎭,则sin 2α的值可以为( ) A .12-或1 B .12 C. 34 D .34-12.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且EF =,则下列结论中错误的是( )A .AC BE ⊥B .//EF 平面ABCDC. 三棱锥B AEF -的体积为定值 D .异面直线,AE BF 所成的角为定值二、填空题(共4小题,每小题5分,共20分,将答案填在答题纸上)13.如图,正方体1111ABCD A B C D -中,直线1AB 与1BC 所成角大小为 .14.过点()1,3且与原点的距离为1的直线共有 条.15.已知关于x 的不等式()2110ax a x +-->的解集为11,2⎛⎫--⎪⎝⎭,则a = .16.数列{}n a 满足,123231*********n n a a a a n ++++=+,写出数列{}n a 的通项公式 .三、解答题 (共6小题,第17题10分,18至22题每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图所示,在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ====,点D 是AB 的中点.(1)在棱11A B 上找一点1D ,当1D 在何处时可使平面11//AC D 平面1CDB ,并证明你的结论;(2)求二面角1B CD B --大小的正切值.18. 已知直线():120l kx y k k R -++=∈,直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B .(1)记ABO ∆的面积为S ,求S 的最小值并求此时直线l 的方程;(2)直线l 过定点M ,求MA MB 的最小值.19.如图,已知PA ⊥矩形ABCD 所在的平面,M N 、分别为AB PC 、的中点,045,2,1PDA AB AD ∠===.(1)求证://MN 平面PAD ;(2)求PC 与面PAD 所成角大小的正弦值;(3)求证:MN ⊥面PCD .20. 已知()1sin ,,3cos sin ,12a x b x x ⎛⎫=-=+ ⎪⎝⎭,函数()f x a b =,ABC ∆的内角,,A B C 所对的边长分别为,,a b c .(1)若1,12B C f a b +⎛⎫=== ⎪⎝⎭,求ABC ∆的面积S ; (2)若()30,45f παα<<=,求cos2α的值.21. 设ABC ∆的内角,,A B C 所对的边长分别为,,a b c ,且3cos cos 5a Bb Ac -=. (1)求tan :tan A B 的值;(2)若4b =,求ABC S ∆的最大值.22.已知数列{}n a 满足1112,22n n n a a a ++==+. (1)设2n n na b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ;(3)记()()211422n nnn nn nca a+-++=,求数列{}n c的前n项和n T.2019成都高一(下)数学期末试卷一、选择题(共12个小题,每小题5分,共60分.)1.已知等差数列{}n a 的前n 项和为n S ,若4518a a =-,则8S =( )A . 18B .36C .54D .72【答案】D2.已知点(),P x y 的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,则22x y +的最大值为( )AB . 8C . 10D . 16【答案】C3.已知等比数列{}n a 为递增数列,且()251021,25n n n a a a a a ++=+=,则数列{}n a 的通项公式n a =( )A .2nB . 3nC .2n- D . 3n -【答案】A4.如图0,,,45AB AC BAD CAD αβαβ⊥⊂⊂∠=∠=,则BAC ∠=( )A .90°B . 60° C. 45° D .30°【答案】B5.若直线()()2130a x a y ++--=与直线()()12320a x a y -+++=互相垂直,则a 的值为( )A . 1B . -1 C. 1± D .32-【答案】C6.若ABC ∆的内角AB C 、、的对边分别为a b c 、、,且s i n s i n s i n a A c C C b B +-=,则B等于( ) A .6π B .4π C. 3πD .34π 【答案】B7.直线10ax y ++=与连接()()2,33,2A B -、的线段相交,则a 的取值范围是( ) A .[]1,2- B . [)(]2,,1+∞-∞- C. []2,1- D .(][),21,-∞-+∞【答案】D8.已知某几何体的三视图中,正视图、侧视图均由直角三角形与半圆构成,俯视图由圆与其内接直角三角形构成,如图所示,根据图中的数据可得几何体的体积为( )A .132+ B .4136π+C. 166+ D .2132π+【答案】C9. ()()001tan171tan 28++的值是( ) A .-1 B .0 C. 1 D . 2 【答案】D10.设0002012tan15cos 2sin 2,,221tan 15a b c =-==+,则有( ) A .c a b << B .a b c << C. b c a << D .a c b << 【答案】A11.若sin cos 24παα⎛⎫-=- ⎪⎝⎭,则sin 2α的值可以为( ) A .12-或1 B .12 C. 34 D .34-【答案】A12.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且2EF =,则下列结论中错误的是( )A .AC BE ⊥B .//EF 平面ABCD C. 三棱锥B AEF -的体积为定值 D .异面直线,AE BF 所成的角为定值【答案】D二、填空题(共4小题,每小题5分,共20分,将答案填在答题纸上)13.如图,正方体1111ABCD A B C D -中,直线1AB 与1BC 所成角大小为 .【答案】3π 14. 过点()1,3且与原点的距离为1的直线共有 条.【答案】215.已知关于x 的不等式()2110ax a x +-->的解集为11,2⎛⎫-- ⎪⎝⎭,则a = . 【答案】-2 16.数列{}n a 满足,123231111212222n n a a a a n ++++=+,写出数列{}n a 的通项公式 . 【答案】 16,12,2n n n a n +=⎧=⎨≥⎩ 三、解答题 (共6小题,第17题10分,18至22题每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图所示,在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ====,点D 是AB 的中点. (1)在棱11A B 上找一点1D ,当1D 在何处时可使平面11//AC D 平面1CDB ,并证明你的结论; (2)求二面角1B CD B --大小的正切值. 【解析】(1)当1D 在棱11A B 中点时,可使平面11//AC D 平面1CDB ,证明略.(2)在平面ABC 内,过点B 作直线CD 的垂线,记垂足为E ,连接1B E ,1B EB ∠即为二面角1B CD B --的平面角.由已知,结合勾股定理得ABC ∆为直角三角形,125345BE BE =⨯⇒=,从而1145tan 123BB B EB BE ∠===. 二面角1B CD B --大小的正切值为53.18. 已知直线():120l kx y k k R -++=∈,直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B . (1)记ABO ∆的面积为S ,求S 的最小值并求此时直线l 的方程; (2)直线l 过定点M ,求MA MB 的最小值. 【解析】解:由题意,分别令0x =,0y =解得 ()10,12,2,0B k A k ⎛⎫+--⎪⎝⎭且0k >. (1)()111112244,022S k k k k k ⎛⎫⎛⎫=++=++> ⎪ ⎪⎝⎭⎝⎭时144k k k k +≥=,当且仅当12k =时取等.所以S 的最小值为4,此时直线l 的方程为240x y -+=. (2)易得()2,1M -,∴()1,1,2,2MA MB k k ⎛⎫=--= ⎪⎝⎭,224MA MB MA MB k k =-=-+≥,当且仅当1k =时取到,MA MB 的最小值为4.19.如图,已知PA ⊥矩形ABCD 所在的平面,M N 、分别为AB PC 、的中点,045,2,1PDA AB AD ∠===.(1)求证://MN 平面PAD ;(2)求PC 与面PAD 所成角大小的正弦值; (3)求证:MN ⊥面PCD . 【解析】 解:记PD 中点为E ,易得EN 平行且等于AM , (1)证明:如图,取PD 的中点E ,连结AE EN 、, 则有////EN CD AM ,且1122EN CD AB MA ===, ∴四边形AMNE 是平行四边形. ∴//MN AE .∵AE ⊂平面PAD ,MN ⊄平面PAD , ∴//MN 平面PAD ;(2)易得CPD ∠即为PC 与面PAD 所成角,sin 3CD CPD PC ∠==,所以,PC 与面PAD 所成角大小(3)证明:∵PA ⊥平面,ABCD CD ⊂平面,ABCD ADC ⊂平面ABCD . ∴,PA CD PA AD ⊥⊥, ∵,CD AD PAAD A ⊥=,∴CD ⊥平面PAD ,又∵AE ⊂平面PAD ,∴CD AE ⊥, ∵045PDA ∠=,E 为PD 中点, ∴AE PD ⊥,又∵PD CD D =,∴AE ⊥平面PCD .∵//MN AE , ∴MN ⊥平面PCD .20. 已知()1sin ,,3cos sin ,12a x b x x ⎛⎫=-=+ ⎪⎝⎭,函数()f x a b =,ABC ∆的内角,,A B C 所对的边长分别为,,a b c .(1)若1,12B C f a b +⎛⎫===⎪⎝⎭,求ABC ∆的面积S ; (2)若()30,45f παα<<=,求cos2α的值. 【解析】解:()2113sin cos sin 2cos 2sin 2226f x a b x x x x x x π⎛⎫==+-=-=- ⎪⎝⎭,(1)由12B C f +⎛⎫=⎪⎝⎭,结合,,A B C 为三角形内角得2,33B C A ππ+==而1a b ==.由正弦定理得,62B C ππ==,所以12S ab ==. (2)由()3sin 2,0654f ππααα⎛⎫=-=<< ⎪⎝⎭时,2663πππα-<-<,∴4cos 265πα⎛⎫-= ⎪⎝⎭,cos 2cos 2cos 2cos sin 2sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫⎛⎫=-+=---=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21. 设ABC ∆的内角,,A B C 所对的边长分别为,,a b c ,且3cos cos 5a Bb Ac -=. (1)求tan :tan A B 的值; (2)若4b =,求ABC S ∆的最大值. 【解析】(1)由正弦定理,结合三角形中和差角公式得:()3sin cos sin cos sin cos sin cos 5A B B A A B B A -=+, 从而sin cos 4sin cos A B B A =,即tan :tan 4A B =;(2)由(1)知内角A B 、均为锐角,如图所示过C 作CD 垂直于AB 垂足为D . 设,CD m AD n ==,由题意结合tan :tan 4A B =得4BD n =, 且22216m n b +==,所以m n ==时,22555162022222ABCm n S mn ∆+=≤==.22.已知数列{}n a 满足1112,22n n n a a a ++==+.(1)设2nn na b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T .【解析】 解:(1)易得n b n =;(2)易得2nn a n =,其前n 项和()1122n n S n +=-+;(3)()()()()()()()()()()22211114221421212121212nnnnn nn n n nn nn nn n n c n n n n n n +++-++-++-++++===+++()()()()()()111111111111221222212nn n n nn n n n n n n n n ++++⎛⎫⎛⎫---⎛⎫=+-+=-+- ⎪ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, ()()()()()()22312122311111111111222212222232212n n nn n n T n n ++⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤------⎛⎫⎛⎫⎛⎫⎢⎥=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦()()11121136212n nn n ++-⎛⎫=-+-- ⎪+⎝⎭或写成()()()114123312n n n n +++---+.。
2019-2020学年成都市高一下学期期末数学试卷(文科)
2019-2020学年成都市高一下学期期末数学试卷(文科)一、单选题(本大题共12小题,共60.0分)1.等比数列{a n}中,若a3=4,则a2⋅a4=()A. 8B. 16C. 32D. 642.已知四棱锥P−ABCD的三视图如图所示,则此四棱锥的四个侧面的面积中最大的是()A. 2B. 3C.D. 33.设对任意实数x>0,y>0,若不等式x+√xy≤a(x+2y)恒成立,则实数a的最小值为()A. √6+24B. 2+√24C. √6+√24D. 234.若cosα2=√63,则cos2α=()A. 13B. 79C. −79D. −135.各项都是正数的等比数列{a n},若a2,12a3,2a1成等差数列,则a3+a4a4+a5的值为()A. 2B. 2或−1C. 12D. 12或−16.在△ABC中,角A,B,C所对的边分别是a,b,c,若cosC>ba,则△ABC的形状是()A. 等腰三角形B. 锐角三角形C. 钝角三角形D. 直角三角形7.在△ABC中,a=3,b=4,c=5,则sin2AsinC=()A. 125B. 1225C. 2425D. 238.设x∈R,且a=3x2−x+1,b=2x2+x−1,则a与b的大小关系为()A. a>bB. a=bC. a<bD. 不确定,与x取值有关9.一个三角形的直观图是腰长为4的等腰直角三角形,则它的原面积是()A. 8B. 16C. 16√2D. 32√210.已知S n为数列{a n}的前n项和,且log2(S n+1)=n+1,则数列{a n}的通项公式为()A. a n=2nB. a n={3 n=12n n≥2C. a n=2n−1D. a n=2n+111.在三角形ABC中,已知B=60度,C=45度,BC=8,AD垂直于BC于D,则AD长为()A. B. C. D.12.()A. B. C. D.二、单空题(本大题共4小题,共20.0分),π]的值域为______ .13.函数y=3sinx+4cosx,x∈[π214.△ABC中,内角A,B,C的对边分别为a,b,c,若A=π,b2=c⋅(c+a),则B=______.615.已知递增的等差数列{a n}的首项a1=1,且a1、a2、a4成等比数列.则数列{a n}的通项公式为______ ;则a2+a5+a8+⋯+a3n−1+⋯+a3n+8的表达式为______ .16.已知x+y=40且x和y都是正数,则xy的最大值为______.三、解答题(本大题共6小题,共70.0分)17.已知(1)求数列{}的通项公式(2)数列{}的首项b1=1,前n项和为T n,且,求数列{}的通项公式.18.如图,三棱柱ABC−A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=√6,(理科做)求二面角B−AC−A1的余弦值.(文科做)求三棱锥A−CA1B的体积.19.已知cosα=−45,sinβ=−34,α∈(π2,π),β∈(π,32π),求cos(α−β)20.在数列{a n}中,满足点P(a n,a n+1)是函数f(x)=3x图象上的点,且a1=3.(1)求{a n}的通项公式;(2)若b n=na n,求数列{b n}的前n项和S n.21.已知二次函数,满足,且方程有两个相等的实根。
成都市重点名校2019-2020学年高一下学期期末考试数学试题含解析
【解析】
,对应点 ,在第四象限.
二、填空题:本题共4小题
13.已知两个正实数x,y满足 =2,且恒有x+2y﹣m>0,则实数m的取值范围是______________
【答案】(-∞,1)
【解析】
【分析】
由x+2y (x+2y)( ) (1 ),运用基本不等式可得x+2y的最小值,由题意可得m<x+2y的最小值.
14.圆 上的点 到直线 的距离的最小值是______.
【答案】
【解析】
【分析】
求圆心到直线的距离,用距离减去半径即可最小值.
【详解】
圆C的圆心为 ,半径为 ,
圆心C到直线的距离为: ,
所以最小值为:
【详解】
解:由 ,
得 ,
∵ ,
∴ ,
即
即 ,
则 ,
∵ ,
∴ ,
∴ ,即 ,
则 ,
故选D.
【点睛】
本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出 的值以及利用两角和差的正弦公式进行计算是解决本题的关键.
2.下列各角中与 角终边相同的角是
A. B. C. D.
【答案】B
【解析】
【分析】
分析:利用等比中项求解.
详解: ,因为 为正,解得 .
点睛:等比数列的性质:若 ,则 .
10.角 的终边过点 ,则 等于()
A. B. C. D.
【答案】B
【解析】
由三角函数的定义知,x=-1,y=2,r= = ,∴sinα= = .
11.在 中,角 的对边分别为 ,若 ,则 ()
A. B. C. D.
, , , ,
成都市新都区2019-2020学年高一下期末数学试卷(有答案)
2019-2020学年四川省成都市新都区高一(下)期末数学试卷一、选择题(每题5分)1.sin15°的值为()A.B. C.D.2.设x、y∈R+,且x≠y,a=,b=,c=,则a,b,c的大小关系为()A.a<b<c B.a>b>c C.b<a<c D.b<c<a3.如图为某四面体的三视图(都是直角三角形),则此四面体的表面三角形为直角三角形的个数为()A.1 B.2 C.3 D.44.空间三条不同直线l,m,n和三个不同平面α,β,γ,给出下列命题:①若m⊥l且n⊥l,则m∥n;②若m∥l且n∥l,则m∥n;③若m∥α且n∥α,则m∥n;④若m⊥α,n⊥α,则m∥n;⑤若α⊥γ,β⊥γ,则α∥β;⑥若α∥γ,β∥γ,则α∥β;⑦若α⊥l,β⊥l,则α∥β.其中正确的个数为()A.6 B.5 C.4 D.35.在△ABC中,角A、B、C所对的边分别为a、b、c,下列关系式正确的是()A .a=bsinC+csinB B .a=bcosC+ccosBC .a=bcosB+ccosCD .a=bsinB+csinC6.函数f (x )=asinx+cosx 关于直线x=对称,则a 的取值集合为( )A .{1}B .{﹣1,1}C .{﹣1}D .{0}7.等差数列{a n }和等比数列{b n }中,给出下列各式:①a 7=a 3+a 4;②a 2+a 6+a 9=a 3+a 4+a 10;③b 7b 9=b 3b 5b 8;④b 62=b 2b 9b 13.其中一定正确的个数为( ) A .1B .2C .3D .48.数列{a n }的前n 项和S n 满足S n =n 2a n 且a 1=2,则( )A .a n =B .a n =C .a n =D .a n =9.给出下列命题:①若a 2>b 2,则|a|>b ;②若|a|>b ,则a 2>b 2; ③若a >|b|,则a 2>b 2;④若a 2>b 2,则a >|b|. 其中一定正确的命题为( ) A .②④B .①③C .①②D .③④10.对任意非零向量:,,.则( )A .(•)•=•(•)B . •=•,则=C .|•|=||•||D .若|+|=|﹣|,则•=011.若sinα,sin2α,sin4α成等比数列,则cosα的值为( )A .1B .0C .﹣D .﹣或112.点O 、I 、H 、G 分别为△ABC (非直角三角形)的外心、内心、垂心和重心,给出下列关系式 ①=; ②sin2A•+sin2B•+sin2C•=;③a+b+c=; ④tanA•+tanB•+tanC•=.其中一定正确的个数是( ) A .1B .2C .3D .4二、填空题(每题5分)13.等差数列{an }的前n项和为Sn,若S9=81,ak﹣4=191,Sk=10000,则k的值为________.14.三棱锥P﹣ABC中,∠APB=∠APC=∠CPB=40°,PA=5,PB=6,PC=7,点D、E分别在棱PB、PC上运动,则△ADE周长的最小值为________.15.若平面向量满足|2|≤3,则的最小值是________.16.已知函数f(x)=sin6x+cos6x,给出下列4个结论:①f(x)的值域为[0,2];②f(x)的最小正周期为;③f(x)的图象对称轴方程为x=(k∈Z);④f(x)的图象对称中心为(,)(k∈Z)其中正确结论的序号是________(写出全部正确结论的序号)三、解答题17.若对任意实数x,不等式x2﹣mx+(m﹣1)≥0恒成立(1)求实数m的取值集合;(2)设a,b是正实数,且n=(a+)(mb+),求n的最小值.18.如图,四边形ABCD中,若∠DAB=60°,∠ABC=30°,∠BCD=120°,AD=2,AB=5.(1)求BD的长;(2)求△ABD的外接圆半径R;(3)求AC的长.19.△ABC中,a=4,b=5,C=,角A、B、C所对的边分别为a、b、c,点D在边AB上,且=.(1)用和表示;(2)求|CD|.20.四面体ABCD中,已知AB⊥面BCD,且∠BCD=,AB=3,BC=4,CD=5.(1)求证:平面ABC⊥平面ACD;(2)求此四面体ABCD的体积和表面积;(3)求此四面体ABCD的外接球半径和内切球半径.21.△ABC中(非直角三角形),角A、B、C所对的边分别为a,b,c.(1)求证:tanA+tanB+tanC=tanAtanBtanC;(2)若tanA:tanB:tanC=6:(﹣2):(﹣3),求a:b:c.22.在等比数列{an }的前n项和为Sn,Sn=2n+r(r为常数),记bn=1+log2an.(1)求r的值;(2)求数列{an bn}的前n项和Tn;(3)记数列{}的前n项和为Pn ,若对任意正整数n,都有P2n+1+≤k+Pn,求实数k的最小值.2019-2020学年四川省成都市新都区高一(下)期末数学试卷参考答案与试题解析一、选择题(每题5分)1.sin15°的值为()A.B. C.D.【考点】两角和与差的正弦函数.【分析】利用两角差的正弦公式,求得要求式子的值.【解答】解:sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=﹣=,故选:C.2.设x、y∈R+,且x≠y,a=,b=,c=,则a,b,c的大小关系为()A.a<b<c B.a>b>c C.b<a<c D.b<c<a【考点】不等式的基本性质.【分析】直接根据基本不等式即可判断.【解答】解:x、y∈R+,且x≠y,∴>,<=,∴a>b>c,故选:B.3.如图为某四面体的三视图(都是直角三角形),则此四面体的表面三角形为直角三角形的个数为()A.1 B.2 C.3 D.4【考点】由三视图求面积、体积.【分析】根据三视图的几何体的结构特征,利用直线平面的垂直判断即可.【解答】解:根据三视图得出几何体为三棱锥,AB⊥面BCD,BC⊥CD,∴AB⊥BC,AB⊥AD.CD⊥面ABC,CD⊥AC,RT△ABC,RT△ABD,RT△DBC,RT△ADC,共有4个,故选:D4.空间三条不同直线l,m,n和三个不同平面α,β,γ,给出下列命题:①若m⊥l且n⊥l,则m∥n;②若m∥l且n∥l,则m∥n;③若m∥α且n∥α,则m∥n;④若m⊥α,n⊥α,则m∥n;⑤若α⊥γ,β⊥γ,则α∥β;⑥若α∥γ,β∥γ,则α∥β;⑦若α⊥l,β⊥l,则α∥β.其中正确的个数为()A.6 B.5 C.4 D.3【考点】空间中直线与平面之间的位置关系.【分析】利用空间直线与直线,线面平行和面面平行的判定定理和性质定理分别分析解答.【解答】解:①若m⊥l且n⊥l,则m与n可能平行、相交或者异面;故①错误;②若m∥l且n∥l,根据平行公理得到m∥n;②正确;③若m∥α且n∥α,则m∥n或者相交或者异面;故③错误;④若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故④正确;⑤若α⊥γ,β⊥γ,则α∥β或者相交;故⑤错误;⑥若α∥γ,β∥γ,则α∥β;正确⑦若α⊥l,β⊥l,根据线面垂直的性质定理和面面平行的判定定理得到α∥β.故⑦正确;所以正确的有四个;故选C.5.在△ABC中,角A、B、C所对的边分别为a、b、c,下列关系式正确的是()A.a=bsinC+csinB B.a=bcosC+ccosBC.a=bcosB+ccosC D.a=bsinB+csinC【考点】正弦定理.【分析】利用三角形内角和定理,两角和的正弦函数公式可得sinA=sinBcosC+cosBsinC,利用正弦定理即可得解B正确.【解答】解:∵A+B+C=π,∴sinA=sin(B+C)=sinBcosC+cosBsinC,∴由正弦定理可得:a=bcosC+ccosB,故选:B.6.函数f(x)=asinx+cosx关于直线x=对称,则a的取值集合为()A .{1}B .{﹣1,1}C .{﹣1}D .{0}【考点】正弦函数的图象;三角函数中的恒等变换应用.【分析】由题意f (x )=sin (x+θ),其中tanθ=,再根据f (x )的图象关于直线x=对称,求得a 的值.【解答】解:由题意,f (x )=asinx+cosx=sin (x+θ),其中tanθ=,∵其图象关于直线x=对称,∴θ+=kπ+,k ∈z ,∴θ=kπ+,k ∈z ,∴tanθ==1, ∴a=1, 故选:A .7.等差数列{a n }和等比数列{b n }中,给出下列各式:①a 7=a 3+a 4;②a 2+a 6+a 9=a 3+a 4+a 10;③b 7b 9=b 3b 5b 8;④b 62=b 2b 9b 13.其中一定正确的个数为( ) A .1B .2C .3D .4【考点】等差数列的通项公式.【分析】设等差数列{a n }的公差是d ,等比数列{b n }的公比是q ,根据等差数列的通项公式判断①②,根据等比数列的通项公式判断③④.【解答】解:设等差数列{a n }的公差是d ,等比数列{b n }的公比是q ,①、因为a 7=a 1+6d ,a 3+44=2a 1+5d ,所以只有当a 1=d 时a 3+a 4成立,①不正确; ②、因为a 2+a 6+a 9=3a 1+14d ,a 3+a 4+a 10=3a 1+14d ,所以a 2+a 6+a 9=a 3+a 4+a 10,②正确;③、因为b 7b 9=(b 1q 6)(b 1q 8)=,b 3b 5b 8=,所以当b 1=q 时b 7b 9=b 3b 5b 8成立,③不正确;④、因为b 62=,b 2b 9b 13=,所以当=1时b 62=b 2b 9b 13,④不正确,所以一定正确的个数是1, 故选A .8.数列{a n }的前n 项和S n 满足S n =n 2a n 且a 1=2,则( )A .a n =B .a n =C .a n =D .a n =【考点】数列递推式.【分析】由题意和当n ≥2时a n =S n ﹣S n ﹣1化简已知的等式,得到数列的递推公式,利用累积法求出a n .【解答】解:由题意得,S n =n 2a n ,当n ≥2时,a n =S n ﹣S n ﹣1=n 2a n ﹣[(n ﹣1)2a n ﹣1], 化简得,,则,,,…,以上n ﹣1个式子相乘得, =,又a 1=2,则a n =,故选:A .9.给出下列命题:①若a 2>b 2,则|a|>b ;②若|a|>b ,则a 2>b 2; ③若a >|b|,则a 2>b 2;④若a 2>b 2,则a >|b|. 其中一定正确的命题为( ) A .②④B .①③C .①②D .③④【考点】不等式的基本性质.【分析】利用不等式的性质可得①③正确, 举反例可以判断②④错误.【解答】解:对于①a 2>b 2⇔|a|2>|b|2⇔|a|>|b|,故正确,对于②若a=1,b=﹣2,虽然满足若|a|>b ,但a 2>b 2不成立,故不正确, 对于③a>|b|⇌a 2>|b|2,则a 2>b 2,故正确,对于④,若a=﹣2,b=1,虽然满足a2>b2,但是a>|b|不成立,故不正确,故其中一定正确的命题为①③,故选:B10.对任意非零向量:,,.则()A.(•)•=•(•)B.•=•,则=C.|•|=||•|| D.若|+|=|﹣|,则•=0【考点】平面向量数量积的运算.【分析】根据向量数量积的公式分别进行判断即可.【解答】解:A.(•)•=||•||cos<,>•与共线,•(•)=•||•||cos,>与共线,则(•)•=•(•)不一定成立,故A错误,B.由•=•,得•(﹣)=0,则⊥(﹣),无法得到=,故B错误,C.•=||•||cos<,>=||•||不一定成立,故C错误,D.若|+|=|﹣|,则平方得||2+|||2+2•=|||2+||2﹣2•,即4•=0,即•=0成立,故D正确故选:D11.若sinα,sin2α,sin4α成等比数列,则cosα的值为()A.1 B.0 C.﹣D.﹣或1【考点】三角函数中的恒等变换应用;等比数列的通项公式.【分析】由等比中项的性质列出方程,由二倍角的正弦公式、sin2α≠0、sinα≠0化简,由二倍角的余弦公式变形列出方程求解,结合条件求出cosα的值.【解答】解:∵sinα,sin2α,sin4α成等比数列,∴(sin2α)2=sinα•sin4α,则(sin2α)2=sinα•2sin2αcos2α,又sin2α≠0,∴sin2α=sinα•2cos2α,2sinαcosα=sinα•2cos2α,又sinα≠0,cosα=cos2α,即2cos2α﹣cosα﹣1=0,解得cosα=或1,当cosα=1时,sinα=0,舍去,∴cosα的值是,故选C.12.点O、I、H、G分别为△ABC(非直角三角形)的外心、内心、垂心和重心,给出下列关系式①=;②sin2A•+sin2B•+sin2C•=;③a+b+c=;④tanA•+tanB•+tanC•=.其中一定正确的个数是()A.1 B.2 C.3 D.4【考点】三角形五心.【分析】根据三角形(非直角三角形)的外心、内心、垂心和重心的向量表示与运算性质,对选项中的命题逐一进行分析、判断正误即可.【解答】解:对于①,点G是△ABC的重心,如图①所示,所以==×(+)=(+),同理=(+),=(+),∴++=(+++++)=,所以=,命题正确;对于②,点O 是△ABC 的外心,如图②所示,OA=OB=OC ,所以S △BOC :S △AOC :S △AOB ═sin ∠BOC :sin ∠AOC :sin ∠AOB=sin2A :sin2B :sin2C , 所以sin2A•+sin2B•+sin2C•=,命题正确;对于③,点I 是△ABC 的内心,如图所示,所以S △BIC :S △AIC :S △AIB =a :b :c ,所以a+b +c =,命题正确;对于④,点H 是△ABC (非直角三角形)的垂心,如图所示,所以S △BHC :S △AHC :S △ANB =tanA :tanB :tanC , 所以tanA•+tanB•+tanC•=,命题正确.综上,以上正确的命题有4个. 故选:D .二、填空题(每题5分)13.等差数列{a n }的前n 项和为S n ,若S 9=81,a k ﹣4=191,S k =10000,则k 的值为100.【考点】等差数列的前n 项和. 【分析】由S 9==81,求出a 5=9,再求出a 1+a k =a 5+a k ﹣4=9+191=200,由此利用S k =10000,能求出k .【解答】解:∵等差数列{a n }的前n 项和为S n ,S 9=81,a k ﹣4=191,S k =10000, ∴S 9==81,解得a 5=9,∴a 1+a k =a 5+a k ﹣4=9+191=200, S k ==100k=10000,解得k=100. 故答案为:100.14.三棱锥P ﹣ABC 中,∠APB=∠APC=∠CPB=40°,PA=5,PB=6,PC=7,点D 、E 分别在棱PB 、PC 上运动,则△ADE 周长的最小值为5.【考点】棱锥的结构特征.【分析】把已知三棱锥沿棱PA 将三棱锥侧面剪开并展开,可得展开图如图,再由余弦定理求得答案.【解答】解:如图,沿棱PA 将三棱锥侧面剪开并展开,可得展开图如图, 此时|PA|=|PA′|=5,且角APA′=120°,∴△ADE 周长的最小值为|AA′|=.故答案为:.15.若平面向量满足|2|≤3,则的最小值是﹣.【考点】平面向量数量积的坐标表示、模、夹角;平面向量数量积的运算.【分析】由平面向量满足|2|≤3,知,故≥=4||||≥﹣4,由此能求出的最小值.【解答】解:∵平面向量满足|2|≤3,∴,∴≥=4||||≥﹣4,∴,∴,故的最小值是﹣.故答案为:﹣.16.已知函数f(x)=sin6x+cos6x,给出下列4个结论:①f(x)的值域为[0,2];②f(x)的最小正周期为;③f(x)的图象对称轴方程为x=(k∈Z);④f(x)的图象对称中心为(,)(k∈Z)其中正确结论的序号是②③④(写出全部正确结论的序号)【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用公式a3+b3=(a+b)(a2﹣ab+b2)化简y=sin6x+cos6x,再由二倍角公式化简解析式,根据余弦函数的值域判断①;由三角函数的周期公式判断②;由余弦函数的对称轴方程和整体思想,求出f(x)的对称轴判断③;由余弦函数的对称中心和整体思想,求出f(x)的对称对称中心判断④.【解答】解:y=sin6x+cos6x=(sin2x+cos2x)(sin4x﹣sin2xcos2x+cos4x)=1•(sin2x+cos2x)2﹣3sin2xcos2x=1﹣sin22x=+cos4x,①、因为﹣1≤cos4x≤1,所以f(x)的值域为[,1],①不正确;②、由T==得,f(x)的最小正周期为,②正确;③、由4x=kπ(k∈Z)得,f(x)图象的对称轴方程是,③正确;④、由得,,则f(x)的图象对称中心为(,)(k∈Z),④正确,综上可得,正确的命题是②③④,故答案为:②③④.三、解答题17.若对任意实数x,不等式x2﹣mx+(m﹣1)≥0恒成立(1)求实数m的取值集合;(2)设a,b是正实数,且n=(a+)(mb+),求n的最小值.【考点】二次函数的性质;基本不等式.【分析】(1)根据二次函数的性质求出m的值即可;(2)根据基本不等式的性质求出n的最小值即可.【解答】解:(1)∵x2﹣mx+(m﹣1)≥0在R恒成立,∴△=m2﹣4(m﹣1)≤0,解得:m=2,故m∈{2};(2)∵m=2,a,b是正实数,∴n=(a+)(mb+)=(a+)(2b+)=2ab++≥2+=,故n的最小值是.18.如图,四边形ABCD中,若∠DAB=60°,∠ABC=30°,∠BCD=120°,AD=2,AB=5.(1)求BD的长;(2)求△ABD的外接圆半径R;(3)求AC的长.【考点】解三角形.【分析】由题意可得,四边形ABCD为圆内接四边形.(1)直接运用余弦定理求得BD的长;(2)由正弦定理求得△ABD的外接圆半径R;(3)在△ABC中,由正弦定理得AC的长.【解答】解:如图,由∠DAB=60°,∠BCD=120°,可知四边形ABCD为圆内接四边形,(1)在△ABD中,由∠DAB=60°,AD=2,AB=5,利用余弦定理得:BD2=AB2+AD2﹣2AB•AD•cos∠DAB=.∴;(2)由正弦定理得:,则△ABD的外接圆半径R=;(3)在△ABC中,由正弦定理得:,∴AC=.19.△ABC中,a=4,b=5,C=,角A、B、C所对的边分别为a、b、c,点D在边AB上,且=.(1)用和表示;(2)求|CD|.【考点】平面向量数量积的运算;平面向量的基本定理及其意义.【分析】(1)根据向量基本定理即可用和表示;(2)根据向量数量积与向量长度之间的关系转化为向量数量积进行计算即可求|CD|.【解答】解:(1)∵=,∴=,即=,则=+=+=+(﹣)=+.(2)∵a=4,b=5,C=,∴•=||||cos120°=4×=﹣10.∵=+.∴2=(+)2=2+2×ו+2=×25+2×ו(﹣10)+×16=,则|CD|==.20.四面体ABCD中,已知AB⊥面BCD,且∠BCD=,AB=3,BC=4,CD=5.(1)求证:平面ABC⊥平面ACD;(2)求此四面体ABCD的体积和表面积;(3)求此四面体ABCD的外接球半径和内切球半径.【考点】棱柱、棱锥、棱台的体积;球的体积和表面积.【分析】(1)证明CD⊥平面ABC,即可证明:平面ABC⊥平面ACD;(2)利用体积、面积公式求出此四面体ABCD的体积和表面积;(3)此四面体ABCD的外接球的球心是AD的中点,即可求此四面体ABCD的外接球半径.利用等体积求出内切球半径.【解答】(1)证明:∵AB⊥面BCD,CD⊂面BCD,∴AB⊥CD,∵∠BCD=,∴CD⊥BC,∵AB∩BC=B,∴CD⊥平面ABC,∵CD⊂平面ACD,∴平面ABC⊥平面ACD;(2)解:此四面体ABCD的体积V==10表面积S==;(3)解:此四面体ABCD的外接球的球心是AD的中点,半径为=设内切球半径为r,则()r=10,∴r=.21.△ABC中(非直角三角形),角A、B、C所对的边分别为a,b,c.(1)求证:tanA+tanB+tanC=tanAtanBtanC;(2)若tanA:tanB:tanC=6:(﹣2):(﹣3),求a:b:c.【考点】三角函数的化简求值;正弦定理.【分析】(1)利用三角形的内角和定理以及由题意可得各个正切有意义,由两角和的正切公式变形可得tanA+tanB=tan(A+B)(1﹣tanAtanB),整体代入式子坐标由诱导公式化简可得;(2)结合(1)的结论设比例系数为k,求出k,得到tanA、tanB、tanC,利用三角函数的基本公式求出sinA,sinB,sinC,结合正弦定理求a:b:c.【解答】(1)证明:∵△ABC不是直角三角形,∴A、B、C均不为直角,且A+B+C=π,任意两角和不为,由两角和的正切公式可得tan(A+B)=,∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=tan(π﹣C)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)∴tanA+tanB+tanC=﹣tanC(1﹣tanAtanB)+tanC=tanAtanBtanC;(2)由tanA:tanB:tanC=6:(﹣2):(﹣3),设tanA=6k,tanB=﹣2k,tanC=﹣3k,代入(1)得到k=36k3,因为△ABC非直角三角形,并且最多一个钝角,所以k=﹣,即tanA=﹣1,tanB=,tanC=,所以A=135°,sinB=,sinC=,所以a :b :c=sinA :sinB :sinC==5::2.22.在等比数列{a n }的前n 项和为S n ,S n =2n +r (r 为常数),记b n =1+log 2a n . (1)求r 的值;(2)求数列{a n b n }的前n 项和T n ; (3)记数列{}的前n 项和为P n ,若对任意正整数n ,都有P 2n+1+≤k+P n ,求实数k 的最小值.【考点】数列的求和;数列递推式.【分析】(1)由a 1=S 1,a n =S n ﹣S n ﹣1,可得数列{a n }的通项,即可得到r=﹣1;(2)b n =n ,a n b n =n•2n ﹣1,运用数列的求和方法:错位相减法,化简整理,结合等比数列的求和公式,即可得到所求和;(3)化简P 2n+1+≤k+P n ,即为1+++…++…++≤k+1+++…+,化为k ≥++…+,可设f (n )=++…+,作差f (n+1)﹣f (n ),判断单调性,可得最大值为f (1),即可得到k 的最小值.【解答】解:(1)等比数列{a n }的前n 项和为S n ,S n =2n +r , 可得a 1=S 1=2+r ;a n =S n ﹣S n ﹣1=2n +r ﹣(2n ﹣1+r )=2n ﹣1, 上式对n=1也成立,即有2+r=1, 解得r=﹣1.(2)b n =1+log 2a n =1+log 22n ﹣1=1+n ﹣1=n ,数列{a n b n }的前n 项和T n =1•20+2•2+3•22+…+n•2n ﹣1, 2T n =1•2+2•22+3•23+…+n•2n ,两式相减可得,﹣T n =1+2+22+…+2n ﹣1﹣n•2n=﹣n•2n ,化简可得,T n =(n ﹣1)•2n +1;-- (3)数列{}的前n 项和为P n =1+++…+,P 2n+1+≤k+P n ,即为1+++…++…++≤k+1+++…+, 化为k ≥++…+, 可设f (n )=++…+, f (n+1)﹣f (n )=+…+++﹣(++…+)=+﹣=﹣<0, 即有f (n )在自然数集上递减,可得f (1)取得最大值,且为1++=. 则k ≥.即实数k 的最小值为.。
2019-2020学年成都市高一下学期期末数学试卷(理科)
2019-2020学年成都市高一下学期期末数学试卷(理科)一、单选题(本大题共12小题,共60.0分) 1.在锐角三角形中,角B ,C 所对边分别是b ,c ,A =2B ,则的取值范围是( )A. (2,3)B. (1,2)C. (,1)D. (, )2.已知函数f(x)={3x +6(x ≥−2)−6−3x(x <−2),若不等式f(x)≥2x −m 恒成立,则实数m 的取值范围是( )A. m ≤−4B. m ≥4C. m ≤4D. m ≥−43.定义2×2矩阵[a 1a 2a3a 4]=a 1a 4−a 2a 3,若f(x)=[cosx −sinx √3cos(π2+2x)cosx +sinx],则f(x)( )A. 图象关于(π,0)中心对称B. 图象关于直线x =π2对称 C. 在区间[−π6,0]上单调递增D. 周期为π的奇函数4.已知数列a 1,a 2a 1,a 3a 2,…,a na n−1是首项为8,公比为12的等比数列,则a 3等于( )A. 64B. 32C. 2D. 45.的内角A ,B ,C 的对边分别是a ,b ,c ,且,则∠B = ( )A.B.C.D.6.若a >b ,则下列不等式成立的是( )A. 1a <1bB. ax 2>bx 2C. a 2>b 2D. a 3x >b3x7.如图所示,直观图四边形是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A.B.C.D.8.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a =√2,c =√6+√22,C =75°,则b =( )A. √3B. √2C. 1D. √329.若一个三棱柱的底面是正三角形,其正(主)视图如图所示,则它的体积为()A. √3B. 2C. 2√3D. 410.已知数列{a n}满足a1=3,且a n+1=a n+log3(1+1n),则a9=()A. 3B. 4C. log310+3D. 511.锐角三角形△ABC中,若A=2B,则下列叙述正确的是()①sin3B=sinC;②tan3B2tan C2=1;③π6<B<π4;④ab∈[√2,√3].A. ①②B. ①②③C. ③④D. ①④12.下列命题中的假命题是()A. ∀x∈R,e x>0B. ∀x∈R,x2≥0C. ∃x0∈R,sinx0=2D. ∃x0∈R,2x0>x02二、单空题(本大题共4小题,共20.0分)13.已知等差数列{a n}的首项为a,公差为b,等比数列{b n}的首项为b,公比为a,其中a,b都是大于1的正整数,且a1<b1,b2<a3,若对于任意的n∈N∗,总存在m∈N∗,使得a m+5=b n 成立,则b n=______.14.已知函数f(x)=a2sin2x+cos2x的图象关于直线x=π12对称,则f(π4)=______.15.等差数列{a n}中,a1=−5,a6=1,此数列的通项公式为______.16.函数f(x)=2sin xcos x+cos2x的最小正周期和振幅分别是___.三、解答题(本大题共6小题,共70.0分)17.如图所示,某几何体的直观图、侧视图与俯视图如图所示,正视图为矩形,F为CE上的点,且BF⊥平面ACE,AC交BD于点G.(1)求证:AE//平面BFD;(2)求三棱锥C−BGF的体积.18.已知{a n}是一个单调递增的等差数列,且满足√21是a2,a4的等比中项,a1+a5=10.数列{b n}满足b n=a n2n.(1)求数列{a n}的通项公式a n;(2)求数列{b n}的前n项和T n.19.在△AB中,已知2cos2A−B2cosB−sin(A−B)sinB+cos(A+C)=12.(1)求角A;(2)若B∈(0,π3),且sin(A−B)=35,求sin B.20.已知二次函数f(x)满足条件f(0)=1,任给x∈R都有f(x+1)−f(x)=2x恒成立.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)在[−1,1]上的最值.21.设数列{a n}的前n项的和S n=43a n−13×2n+1+23(n=1,2,3,…)(Ⅰ)求首项a1(Ⅱ)证明数列{a n+2n}是等比数列并求a n.22..(1)△ABC的内角A,B,C所对的边长分别为a,b,c,若a=√2,b=2,sinB+cosB=√2,求角A的大小.(2)△ABC的内角A,B,C所对的边长分别为a,b,c,已知c=2,C=π3,若△ABC的面积为√3,求a+b的值.【答案与解析】1.答案:B解析:本题考查了正弦定理,余弦函数的定义域与值域,熟练掌握正弦定理是解本题的关键. 解:∵△ABC 为锐角三角形,A =2B ,C =180°−3B , ∴0<A =2B <90°,0<180°−3B <90°, 即30°<B <45°,所以,因为:所以,即 的取值范围是(1,2).故选:B .2.答案:D解析:解:由函数f(x)={3x +6(x ≥−2)−6−3x(x <−2),可得x ≥−2时,f(x)≥2x −m 即为3x +6≥2x −m ,即m ≥−x −6在x ≥−2恒成立,由于−x −6≤−4,可得m ≥−4; 又x <−2时,f(x)≥2x −m 即为−3x −6≥2x −m ,即m ≥5x +6在x <−2恒成立,由于5x +6<−4,可得m ≥−4; 综上可得,m ≥−4.故选:D .分别考虑x ≥−2和x <−2时,f(x)≥2x −m 恒成立,运用参数分离和一次函数的单调性,可得所求范围.本题考查不等式恒成立问题解法,注意运用分类讨论思想和转化思想,同时考查一次函数的单调性,以及运算能力,属于中档题.3.答案:C解析:解:f(x)=cos 2x −sin 2x −√3cos(π2+2x)=cos2x +√3sin2x =2sin(2x +π6), 由2kπ−π2≤2x +π6≤2kπ+π2,可得kπ−π3≤x ≤kπ+π6,k ∈Z ,函数单调递增, ∴令k =0得:函数f(x)在区间[−π6,0]上单调递增, 故选:C .先化简函数,再利用正弦函数的图象与性质,即可得出结论. 本题考查三角函数的图象与性质,考查三角函数的化简,属于中档题.4.答案:A解析:解:由 题意可得,a nan−1=8×(12)n−1,a 1=8,所以a2a 1=4即a 2=32,a3a 2=2,所以a 3=64. 故选:A .结合等比数列的通项公式及已知即可直接求解.本题主要考查了等比数列的通项公式在求解数列的项中的应用,属于基础试题.5.答案:B解析:解:△ABC 中,,根据正弦定理可得,,∴,∵B ∈(0,π),∴B=.故选B.6.答案:D解析:解:由a>b,取a=1,b=−1,可得1a >1b,故A错误;由a>b,取x=0,可得ax2=bx2,故B错误;由a>b,取a=1,b=−1,可得a2=b2,故C错误;由a>b,3x>0,可得a3x >b3x,故D正确.故选:D.由a>b,取a=1,b=−1,计算可判断A,C;由a>b,取x=0,可判断B;由a>b,以及指数函数的值域,结合不等式的性质可判断D.本题考查不等式的性质,以及指数函数的值域,考查特殊值的运用,以及运算能力,属于基础题.7.答案:A解析:试题分析:由题可得A¢D¢=A¢B¢=1,B¢C¢=1+,所以原平面图形中AD=1,AB=2,BC=1+,根据梯形的面积计算公式可得考点:斜二测画法.8.答案:A解析:解:∵a=√2,c=√6+√22,C=75°,由余弦定理可得c2=a2+b2−2a⋅b⋅cosC即(√6+√22)2=2+b2−(√3−1)b即b2−(√3−1)b−√3=0解得b=√3,或b=−1(舍去)故选:A.根据已知中a=√2,c=√6+√22,C=75°,结合余弦定理c2=a2+b2−2a⋅b⋅cosC,可构造关于b 的方程,解方程可得答案.本题考查的知识点是余弦定理,其中根据已知结合余弦定理c 2=a 2+b 2−2a ⋅b ⋅cosC ,可构造关于b 的方程,是解答的关键.9.答案:A解析:解:∵三棱柱的底面是边长为2的正三角形,高为1. ∴V =sℎ=12×2×√3×1=√3. 故选:A .根据三视图得几何体是底面为边长为2的正三角形,高为1的棱柱;再代入柱体的体积公式计算即可.本题考查几何图形的三视图及柱体的体积计算公式.V 柱体=Sℎ.10.答案:D解析:解:∵a n+1=a n +log 3(1+1n ), ∴a n+1−a n =log 3(n +1)−log 3n ,∴n ≥2,a n =(a n −a n−1)+(a n−1−a n−2)+⋯+(a 2−a 1)+a 1=(log 3n −log 3(n −1))+(log 3(n −1)−log 3(n −2))+⋯+(log 32−log 31)+3 =log 3n +3, ∴a 9=log 39+3=5, 故选:D .a n+1=a n +log 3(1+1n ),可得a n+1−a n =log 3(n +1)−log 3n ,利用“累加求和”与对数的运算性质即可得出.本题考查了“累加求和”、对数的运算性质,考查了推理能力与计算能力,属于中档题.11.答案:B解析:解:∵△ABC 中,A =2B ∴C =π−(A +B)=π−3B又∵△ABC 为锐角三角形{0<2B <π20<π−3B <π20<B <π2解不等式可得π6<B <π4故③正确∴sinC =sin(π−3B)=sin3B 故①正确 tan3B 2tan C 2=tan3B 2tanπ−3B 2=tan3B 2cot3B 2=1,故②正确a b =sinA sinB =sin2B sinB =2sinBcosBsinB=2cosB由π6<B <π4可得√22< cosB <√32故④错误故选:B .由△ABC 为锐角三角形可得{0<A <π20<B <π20<C <π2,由A =2B ,可得C =π−3B ,代入已知可求的B 的范围,从而可判断③由C =π−3B ,利用正弦函数的诱导公式可判断①,利用正切函数的诱导公式可判断② 利用正弦定理可及二倍角公式化简可得,ab =sinAsinB =2sinBcosB sinB=cosB ,由③中B ∈(π6,π4)结合余弦函数的单调性可求范围,从而判断④本题主要考查了三角形的内角和公式,三角函数的诱导公式,解三角形的基本工具:正弦定理,二倍角的正弦公式及由角的范围求三角函数值的范围,综合的知识点较多,但都是基本运用,要求考生熟练基本公式,灵活运用公式解题.12.答案:C解析:解:对于A ,根据指数函数y =e x 的图象与性质,得∀x ∈R ,e x >0正确,A 是真命题; 对于B ,根据二次函数y =x 2的图象与性质,得∀x ∈R ,x 2≥0正确,B 是真命题; 对于C ,根据正弦函数y =sinx 的有界性,得|sinx|≤1,C 是假命题;对于D ,根据指数函数y =2x 与二次函数y =x 2的图象与性质,知x =5时,25>52,D 是真命题. 故选:C .根据基本初等函数的图象与性质,对选项中的命题进行分析判断即可.本题考查了特称命题与全称命题的真假性判断问题,解题时应用排除法等解法,是基础题目.13.答案:7⋅2n−1解析:解:∵a 1<b 1,b 2<a 3, ∴a <b 以及ba <a +2b , ∴b(a −2)<a <b , a −2<1⇒a <3, 可取a =2,又因为a m +5=b n ⇒a +(m −1)b +5=b ⋅a n−1.又∵a =2,b(m −1)+7=b ⋅2n−1,则b(2n−1−m +1)=7. 又b ≥3,由数的整除性,得b 是7的约数.故2n−1−m+1=1,b=7,∴b n═b⋅a n−1=7⋅2n−1.故答案为:7⋅2n−1.先利用a1<b1,b2<a3,以及a,b都是大于1的正整数求出a=2,再利用a m+5=b n求出满足条件的b的值即可求出等差数列{b n}的通项公式.本题考查等差数列与等比数列的通项公式的运用,解题时注意转化思想和推理,属于中档题.14.答案:√33解析:解:∵函数f(x)=a2sin2x+cos2x的周期为π,它的图象关于直线x=π12对称,∴f(0)=f(π6)=1=√34a+12,∴a=2√33,∴f(π4)=a2=√33,故答案为:√33.由题意利用三角函数的图象对称性的性质,求得f(π4)的值.本题主要考查三角函数的图象对称性的性质,属于中档题.15.答案:a n=65n−315解析:解:设等差数列{a n}的公差为d,∵a1=−5,a6=1,∴−5+5d=1,解得d=65.∴a n=−5+65(n−1)=65n−315.故答案为:a n=65n−315.利用等差数列的通项公式即可得出.本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题.16.答案:解析:本题主要考查辅助角公式及三角函数的性质,解题关键是把f(x)解析式化为y=Asin(ωx+φ)的形式.解:=,所以振幅为,周期为,故答案依次为.17.答案:(1)证明:∵ABCD是矩形,∴G是AC中点,∵BF⊥平面ACE,∴CE⊥BF,由三视图知BC=BE=2,∴F是BC中点,连结FG,得FG//AE,∴AE//平面BFD.(2)解:由(1)得FG//AE,由三视图知AE⊥面BCE,∴FG⊥面BCE,在Rt△BCE中,BF=12CE=CF=√2,∴S△CFB=12×√2×√2=1,又FG=12AE=1,∴V C−BGF=V G−BCF=13⋅S△CFB⋅FG=13×1×1=13.解析:(1)由线面垂直得CE⊥BF,由G、F分别是AC、BC中点,FG//AE,由此能证明AE//平面BFD.(2)由V C−BGF=V G−BCF,利用等积法能求出三棱锥C−BGF的体积.本题考查直线与平面平行的证明,考查三棱锥体积的求法,解题时要认真审题,注意空间思维能力的培养.18.答案:解:(1)设等差数列{a n}的公差为d,则依题知d>0.由2a3=a1+a5=10,又可得a3=5.由√21是a2,a4的等比中项,可得a2a4=21,得(5−d)(5+d)=21,可得d=2.∴a1=a3−2d=1.可得a n=2n−1(n∈N∗);(2)由(1)得b n=a n2n =(2n−1)⋅(12)n,∴T n=1⋅12+3⋅14+5⋅18+⋯+(2n−1)⋅(12)n,①∴12T n=1⋅14+3⋅18+5⋅116+⋯+(2n−1)⋅(12)n+1,②①−②得,12T n=12+2(14+18+⋯+(12)n)−(2n−1)⋅(12)n+1=12+2⋅14(1−12n−1)1−12−(2n−1)⋅(12)n+1,∴T n=3−2n+32n.解析:(1)设等差数列{a n}的公差为d,运用等比数列的中项的性质和等差数列的通项公式即可得出;(2)利用数列的求和方法:“错位相减法”与等比数列的前n项和公式即可得出.本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.19.答案:解:(1)由2cos2A−B2cosB−sin(A−B)sinB+cos(A+C)=12.可得:[1+cos(A−B)]cosB−sin(A−B)sinB−cosB=12,则cos(A−B+B)=12,即cosA=12.由A∈(0,π),可得:A=π3.(2)∵A=π3,B∈(0,π3),∴A−B∈(0,π3),∴由sin(A−B)=35,可得:cos(A−B)=√1−sin2(A−B)=45,∴sinB=sin[A−(A−B)]=sinAcos(A−B)−cosAsin(A−B)=√32×45−12×35=4√3−310.解析:(1)利用二倍角和和与差的公式化简可得cos A的值,结合A的范围可求A的值.(2)由已知可求A−B∈(0,π3),利用同角三角函数基本关系式可求cos(A−B)的值,利用两角差的正弦函数公式可求sinB=sin[A−(A−B)]的值.本题考查二倍角和和与差的公式,三角形内角和定理的运用,考查运算能力,属于中档题.20.答案:解:(Ⅰ)设f(x)=ax2+bx+c,(a≠0),则f(x +1)−f(x)=a(x +1)2+b(x +1)+c −(ax 2+bx +c)=2ax +a +b ,∴由题c =1,2ax +a +b =2x 恒成立,∴2a =2,a +b =0,c =1得a =1,b =−1,c =1,∴f(x)=x 2−x +1;(Ⅱ)f(x)=x 2−x +1=(x −12)2+34在[−1,12]单调递减,在[12,1]单调递增,∴f(x)min =f(12)=34,f(x)max =f(−1)=3. 解析:本题考查了二次函数的解析式求法和最值的讨论以及参数的问题.属于中档题. (Ⅰ)设函数f(x)的解析式,利用待定系数法求解.(Ⅱ)利用二次函数的性质求解在区间[−1,1]上的最大值和最小值: 21.答案:(I)解:∵S n =43a n −13×2n+1+23(n =1,2,3,…),∴当n =1时,a 1=S 1=43a 1−43+23,解得a 1=2.(II)证明:当n ≥2时,S n−1=43a n−1−13×2n +23,可得a n =43a n −13×2n+1+23−(43a n−1−13×2n +23),化为:a n =4a n−1+2n .∴a n +2n =4(a n−1+2n−1),∴数列{a n +2n }是等比数列,首项为4,公比为4.∴a n +2n =4n ,∴a n =4n −2n .解析:(I)S n =43a n −13×2n+1+23(n =1,2,3,…),当n =1时,a 1=S 1=43a 1−43+23,解得a 1.(II)当n ≥2时,S n−1=43a n−1−13×2n +23,化为:a n =4a n−1+2n .变形为a n +2n =4(a n−1+2n−1),即可得出.本题考查了递推关系的应用、等比数列的通项公式,考查了推理能力与计算能力,属于中档题. 22.答案:解:(1)∵由sinB +cosB =√2,∴得√2sin(B+π4)=√2,∴sin(B+π4)=1,又∵B∈(0,π),∴B=π4,∵由正弦定理得asinA =bsinB,∴√2sinA =√22,∴sinA=12,∵a<b,∴A=π6 ;(2)∵ΔABC的面积为√3,∴12absinC=√3,∴ab=4,又∵c=2,∴由余弦定理得c2=a2+b2−2abcosC,∴4=(a+b)2−3ab,∴(a+b)2=16,∴解得a+b=4.解析:本题考查了辅助角公式,解三角形中正弦定理,余弦定理,三角形面积公式的应用.(1)由辅助角公式,得到B=π4,结合正弦定理,求得sinA=12,得到结果;(2)由三角形面积公式,得到ab=4,结合利用余弦定理,得到结果.。
四川省成都市新都区2019-2020学年高一下学期期末考试数学试题(含解析)
其中正确的命题是( )
A.②③
B.①②
C.①③
D.①②③
10.正三棱锥 P﹣ABC 中,若 PA=6,∠APB=40°,点 E、F 分别在侧棱 PB、PC 上运动,
则6sin20°
B.6
C.12
D.6
11.设△ABC 的三个内角 A,B,C 的对边分别为 a,b,c,若 a=6,b=8,c=12,若 D
A.
B.
C.
二、填空题(本题共 4 小题,每小题 5 分,共 20 分)
13.等差数列{an}中,a3+a4+a5+a6+a7=150,则 a2+a8=
D. .
14.若 x,y 满足约束条件
,则 z=3x﹣4y 的最小值为
.
15.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度 15°的看台的某一列的正前方,
四川省成都市新都区 2019-2020 学年高一第二学期期末考试
数学试卷
一、选择题(共 12 小题).
1.已知数列{an}的前 n 项和 Sn=3n2+8n,则 a4 值为( )
A.20
B.89
C.80
D.29
2.关于 x 的不等式 x2﹣ax+1>0 的解集为实数集 R,则 a 的取值范围为( )
S1=11,对于上式也成立.可得 an.
解:数列{an}的前 n 项和 Sn=3n2+8n,
可得:n≥2 时,an=Sn﹣Sn﹣1=3n2+8n﹣3(n﹣1)2﹣8(n﹣1)=6n+5,
n=1 时,a1=S1=11,对于上式也成立.
∴an=6n+5.
从这一列的第一排和最后一排测得旗杆顶部的仰角分别为 60°和 30°,且第一排和最后一
2019-2020学年四川省成都市新都区高一数学下学期期末考试答案
)62sin(212sin 2322cos 1)(π++=++=x x x x f 数学试题▁ ▃ ▅ ▇ █ 参 *考 *答 *案 █ ▇ ▅ ▃ ▁及评分意见一、选择题(每小题5分,共60分。
)DABAC ACBBD CD 二、填空题(每小题5分,共20分)13、60 14、-1 15、5316、π100三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17、〖解 析〗(1)∵………… 4分∴)(x f 的最小值为21-………… 6分 (2)∵65)(=x f ∴31)62sin(=+πx ………… 7分 又∵)32,6(ππ∈x ∴)23,2(62πππ∈+x ………… 8分 ∴322)62cos(-=+πx ………… 10分 ……………… 12分18、解:(1)由三视图知识知此几何体是一个正四棱柱(上面)与一个半球(下面)223313221)62sin()62cos(1262tan)12tan(+=+=++-=+=+ππππx x x x 则构成的组合体V V V=+四棱柱半球3114244223π⋅=⋅⋅⋅163π=即为所求体积。
……………… 6分S S S S=++四棱柱侧半球圆22144222ππ=⋅⋅⋅+⋅1612π=+即为所求表面积………12分19、解(1)∵CRc sin2=∴Csin323=,即21sin=C……………2分又∵角C是锐角,∴6π=C……………4分由CabSABCsin21=∆得ab41433=,即33=ab……………6分再由余弦定理得:Cabbac cos2222-+=得2232a b=+-⋅得2212a b+=……………8分2222()212(3a b a b ab∴+=++=+=+∴33+=+ba……………10分则323+=++cba即为所求三角形的周长……………12分20、解:(Ⅰ)∵∴()(2)[(1)]f x x x a=---,………………2分)2(2)1(221=-+=-+=+axx(2)则3=a 即为所求a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市新都区高一(下)期末数学试卷一、选择题(每题5分)1.sin15°的值为()A.B. C.D.2.设x、y∈R+,且x≠y,a=,b=,c=,则a,b,c的大小关系为()A.a<b<c B.a>b>c C.b<a<c D.b<c<a3.如图为某四面体的三视图(都是直角三角形),则此四面体的表面三角形为直角三角形的个数为()A.1 B.2 C.3 D.44.空间三条不同直线l,m,n和三个不同平面α,β,γ,给出下列命题:①若m⊥l且n⊥l,则m∥n;②若m∥l且n∥l,则m∥n;③若m∥α且n∥α,则m∥n;④若m⊥α,n⊥α,则m∥n;⑤若α⊥γ,β⊥γ,则α∥β;⑥若α∥γ,β∥γ,则α∥β;⑦若α⊥l ,β⊥l ,则α∥β. 其中正确的个数为( ) A .6B .5C .4D .35.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,下列关系式正确的是( ) A .a=bsinC +csinB B .a=bcosC +ccosB C .a=bcosB +ccosC D .a=bsinB +csinC 6.函数f (x )=asinx +cosx 关于直线x=对称,则a 的取值集合为( )A .{1}B .{﹣1,1}C .{﹣1}D .{0}7.等差数列{a n }和等比数列{b n }中,给出下列各式:①a 7=a 3+a 4;②a 2+a 6+a 9=a 3+a 4+a 10;③b 7b 9=b 3b 5b 8;④b 62=b 2b 9b 13.其中一定正确的个数为( ) A .1B .2C .3D .48.数列{a n }的前n 项和S n 满足S n =n 2a n 且a 1=2,则( )A .a n =B .a n =C .a n =D .a n =9.给出下列命题:①若a 2>b 2,则|a |>b ;②若|a |>b ,则a 2>b 2; ③若a >|b |,则a 2>b 2;④若a 2>b 2,则a >|b |. 其中一定正确的命题为( )A .②④B .①③C .①②D .③④ 10.对任意非零向量:,,.则( )A .(•)•=•(•)B . •=•,则=C .|•|=||•||D .若|+|=|﹣|,则•=011.若sin α,sin2α,sin4α成等比数列,则cos α的值为( )A.1 B.0 C.﹣D.﹣或112.点O、I、H、G分别为△ABC(非直角三角形)的外心、内心、垂心和重心,给出下列关系式①=;②sin2A•+sin2B•+sin2C•=;③a+b+c=;④tanA•+tanB•+tanC•=.其中一定正确的个数是()A.1 B.2 C.3 D.4二、填空题(每题5分)=191,S k=10000,则k的值为________.13.等差数列{a n}的前n项和为S n,若S9=81,a k﹣414.三棱锥P﹣ABC中,∠APB=∠APC=∠CPB=40°,PA=5,PB=6,PC=7,点D、E分别在棱PB、PC上运动,则△ADE周长的最小值为________.15.若平面向量满足|2|≤3,则的最小值是________.16.已知函数f(x)=sin6x+cos6x,给出下列4个结论:①f(x)的值域为[0,2];②f(x)的最小正周期为;③f(x)的图象对称轴方程为x=(k∈Z);④f(x)的图象对称中心为(,)(k∈Z)其中正确结论的序号是________(写出全部正确结论的序号)三、解答题17.若对任意实数x,不等式x2﹣mx+(m﹣1)≥0恒成立(1)求实数m的取值集合;(2)设a,b是正实数,且n=(a+)(mb+),求n的最小值.18.如图,四边形ABCD中,若∠DAB=60°,∠ABC=30°,∠BCD=120°,AD=2,AB=5.(1)求BD的长;(2)求△ABD的外接圆半径R;(3)求AC的长.19.△ABC中,a=4,b=5,C=,角A、B、C所对的边分别为a、b、c,点D在边AB上,且=.(1)用和表示;(2)求|CD|.20.四面体ABCD中,已知AB⊥面BCD,且∠BCD=,AB=3,BC=4,CD=5.(1)求证:平面ABC⊥平面ACD;(2)求此四面体ABCD的体积和表面积;(3)求此四面体ABCD的外接球半径和内切球半径.21.△ABC中(非直角三角形),角A、B、C所对的边分别为a,b,c.(1)求证:tanA+tanB+tanC=tanAtanBtanC;(2)若tanA:tanB:tanC=6:(﹣2):(﹣3),求a:b:c.22.在等比数列{a n}的前n项和为S n,S n=2n+r(r为常数),记b n=1+log2a n.(1)求r的值;(2)求数列{a n b n}的前n项和T n;(3)记数列{}的前n项和为P n,若对任意正整数n,都有P2n+1+≤k+P n,求实数k的最小值.2019-2020学年四川省成都市新都区高一(下)期末数学试卷参考答案与试题解析一、选择题(每题5分)1.sin15°的值为()A.B. C.D.【考点】两角和与差的正弦函数.【分析】利用两角差的正弦公式,求得要求式子的值.【解答】解:sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=﹣=,故选:C.2.设x、y∈R+,且x≠y,a=,b=,c=,则a,b,c的大小关系为()A.a<b<c B.a>b>c C.b<a<c D.b<c<a【考点】不等式的基本性质.【分析】直接根据基本不等式即可判断.【解答】解:x、y∈R+,且x≠y,∴>,<=,∴a>b>c,故选:B.3.如图为某四面体的三视图(都是直角三角形),则此四面体的表面三角形为直角三角形的个数为()A.1 B.2 C.3 D.4【考点】由三视图求面积、体积.【分析】根据三视图的几何体的结构特征,利用直线平面的垂直判断即可.【解答】解:根据三视图得出几何体为三棱锥,AB⊥面BCD,BC⊥CD,∴AB⊥BC,AB⊥AD.CD⊥面ABC,CD⊥AC,RT△ABC,RT△ABD,RT△DBC,RT△ADC,共有4个,故选:D4.空间三条不同直线l,m,n和三个不同平面α,β,γ,给出下列命题:①若m⊥l且n⊥l,则m∥n;②若m∥l且n∥l,则m∥n;③若m∥α且n∥α,则m∥n;④若m⊥α,n⊥α,则m∥n;⑤若α⊥γ,β⊥γ,则α∥β;⑥若α∥γ,β∥γ,则α∥β;⑦若α⊥l,β⊥l,则α∥β.其中正确的个数为()A.6 B.5 C.4 D.3【考点】空间中直线与平面之间的位置关系.【分析】利用空间直线与直线,线面平行和面面平行的判定定理和性质定理分别分析解答.【解答】解:①若m⊥l且n⊥l,则m与n可能平行、相交或者异面;故①错误;②若m∥l且n∥l,根据平行公理得到m∥n;②正确;③若m∥α且n∥α,则m∥n或者相交或者异面;故③错误;④若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故④正确;⑤若α⊥γ,β⊥γ,则α∥β或者相交;故⑤错误;⑥若α∥γ,β∥γ,则α∥β;正确⑦若α⊥l,β⊥l,根据线面垂直的性质定理和面面平行的判定定理得到α∥β.故⑦正确;所以正确的有四个;故选C.5.在△ABC中,角A、B、C所对的边分别为a、b、c,下列关系式正确的是()A.a=bsinC+csinB B.a=bcosC+ccosBC.a=bcosB+ccosC D.a=bsinB+csinC【考点】正弦定理.【分析】利用三角形内角和定理,两角和的正弦函数公式可得sinA=sinBcosC+cosBsinC,利用正弦定理即可得解B正确.【解答】解:∵A+B+C=π,∴sinA=sin(B+C)=sinBcosC+cosBsinC,∴由正弦定理可得:a=bcosC+ccosB,故选:B.6.函数f(x)=asinx+cosx关于直线x=对称,则a的取值集合为()A.{1} B.{﹣1,1}C.{﹣1}D.{0}【考点】正弦函数的图象;三角函数中的恒等变换应用.【分析】由题意f(x)=sin(x+θ),其中tanθ=,再根据f(x)的图象关于直线x=对称,求得a的值.【解答】解:由题意,f(x)=asinx+cosx=sin(x+θ),其中tanθ=,∵其图象关于直线x=对称,∴θ+=kπ+,k∈z,∴θ=kπ+,k∈z,∴tanθ==1,∴a=1,故选:A.7.等差数列{a n}和等比数列{b n}中,给出下列各式:①a7=a3+a4;②a2+a6+a9=a3+a4+a10;③b7b9=b3b5b8;④b62=b2b9b13.其中一定正确的个数为()A.1 B.2 C.3 D.4【考点】等差数列的通项公式.【分析】设等差数列{a n}的公差是d,等比数列{b n}的公比是q,根据等差数列的通项公式判断①②,根据等比数列的通项公式判断③④.【解答】解:设等差数列{a n}的公差是d,等比数列{b n}的公比是q,①、因为a7=a1+6d,a3+44=2a1+5d,所以只有当a1=d时a3+a4成立,①不正确;②、因为a2+a6+a9=3a1+14d,a3+a4+a10=3a1+14d,所以a2+a6+a9=a3+a4+a10,②正确;③、因为b7b9=(b1q6)(b1q8)=,b3b5b8=,所以当b1=q时b7b9=b3b5b8成立,③不正确;④、因为b62=,b2b9b13=,所以当=1时b62=b2b9b13,④不正确,所以一定正确的个数是1,故选A.8.数列{a n}的前n项和S n满足S n=n2a n且a1=2,则()A.a n=B.a n=C.a n=D.a n=【考点】数列递推式.【分析】由题意和当n≥2时a n=S n﹣S n﹣1化简已知的等式,得到数列的递推公式,利用累积法求出a n.【解答】解:由题意得,S n=n2a n,当n≥2时,a n=S n﹣S n﹣1=n2a n﹣[(n﹣1)2a n﹣1],化简得,,则,,,…,以上n﹣1个式子相乘得,=,又a1=2,则a n=,故选:A.9.给出下列命题:①若a2>b2,则|a|>b;②若|a|>b,则a2>b2;③若a>|b|,则a2>b2;④若a2>b2,则a>|b|.其中一定正确的命题为()A.②④B.①③C.①②D.③④【考点】不等式的基本性质.【分析】利用不等式的性质可得①③正确,举反例可以判断②④错误.【解答】解:对于①a2>b2⇔|a|2>|b|2⇔|a|>|b|,故正确,对于②若a=1,b=﹣2,虽然满足若|a|>b,但a2>b2不成立,故不正确,对于③a>|b|⇌a2>|b|2,则a2>b2,故正确,对于④,若a=﹣2,b=1,虽然满足a2>b2,但是a>|b|不成立,故不正确,故其中一定正确的命题为①③,故选:B10.对任意非零向量:,,.则()A.(•)•=•(•)B.•=•,则=C.|•|=||•||D.若|+|=|﹣|,则•=0【考点】平面向量数量积的运算.【分析】根据向量数量积的公式分别进行判断即可.【解答】解:A.(•)•=||•||cos<,>•与共线,•(•)=•||•||cos,>与共线,则(•)•=•(•)不一定成立,故A错误,B.由•=•,得•(﹣)=0,则⊥(﹣),无法得到=,故B错误,C.•=| |•| |cos<,>=||•||不一定成立,故C错误,D.若|+|=|﹣|,则平方得||2+|||2+2•=|||2+||2﹣2•,即4•=0,即•=0成立,故D正确故选:D11.若sinα,sin2α,sin4α成等比数列,则cosα的值为()A.1 B.0 C.﹣D.﹣或1【考点】三角函数中的恒等变换应用;等比数列的通项公式.【分析】由等比中项的性质列出方程,由二倍角的正弦公式、sin2α≠0、sinα≠0化简,由二倍角的余弦公式变形列出方程求解,结合条件求出cosα的值.【解答】解:∵sinα,sin2α,sin4α成等比数列,∴(sin2α)2=sinα•sin4α,则(sin2α)2=sinα•2sin2αcos2α,又sin2α≠0,∴sin2α=sinα•2cos2α,2sinαcosα=sinα•2cos2α,又sinα≠0,cosα=cos2α,即2cos2α﹣cosα﹣1=0,解得cosα=或1,当cosα=1时,sinα=0,舍去,∴cosα的值是,故选C.12.点O、I、H、G分别为△ABC(非直角三角形)的外心、内心、垂心和重心,给出下列关系式①=;②sin2A•+sin2B•+sin2C•=;③a+b+c=;④tanA•+tanB•+tanC•=.其中一定正确的个数是()A.1 B.2 C.3 D.4【考点】三角形五心.【分析】根据三角形(非直角三角形)的外心、内心、垂心和重心的向量表示与运算性质,对选项中的命题逐一进行分析、判断正误即可.【解答】解:对于①,点G是△ABC的重心,如图①所示,所以==×(+)=(+),同理=(+),=(+),∴++=(+++++)=,所以=,命题正确;对于②,点O是△ABC的外心,如图②所示,OA=OB=OC,所以S△BOC:S△AOC:S△AOB═sin∠BOC:sin∠AOC:sin∠AOB=sin2A:sin2B:sin2C,所以sin2A•+sin2B•+sin2C•=,命题正确;对于③,点I是△ABC的内心,如图所示,所以S△BIC:S△AIC:S△AIB=a:b:c,所以a+b+c=,命题正确;对于④,点H是△ABC(非直角三角形)的垂心,如图所示,所以S△BHC:S△AHC:S△ANB=tanA:tanB:tanC,所以tanA•+tanB•+tanC•=,命题正确.综上,以上正确的命题有4个.故选:D.二、填空题(每题5分)=191,S k=10000,则k的值为100.13.等差数列{a n}的前n项和为S n,若S9=81,a k﹣4【考点】等差数列的前n项和.=9+191=200,由此利用【分析】由S9==81,求出a5=9,再求出a1+a k=a5+a k﹣4S k=10000,能求出k.=191,S k=10000,【解答】解:∵等差数列{a n}的前n项和为S n,S9=81,a k﹣4∴S9==81,解得a5=9,=9+191=200,∴a1+a k=a5+a k﹣4S k==100k=10000,解得k=100.故答案为:100.14.三棱锥P﹣ABC中,∠APB=∠APC=∠CPB=40°,PA=5,PB=6,PC=7,点D、E分别在棱PB、PC上运动,则△ADE周长的最小值为5.【考点】棱锥的结构特征.【分析】把已知三棱锥沿棱PA将三棱锥侧面剪开并展开,可得展开图如图,再由余弦定理求得答案.【解答】解:如图,沿棱PA将三棱锥侧面剪开并展开,可得展开图如图,此时|PA|=|PA′|=5,且角APA′=120°,∴△ADE周长的最小值为|AA′|=.故答案为:.15.若平面向量满足|2|≤3,则的最小值是﹣.【考点】平面向量数量积的坐标表示、模、夹角;平面向量数量积的运算.【分析】由平面向量满足|2|≤3,知,故≥=4||||≥﹣4,由此能求出的最小值.【解答】解:∵平面向量满足|2|≤3,∴,∴≥=4||||≥﹣4,∴,∴,故的最小值是﹣.故答案为:﹣.16.已知函数f(x)=sin6x+cos6x,给出下列4个结论:①f(x)的值域为[0,2];②f(x)的最小正周期为;③f(x)的图象对称轴方程为x=(k∈Z);④f(x)的图象对称中心为(,)(k∈Z)其中正确结论的序号是②③④(写出全部正确结论的序号)【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用公式a3+b3=(a+b)(a2﹣ab+b2)化简y=sin6x+cos6x,再由二倍角公式化简解析式,根据余弦函数的值域判断①;由三角函数的周期公式判断②;由余弦函数的对称轴方程和整体思想,求出f(x)的对称轴判断③;由余弦函数的对称中心和整体思想,求出f(x)的对称对称中心判断④.【解答】解:y=sin6x+cos6x=(sin2x+cos2x)(sin4x﹣sin2xcos2x+cos4x)=1•(sin2x+cos2x)2﹣3sin2xcos2x=1﹣sin22x=+cos4x,①、因为﹣1≤cos4x≤1,所以f(x)的值域为[,1],①不正确;②、由T==得,f(x)的最小正周期为,②正确;③、由4x=kπ(k∈Z)得,f(x)图象的对称轴方程是,③正确;④、由得,,则f(x)的图象对称中心为(,)(k∈Z),④正确,综上可得,正确的命题是②③④,故答案为:②③④.三、解答题17.若对任意实数x,不等式x2﹣mx+(m﹣1)≥0恒成立(1)求实数m的取值集合;(2)设a,b是正实数,且n=(a+)(mb+),求n的最小值.【考点】二次函数的性质;基本不等式.【分析】(1)根据二次函数的性质求出m的值即可;(2)根据基本不等式的性质求出n的最小值即可.【解答】解:(1)∵x2﹣mx+(m﹣1)≥0在R恒成立,∴△=m2﹣4(m﹣1)≤0,解得:m=2,故m∈{2};(2)∵m=2,a,b是正实数,∴n=(a+)(mb+)=(a+)(2b+)=2ab++≥2+=,故n的最小值是.18.如图,四边形ABCD中,若∠DAB=60°,∠ABC=30°,∠BCD=120°,AD=2,AB=5.(1)求BD的长;(2)求△ABD的外接圆半径R;(3)求AC的长.【考点】解三角形.【分析】由题意可得,四边形ABCD为圆内接四边形.(1)直接运用余弦定理求得BD的长;(2)由正弦定理求得△ABD的外接圆半径R;(3)在△ABC中,由正弦定理得AC的长.【解答】解:如图,由∠DAB=60°,∠BCD=120°,可知四边形ABCD为圆内接四边形,(1)在△ABD中,由∠DAB=60°,AD=2,AB=5,利用余弦定理得:BD2=AB2+AD2﹣2AB•AD•cos∠DAB=.∴;(2)由正弦定理得:,则△ABD的外接圆半径R=;(3)在△ABC中,由正弦定理得:,∴AC=.19.△ABC中,a=4,b=5,C=,角A、B、C所对的边分别为a、b、c,点D在边AB上,且=.(1)用和表示;(2)求|CD|.【考点】平面向量数量积的运算;平面向量的基本定理及其意义.【分析】(1)根据向量基本定理即可用和表示;(2)根据向量数量积与向量长度之间的关系转化为向量数量积进行计算即可求|CD|.【解答】解:(1)∵=,∴=,即=,则=+=+=+(﹣)=+.(2)∵a=4,b=5,C=,∴•=||||cos120°=4×=﹣10.∵=+.∴2=(+)2=2+2×ו+2=×25+2×ו(﹣10)+×16=,则|CD|==.20.四面体ABCD中,已知AB⊥面BCD,且∠BCD=,AB=3,BC=4,CD=5.(1)求证:平面ABC⊥平面ACD;(2)求此四面体ABCD的体积和表面积;(3)求此四面体ABCD的外接球半径和内切球半径.【考点】棱柱、棱锥、棱台的体积;球的体积和表面积.【分析】(1)证明CD⊥平面ABC,即可证明:平面ABC⊥平面ACD;(2)利用体积、面积公式求出此四面体ABCD的体积和表面积;(3)此四面体ABCD的外接球的球心是AD的中点,即可求此四面体ABCD的外接球半径.利用等体积求出内切球半径.【解答】(1)证明:∵AB⊥面BCD,CD⊂面BCD,∴AB⊥CD,∵∠BCD=,∴CD⊥BC,∵AB∩BC=B,∴CD⊥平面ABC,∵CD⊂平面ACD,∴平面ABC⊥平面ACD;(2)解:此四面体ABCD的体积V==10表面积S==;(3)解:此四面体ABCD的外接球的球心是AD的中点,半径为=设内切球半径为r,则()r=10,∴r=.21.△ABC中(非直角三角形),角A、B、C所对的边分别为a,b,c.(1)求证:tanA+tanB+tanC=tanAtanBtanC;(2)若tanA:tanB:tanC=6:(﹣2):(﹣3),求a:b:c.【考点】三角函数的化简求值;正弦定理.【分析】(1)利用三角形的内角和定理以及由题意可得各个正切有意义,由两角和的正切公式变形可得tanA+tanB=tan(A+B)(1﹣tanAtanB),整体代入式子坐标由诱导公式化简可得;(2)结合(1)的结论设比例系数为k,求出k,得到tanA、tanB、tanC,利用三角函数的基本公式求出sinA,sinB,sinC,结合正弦定理求a:b:c.【解答】(1)证明:∵△ABC不是直角三角形,∴A、B、C均不为直角,且A+B+C=π,任意两角和不为,由两角和的正切公式可得tan(A+B)=,∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=tan(π﹣C)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)∴tanA+tanB+tanC=﹣tanC(1﹣tanAtanB)+tanC=tanAtanBtanC;(2)由tanA:tanB:tanC=6:(﹣2):(﹣3),设tanA=6k,tanB=﹣2k,tanC=﹣3k,代入(1)得到k=36k3,因为△ABC非直角三角形,并且最多一个钝角,所以k=﹣,即tanA=﹣1,tanB=,tanC=,所以A=135°,sinB=,sinC=,所以a:b:c=sinA:sinB:sinC==5::2.22.在等比数列{a n}的前n项和为S n,S n=2n+r(r为常数),记b n=1+log2a n.(1)求r的值;(2)求数列{a n b n}的前n项和T n;(3)记数列{}的前n项和为P n,若对任意正整数n,都有P2n+1+≤k+P n,求实数k的最小值.【考点】数列的求和;数列递推式.,可得数列{a n}的通项,即可得到r=﹣1;【分析】(1)由a1=S1,a n=S n﹣S n﹣1(2)b n=n,a n b n=n•2n﹣1,运用数列的求和方法:错位相减法,化简整理,结合等比数列的求和公式,即可得到所求和;(3)化简P2n+1+≤k+P n,即为1+++…++…++≤k+1+++…+,化为k≥++…+,可设f(n)=++…+,作差f(n+1)﹣f(n),判断单调性,可得最大值为f(1),即可得到k的最小值.【解答】解:(1)等比数列{a n}的前n项和为S n,S n=2n+r,可得a1=S1=2+r;=2n+r﹣(2n﹣1+r)=2n﹣1,a n=S n﹣S n﹣1上式对n=1也成立,即有2+r=1,解得r=﹣1.(2)b n=1+log2a n=1+log22n﹣1=1+n﹣1=n,数列{a n b n}的前n项和T n=1•20+2•2+3•22+…+n•2n﹣1,2T n=1•2+2•22+3•23+…+n•2n,两式相减可得,﹣T n=1+2+22+…+2n﹣1﹣n•2n=﹣n•2n,化简可得,T n=(n﹣1)•2n+1;(3)数列{}的前n项和为P n=1+++…+,P2n+1+≤k+P n,即为1+++…++…++≤k+1+++…+,化为k≥++…+,可设f(n)=++…+,f(n+1)﹣f(n)=+…+++﹣(++…+)=+﹣=﹣<0,即有f(n)在自然数集上递减,可得f(1)取得最大值,且为1++=.则k≥.即实数k的最小值为.。