第二章细胞生物学的研究技术和方法
细胞生物学的研究方法
细胞生物学的研究方法
细胞生物学是研究细胞的结构、功能和生理过程的科学。
在细胞生物学的研究中,有许多常用的方法。
以下是其中一些常见的研究方法:
1. 细胞培养:将细胞从其天然环境中分离出来,并在实验室中以适当的培养基中培养细胞。
细胞培养使得研究人员能够对细胞进行控制和观察。
2. 显微镜观察:使用光学显微镜或电子显微镜观察细胞的形态、结构和运动。
光学显微镜可以用来观察活细胞,而电子显微镜则能够提供更高分辨率的细胞图像。
3. 免疫细胞化学:使用特异性抗体与细胞中的特定蛋白质结合,然后通过染色或荧光探针,观察并分析这些蛋白质在细胞中的分布和表达水平。
4. 分子生物学技术:包括PCR、DNA克隆、基因测序和蛋白质表达等技术,可以用于研究细胞中的基因和蛋白质。
5. 细胞色素分析:利用生物化学检测方法,测定细胞内特定生物分子的含量和代谢活性,以研究细胞功能和代谢过程。
6. 分离和纯化细胞器:通过细胞破碎和离心技术,将细胞内不同的细胞器分离和纯化出来,以研究它们的结构和功能。
7. 基因编辑技术:如CRISPR/Cas9,可以对细胞中的基因进行精确编辑和改变,以研究基因对细胞功能的影响。
8. 活体成像:利用荧光探针或标记的蛋白质,观察和记录活细胞的动态变化,如细胞分裂、运动和细胞内信号传导等。
以上只是细胞生物学研究中的一些常见方法,实际研究中可能还会使用其他特定的技术和方法,具体取决于研究的目的和需要。
细胞生物学 第二章细胞生物学研究方法
§1 细胞形态结构的观察方法
三、扫描隧道显微镜 (Scanning tunneling microscope,STM)
• 于1981年发明,发明者获 1986年度诺贝尔物理学奖。
• 特点: ①具有原子尺度的高分辨力,
侧(横)分辨率为0.1-0.2nm, 纵分辨率0.001nm; ②除在真空外,还可在空气、 液体等条件下观察; ③非破坏性测量:不受电子 束的轰击、破坏。
• 因此,可用已知的抗体检测未知的抗原。
• 但多数抗原-抗体结合后不出现可见反应,即不能检测 到二者的这种特异性结合。如何检测抗原-抗体发生了 结合反应?
• 用一种可见的标记物标记抗体,通过检测标记物的存
在与否判断抗原-抗体是否发生了结合反应——免疫标
记技术。
抗原
标记物
抗体
二、特异蛋白抗原的定位与定性
s 将二次电子收集并经一系列 的处理在荧光屏上成像。
s 这样,可以得到样品表面的 立体图像。
二、电子显微镜
• 扫描电镜的样品制备:
s 取材; s 固定; s 脱水; s 临界点干燥; s 喷镀; s 电镜观察。
• 分辨本领:较低,一般 在3nm。
• 放大倍数:几万倍。
二、电子显微镜
• 特点:成像具有立体 感。
• 可见光的波长400700nm。
• 光学显微镜的最大分辨 率为0.2μm。
一、光学显微镜
• 光镜样品制备: 石蜡包埋切片, 苏木精-伊红染色。
一、光学显微镜
(二)相差显微镜和微分 干涉显微镜
• 原理:利用显微镜中的 特殊装置,使光线通过 样品时波长和振幅发生 变化,以增大样品明暗 的反差。
• 用途:这两种显微镜可 用于观察未染色的活细 胞的细胞结构及其动态 变化。
细胞生物学的实验方法和技术
细胞生物学的实验方法和技术细胞生物学是研究细胞结构、功能和生命活动的学科,可以帮助我们了解生命的起源和本质。
在细胞生物学领域,实验是非常重要的,因为只有通过实验才能获取丰富的数据和信息。
接下来,我们将介绍一些常用的细胞生物学实验方法和技术。
1. 细胞培养细胞培养是一种将细胞放置在含有营养物的培养基上的实验方法。
这种方法可以被应用于很多方面,例如研究基因表达、病理生理学和新药发现等领域。
细胞培养通常要求细胞处于可能生长和分裂的特定生长条件下,培养基的配方和组成要根据细胞类型进行调整。
2. 免疫荧光染色免疫荧光染色是一种将抗体特异性地与待检测蛋白质结合,然后用荧光染色剂标记抗体的实验方法。
这种方法被广泛应用于检测蛋白质的组织学定位、蛋白质相互作用和细胞信号传导等方面的研究。
3. 细胞色素c释放实验细胞色素c释放实验是通过检测细胞色素c的释放来检测细胞凋亡状况的实验方法。
这种实验需要将细胞暴露在合适的刺激条件下,然后收集细胞,用针头机械破碎并分离出线粒体,接着用色素c检测试剂。
此方法可以被应用于癌症治疗、新药研发和基础细胞生物学研究等领域。
4. 网格溶解实验网格溶解实验是一种检测细胞侵袭和扩散能力的实验方法,常用于研究细胞恶性生长、转移和肿瘤治疗等领域。
这种实验需要在培养皿中放置一层含有孔的膜,将预处理好的细胞悬浮在孔上方的区域,然后留置一段时间等待细胞穿过孔隙层次,最后收集并处理细胞样本,通过各种方式检测细胞侵袭和扩散的情况。
5. 蛋白-蛋白相互作用实验蛋白-蛋白相互作用实验是一种检测蛋白质互相作用的实验方法。
这种实验有几种方法,包括酵母对二杂交法、共免疫沉淀法和化学交联法等。
这些方法可以帮助我们了解蛋白质相互作用的机制,为研究信号转导、基因表达和疾病机理等领域提供参考资料。
以上是几种常用的细胞生物学实验方法和技术。
每一种方法都有自己独特的适用范围和步骤,研究者们需要根据具体的实验内容选择合适的方法。
细胞生物学的研究方法
细胞生物学的研究方法细胞生物学是研究生物体内细胞结构、功能和生理过程的科学。
细胞是生命的基本单位,它们构成了所有生物体的组织和器官。
细胞生物学的研究方法包括许多实验技术和技术工具,以便观察和理解细胞的结构和功能。
一种用于研究细胞结构的重要方法是光学显微镜。
使用光学显微镜可以观察细胞的形态、大小和内部结构。
通过显微镜观察细胞样本时,常使用特殊染色剂来突出显示细胞内的不同结构。
除了光学显微镜外,还有电子显微镜,它能够提供更高分辨率的图像,可以观察到更小的细胞结构,如细胞器和细胞膜。
除了显微镜技术,细胞生物学研究还经常使用细胞培养技术。
通过将细胞以培养物中的无菌条件下培养,可以进行各种实验,如细胞增殖、细胞分化和细胞信号传导等。
细胞培养技术也是生物医学研究的关键手段,可以用于体外药物筛选、细胞治疗等。
分子生物学技术在细胞生物学研究中也扮演着重要的角色。
PCR技术可以扩增DNA片段,从而方便进行基因克隆和表达分析。
蛋白质的表达和定位可以通过免疫荧光染色或原位杂交等技术进行观察。
另外,基因编辑技术如CRISPR/Cas9也为细胞生物学研究提供了新的手段,可以用于精确编辑细胞基因组,从而研究基因功能。
细胞生物学研究中,流式细胞仪也是不可或缺的工具。
流式细胞仪可以快速检测单个细胞的大小、形状、表面标记和内部分子表达等信息。
这对于研究那些需要分析大量细胞的生物学问题是特别有用的。
除了实验技术外,计算生物学和生物信息学也在细胞生物学研究中发挥了重要作用。
生物信息学技术可以用于分析大规模生物学数据,如基因组、转录组和蛋白质组等数据。
这些数据分析可以帮助研究者理解细胞内分子的互作关系、信号通路、基因调控等重要生物学过程。
细胞生物学的研究方法是不断发展和进步的,随着技术的不断更新,研究者可以更准确、全面地理解细胞的结构和功能。
通过综合运用这些方法,可以更深入地探索细胞的生物学特性,为生命科学领域的发展做出更大的贡献。
细胞生物学的研究方法与技术
细胞生物学的研究方法与技术细胞生物学是研究细胞结构、功能及其在生物过程中作用的学科。
细胞生物学的发展离不开许多研究方法和技术的支持,这些方法和技术涉及多方面的学科,包括生物学、化学、物理学等,为细胞生物学的研究提供了有力的工具和手段。
常见的细胞生物学研究方法包括显微镜技术、细胞培养、各种分离和纯化技术、蛋白质组学、基因组学、转基因技术以及细胞途径和信号传导的研究等。
显微镜技术是细胞生物学的基础工具之一,早在17世纪就有学者发现了显微镜的作用。
如今,显微镜已经发展到了高倍率、高分辨率水平,并且应用范围越来越广。
荧光显微镜能够将酶标法和细胞组织学高效结合,使得研究人员能够看到细胞中特定蛋白质的位置及其在细胞内的转移过程,这种技术促进了细胞和分子生物学的研究进展。
另一个广泛应用的细胞生物学技术是细胞培养技术。
细胞培养可以使研究人员通过体外实验的方法来探究细胞生物学的许多方面,例如细胞增殖、代谢、分化以及感染和治疗等方面。
同时,细胞培养技术也为其他科学领域如医学和药物研发提供了重要工具和方法。
分离和纯化技术也是细胞生物学研究的重要方法之一。
这些技术用于从细胞中分离出不同的细胞结构和分子,以便对它们进行研究和分析。
例如,对蛋白质的分离和纯化可使研究人员了解蛋白质的功能和结构,以及它们如何参与到多种细胞过程中。
蛋白质组学和基因组学是近年来迅速发展起来的研究领域。
随着研究的深入,我们了解到不同细胞中的蛋白质和基因组成具有多种不同的功能。
可以通过分析这些蛋白质和基因组以探究它们在不同疾病中的作用,并且这些研究可为新药物的开发提供重要参考。
转基因技术是一种较新兴的细胞生物学研究方法。
通过转基因技术,研究人员可将指定的基因嵌入宿主细胞,以进一步研究这些基因的功能和影响。
转基因技术在药物研发和基因工程等领域有着广泛的应用,并是细胞生物学领域的重要组成部分。
最后一个细胞生物学研究方法是研究细胞途径和信号传导。
细胞途径和信号传导可使研究人员了解到不同的生物分子之间相互作用的机制,以及它们如何在生物过程中发挥作用。
细胞生物学 第2章 细胞生物学研究方法
PRA在散发性浸润性乳腺导管癌中 的表达
王辛,赵彤,赵嘉佳,熊静波. 中华医学杂志 2010, 90(20):1399-1402
(三)原位杂交技术
• 自学
三、 细胞分离技术
(一)离心分离技术
用离心力和沉降系数的差异进行分离、浓缩和提纯的方法。 是分离细胞器(如细胞核、线粒体、高尔基体)及各种大分子基
描电镜的有效放大倍率为0.2mm/10nm=20000X。
Scanning electron microscope( SEM)
• 工作原理:是用一束极细的电子束扫描样品,在样品表面
激发出次级电子,次级电子的多少与样品表面结构有关,
次级电子由探测器收集,信号经放大用来调制荧光屏上电
子束的强度,显示出与电子束同步的扫描图像。
(四)暗视野显微镜 dark field microscope
• 用于观察活细胞等无色透明标 本 • 聚光镜中央有挡光片,照明光
线不直接进人物镜,只允许被
标本反射和衍射的光线进入物 镜,因而视野的背景是黑的, 物体的边缘是亮的。 • 可观察 4~200nm的微粒子,
分辨率比普通显微镜高50倍。
(五)相差显微镜
• dX/dt=[2r2 (ρp—ρM) /9η]· · g=s g
• 式中dX/dt为粒子的沉降速度,ρp:颗粒的密度;ρM:悬浮 介质的密度;η:介质粘度;r:为粒子的半径;g:为重 力加速度。 • S:沉降系数(sendimetation coefficient), 与颗粒直 径、颗粒密度、介质密度、介质粘度有关; • S的单位:秒; • 习惯上把10-13s作为沉降系数的单位(svedberg unit), 简称S(大写)
λ=光源波长,可见光0.5um N=介质折射率,空气为1,油为1.5 θ=物镜镜口张角的半角
(完整版)细胞生物学知识点总结
细胞生物学目录第一章绪论第二章细胞生物的研究方法和技术第三章质膜的跨膜运输第四章细胞与环境的相互作用第五章细胞通讯第六章核糖体和核酶第七章线粒体和过氧化物酶体第八章叶绿体和光合作用第九章内质网,蛋白质分选,膜运输第十章细胞骨架,细胞运动第十一章细胞核和染色体第十二章细胞周期和细胞分裂第十三章胚胎发育和细胞分化第十四章细胞衰老和死亡第一章绪论1.原生质体:被质膜包裹在细胞内的所有的生活物质,包括细胞核和细胞质细胞质:细胞内除核以外的原生质,即细胞中细胞核以外和细胞膜以内的原生质部分原生质体:除去细胞壁的细胞2.结构域:生物大分子中具有特异结构和独立功能的区域3.装配模型:模板组装,酶效应组装,自组装4.五级装配:第一级,小分子有机物的形成第二级,小分子有机物组装成生物大分子第三级,由生物大分子进一步组装成细胞的高级结构第四级,由生物大分子组装成具有空间结构和生物功能的细胞器第五级,由各种细胞器组装成完整细胞6.支原体:目前已知的最小的细胞第二章细胞生物的研究方法和技术1.显微镜技术:光镜标本制备技术、2.光镜标本制备技术步骤:样品固定、包埋与切片、染色3.电子显微镜种类:透射电子显微镜,扫描电镜,金属投影,冷冻断裂和冷冻石刻电镜,复染技术,扫描隧道显微镜4.细胞化学技术:酶细胞化学技术,免疫细胞化学技术,放射自显影5.细胞分选技术:流式细胞术6.分离技术:离心技术,层析技术,电泳技术第三章质膜的跨膜运输1.细胞功能:外界与通透性障碍,组织和功能定位,运输作用,细胞间通讯,信号检测2.膜化学组成:膜脂,膜糖,膜蛋白3.膜脂的三个种类:磷脂,糖脂,胆固醇4.脂质体用途:用作生物膜的研究模型,作为生物大分子与药物的运载体5.膜糖功能:细胞与环境的相互作用,接触抑制,信号转导,蛋白质分选,保护作用。
6.膜蛋白类型:整合蛋白,外周蛋白,脂锚定蛋白7.膜蛋白功能:运输蛋白,酶,连接蛋白,受体(信号接受和传递)8.不对称性的研究方法:冰冻断裂复型,冰冻蚀刻9.膜流动性研究方法:质膜融合,淋巴细胞的成斑成帽效应,荧光漂白恢复技术10.膜流动性的重要性:酶活性,信号转导,物质运输,能量转换,细胞周期11.影响膜脂流动性的因素:脂肪酸链,胆固醇,卵磷脂/鞘磷脂比值12.影响膜蛋白流动的因素:整合蛋白,膜骨架,细胞外基因,相邻细胞,细胞外配体、抗体、药物大分子13.膜骨架的主要蛋白:血影蛋白,肌动蛋白和原肌球蛋白,带4.1蛋白,锚定蛋白14.转运蛋白质包括:载体蛋白,通道蛋白15.协同运输的方向:同向协同,反向协同第四章细胞与环境的相互作用1.细胞表面结构:细胞外被、膜骨架、胞质溶胶2.细胞外被功能:连接,细胞保护,屏障3.糖萼:由细胞表面的碳水化合物形成的质膜保护层,又称为多糖包被。
第二章细胞生物学研究方法
第二章细胞生物学研究方法1.举例(3~5个)说明研究方法的突破对细胞生物学发展的推动作用。
答:①细胞培养技术,…②离心分离技术,…③流式细胞分离技术,…④基因敲除技术,…⑤干细胞培养技术,…⑥……2.为什么说细胞培养是细胞生物学研究的最基本技术之一?3.用什么方法追踪活细胞中蛋白质合成与分泌过程?包括哪几个步骤?答:追踪活细胞中某种蛋白质合成与分泌的过程一般采用同位素示踪技术。
其基本步骤是:①将放射性同位素标记的氨基酸(3H-亮氨酸)加到细胞培养基中,在很短时间内使这些与未标记的相应氨基酸化学性质相同的标记分子进入细胞(称为脉冲标记);②除去培养液并洗涤细胞,再换以未标记氨基酸的培养基培养细胞,已进入细胞的标记氨基酸将被蛋白质合成系统作为原料加以利用,掺入到某种新合成的蛋白质中;③每隔一定时间取出一定数量的细胞,利用电镜放射自显影技术探查被标记的特定蛋白质在不同时间所处的位置。
通过比较不同时间细胞取样的电镜照片就可以了解细胞中蛋白质合成及分泌的动态过程。
4. 图2-3的解释。
答:两个儿童共同振动一根绳子产生的波动类似于光子光子和电子形成的波,以此说明物体的大小对波的干扰。
(a)两个儿童振动绳子产生的特征波长;(b)向绳子波中扔进一个球或一个物体,如果扔进物体的直径与绳子波长相近,就会干扰绳子波的移动;(3)如果扔进一个垒球或其他物体比绳子波长小得多,对绳子波的移动只有很小或没有干扰;(d)如果将绳子快速振动,波长就会大大缩短;(e)此时扔进垒球就会干扰绳子波的移动。
5.为什么电子显微镜需要真空系统(vacuum system)?答:由于电子在空气中行进的速度很慢,所以必须由真空系统保持电镜的真空度,否则,空气中的分子会阻挠电子束的发射而不能成像。
用两种类型的真空泵串连起来获得电子显微镜镜筒中的真空,当电子显微镜启动时,第一级旋转式真空泵(rotary pump)获得低真空,作为二级泵的预真空;第二级采用油扩散泵(oil diffusion pump)获得高真空。
细胞生物学的实验方法与技巧
细胞生物学的实验方法与技巧细胞生物学是研究细胞结构和功能的科学领域。
在细胞生物学中,实验方法和技巧是非常关键的。
细胞生物学的实验技术涉及到多种技术和方法,包括细胞培养、细胞分离、荧光显微镜、分子生物学等等。
在本文中,我们将会详细讨论细胞生物学中的实验方法和技巧。
一、细胞培养技术细胞培养技术是研究细胞生长、增殖、衰老等生理状态的一种重要的实验技术。
细胞培养技术通常需要使用一个适宜的培养基,该培养基还需要添加适当的营养物质和培养物质。
在培养细胞时,需要注意适宜的温度、湿度、和二氧化碳含量等因素,这些因素可以影响细胞的状态和生命活动。
另外,在细胞培养中,不可避免地会遇到一些问题,例如细胞的寿命、细胞的死亡、菌污染等问题。
为避免这些问题,需要在实验中采取一些必要的预防措施。
例如,可以使用无菌操作技术,采用CDMF等杀菌剂消毒培养器、培养器中的培养物料,这样可以有效防止细胞因菌污染而死亡。
二、细胞分离技术细胞分离技术是研究细胞的单个特性、形态和功能的一种技术。
在实验中需要利用细胞分离技术来获得一定数量的单个细胞。
细胞分离技术有多种方法,包括分离器分离、离心分离、胶体分离和酶消化等,每种方法都有其优缺点。
其中,酶消化是一种比较常见的细胞分离方法,通过加入一定量的酶,将组织内的胶原纤维、纤维素及其他基质物质消化掉,从而获得单个细胞。
在酶消化实验中,需要根据不同细胞类型、不同组织、不同生长状态等因素进行调整,以获得最佳效果。
三、荧光显微镜技术荧光显微镜技术是一种广泛用于生物学和生命科学中的高级显微镜技术。
在细胞生物学研究中,荧光显微镜技术是最常用的技术之一,因为它可以用来标记和检测细胞内的各种生物大分子,如蛋白质、核酸、酶等。
在荧光显微镜实验中,使用的荧光探针要与待检测的细胞相匹配,例如,使用荧光染料DPH来探测细胞内外膜分子的相互作用。
同时,还需注意荧光显微镜的光源选择、荧光图像的采集和分析等问题,以获得高质量的研究数据。
细胞生物学实验方法与技术
细胞生物学实验方法与技术1. 光镜观察(Light Microscopy)光镜观察是一种常用的研究细胞形态和结构的方法。
通过使用光学显微镜,可以观察到细胞的外形、细胞器的位置和结构等特征。
该技术使用涂片制备技术,将细胞固定、染色、封装在玻璃片上,然后在显微镜下进行观察。
2. 电镜(Electron Microscopy)电镜是一种高分辨率的显微镜技术,它可以观察到细胞的微观结构和细胞器。
电镜利用电子束来代替光束,通过变焦电镜透射电子显微镜和扫描电子显微镜两种类型,可以观察到更高分辨率的细胞结构。
3. 组织培养(Tissue Culture)组织培养是一种将细胞或组织从活体中分离并培养在人造环境中的方法。
这种方法常用于研究细胞生长、增殖和发育过程。
组织培养可以通过使用培养基、细胞培养皿和细胞培养箱等设备来提供细胞所需的营养和环境。
4. 免疫染色(Immunostaining)免疫染色是一种用来检测和定位蛋白质或其他分子在细胞中的位置的方法。
这种方法利用抗体的特异性结合来检测蛋白质的位置。
首先,细胞固定并渗透,然后使用特定的抗体与目标分子结合,最后通过荧光标记或酶反应等方法来观察染色的细胞。
5. 荧光显微镜(Fluorescence Microscopy)荧光显微镜是利用荧光探针来观察样品的显微镜技术。
该技术可以用来检测和可视化特定分子或结构的位置和数量。
通过对样品进行荧光染色或利用荧光蛋白表达来标记细胞的特定结构或分子,可以在荧光显微镜下直接观察到。
6. 流式细胞术(Flow Cytometry)流式细胞术是一种高通量细胞分析技术,可以快速准确地分析和计数大量的单个细胞。
该技术利用细胞标记剂和流动性流式细胞术仪器,通过激光照射细胞并检测细胞的荧光光谱,可以分析细胞表面分子的表达、细胞大小和复杂性等信息。
细胞生物学实验方法与技术
细胞生物学实验方法与技术1.细胞培养:细胞培养是细胞生物学研究中最基本的实验技术之一、它通过将细胞放入培养基中,在特定的环境条件下进行体外培养。
通过细胞培养,可以获得大量的细胞进行进一步的实验研究。
2.免疫荧光染色:免疫荧光染色是一种常用的细胞实验方法,通过此方法可以检测特定蛋白质或分子在细胞中的分布和定位。
该技术利用特异性的抗体与目标分子结合,并用荧光染料标记抗体,从而利用荧光显微镜观察染色结果。
3. 免疫印迹法(Western Blot):免疫印迹法是一种用于检测特定蛋白质的定量和分析的方法。
该方法通过将细胞或组织中的蛋白质经过电泳分离,并转移到膜上,然后用特异性的抗体与目标蛋白质结合,最后通过酵素反应或荧光信号检测目标蛋白质的存在和表达水平。
4.转染技术:转染技术是将外源的DNA或RNA导入到目标细胞中的一种常用方法。
常见的转染技术包括植入病毒载体、使用质粒转染剂、电穿孔和化学转染等。
通过转染技术,可以实现基因过表达、基因沉默等实验研究。
5.索引技术:索引技术是一种分析和比较细胞中基因表达的实验方法。
通过索引技术,可以快速筛选出在不同生理状态下表达差异显著的基因,并进一步研究这些基因的功能和调控机制。
常见的索引技术包括差异显著性分析、基因芯片、RNA测序等。
6.荧光显微镜技术:荧光显微镜技术是一种使用荧光染料观察细胞结构和功能的方法。
荧光显微镜可以通过选择不同的染料和光源,实现对细胞核、细胞器等结构的观察。
此外,还可以利用特定的荧光探针,实现对细胞内的信号分子、离子和代谢产物的监测。
7.流式细胞术:流式细胞术是一种通过检测细胞的光学和物理特性,实现对单个细胞的定量分析和分选的方法。
该技术可以实现细胞表面标记物的检测、细胞周期分析、细胞凋亡检测等。
特别是流式细胞术结合细胞分类仪,可以实现高通量的细胞分析。
综上所述,细胞生物学实验方法与技术为研究细胞的结构、功能和特性提供了重要的工具。
随着科技的不断发展,细胞生物学实验方法与技术也在不断更新与创新,为我们更好地理解细胞的生命活动提供了强大的支持。
02细胞生物学第二章 细胞生物学研究方法
(四)暗视野显微镜 dark field microscope
• 聚光镜中央有挡光片,照明光线不直 接进人物镜,只允许被标本反射和衍 射 的光线进入物镜,因而视野的背景 是黑 的,物体的边缘是亮的。
• 可观察 4~200nm的微粒子,分辨率 比普通显微镜高50倍。
(五)相差显微镜
• 相差显微镜在结构上进行了特别设计,尤其是光学系统有很 大的不同, 可用于观察未染色的活细胞 .由P.ZEMIKE于1932年 发明,并因此获1953年诺贝尔物理奖.
透射电镜
—、光学显微镜 (一)普通光学显微镜 •1. 构成: • ①照明系统 • ②光学放大系统 • ③机械装置 •2. 原理:经物镜形成倒 立实像,经目镜进一步 放大成像。
透镜的像差 •球面像差 •慧形像差 •像散 •像场弯曲 •畸变 •色差
球差:由主轴上某一物点向光学系统发出的单色圆锥形光束,经该光学系 列折射后,若原光束不同孔径角的各光线,不能交于 主轴上的同一位置, 以至在主轴上的理想像平面处,形成一弥散 光斑(俗称模糊圈),则此光 学系统的成像误差称为球差。
A Yeast Cell
冰冻断裂与 冰冻蚀刻技术
(二)扫描电子显微镜
•20世纪60年代问世,用来观察标本表面结构。
• 分辨力为6~10nm ,由于人眼的分辨力 (区别荧光屏上距离 最近两个光点的能力 )为0.2mm,扫描电 镜的有效放大倍率为 0.2mm/10nm=2000 0X。
• 工作原理:是用一束极细的电子束扫描样 品,在样品表面激发出次级电子,次级电子 的多少与样品表面结构有关,次级电子由探 测器收集,信号经放大用来调制荧光屏上电 子束的强度,显示出与电子束同步的扫描图 像。
• 紫外蓝光激发滤板:此滤板可使300~450nm范围内 的光通过。常用型号为ZB-2或ZB-3,外加BG-38。
第二章细胞生物学研究方法
第二章细胞生物学研究方法第四节细胞培养与细胞工程一、细胞培养高等生物是由多细胞构成的整体,在整体条件下要研究单个细胞或某一群细胞在体内(in vivo)的功能活动是十分困难的。
但是如果把活细胞拿到体外(in vitro)培养进行观察和研究,则要方便得多。
活细胞离体后要在一定的生理条件下才能存活和进行生理活动,特别是高等动植物细胞要求的生存条件极其严格,稍有不适就要死亡。
所以细胞培养技术(cell culture)就是选用最佳生存条件对活细胞进行培养和研究的技术。
动物细胞的生存环境与植物细胞差别很大,因而二者的培养方法很不相同。
(一)动物细胞培养细胞培养方式大致可分为两种(图2-25):一种是群体培养(mass culture),将含有一定数量细胞的悬液置于培养瓶中,让细胞贴壁生长,汇合(confluence)后形成均匀的单细胞层;另一种是克隆培养(clonal culture),将高度稀释的游离细胞悬液加入培养瓶中,各个细胞贴壁后,彼此距离较远,经过生长增殖每一个细胞形成一个细胞集落,称为克隆(clone)。
一个细胞克隆中的所有细胞均来源于同一个祖先细胞。
此外,为了制取细胞产品而设计了转鼓培养法,使用大容量的圆培养瓶,在培养过程中不断地转动,使培养的细胞始终处于悬浮状态之中而不贴壁。
图2-25 群体培养(左)和克隆培养(右)表2-3 目前实验室中常用的几种细胞系正常细胞培养的世代数有限,只有癌细胞和发生转化的细胞才能无限生长下去。
所谓转化即是指正常细胞在某种因子的作用下发生突变而具有癌性的细胞。
目前世界上许多实验室所广泛传用的HeLa细胞系就是1951年从一位名叫Henrietta Lacks的妇女身上取下的宫颈癌细胞培养而成。
此细胞系一直延用至今。
1. 原代培养(primary culture):从动物机体取出的进行培养的细胞群。
原代培养的细胞生长比较缓慢,而且繁殖一定的代数后(一般10代以内)停止生长,需要从更换培养基。
细胞生物学研究的方法和技术
细胞生物学研究的方法和技术细胞生物学是一个非常重要的领域,它关注的是生命的基本单位——细胞。
在细胞生物学中,有很多不同的方法和技术可以用来研究细胞。
以下是一些关于细胞生物学研究方法和技术的讨论。
1、显微镜显微镜是细胞生物学家最常用的工具。
它们可以使科学家们观察到微小的细胞结构和细胞功能。
有很多种类型的显微镜,如光学显微镜、透射电子显微镜和扫描电子显微镜。
每种显微镜都有其特定的用途,因此细胞生物学家可能会使用数个显微镜来观察细胞。
2、细胞培养为了处理细胞,细胞生物学家需要将它们培养在一种特定的培养基中。
培养基通常由营养物质和生长因子组成,可以促进细胞生存和生长。
细胞培养技术使细胞生物学家能够从细胞的分子水平到细胞的行为和功能水平来研究细胞。
3、流式细胞术流式细胞术是一种分析单个细胞与分离的蛋白质、RNA或DNA的技术。
通过流式细胞术,细胞生物学家可以确定一个细胞群体中不同类型的细胞数量,或者确定单个细胞中不同类型的蛋白质或RNA的相对浓度。
流式细胞术已被广泛用于各种细胞生物学研究中。
4、免疫学技术免疫学技术是一组工具和方法,用于分析和表征一种细胞的蛋白质或其他分子的存在和表达。
这些技术的应用范围包括抗体染色、免疫印迹、酶联免疫吸附试验(ELISA)以及免疫沉淀等。
5、基因编辑技术CRISPR-Cas9技术是一种用于编辑基因的技术。
它允许科学家精确地从细胞或生物体的基因组中删除、添加或更改基因序列。
这项技术为研究细胞生物学提供了一个全新的工具箱,使得细胞及其功能可以被更精确和深入地研究。
6、蛋白质纯化和分析蛋白质是细胞中非常重要的分子,因为它们负责一系列重要的生物过程。
因此,细胞生物学家通常需要纯化和分析蛋白质,以了解细胞的功能。
蛋白质纯化技术包括更分、层析、电泳和质谱分析等方法。
结论最后,细胞生物学家在研究细胞的时候使用很多不同的技术和方法。
以上列举了一些最常见的技术,包括显微镜、细胞培养、流式细胞术、免疫学技术、基因编辑技术和蛋白质纯化和分析等。
细胞生物学的技术和应用方法
细胞生物学的技术和应用方法细胞生物学是一门研究生物体细胞结构、功能、遗传和代谢的学科,同时也是现代生命科学的核心领域之一。
随着科技的不断发展,细胞生物学的技术和应用方法也不断更新和创新,为生命科学的发展提供了强大的支持。
一、光学显微技术光学显微技术是细胞生物学研究中最基本的手段之一,通过利用光学原理,观察和研究细胞、细胞器等微小结构和现象。
常用方法包括透射光学显微镜和共聚焦激光显微镜等。
透射光学显微镜在研究细胞活体和制备细胞切片上有很广泛的应用。
但是,透射光学显微镜对样品厚度和折射率的要求非常高,同时不能观测高分辨率的细胞结构。
共聚焦激光显微镜是一种基于激光的高分辨率显微镜技术,它通过对样品进行连续的成像层叠,可以在三个维度上获得高分辨率的细胞或细胞器图像。
与透射光学显微镜相比,共聚焦激光显微镜有更高的空间分辨率和更快的成像速度,可以用于观察单个分子或细胞内分子动态等现象。
二、分子生物学技术分子生物学技术是研究细胞和分子水平的新一代技术,它可以在无需分离和纯化的条件下直接研究细胞的DNA、RNA和蛋白质等分子。
其中比较常用的技术包括:1. PCR技术PCR技术是一种强大的DNA扩增技术,可以在非常短的时间内扩增出大量的特定DNA序列。
其主要原理是,在高温下通过酶反应将DNA序列两端的单链序列解开,然后通过基因引物的作用在合适的温度下诱导DNA链式扩增。
PCR技术被广泛应用于DNA克隆、分子诊断、生物进化和基因表达等领域。
2. 聚合酶链式反应-位点突变分析技术PCR-位点突变分析技术是一种快速和准确确定位点突变的技术,它与PCR技术紧密结合,可用于确定蛋白质序列的突变位点,以及优选DNA引物序列等。
3. RNAi技术RNAi技术是通过小干扰RNA干扰目标基因表达的一种方法。
通过引入小干扰RNA分子,可以选择性地削减或降低某些mRNA 或蛋白质的表达水平,从而研究基因功能、信号通路和新药筛选等领域。
细胞生物学的实验和技术方法
细胞生物学的实验和技术方法细胞生物学是现代生物学研究中的重要分支。
它主要研究细胞的结构、功能及其生命活动过程等方面的内容,是了解生命基础的重要途径。
在现代科学技术中,细胞生物学的研究离不开各种实验和技术方法,本文将探讨一些重要的实验和技术方法。
1. 细胞培养技术细胞培养是细胞生物学研究的基础。
通过细胞培养技术,可以从原始组织、器官、细胞等中获得大量的细胞,便于研究细胞的结构和功能。
常见的细胞培养方式有贴壁培养和悬浮培养。
贴壁培养是将细胞接种于培养皿中,使其附着在培养皿表面的一种方式。
这种方式适用于许多细胞类型的培养,如成纤维细胞、上皮细胞、神经细胞等。
在细胞培养过程中需要添加适当的培养基,并对培养温度、二氧化碳浓度和湿度等参数进行控制,以保证细胞的正常生长。
悬浮培养是将细胞悬浮在培养基中,以液态形式进行培养。
这种方式适用于一些无法粘附在培养皿上的细胞类型。
在悬浮培养过程中同样需要控制培养温度、培养基成分和搅拌速度等参数。
除此之外,还有一些特殊的细胞培养技术,如三维细胞培养、微流控细胞培养等,这些技术也在不断地发展和改进。
2. 细胞染色法细胞染色法是研究细胞形态和结构的重要手段。
目前最常用的细胞染色方法有苏木精-伊红染色、荧光染色、原位杂交法等。
苏木精-伊红染色是一种基础染色方法。
它是通过染色剂的吸附和染色效应,将细胞和组织的细胞质、细胞核等部位染色,并使它们在显微镜下或光学仪器下可见。
这种方法适用于一些细胞结构比较简单的细胞类型,如红细胞、上皮细胞等。
荧光染色是一种以荧光染料为基础的染色方法。
荧光染料会在吸收一定波长的光线时,发射出不同颜色的荧光信号,可以用于研究细胞的功能和代谢活动等。
荧光染色技术的发展使得科学家可以在细胞和组织中精确定位某些物质的存在和分布。
原位杂交法是一种利用寡核苷酸探针和基因组DNA或RNA相互作用,将DNA或RNA在细胞中的位置进行定位的技术。
通过这种方法,可以探测特定的基因序列的存在和分布情况,为研究基因表达提供了重要的手段。
第二章细胞生物学研究方法
第二章细胞生物学研究方法(the research method in the cell biology)教学目的1、了解要紧工具和常用方法,侧重把握差不多原理和差不多应用;2、认识工具和方法与学科进展的相关性。
教学内容本章从以下5个方面介绍了细胞生物学的研究方法:1.显微成像技术2.细胞化学技术3.细胞分选技术4.细胞工程技术5.分离技术6.分子生物学方法打算学时及安排本章打算3学时。
教学重点和难点生命科学是实验科学,它的专门多成果差不多上通过实验才得以发觉和进展的。
许多细胞生物学的重要进展以及新概念的形成,往往来自新技术的应用。
因此,方法上的突破,关于理论和应用上的进展具有庞大的推动作用,这是学习本章应确立的差不多思想。
1.显微成像包括直截了当成像和间接成像。
显微技术是细胞生物学最差不多的研究技术, 包括光学显微技术和电子显微技术。
在光学显微技术中要把握几种常用显微镜成像的差不多原理,包括一般双筒显微镜、荧光显微镜、相差显微镜、暗视野显微镜、倒置显微镜。
电子显微镜是研究亚显微结构的要紧工具, 透射和扫描电镜的是两类要紧的电子显微镜, 对其差不多结构、工作原理和样品制备方法则是学习的重点。
2.细胞化学技术介绍了酶细胞化学技术、免疫细胞化学技术、细胞分选技术, 其中流式细胞分选技术是细胞生物学和现代生物技术中的重要技术, 应重点把握。
3.细胞工程技术是细胞生物学与遗传学的交叉领域,要紧利用细胞生物学的原理和方法,结合工程学的技术手段,按照人们预先的设计,有打算地改变或制造细胞遗传性的技术。
包括体外大量培养和繁育细胞,或获得细胞产品、或利用细胞体本身。
要紧内容包括:细胞融合、细胞生物反应器、染色体转移、细胞器移植、基因转移、细胞及组织培养。
4.分离技术是一大类技术的总称,包括细胞组分的分离和生物大分子的分离, 应把握各种分离技术的原理和用途。
本章对分子生物学方法作了简要介绍, 为今后的学习奠定基础。
细胞生物学的现代研究技术和方法
细胞生物学的现代研究技术和方法细胞生物学作为生物学的重要分支领域,研究细胞的结构、功能和生物过程对于深入理解生命的本质至关重要。
随着科技的不断进步,现代细胞生物学的研究技术和方法也在不断发展和创新。
本文将探讨一些在细胞生物学领域中常用的现代研究技术和方法。
一、光学显微镜技术光学显微镜是细胞生物学中最基本的工具之一,用于观察和研究细胞的结构和功能。
随着技术的发展,光学显微镜也得到了不断改进。
例如,荧光显微镜技术利用特定的荧光标记物使细胞的某些结构或分子可见,从而更好地研究细胞的动态过程。
二、电子显微镜技术电子显微镜是利用电子束和电磁透镜代替光线、将细胞的图像放大万倍的一种显微镜技术。
相比光学显微镜,电子显微镜具有更高的分辨率和放大倍数。
透射电子显微镜(TEM)可用于观察细胞的超微结构,如细胞核、线粒体和内质网等。
扫描电子显微镜(SEM)则能提供细胞表面的高清图像。
三、蛋白质分析技术蛋白质是细胞中最重要的分子之一,影响着细胞的功能和代谢过程。
蛋白质分析技术被广泛应用于细胞生物学研究中。
其中,聚丙烯酰胺凝胶电泳(SDS-PAGE)是常用的分离蛋白质的方法,可以根据蛋白质的分子质量进行分析和定量。
Western blotting(免疫印迹)则能检测特定蛋白质的存在和定量。
四、基因编辑技术基因编辑技术是近年来在细胞生物学领域中崭露头角的重要工具。
CRISPR-Cas9技术是一种高效的基因编辑技术,可用于修改细胞中的基因序列。
通过CRISPR-Cas9技术,研究人员可以研究基因在细胞中的功能,甚至对特定基因进行精确编辑。
五、细胞培养技术细胞培养技术是研究细胞生物学的基础,能够让研究者以人工方式培养出体外细胞。
细胞培养技术可广泛应用于研究细胞生长、分化和药物筛选等领域。
常用的细胞培养方法有悬浮培养和附着培养,具体选择哪种方法取决于研究的目的和细胞类型。
六、高通量测序技术高通量测序技术是近年来取得突破性进展的细胞生物学研究方法之一。
细胞生物学的技术和方法
细胞生物学的技术和方法细胞生物学是研究细胞的基础结构和功能的学科,它是现代生命科学的核心。
随着科技的不断发展和进步,细胞生物学的研究也越来越深入。
在这方面,细胞生物学的技术和方法占据了一个非常重要的地位。
一、细胞培养技术细胞培养是指将生物组织或细胞在人工培养条件下进行培养。
这一技术对于探究生物细胞的基本特性和生理病理过程具有重要的意义。
目前,细胞培养技术主要分为原代细胞培养和细胞系培养两种。
原代细胞培养是指从人类或动物组织中分离出的细胞,常用于细胞生长因子等的研究。
而细胞系培养则是从原代细胞培养中分离出的细胞系,可以在无限期时间内进行培养,被广泛应用于疾病治疗和药物筛选等方面。
二、生物标记技术生物标记技术是指采用生物分子作为标记物,通过与细胞分子相互作用实现细胞成像或检测的技术。
常见的生物标记物有蛋白质分子、核酸分子和纳米颗粒等。
生物标记技术在细胞分子机制研究、疾病诊断和治疗等方面具有重要的应用价值。
三、单细胞RNA测序技术单细胞RNA测序技术是指对单个细胞进行RNA测序的技术。
这一技术可以揭示细胞间的差异性,发现低频率细胞和介于生物学状态之间的转换状态等。
该技术在癌症早期诊断、疾病治疗以及基因编辑等方面具有很好的应用前景。
四、蛋白质组学技术蛋白质组学技术是指对蛋白质组进行高通量分析的技术。
这一技术可以在同一时间对上千个蛋白进行检测,揭示细胞内蛋白质相互作用关系、功能调控以及疾病发生的发生机制等方面提供一定的帮助。
蛋白质组学技术已越来越成为疾病治疗、药物筛选以及基因编辑研究的重要手段。
五、基因编辑技术基因编辑技术是指直接在细胞中编辑基因序列的技术。
基因编辑技术通过CRISPR-Cas9系统、TALEN系统或zinc finger nuclease等工具,直接清除或修改细胞基因序列。
这一技术可以应用于疾病治疗、农业生产以及基础科研等领域。
总之,细胞生物学的技术和方法在现代生命科学的研究中起着不可替代的作用。
细胞生物学研究中的新技术和方法
细胞生物学研究中的新技术和方法细胞生物学作为生物科学的重要分支,研究细胞的结构、功能以及其与生命活动的关系。
随着科技的进步,人们在细胞生物学领域中,不断开发出新的技术和方法,为研究细胞的奥秘提供了更多的工具和途径。
本文将介绍细胞生物学研究中的一些新技术和方法,旨在为读者提供对细胞生物学领域的了解和认识。
一、荧光显微镜技术荧光显微镜是一种利用特殊光源和荧光物质的相互作用,来观察和研究细胞结构和功能的技术。
相比传统的光学显微镜,荧光显微镜具有更高的分辨率和更好的灵敏度,可以让研究者观察到更多具有特殊标记的细胞结构和分子。
例如,通过荧光显微镜技术,研究者可以标记特定的蛋白质,以观察其在细胞内的分布和运动,进一步揭示细胞的功能机制。
二、单细胞测序技术单细胞测序技术是一种用于研究细胞内个体细胞基因表达谱的高通量测定方法。
传统的测序技术只能得到整个细胞群体的平均基因表达水平,而单细胞测序技术则可以对每个个体细胞的基因表达进行精确测定。
通过单细胞测序技术,研究者可以更深入地了解细胞的异质性和个体差异,揭示各种疾病发生和发展的机制。
三、CRISPR-Cas9技术CRISPR-Cas9是一种基因组编辑技术,可以精准地对细胞的DNA序列进行修改。
相比传统的基因编辑技术,CRISPR-Cas9具有更高的效率和更简便的操作流程。
研究者可以利用CRISPR-Cas9技术,将Cas9蛋白和特定的RNA序列导入到细胞中,从而实现对目标基因进行精确切割和编辑。
该技术在研究细胞的基因功能和遗传变异方面具有重要的应用价值。
四、蛋白质组学技术蛋白质组学是研究细胞内蛋白质组成和功能的学科。
随着蛋白质组学技术的发展,人们可以更全面地了解细胞中的蛋白质种类、含量和相互作用关系。
例如,质谱技术可以用于鉴定和定量细胞中的蛋白质,包括蛋白质的翻译后修饰和亚细胞定位。
这些信息可以为研究者提供更多关于细胞功能和疾病机制的线索。
五、三维打印技术随着三维打印技术的发展,人们可以利用这一技术来生成具有特定结构和功能的生物材料和细胞构建物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章细胞生物学的研究技术和方法一、选择题:1.在光学显微镜下所观察到的组织或细胞结构一般称为A.显微结构B.超微结构C.亚显微结构D.分子结构2.研究细胞的超微结构一般要利用下列哪种技术A.光学显微镜技术B.电子显微镜技术C.X射线衍射技术D.离心技术3.利用不同性质有机染料可对细胞中不同成分选择性染色,下列哪种结果有误A.碘液可使口腔上皮细胞的细胞质和细胞核呈深浅不同的棕黄色B.吉姆萨染液可使细胞核或染色体呈紫红色或桔红色C.甲基绿可使RNA分子呈蓝绿色D.派洛宁可使RNA分子呈红色4.适于观察无色透明活细胞显微结构的光学显微镜是A.相差显微镜B.暗视野显微镜C.荧光显微镜D.偏振光显微镜5.光学显微镜的分辨率(最小分辨率)可达A. 0.1?mB. 0.2?mC. 0.3?mD. 0.4?m6.关于电子显微镜,下列哪项有误A.组织或细胞在透射电镜观察前均需做超薄切片B.分为透射式和扫描两类C.分辨率最高可达0.2nmD.利用电子束作照明源7.关于透射式电子显微镜,下列哪项叙述是错误的A.适于观察细胞的外表形貌B.以电子束作为光源C.电子透过标本后在荧光屏上成像D.分辨率较高8.关于扫描电子显微镜,下列哪项有误A.20世纪60年代才正式问世B.景深长,成像具有强烈立体感C.电子扫描标本使之产生二次电子,经收集放大后成像D.适于观察细胞的内部构造9.福尔根反应(Feulgen reaction)是一种经典的细胞化学染色方法,常用于细胞内A.蛋白的分布与定位B.脂肪的分布与定位C.酸性磷酸酶的分布与定位D. DNA的分布与定位10.研究组织或细胞显微结构的主要技术是A.光镜技术B.电镜技术C.离心技术D.电泳技术11.研究细胞超微结构的主要技术A.光镜技术B.电镜技术C.离心技术D.电泳技术12.分离细胞内不同细胞器的主要技术是A.光镜技术B.电镜技术C.离心技术D.电泳技术13.利用放射性同位素标记物能使照相乳胶感光的原理来探测细胞内某种物质的含量与分布的方法是A.放射自显影技术B.免疫荧光镜技术C.免疫电镜技术D.原位杂交技术14.用荧光染料标记的抗体处理细胞后在荧光显微镜下对细胞中特殊分子进行定位属于A.放射自显影技术B.免疫荧光镜检术C.免疫电镜技术D.原位杂交技术15.直接取材于机体组织的细胞培养称为A.细胞培养B.原代培养C.传代培养D.细胞克隆16.当体外培养的细胞增殖到一定密度后以1:2以上的比例转移到几个容器中进行再培养,称为A.细胞培养B.原代培养C.传代培养D.细胞克隆17.模拟体内的条件使细胞在体外生存、生长和繁殖的过程称为A.细胞培养B.原代培养C.传代培养D.细胞克隆18.分离出单个细胞在适当的条件下使之增殖成均一的细胞群体称为A.细胞培养B.原代培养C.传代培养D.细胞克隆19.体细胞杂交又称为A.细胞培养B.原代培养C.传代培养D.细胞融合20.适于观察细胞内超微结构的显微镜是A.透射电镜B.扫描电镜C.荧光显微镜D.倒置显微镜21.从血液中分离收集血细胞一般利用A.流式细胞分析仪B.超速离心机C.高速离心机D.低速离心机22.从破碎的细胞中分离收集线粒体一般所需的仪器是A.流式细胞分析仪B.超速离心机C.高速离心机D.低速离心机23.要观察肝组织中的细胞类型及排列,应先制备该组织的A.切片B.滴片C.涂片D.装片24小鼠骨髓细胞的染色体标本一般制备成细胞的()来进行观察。
A.切片B.滴片C.涂片D.装片25.观察血细胞的种类和形态一般制备成血液A.切片B.滴片C.涂片D.装片26.取洋葱鳞茎表皮一小块置载玻片上所制成标本称为A.切片B.滴片C.涂片D.装片27.倒置相差显微镜主要用于A.未经染色的活细胞B.微粒子C.抗原抗体反应D.细胞超微结构28.暗视野显微镜主要用于观察A.微粒子B.细胞表面超微结构C.细胞荧光反应D.被标记化合物在细胞内的动态变化29.暗视野显微镜的分辨率可达A.0.2?mB.0.004?mC.0.8 ?D.100?二、填空题:1.细胞生物学研究中常用的光镜有、、和。
2.利用离心机对细胞组分进行分级分离的常用方法有和等。
3.光学显微镜的分辨率可达到,其计算公式为。
4.常用细胞和亚细胞组分测定的方法有、、、、、。
5.“细胞融合”实验所用的诱导因子是。
6.“胞内酸性蛋白和碱性蛋白的显示”实验中是用处理核酸的,以避免干扰酸性蛋白的显示的。
7. 细胞内酸性蛋白和碱性蛋白的分布是用方法显示的,所选用的染料是不同pH值的。
8. 经碱性固绿染色的细胞只有被染成绿色,这是分布的部位。
9. 经酸性固绿染色的细胞只有被染成绿色,这是分布的部位。
10. 细胞经混合液染色后,胞内的DNA和RNA发生不同的颜色反应。
DNA 被染成绿色,RNA被染成红色。
三、名词解释:1、分辨力2、显微结构3、超微结构4、原代培养5、传代培养6、细胞融合7、细胞电泳8、细胞分级分离法9、细胞化学法 10、细胞杂交 11、匀浆 12、同核体13、异核体 14、细胞培养四、问答题:1. 简述巨噬细胞对细菌等病原体或其他异物的吞噬过程。
参考答案一、选择题:1~5 ABCAB 6~10 CADDA 11~15 BCACB16~20 CADDA 21~25 DCABC 26~29 DAAB二、填空题:1. 普通显微镜、相差显微镜、暗视野显微镜、荧光显微镜2. 差速离心法、密度梯度离心法3. 0.2?m 、R=0.61? /N.A. N.A.=n ?sin?/24. 细胞化学法、荧光细胞化学和免疫荧光镜检术、放射自显影技术、细胞显微分光光度测定技术、流式细胞计量术、细胞组分的分级分离法5. 聚乙二醇(PEG)6. 三氯醋酸7. 细胞化学法,固绿8. 细胞核,碱性蛋白,9. 细胞质和核仁,酸性蛋白三、名词解释:1. 分辨率(resolution)——也称分辨本领。
指显微镜或人眼在25nm的明视距离处分辨或区分被检物体细微结构的最小间隔,即两点间最小距离的能力。
能够区分的两点间的距离越小,表示分辨率越高。
显微镜的分辨率由物镜所决定,与其镜口率和光线的波长直接相关。
人眼的分辨率约为0.1mm,而光镜的分辨率最高可达0.2?m。
电镜的分辨率比光镜高100-1000倍,达2-0.2nm。
2. 显微结构(microscopic structure)——通过光学显微镜所观察到的样品的各种结构。
如细胞的大小、外部形态以及细胞核、线粒体、高尔基体、中心体等内部构成都属于显微结构。
3. 超微结构(ultrastructure)——也称为亚显微结构(submicroscopic structure)。
指在电子显微镜下所观察到的细胞结构,如细胞核、线粒体、高尔基体、中心体、核糖体、微管、微丝等细胞器的微细结构等。
4. 原代培养(primary culture)——指从机体组织中取材后接种到培养基中所进行的细胞培养,即直接取材于机体的细胞培养。
所形成的细胞称原代细胞,它是在体外培养任何一种体细胞所必须经历的阶段和传代培养的基础。
也就是说,任何动物和人体细胞的培养均需从原代细胞培养作起。
一般来说,胎儿的肾、肺、卵巢、精巢、肌肉与肿瘤等组织的细胞较易培养,而神经细胞较难培养。
5. 传代培养(sub-culture)——简称传代。
指当原代培养的细胞在培养瓶中生长、增殖到一定密度后,一分为二或以其它比例分装或转移到2个以上的培养瓶中所进行的再培养。
在培养过程中,要使细胞能够在容积中正常地生长和`繁殖需要经常进行培养细胞的传代,所以传代培养可多次进行。
适应在体外培养条件下持续传代培养的细胞称为传代细胞。
传代累积的次数就是细胞的代数。
一般来讲原代培养的细胞传至10代后就不易传下去了,其生长出现停滞且大多数细胞衰老死亡,只有极少数细胞能存活下来并继续传代40-50次。
在此过程中,细胞保持染色体数目稳定和接触抑制行为。
当细胞传至50代以后又会出现“危机”不能传下去了,但其中少数发生突变,获得了癌变细胞特征,细胞有可能无限制地传下去,如HeLa 细胞株。
6. 细胞融合(cell fusion)——又称为细胞杂交(cell hybridization)。
指细胞彼此接触时,2个或2个以上的细胞合并成为一个细胞的现象。
7. 细胞电泳(cell electrophoresis)——细胞表面分子带有许多荷电基团,其总净电荷为负值,所以,悬液中的细胞在外加电场的作用下通常向正极移动。
这种细胞在外加电场的作用下发生泳动的现象称为细胞电泳。
8. 细胞分级分离(cell fractionnation)法——细胞内各种结构的比重和大小都不相同,在同一离心场内的沉降速度也不同。
根据这一原理,用不同介质和不同转速的离心,将细胞内各种组分分级分离出来的方法。
9. 细胞化学法(cytochemical methods)——是在保持细胞结构的基础上,利用某些化学物质可与细胞内某种成分发生化学反应,而在局部范围形成有色沉淀物的原理,对细胞的化学成分进行定性、定位和定量的研究。
10. 细胞杂交——同细胞融合。
11. 匀浆——在低温下浆组织块放入匀浆器,加入等渗匀浆介质破碎细胞,使之成为各种细胞器及其包含物的溶液的过程。
12. 同核体——指含有同一亲本细胞核的融合细胞。
13. 异核体——指含有不同亲本细胞核的融合细胞。
14. 细胞培养——指活细胞在体外的培养技术,即在无菌条件下,从机体中取出组织或细胞,模拟机体内正常生理状态下生存的基本条件,让它在培养皿中继续生存、生长和繁殖的方法。