六年级奥数分数应用题经典例题加练习带标准答案
六年级奥数分数应用题经典例题加练习带答案
一.知识的回顾1.工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工人.【解析】在调入的前后,女职工人数保持不变.在调入前,女职工人数为1128(1)964⨯-=人,调入后女职工占总人数的23155-=,所以现在工厂共有职工3961605÷=人.2.有甲、乙两桶油,甲桶油的质量是乙桶的52倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的43倍,乙桶中原有油 千克. 【解析】 原来甲桶油的质量是两桶油总质量的55527=+,甲桶中倒出5千克后剩下的油的质量是两桶油总质量的44437=+,由于总质量不变,所以两桶油的总质量为545()3577÷-=千克,乙桶中原有油235107⨯=千克. 【例 2】 (1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?【解析】 (1)设二月份产量是1,所以元月份产量为:()1011+10%=11÷,三月份产量为:110%=0.9-,因为1011>0.9,所以三月份比元月份减产了(2)设商品的原价是1,涨价后为1+15%=1.15,降价15%为:()1.15115%=0.9775⨯-,现价和原价比较为:0.9775<1,所以价格比较后是价降低了。
【巩固】 把100个人分成四队,一队人数是二队人数的113倍,一队人数是三队人数的114倍,那么四队有多少个人?【解析】 方法一:设一队的人数是“1”,那么二队人数是:131134÷=,三队的人数是:141145÷=,345114520++=,因此,一、二、三队之和是:一队人数5120⨯,因为人数是整数,一队人数一定是20的整数倍,而三个队的人数之和是51⨯(某一整数), 因为这是100以内的数,这个整数只能是1.所以三个队共有51人,其中一、二、三队各有20,15,16人.而四队有:1005149-=(人).方法二:设二队有3份,则一队有4份;设三队有4份,则一队有5份.为统一一队所以设一队有[4,5]20=份,则二队有15份,三队有16份,所以三个队之和为15162051++=份,而四个队的份数之和必须是100的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有1005149-=人(人).【例 3】 新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的25,美术班人数相当于另外两个班人数的37,体育班有58人,音乐班和美术班各有多少人?【解析】 条件可以化为:音乐班的人数是所有班人数的22527=+,美术班的学生人数是所有班人数的337310=+,所以体育班的人数是所有班人数的2329171070--=,所以所有班的人数为295814070÷=人,其中音乐班有2140407⨯=人,美术班有31404210⨯=人.【巩固】 甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工零件数的45,甲加工零件数是乙、丙加工零件总数的56,则甲、丙加工的零件数分别为 个、 个.【解析】 把乙加工的零件数看作1,则丙加工的零件数为45,甲加工的零件数为453(1)562+⨯=,由于甲比乙多加工20个,所以乙加工了320(1)402÷-=个,甲、丙加工的零件数分别为340602⨯=个、440325⨯=个. 【例 4】 王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的12,李先生的年龄是另外三人年龄和的13,赵先生的年龄是其他三人年龄和的14,杨先生26岁,你知道王先生多少岁吗?【解析】方法一:要求王先生的年龄,必须先要求出其他三人的年龄各是多少.而题目中出现了三个“另外三人”所包含的对象并不同,即三个单位“1”是不同的,这就是所说的单位“1”不统一,因此,解答此题的关键便是抓不变量,统一单位“1”.题中四个人的年龄总和是不变的,如果以四个人的年龄总和为单位“1”,则单位“1”就统一了.那么王先生的年龄就是四人年龄和的11123=+,李先生的年龄就是四人年龄和的11134=+,赵先生的年龄就是四人年龄和的11145=+(这些过程就是所谓的转化单位“1”).则杨先生的年龄就是四人年龄和的11113134560---=.由此便可求出四人的年龄和:111261*********⎛⎫÷---= ⎪+++⎝⎭(岁),王先生的年龄为:1120403⨯=(岁). 方法二:设王先生年龄是1份,则其他三人年龄和为2份,则四人年龄和为3份,同理设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同的,但是现在四人年龄和分别是3份、4份、5份,它们的最小公倍数是60份,所以最后可以设四人年龄和为60份,则王先生的年龄就变为20份,李先生的年龄就变为15份,赵先生的年龄就变为12份,则杨先生的年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40岁.【巩固】甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的12,乙队筑的路是其他三个队的13,丙队筑的路是其他三个队的14,丁队筑了多少米?【解析】甲队筑的路是其他三个队的12,所以甲队筑的路占总公路长的11=1+23;乙队筑的路是其他三个队的13,所以乙队筑的路占总公路长的11=1+34; 丙队筑的路是其他三个队的14,所以丙队筑的路占总公路长的11=1+45,所以丁筑路为:11112001=260345⎛⎫⨯--- ⎪⎝⎭(米)【例 5】小刚给王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块,这时已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【解析】方法一:运完第一次后,还剩下58没运,再运来50块后,已运来的恰好是没运来的57,也就是说没运来的占全部的712,所以,第二次运来的50块占全部的:57181224-=,全部蜂窝煤有:150120024÷=(块),没运来的有:7120070012⨯=(块).方法二:根据题意可以设全部为8份,因为已运来的恰好是没运来的57,所以可以设全部为12份,为了统一全部的蜂窝煤,所以设全部的蜂窝煤共有[8,12]24=份,则已运来应是5241075⨯=+份,没运来的7241475⨯=+份,第一次运来9份,所以第二次运来是1091-=份恰好是50块,因此没运来的蜂窝煤有5014700⨯=(块).【巩固】 五(一)班原计划抽15的人参加大扫除,临时又有2个同学主动参加,实际参加扫除的人数是其余人数的13.原计划抽多少个同学参加大扫除?【解析】又有2个同学参加扫除后,实际参加扫除的人数与其余人数的比是1:3,实际参加人数比原计划多11113520-=+.即全班共有124020÷=(人).原计划抽14085⨯=(人)参加大扫除.【巩固】 某校学生参加大扫除的人数是未参加大扫除人数的14,后来又有20名同学参加大扫除,实际参加的人数是未参加人数的13,这个学校有多少人?【解析】 11204003141⎛⎫÷-=⎪++⎝⎭(人).【例 6】小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少73;如果小刚给小莉24个,则小刚的玻璃球比小莉少85,小莉和小刚原来共有玻璃球多少个?【解析】小莉给小刚24个时,小莉是小刚的74(=1一73),即两人球数和的114;小刚给小莉24个时,小莉是两人球数和的118(=5888-+),因此24+24是两人球数和的118-114=114.从而,和是(24+24) ÷114=132(个).【巩固】某班一次集会,请假人数是出席人数的91,中途又有一人请假离开,这样一来,请假人数是出席人数的223,那么,这个班共有多少人?【解析】因为总人数未变,以总人数作为”1”.原来请假人数占总人数的119+,现在请假人数占总人数的3322+,这个班共有:l÷(3322+-119+)=50(人).【例7】小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数19,他今天比昨天多读了14页,这时已经读完的页数是还没读的页数的13,问题是,这本书共有多少页?”【解析】首先,可以直接运算得出,第一天小明读了全书的11911019=+,而前二天小明一共读了全书的1131413=+,所以第二天比第一天多读的14页对应全书的111241020-⨯=。
小学六年级奥数应用题及答案五篇
小学六年级奥数应用题及答案五篇一、应用题一某小学六年级有200名学生,其中男生占总人数的2/5,女生占总人数的3/10,男生中参加奥数的人数是女生中参加奥数的人数的3倍。
请问参加奥数的男生和女生各有多少人?解答:设男生总数为2x,女生总数为3x。
根据题意得到以下两个等式:2/5 * 200 = 2x3/10 * 200 = 3x计算可得:2/5 * 200 = 2x80 = 2xx = 40所以男生总数为2x = 2 * 40 = 80人,女生总数为3x = 3 * 40 = 120人。
参加奥数的男生人数为3 * 40 = 120人,女生人数为40人。
答案:参加奥数的男生有120人,女生有40人。
二、应用题二Peter和Tom一起参加了一场有100道选择题的奥数竞赛,Peter做对了70道题,Tom做对了60道题。
两人中有10道题他们的答案完全相同,求这场竞赛中两人的总分。
解答:两人中有10道题答案完全相同,则这10道题两人均得分。
Peter实际得分为70 - 10 = 60分,Tom实际得分为60 - 10 = 50分。
除去答案相同的10道题,两人各自得分60 + 50 = 110分。
答案:Peter和Tom的总分为110分。
三、应用题三一台机器每小时能生产1000个产品,现在需要生产8000个产品,请问需要多少小时?解答:机器每小时生产1000个产品,需要生产8000个产品。
所以生产8000个产品所需的小时数为8000 / 1000 = 8小时。
答案:需要8小时才能生产8000个产品。
四、应用题四某商品原价为500元,商家为了促销将商品价格降低了30%。
现在这个商品的售价是多少?解答:商品原价为500元,降价30%。
所以商品的售价是500 * (100% - 30%) = 500 * 70% = 350元。
答案:这个商品的售价是350元。
五、应用题五某工厂计划生产A型产品和B型产品,A型产品生产一件需要2小时,B型产品生产一件需要3小时。
六年级分数除法应用题奥数题
六年级分数除法应用题奥数题一、分数除法应用题奥数题20题及解析。
1. 甲数的(2)/(3)等于乙数的(4)/(5),甲数是乙数的几分之几?乙数是甲数的几分之几?- 解析:设甲数为a,乙数为b。
根据题意可得(2)/(3)a=(4)/(5)b,则a=(4)/(5)b÷(2)/(3)=(4)/(5)b×(3)/(2)=(6)/(5)b,所以甲数是乙数的(6)/(5)。
b =(2)/(3)a÷(4)/(5)=(2)/(3)a×(5)/(4)=(5)/(6)a,所以乙数是甲数的(5)/(6)。
2. 一个数的(3)/(4)是18,这个数的(5)/(6)是多少?- 解析:首先求这个数,已知一个数的(3)/(4)是18,那么这个数是18÷(3)/(4)=18×(4)/(3)=24。
这个数的(5)/(6)就是24×(5)/(6)=20。
3. 有一堆煤,第一天运走了全部的(1)/(4),第二天运走了剩下的(3)/(5),这时还剩下12吨。
这堆煤共有多少吨?- 解析:设这堆煤共有x吨。
第一天运走(1)/(4)x吨,剩下x-(1)/(4)x=(3)/(4)x 吨。
第二天运走(3)/(5)×(3)/(4)x=(9)/(20)x吨。
可列方程x-(1)/(4)x-(9)/(20)x = 12,即(20x-5x - 9x)/(20)=12,(6x)/(20)=12,x = 40吨。
4. 修一条路,甲队单独修12天完成,乙队每天修150米。
两队合修,完工时甲、乙两队工作量的比是2:1。
这条路有多长?- 解析:因为完工时甲、乙两队工作量的比是2:1,所以甲、乙两队的工作效率比也是2:1。
甲队单独修12天完成,甲队的工作效率是(1)/(12),那么乙队的工作效率是(1)/(12)÷2=(1)/(24)。
乙队每天修150米,所以这条路的长度为150÷(1)/(24)=3600米。
六年级上册:分数应用题奥数基础(带答案)
3、男生比女生少 ,女生比男生多几分之几?
2/5
4、水结成冰体积增加 ,冰化成水体积减少几分之几?
1/12
5、甲数是乙数的 ,乙数是丙数的 ,甲、乙、丙的和是216.甲、乙、丙各是多少?
48、72、96
6、甲数是乙数的 ,乙数是丙数的 ,甲、乙、丙三数的和是152.甲、乙、丙三数各是多少?
560
2、某小学五年级三个班植树,一班植树的棵数占三班总棵数的 ,二班与三班植树的棵数的比3:5,二班比三班少植树40棵。这三个班各植树多少棵?
40 60 100
3、图书角有故事书、科技书、文艺书这三种书,故事书的本数占总人数的 ,科技书的本数是文艺书的 ,文艺书比故事书少20本。图书角共有书多少本?
40 48 64
7、橘子的质量是苹果的 ,香蕉的质量是橘子的 ,香蕉和苹果共有220千克。橘子有多少千的学生数是八年级学生数的 ,八年级的学生数是九年级学生数的 倍。这个学校里九年级的学生数占初中部学生数的几分之几?
8/27
1、某班共有学生51人,男生人数的 等于女生人数的 。这个班男、女生各有多少人?
300
变形2:
有一批货物,第一天运来这批货物的 ,第二天运了余下的 ,两天共运了90吨。这批货物有多少吨?
900/7
变形3:
有一批货物,第一天运来这批货物的 ,第二天运的是第一天的 ,两天共运了90吨。这批货物有多少吨?
225
3、一修路队,第一天修了这条公路的 ,第二天修了余下的 ,已知这两天共修了1200米。这条公路全长多少米?
200
变形3:
晶晶三天看完一本书,第一天看了全书的 ,第二天看了余下的 ,两天一共看了220页。这本书共有多少页?
小学六年级分数奥数题100道及答案(完整版)
小学六年级分数奥数题100道及答案(完整版)1. 一个分数,分母比分子大25,分子、分母同时除以一个相同的数后得4/9,原来的分数是多少?答案:20/45。
思路:9-4=5,25÷5=5,分子是4×5=20,分母是9×5=45。
2. 把一根绳子平均分成5 段,每段长6 米,这根绳子长多少米?答案:30 米。
思路:5×6=30(米)。
3. 有一堆煤,第一天用去1/4,第二天用去余下的1/3,还剩下12 吨,这堆煤原有多少吨?答案:24 吨。
思路:第二天用去总数的(1-1/4)×1/3=1/4,剩下总数的1-1/4-1/4=1/2,所以总数为12÷1/2=24 吨。
4. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩下22 千克,这桶油原来有多少千克?答案:50 千克。
思路:设这桶油原来有x 千克,x-1/5x-(1/5x+20)=22,解得x=50。
5. 某班男生人数是女生人数的4/5,女生比男生多5 人,这个班共有多少人?答案:45 人。
思路:设女生人数为x,x-4/5x=5,解得x=25,男生人数为20,全班人数为45 人。
6. 一本书,第一天看了全书的1/3,第二天看了余下的1/2,还剩下40 页没看,这本书共有多少页?答案:120 页。
思路:第二天看了全书的(1-1/3)×1/2=1/3,剩下全书的1-1/3-1/3=1/3,所以全书有40÷1/3=120 页。
7. 一条公路,已经修了全长的2/5,再修60 米,就正好修了全长的一半,这条公路长多少米?答案:300 米。
思路:设公路长x 米,1/2x-2/5x=60,解得x=300。
8. 小明看一本书,第一天看了全书的1/5,第二天看了25 页,两天共看了全书的3/10,这本书共有多少页?答案:125 页。
思路:设全书有x 页,1/5x+25=3/10x,解得x=125。
六年级分数应用题带答案
六年级分数应用题带答案题目1:小华有一本书,第一天看了全书的1/3,第二天看了全书的1/4,两天一共看了全书的几分之几?答案:首先,我们需要计算两天看的部分的总和。
第一天看了全书的1/3,第二天看了全书的1/4。
1/3 + 1/4 = 4/12 + 3/12 = 7/12所以,小华两天一共看了全书的7/12。
题目2:一个班级有48名学生,其中男生占全班人数的3/5,女生占全班人数的2/5。
请问男生和女生各有多少人?答案:首先,我们需要计算男生和女生的人数。
男生人数 = 48 × 3/5 = 28.8,但人数必须是整数,所以男生人数为29人。
女生人数= 48 × 2/5 = 19.2,同样,人数必须是整数,所以女生人数为19人。
所以,男生有29人,女生有19人。
题目3:一个长方形的长是宽的2/3,如果长是30米,那么宽是多少米?答案:首先,我们知道长是宽的2/3,设宽为x米。
30 = x × 2/3为了求出宽,我们需要解这个方程:x = 30 ÷ (2/3) = 30 × (3/2) = 45所以,宽是45米。
题目4:一个工厂生产了500个零件,其中有1/5是次品。
那么合格的零件有多少个?答案:首先,我们需要计算次品的数量。
次品数量= 500 × 1/5 = 100然后,我们用总数量减去次品数量,得到合格零件的数量:合格零件数量 = 500 - 100 = 400所以,合格的零件有400个。
题目5:一个果园有苹果树和梨树共120棵,苹果树的数量是梨树的3/4。
请问苹果树和梨树各有多少棵?答案:首先,设梨树的数量为x棵,那么苹果树的数量就是3/4x棵。
x + 3/4x = 120解这个方程,我们得到:7/4x = 120x = 120 × 4/7 = 70.57由于树的数量必须是整数,我们可以取70棵梨树,那么苹果树的数量就是:苹果树数量 = 120 - 70 = 50所以,苹果树有50棵,梨树有70棵。
六年级分数的应用题及详细答案
六年级分数的应用题及详细答案1、缸水问题:一缸水用去1/2和5桶后还剩30%,求这缸水有多少桶?解析:用去1/2和5桶,还剩30%,可以理解为5桶所占的比例为1-1/2-30%(从单位1中去掉1/2和30%)。
所以列式为:5÷(1-1/2-30%)=10.2、钢管问题:一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?解析:第一次截去7/10不用转化,重点是第二次截去余下的1/3,可以转化为第二次截去了这根钢管的1/10.所以列式为:10×(1-7/10-1/10)=3米。
3、公路问题:修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?解析:由于完成了全长的2/3后离中点16.5千米,所以中点到起点的距离也是16.5千米。
设公路全长为x,列式为2/3x-16.5=1/2x,解得x=99千米。
4、零件问题:师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?解析:设这批零件共有x个,则徒弟做了2/7x个,师傅做了5/7x个。
由于徒弟比师傅少做21个,所以2/7x=5/7x-21,解得x=105个。
5、化肥问题:仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?解析:设原来有x袋化肥,则第一次取出2/5x袋,剩下3/5x袋。
第二次取出1/3(3/5x)-12袋,剩下24袋,所以列式为:2/5x+[1/3(3/5x)-12]=x-24,解得x=120,两次共取出(2/5+1/3)×120=72袋。
6、车辆问题:甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快2/7,两车经过多少小时相遇?解析:设两车相遇时,客车行驶了x小时,则货车行驶了x+2/7x=9/7x小时。
根据题意列式为:72×9/7x+72x=1152,解得x=6小时,两车经过6+6×2/7=8小时相遇。
(完整版)六年级奥数分数应用题
六年级奥数 分数应用题【指点迷津】解答较复杂的分数应用题时,我们往往从题目中找出不变的量,把不变的量看作单位“1”,将已知条件进行转化,找出所求数量相当于单位“1”的几分之几,再列式解答。
【经典例题】1、有两筐苹果。
乙筐是甲筐的57 ,从甲筐取出6 千克放入乙筐后,乙筐的苹果是甲筐的45 。
甲、乙两筐苹果共重多少千克?【思路导航】 由于是从甲重取出6千克放入乙筐的,所以两筐苹果的总质量没有变,把两筐苹果的总质量看作单位“1”,则原来甲筐苹果占总重量的75+7 ,后来甲筐苹果占总重量的55+4 。
所以6千克苹果相当于总重量的75+7 —55+4 =136 。
6÷(75+7 —55+4 )=216(千克) 答:甲、乙两筐苹果共重216千克。
【举一反三】1、1、乙队原来有的人数是甲队的 3 7 ,现在甲队派30人到乙队,则乙队人数是甲队的23 。
甲、乙两队共有多少人?2、有甲、乙两个粮仓,原来甲粮仓存粮的吨数是乙粮仓的 75 。
如果从甲粮仓调5吨到乙粮仓,甲粮仓的吨数就是乙粮仓的45 。
原来甲、乙粮仓各存粮多少吨?【经典例题】2、在阅览室看书的学生中,男生人数是女生的25 ,又来了3名女生后,男生人数是女生的38 。
阅览室有男生多少人?【思路导航】原来“男生人数是女生的25 ”,后来“ 男生人数是女生的38 ”,虽然都是女生的几分之几,但女生人数前后发生了变化。
在解答时,只能抓住不变的量,即男生人数。
可以这样看,原来女生人数是男生的52 ,后来增加了3名女生,女生人教是男生的83 ,3名女生对应的分率就是83 — 52 。
3÷(83 — 52 )=18(人) 答: 阅览室有男生18人。
【举一反三】2、1、 某学校舞蹈队男生人数是女生的35 ,调来了3名女生后,男生人数是女生的611 。
该学校舞蹈队有男生多少人?2、水果店运来苹果和梨两种水果,苹果的重量是梨的56 ,卖出20 千克梨后,幸果的重量是梨的54 ,运来苹果多少千克?【经典例题】3、在阅览室看书的学生中,女生占47 ,后来又来了5个女生,这时女生占阅览室看书人数的35 。
六年级奥数分数应用题经典例题加练习带答案
一.知识回顾1.工厂原有职工128人,男工人数占总数,后来又调入男职工若干人,调入后男工人数占总人数,这时工厂共有职工人.【解析】在调入前后,女职工人数保持不变.在调入前,女职工人数为人,调入后女职工占总人数,所以现在工厂共有职工人.2.有甲、乙两桶油,甲桶油质量是乙桶倍,从甲桶中倒出5千克油给乙桶后,甲桶油质量是乙桶倍,乙桶中原有油千克.【解析】原来甲桶油质量是两桶油总质量,甲桶中倒出5千克后剩下油质量是两桶油总质量,由于总质量不变,所以两桶油总质量为千克,乙桶中原有油千克.【例 2】(1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在价格和原价格比较升高、降低还是不变?【解析】(1)设二月份产量是1,所以元月份产量为:,三月份产量为:,因为>0.9,所以三月份比元月份减产了(2)设商品原价是1,涨价后为,降价15%为:,现价和原价比较为:0.9775<1,所以价格比较后是价降低了。
【巩固】把个人分成四队,一队人数是二队人数倍,一队人数是三队人数倍,那么四队有多少个人?【解析】方法一:设一队人数是“”,那么二队人数是:,三队人数是:,,因此,一、二、三队之和是:一队人数,因为人数是整数,一队人数一定是整数倍,而三个队人数之和是(某一整数),因为这是以内数,这个整数只能是.所以三个队共有人,其中一、二、三队各有,,人.而四队有:(人).方法二:设二队有份,则一队有份;设三队有份,则一队有份.为统一一队所以设一队有份,则二队有份,三队有份,所以三个队之和为份,而四个队份数之和必须是因数,因此四个队份数之和是100份,恰是一份一人,所以四队有人(人).【例 3】新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数,美术班人数相当于另外两个班人数,体育班有人,音乐班和美术班各有多少人?【解析】条件可以化为:音乐班人数是所有班人数,美术班学生人数是所有班人数,所以体育班人数是所有班人数,所以所有班人数为人,其中音乐班有人,美术班有人.【巩固】甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工零件数,甲加工零件数是乙、丙加工零件总数,则甲、丙加工零件数分别为个、个.【解析】把乙加工零件数看作1,则丙加工零件数为,甲加工零件数为,由于甲比乙多加工20个,所以乙加工了个,甲、丙加工零件数分别为个、个.【例 4】王先生、李先生、赵先生、杨先生四个人比年龄,王先生年龄是另外三人年龄和,李先生年龄是另外三人年龄和,赵先生年龄是其他三人年龄和,杨先生26岁,你知道王先生多少岁吗?【解析】方法一:要求王先生年龄,必须先要求出其他三人年龄各是多少.而题目中出现了三个“另外三人”所包含对象并不同,即三个单位“”是不同,这就是所说单位“”不统一,因此,解答此题关键便是抓不变量,统一单位“”.题中四个人年龄总和是不变,如果以四个人年龄总和为单位“”,则单位“”就统一了.那么王先生年龄就是四人年龄和,李先生年龄就是四人年龄和,赵先生年龄就是四人年龄和(这些过程就是所谓转化单位“”).则杨先生年龄就是四人年龄和.由此便可求出四人年龄和:(岁),王先生年龄为:(岁).方法二:设王先生年龄是1份,则其他三人年龄和为2份,则四人年龄和为3份,同理设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同,但是现在四人年龄和分别是3份、4份、5份,它们最小公倍数是60份,所以最后可以设四人年龄和为60份,则王先生年龄就变为20份,李先生年龄就变为15份,赵先生年龄就变为12份,则杨先生年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40岁.【巩固】 甲、乙、丙、丁四个筑路队共筑1200米长一段公路,甲队筑路是其他三个队12,乙队筑路是其他三个队13 ,丙队筑路是其他三个队14 ,丁队筑了多少米?【解析】 甲队筑路是其他三个队,所以甲队筑路占总公路长; 乙队筑路是其他三个队,所以乙队筑路占总公路长; 丙队筑路是其他三个队,所以丙队筑路占总公路长,所以丁筑路为:(米)【例 5】 小刚给王奶奶运蜂窝煤,第一次运了全部,第二次运了块,这时已运来恰好是没运来.问还有多少块蜂窝煤没有运来?【解析】 方法一:运完第一次后,还剩下没运,再运来块后,已运来恰好是没运来,也就是说没运来占全部,所以,第二次运来块占全部:,全部蜂窝煤有:(块),没运来有:(块).方法二:根据题意可以设全部为份,因为已运来恰好是没运来,所以可以设全部为份,为了统一全部蜂窝煤,所以设全部蜂窝煤共有份,则已运来应是份,没运来份,第一次运来份,所以第二次运来是份恰好是块,因此没运来蜂窝煤有(块).【巩固】 五(一)班原计划抽人参加大扫除,临时又有个同学主动参加,实际参加扫除人数是其余人数.原计划抽多少个同学参加大扫除?【解析】 又有个同学参加扫除后,实际参加扫除人数与其余人数比是,实际参加人数比原计划多.即全班共有(人).原计划抽(人)参加大扫除.【巩固】某校学生参加大扫除人数是未参加大扫除人数,后来又有20名同学参加大扫除,实际参加人数是未参加人数,这个学校有多少人?【解析】(人).【例 6】小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉玻璃球比小刚少;如果小刚给小莉24个,则小刚玻璃球比小莉少,小莉和小刚原来共有玻璃球多少个?【解析】小莉给小刚24个时,小莉是小刚(=1一),即两人球数和;小刚给小莉24个时,小莉是两人球数和(=),因此24+24是两人球数和-=.从而,和是(24+24) ÷=132(个).【巩固】某班一次集会,请假人数是出席人数,中途又有一人请假离开,这样一来,请假人数是出席人数,那么,这个班共有多少人?【解析】因为总人数未变,以总人数作为”1”.原来请假人数占总人数,现在请假人数占总人数,这个班共有:l÷(-)=50(人).【例 7】小明是从昨天开始看这本书,昨天读完以后,小明已经读完页数是还没读页数,他今天比昨天多读了页,这时已经读完页数是还没读页数,问题是,这本书共有多少页?”【解析】首先,可以直接运算得出,第一天小明读了全书,而前二天小明一共读了全书,所以第二天比第一天多读页对应全书。
(完整版)六年级奥数分数应用题
(完整版)六年级奥数分数应用题六年级奥数分数应用题【指点迷津】解答较复杂的分数应用题时,我们往往从题目中找出不变的量,把不变的量看作单位“1”,将已知条件进行转化,找出所求数量相当于单位“1”的几分之几,再列式解答。
【经典例题】1、有两筐苹果。
乙筐是甲筐的57 ,从甲筐取出6 千克放入乙筐后,乙筐的苹果是甲筐的45 。
甲、乙两筐苹果共重多少千克?【思路导航】由于是从甲重取出6千克放入乙筐的,所以两筐苹果的总质量没有变,把两筐苹果的总质量看作单位“1”,则原来甲筐苹果占总重量的75+7 ,后来甲筐苹果占总重量的55+4 。
所以6千克苹果相当于总重量的75+7 —55+4 =136 。
6÷(75+7 —55+4 )=216(千克) 答:甲、乙两筐苹果共重216千克。
【举一反三】1、1、乙队原来有的人数是甲队的 3 7 ,现在甲队派30人到乙队,则乙队人数是甲队的23 。
甲、乙两队共有多少人?2、有甲、乙两个粮仓,原来甲粮仓存粮的吨数是乙粮仓的 75 。
如果从甲粮仓调5吨到乙粮仓,甲粮仓的吨数就是乙粮仓的45 。
原来甲、乙粮仓各存粮多少吨?【经典例题】2、在阅览室看书的学生中,男生人数是女生的25 ,又来了3名女生后,男生人数是女生的38 。
阅览室有男生多少人?【思路导航】原来“男生人数是女生的25 ”,后来“ 男生人数是女生的38 ”,虽然都是女生的几分之几,但女生人数前后发生了变化。
在解答时,只能抓住不变的量,即男生人数。
可以这样看,原来女生人数是男生的52 ,后来增加了3名女生,女生人教是男生的83 ,3名女生对应的分率就是83 — 52 。
3÷(83 — 52 )=18(人) 答: 阅览室有男生18人。
【举一反三】2、1、某学校舞蹈队男生人数是女生的35 ,调来了3名女生后,男生人数是女生的611 。
该学校舞蹈队有男生多少人?2、水果店运来苹果和梨两种水果,苹果的重量是梨的56 ,卖出20 千克梨后,幸果的重量是梨的54 ,运来苹果多少千克?【经典例题】3、在阅览室看书的学生中,女生占47 ,后来又来了5个女生,这时女生占阅览室看书人数的35 。
小学六年级_奥数专项:分数应用题
例1 新华书店运来一批图书,第一天卖出总数的81多16本,第二天卖出总数的21少8本,还余下67本。
这批图书一共多少本?分析:解答此题的关键是要找出实际数量的对应分率。
从含有倍数关系的句子可以看出图书的总数为“单位1”。
现在找出题中所给的数量与“单位1”之间的关系,见线段图:从图中可以看出卖出总数的81和21后,余下的分率是1-81-21=83,与83相对应的数量是(67-8+16),从而可以求这批图书。
解答:(67-8+16)÷1-81-21=200(本)说明:我们还可以通过另一种方法找出量率对应。
根据题意,我们可以列出下面的等式:总数的81+16本+总数的21-8本+余下的67本=“单位1”将等式变形,量率分别放在等号的两边:16本-8本+余下的67本=“单位1”-总数的81-总数的21从上面的式子中可以看出,(67-8+16)就是这批图书的1-81-21=83,因此列式为:(67-8+16)÷1-81-21=200(本)这种方法比较简单直观,思维比较顺畅,只要把题目的叙述翻译成等式即可。
例2 某工厂第一车间原有工人120名,现在调出81给第二车间后,这是第一车间的人数比第二车间现有人数的76还多3名。
求第二车间原来有多少人?分析:通过读题可知“从第一车间调出81的工人给第二车间”,即调出120×81=15名,这时第一车间还剩下105名工人。
这105名比第二车间现有人数的76还多3名。
那么这102名工人就相当于第二车间的现有人数的76了。
于是,第二车间现有人数与原来的人数就可以求了。
解答:(1)第一车间剩下的人数:120×(1-81)=105(名) (2)第二车间现在的人数:(105-3)÷76=119(名)(3)第二车间原来的人数:119-120×81=104(名)例3 学校图书室内有一架故事书,借出总数的75%之后,有放上60本,这时架上的书是原来总数的31。
奥数分数应用题及答案
奥数分数应用题及答案题目1:小明有一些糖果,他给了小华1/3,然后又给了小刚1/4。
如果小明最后剩下10颗糖果,那么小明最初有多少颗糖果?答案:设小明最初有x颗糖果。
根据题意,小明给了小华1/3x颗糖果,又给了小刚1/4x颗糖果,剩下的是x - 1/3x - 1/4x = 10。
将分数合并,我们得到5/12x = 10。
解这个方程,我们得到x = 10 * 12/5 = 24。
所以,小明最初有24颗糖果。
题目2:一个班级有60名学生,其中1/3是男生,1/4是女生,剩下的是其他学生。
如果班级中女生人数是其他学生人数的2倍,那么这个班级有多少名女生?答案:设班级中有x名女生。
根据题意,男生人数为60 * 1/3 = 20,女生人数为60 * 1/4 = 15。
剩下的学生人数为60 - 20 - 15 = 25。
因为女生人数是其他学生人数的2倍,我们有x = 2 * 25。
解这个方程,我们得到x = 50。
但这个结果与题意不符,因为班级总人数只有60名。
所以,我们需要重新计算女生人数。
正确的计算应该是女生人数加上其他学生人数等于班级总人数减去男生人数,即x + 25 = 60 - 20,解得x = 15。
所以,这个班级有15名女生。
题目3:一个水池,如果用小水管注水需要4小时注满,用大水管注水需要3小时注满。
如果两个水管同时注水,需要多少时间才能注满水池?答案:设水池的容量为C。
小水管每小时注水量为C/4,大水管每小时注水量为C/3。
当两个水管同时注水时,每小时的注水量为C/4 + C/3。
将两个分数合并,我们得到7C/12。
因此,注满水池需要的时间为C /(7C/12) = 12/7小时,即1小时48分钟。
题目4:一个水果店有苹果和橙子,苹果的重量是橙子的2/3。
如果苹果的重量增加了50千克,那么苹果的重量就会是橙子的3/4。
求原来苹果和橙子各有多少千克?答案:设橙子的重量为x千克,那么苹果的重量为2/3x千克。
六年级上册:分数应用题奥数基础(带答案)
奥数基础篇之分数应用题
1、晶晶三天看完一本书,第一天看了全书的 ,第二天看了余下的 ,第二天比第一天多看了15页。这本书共有多少页?
300
变形1:
晶晶三天看完一本书,第一天看了全书的 ,第二天看了第一天的 ,还剩下130页。这本书共有多少页?
200
变形2:
晶晶三天看完一本书,第一天看了全书的 ,第二天看了第一天的 ,两天一共看了70页。这本书共有多少页?
66.67%
3、男生比女生少 ,女生比男生多几分之几?
2/5
4、水结成冰体积增加 ,冰化成水体积减少几分之几?
1/12
5、甲数是乙数的 ,乙数是丙数的 ,甲、乙、丙的和是216.甲、乙、丙各是多少?
48、72、96
6、甲数是乙数的 ,乙数是丙数的 ,甲、乙、丙三数的和是152.甲、乙、丙三数各是多少?
300
变形2:
有一批货物,第一天运来这批货物的 ,第二天运了余下的 ,两天共运了90吨。这批货物有多少吨?
900/7
变形3:
有一批货物,第一天运来这批货物的 ,第二天运的是第一天的 ,两天共运了90吨。这批货物有多少吨?
225
3、一修路队,第一天修了这条公路的 ,第二天修了余下的 ,已知这两天共修了1200米。这条公路全长多少米?
560
2、某小学五年级三个班植树,一班植树的棵数占三班总棵数的 ,二班与三班植树的棵数的比3:5,二班比三班少植树40棵。这三个班各植树多少棵?
40 60 100
3、图书角有故事书、科技书、文艺书这三种书,故事书的本数占总人数的 ,科技书的本数是文艺书的 ,文艺书比故事书少20本。图书角共有书多少本?
24 27
2、图书馆买来科技书和文艺书共340本,文艺书本数的 等于科技书本数的 。两种书各买来多少本?
六年级奥数分数、百分数应用题
30(厘米)
答:木杆原来的长是30厘米。
例7甲、乙两个学校的图书馆共有故事书170本,后来甲校又买了它原有故事书的
1 4
,乙校买了它原有故事书的 1 5
,这时两校共有故事书208本,现在两校各有
故事书多少本?
答案:甲校100本,乙校108本
作第业二:次运1.一走堆余下化肥的,5 第少一10次吨运,走第全三部次重运量走的剩下25的,74
4 x 2 112 2 x 42
97
7
4 x 2 x 10 97
x 63 ——甲厂
例5. 甲厂与乙厂去年共上
交税金112万元,已知甲厂 上交税金的 4 与乙厂上交税 金的 2 共42万9 元,两厂去年 各上交7 税金多少万元?
112 63 49(万元)
答:甲厂上交税金63万元,乙厂上交49万元。
自己试一试还可以怎样做
例4.
1只猴子摘了一堆桃子,第一天吃了这堆桃子的
1 7
,第二天吃了余下的桃子的
16,,第第六三天天吃吃了了余余下下的桃21 子,的这15时,还第剩四下天12吃个了桃余子下,的那么41 ,第第一五天天和吃第了二余天下所的吃桃13子的
总数是多少?
分析与解:根据这道题的特点,用逆推法分析解答较好。逆推法就是从问题的结果
1
1
例所6剩.一木个杆木的杆41,,第第四一次次截截去去所了剩全木长杆的的2 ,15 第,二这次时截量去得所所剩剩木木杆杆的长为3,6第厘三米次。截去
木杆原来的长是多少厘米?
6 (1 1) (1 1) (1 1) (1 1)
5
4
3
2
6 4 3 2 1 5432
111 6 5 4 3 2
六年级数学分数奥数题(附答案)
分数乘除应用题奥数1.把甲乙丙三根木棒插入水池中,三根木棒的长度和为360厘米,甲有3/4在水外,乙有4/7在水外,丙有2/5在水外。
水有多深2.小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书3.甲数比乙数多1/3,乙数比甲数少几分之几4.有梨和苹果若干个,梨的个数是全体的5/3少17个,苹果的个数是全体的7/4少31个,那么梨和苹果的个数共多少5.有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是9分之7,这个分数是多少6.把一根绳分别折成5股和6股,5股比6股长20厘米,这根绳子长多少米7.小萍今年的年龄是妈妈的1/3,两年前母女的年龄相差24岁。
四年后小萍的年龄是多少岁8.有一篮苹果,甲取一半少一个,乙取余下的一半多一个,丙又取余下的一半,结果还剩下一个。
如果每个苹果值1元9角8分,那么这篮苹果共值多少元12.把100个人分成四队,一队人数是二队人数的4/3倍,一队人数是三队人数的5/4倍,那么四队有多少人13.足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,每张门票降价多少元14.甲、乙、丙三人共同加工一批零件。
甲比乙多加工零件20个,丙加工的零件是乙加工零件的4/5,甲加工的零件是乙丙两人加工零件总数的5/6.甲、乙、丙各加工零件多少个18.某校六年级共有152人,选出男生的1/11和5名女生去参加科技小组,则剩下的男女生人数刚好相等,六年级男女生各有多少人19.林林倒满一杯纯牛奶,第一次喝了1/3,然后加入豆浆,将杯子斟满并搅拌均匀,第二次,林林又喝了1/3,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么第四次后,林林共喝了一杯纯牛奶总量的多少(用分数表示)20.有一根1米长的木条,第一次去掉它的1/5;第二次去掉余下木条的1/6;第三次又去掉第二次余下木条的1/7;这样一直下去,最后一次去掉上次余下木条的1/10。
六年级数学分数奥数题(附答案)
分数乘除运用题奥数1.把甲乙丙三根木棒拔出水池中,三根木棒的长度和为360厘米,甲有3/4在水外,乙有4/7在水外,丙有2/5在水外.水有多深?2.小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有若干本书?3.甲数比乙数多1/3,乙数比甲数少几分之几?4.有梨和苹果若干个,梨的个数是全部的5/3少17个,苹果的个数是全部的7/4少31个,那么梨和苹果的个数共若干?5.有一个分数,它的分母比分子多4,假如把分子.分母都加上9,得到的分数约分后是9分之7,这个分数是若干?6.把一根绳分离折成5股和6股,5股比6股长20厘米,这根绳索长若干米?7.小萍本年的年纪是妈妈的1/3,两年前母女的年纪相差24岁.四年后小萍的年纪是若干岁?8.有一篮苹果,甲取一半少一个,乙取余下的一半多一个,丙又取余下的一半,成果还剩下一个.假如每个苹果值1元9角8分,那么这篮苹果共值若干元?12.把100小我分成四队,一队人数是二队人数的4/3倍,一队人数是三队人数的5/4倍,那么四队有若干人?13.足球赛门票15元一张,降价后不雅众增长了一半,收入增长了五分之一,每张门票降价若干元?14.甲.乙.丙三人配合加工一批零件.甲比乙多加工零件20个,丙加工的零件是乙加工零件的4/5,甲加工的零件是乙丙两人加工零件总数的5/6.甲.乙.丙各加工零件若干个?18.某校六年级共有152人,选出男生的1/11和5名女生去介入科技小组,则剩下的男女生人数刚好相等,六年级男女生各有若干人?19.林林倒满一杯纯牛奶,第一次喝了1/3,然后参加豆乳,将杯子斟满并搅拌平均,第二次,林林又喝了1/3,持续用豆乳将杯子斟满并搅拌平均,反复上述进程,那么第四次后,林林共喝了一杯纯牛奶总量的若干?(用分数暗示)20.有一根1米长的木条,第一次去失落它的1/5;第二次去失落余下木条的1/6;第三次又去失落第二次余下木条的1/7;如许一向下去,最后一次去失落前次余下木条的1/10.问:这根木条最后还剩下多长?21.某小学一至六年级共有780人.在介入数学兴致进修的学生中,恰有17分之8是六年级的学生,有23分之9是五年级的学生,那么,该校没有介入数学兴致小组的学生有几人? 22.用甲.乙两种糖配成什锦糖,假如用3份甲种糖和2份乙种糖配成的1千克什锦糖,比用2份和3份乙种糖配成的1千克什锦糖贵1.32元,那么1千克甲种糖比1千克乙种糖贵若干元呢?23.今有苹果95个,分给甲.乙两班同窗吃.甲班分到的苹果有2/9是坏的,其他是好的;乙班分到的苹果有3/16是坏的,其他是好的.甲.乙两班分到的好苹果共有若干个?24.一满杯水溶入10克糖,搅匀后喝去3分之2,添入6克糖,加满水,又搅匀,再喝去3分之2,添入6克糖,加满水,搅匀后,喝去3分之2,喝去之后杯里还剩下若干糖?25.一份材料,甲单独打完要3小时,以单独打完要5小时,甲乙两人合作打完要若干小时?26.打扫多功效教师,甲组同窗1/3小时可以打扫完,乙组同窗1/4小时可以打扫完,假如甲.乙合做,若干小时能打扫完全个教室?27.一项工程,甲队单独做须要18天,乙独做15天完成,现决议由甲.乙二人配合完成,但半途甲有事告假四天,那么完成义务时甲现实做了若干天?答案:1.设水深xcm,则甲长4x,乙长7x/3,丙长5x/34x+7x/3+5x/3=360x=45水有45cm深2.考点:逆推问题.剖析:本题须要从问题动身,一步步向前推,小刚剩的2本书加上3本就是小明借走后的一半,那么就可以求出小明借走后的数目,同理可以求出小华借走后的数目,进而可求小明原有的数目.解答:解:小峰未借前有书:(2+3)÷(1-1/2 )=10(本),小明未借之前有:(10+2)÷(1-1/2 )=24(本),小刚原有书:(24+1)÷(1-1/2 )=50(本).答:小明原有书50本.故答案为:50.“1”,甲数是:1+1/3=4/3乙数比甲数少:1/3÷4/3=1/44.解:设总数有35X个那么梨有35X*3/5-17=21X-17个苹果有35X*4/7-31=20X-31个20X-31+21X-17=35X41X-48=35X6X=48X=8所以梨有21×6-17=109个苹果有20×6-31=89个5.设分子为X,分母为X+4,则;(X+9)/(X+13)=7/9;解之,得X=5 答:该分子为5/9÷(1/5-1/6)=600cm7.解:设小萍本年X岁,则妈妈本年3X岁3X-2=X-2+24 3X=X+24 2X=24 X=12最终答案:12+4=16(岁)8.丙又取其余的一半,成果还剩一个,解释丙取前是1+1=2个乙取余下的一半多一个,则乙取前是(2+1)*2=6个甲取个中的一半少一个,则甲取前时(6-1)*2 = 10个是以,本来有10个下面是解题进程:设这袋苹果本来X个,则甲取走苹果的个数为X/2-1乙取走苹果的个数为(X-X/2+1)/2+1丙取走苹果的个数(也是残剩的个数)为:总数-甲取走-乙取走,即【X-X/2+1-(X-X/2+1)/2-1】/2=1 解方程得X=1012.设第一队为1,第二队为3/4,第三队为4/5,则三队和为1+3/4+4/5=51/20,可知,第一队人数应为20的倍数.第一队为20时,20+15+16+49=100;第一队为40时,40+30+32>100 舍去.所以,20+15+16+49=100为独一解,即:第四队有49人.ps:也可将第一队设为k人,三队之和=51k / 20 ;显见,k应为20的倍数.只有k=20时有解.13.不雅众增长一倍,即本来只有一小我来看,如今是两小我来看. 收入增长1/5,即如今两小我的总票价比本来一小我时单人票价多1/5,为15*(1+1/5)=18元平均每人18/2=9元比本来下降了15-9=6元下降了6/15=40%答:解:15-15×[(1+1 /5 )÷(1+1 /2 )=15-15×[6 /5 ÷3 /2 ]=15-15×[6/ 5 ×2 /3 ]=15-15×4/ 5=15-12=3(元)答:一张门票降价是3元.故填:3.点评:此题症结是找准单位“1”,找准单位“1”对应的量,求单位“1”,用除法,告知单位“1”,求单位“1”的几分之几,用乘法.降价前假设有10名不雅众,收入为L=15×10=150(元)如今有15人,降x元,(15-x)×15=150×(1+1/5)225-15x=18015x=45x=3,降价3元.14.设:甲加工x个,乙加工x-20,丙加工4/5(x-20)5/6[x-20+4/5(x-20)]=x x=60乙加工=60-20=40丙加工=40×4/5=3218.男生有x人,女生有152-x(10/11)x=152-x-5x=77男生77人,女生75人搅匀之后又是1/3,那么此次是2/3*1/3=2/9,剩下1-1/3-2/9=4/9再平均之后1/3,那么此次是4/9*1/3=4/24,剩下4/9-4/27=8/27再平均之后1/3,那么此次是8/27*1/3=8/81,剩下8/27-8/81=16/81那么一共喝了1-16/81=65/8120.1*(1-1/5)*(1-1/6)*(1-1/7)……*(1-1/100)=4/5*5/6*6/7……99/100=4/100=1/2521.因为人数必须是整数,17和23的最小公倍数是391,所以介入兴致小组的人数是391人没介入兴致小组的人数=780-391=389人第一次用3千克甲和2千克乙配成的什锦糖5千克第二次用2千克甲和3千克乙配成的什锦糖5千克×第一次减去第二次,就是1kg甲种糖比1kg乙种糖贵的钱数ד甲班分到的苹果有2/9是坏的”可以推想甲班分到苹果的个数是9的倍数,同理可推想乙班分到苹果的个数是16的倍数.设甲班分到9a个,乙班分到16b个,则,当a.b都是整数时,a=7,b=2即甲班分到(9×7)=63个,乙班分到(16×2)=32个.甲好苹果的个数:63×7/9=49个乙有好苹果的个数:32×13/16=26个甲.乙两班分到的好苹果共有:49+26=75个24.第一次喝去2/3,剩10×(1-2/3)=10/3克糖.再加6克糖得28/3克糖.加满水再喝去2/3,剩28/3×(1-2/3)=28/9克糖.再加6克糖得82/9克糖.加满水再喝去2/3,最后剩82/9×(1-2/3)=82/27克糖.÷3=1/3乙每小时打1/5篇 1÷5=1/5一路打 1÷(1/3+1/5)=1÷8/15=15/8=1 7/8 (小时)甲的速度为3X,乙的速度为4X配合打扫只需:X/(3X+4X)=1/7(小时)27.甲告假四天所以就相当于乙做4天,然后合作甲1天作1/18,乙是1/15,以乙4天作4/15,有1-4/15=11/15合作一天完成1/18+1/15=11/90,以甲做了11/15÷11/90=6天。
六年级奥数分数应用题经典例题加练习带答案(2021年整理)
一.六年级奥数分数应用题经典例题加练习带答案(word版可编辑修改) 二.三.四.编辑整理:五.六.七.八.九.尊敬的读者朋友们:十.这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(六年级奥数分数应用题经典例题加练习带答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
十一.本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为六年级奥数分数应用题经典例题加练习带答案(word版可编辑修改)的全部内容。
十二.十三.知识的回顾1。
工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工 人.【解析】 在调入的前后,女职工人数保持不变.在调入前,女职工人数为1128(1)964⨯-=人,调入后女职工占总人数的23155-=,所以现在工厂共有职工3961605÷=人.2。
有甲、乙两桶油,甲桶油的质量是乙桶的52倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的43倍,乙桶中原有油 千克.【解析】 原来甲桶油的质量是两桶油总质量的55527=+,甲桶中倒出5千克后剩下的油的质量是两桶油总质量的44437=+,由于总质量不变,所以两桶油的总质量为545()3577÷-=千克,乙桶中原有油235107⨯=千克.【例 2】 (1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?【解析】 (1)设二月份产量是1,所以元月份产量为: ()1011+10%=11÷,三月份产量为:110%=0.9-,因为1011>0。
六年级分数奥数题及答案
六年级分数奥数题及答案分数在数学中是一个非常重要的概念,对于六年级的学生来说,掌握分数的运算和应用是提高数学能力的关键。
以下是一些分数的奥数题目以及相应的答案,供学生练习和参考。
题目1:如果一个班级有40名学生,其中3/5是男生,那么这个班级有多少名女生?答案:班级中男生的数量是40 * 3/5 = 24名。
因此,女生的数量是40 - 24 = 16名。
题目2:一个分数的分子和分母之和是21,如果分子增加2,这个分数就变成了1。
求原来的分数。
答案:设原来的分数为x/y,根据题意,x + y = 21,且 (x + 2) / y = 1。
解这个方程组,我们得到x = 19,y = 2,所以原来的分数是19/2。
题目3:小明有3/4升的果汁,他喝了1/5升。
他喝了多少升果汁?答案:小明喝的果汁量是3/4 * 1/5 = 3/20升。
题目4:一个分数,当它的分子减少1后,这个分数等于1/3;当它的分母减少1后,这个分数等于1/2。
求这个分数。
答案:设这个分数为x/y,根据题意,(x - 1) / y = 1/3,x / (y - 1) = 1/2。
解这个方程组,我们得到x = 5,y = 12,所以这个分数是5/12。
题目5:一个分数的分子是分母的3/5,如果分子增加10,分母增加20,新的分数等于1/2。
求原来的分数。
答案:设原来的分数为x/y,根据题意,x = 3/5 * y,(x + 10) / (y+ 20) = 1/2。
解这个方程组,我们得到x = 15,y = 25,所以原来的分数是15/25,简化后为3/5。
这些题目覆盖了分数的基本运算、分数与整数的转换以及分数的比较等知识点,对于提高学生的分数理解和应用能力非常有帮助。
希望这些题目能够激发学生对数学的兴趣,并帮助他们在奥数竞赛中取得好成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.知识的回顾1.工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工 人. 【解析】 在调入的前后,女职工人数保持不变.在调入前,女职工人数为1128(1)964⨯-=人,调入后女职工占总人数的23155-=,所以现在工厂共有职工3961605÷=人. 2.有甲、乙两桶油,甲桶油的质量是乙桶的52倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的43倍,乙桶中原有油 千克. 【解析】 原来甲桶油的质量是两桶油总质量的55527=+,甲桶中倒出5千克后剩下的油的质量是两桶油总质量的44437=+,由于总质量不变,所以两桶油的总质量为545()3577÷-=千克,乙桶中原有油235107⨯=千克. 【例 2】 (1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?【解析】 (1)设二月份产量是1,所以元月份产量为: ()1011+10%=11÷,三月份产量为:110%=0.9-,因为1011>0.9,所以三月份比元月份减产了 (2)设商品的原价是1,涨价后为1+15%=1.15,降价15%为:()1.15115%=0.9775⨯-,现价和原价比较为:0.9775<1,所以价格比较后是价降低了。
【巩固】 把100个人分成四队,一队人数是二队人数的113倍,一队人数是三队人数的114倍,那么四队有多少个人?【解析】 方法一:设一队的人数是“1”,那么二队人数是:131134÷=,三队的人数是:141145÷=,345114520++=,因此,一、二、三队之和是:一队人数5120⨯,因为人数是整数,一队人数一定是20的整数倍,而三个队的人数之和是51⨯(某一整数), 因为这是100以内的数,这个整数只能是1.所以三个队共有51人,其中一、二、三队各有20,15,16人.而四队有:1005149-=(人). 方法二:设二队有3份,则一队有4份;设三队有4份,则一队有5份.为统一一队所以设一队有[4,5]20=份,则二队有15份,三队有16份,所以三个队之和为15162051++=份,而四个队的份数之和必须是100的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有1005149-=人(人).【例 3】 新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的25,美术班人数相当于另外两个班人数的37,体育班有58人,音乐班和美术班各有多少人?【解析】 条件可以化为:音乐班的人数是所有班人数的22527=+,美术班的学生人数是所有班人数的337310=+,所以体育班的人数是所有班人数的2329171070--=,所以所有班的人数为295814070÷=人,其中音乐班有2140407⨯=人,美术班有31404210⨯=人. 【巩固】 甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工零件数的45,甲加工零件数是乙、丙加工零件总数的56,则甲、丙加工的零件数分别为 个、 个.【解析】 把乙加工的零件数看作1,则丙加工的零件数为45,甲加工的零件数为453(1)562+⨯=,由于甲比乙多加工20个,所以乙加工了320(1)402÷-=个,甲、丙加工的零件数分别为340602⨯=个、440325⨯=个. 【例 4】 王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的12,李先生的年龄是另外三人年龄和的13 ,赵先生的年龄是其他三人年龄和的14,杨先生26岁,你知道王先生多少岁吗? 【解析】 方法一:要求王先生的年龄,必须先要求出其他三人的年龄各是多少.而题目中出现了三个“另外三人”所包含的对象并不同,即三个单位“1”是不同的,这就是所说的单位“1”不统一,因此,解答此题的关键便是抓不变量,统一单位“1”.题中四个人的年龄总和是不变的,如果以四个人的年龄总和为单位“1”,则单位“1”就统一了.那么王先生的年龄就是四人年龄和的11123=+,李先生的年龄就是四人年龄和的11134=+,赵先生的年龄就是四人年龄和的11145=+(这些过程就是所谓的转化单位“1”).则杨先生的年龄就是四人年龄和的11113134560---=.由此便可求出四人的年龄和:111261*********⎛⎫÷---= ⎪+++⎝⎭(岁),王先生的年龄为:1120403⨯=(岁). 方法二:设王先生年龄是1份,则其他三人年龄和为2份,则四人年龄和为3份,同理设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同的,但是现在四人年龄和分别是3份、4份、5份,它们的最小公倍数是60份,所以最后可以设四人年龄和为60份,则王先生的年龄就变为20份,李先生的年龄就变为15份,赵先生的年龄就变为12份,则杨先生的年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40岁.【巩固】 甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的12 ,乙队筑的路是其他三个队的13 ,丙队筑的路是其他三个队的14,丁队筑了多少米?【解析】 甲队筑的路是其他三个队的12,所以甲队筑的路占总公路长的11=1+23; 乙队筑的路是其他三个队的13,所以乙队筑的路占总公路长的11=1+34; 丙队筑的路是其他三个队的14,所以丙队筑的路占总公路长的11=1+45, 所以丁筑路为:11112001=260345⎛⎫⨯--- ⎪⎝⎭(米) 【例 5】 小刚给王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块,这时已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来? 【解析】 方法一:运完第一次后,还剩下58没运,再运来50块后,已运来的恰好是没运来的57,也就是说没运来的占全部的712,所以,第二次运来的50块占全部的:57181224-=,全部蜂窝煤有:150120024÷=(块),没运来的有:7120070012⨯=(块). 方法二:根据题意可以设全部为8份,因为已运来的恰好是没运来的57,所以可以设全部为12份,为了统一全部的蜂窝煤,所以设全部的蜂窝煤共有[8,12]24=份,则已运来应是5241075⨯=+份,没运来的7241475⨯=+份,第一次运来9份,所以第二次运来是1091-=份恰好是50块,因此没运来的蜂窝煤有5014700⨯=(块).【巩固】 五(一)班原计划抽15的人参加大扫除,临时又有2个同学主动参加,实际参加扫除的人数是其余人数的13.原计划抽多少个同学参加大扫除? 【解析】 又有2个同学参加扫除后,实际参加扫除的人数与其余人数的比是1:3,实际参加人数比原计划多11113520-=+.即全班共有124020÷=(人).原计划抽14085⨯=(人)参加大扫除. 【巩固】 某校学生参加大扫除的人数是未参加大扫除人数的14,后来又有20名同学参加大扫除,实际参加的人数是未参加人数的13,这个学校有多少人? 【解析】 11204003141⎛⎫÷-= ⎪++⎝⎭(人). 【例 6】 小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少73;如果小刚给小莉24个,则小刚的玻璃球比小莉少85,小莉和小刚原来共有玻璃球多少个?【解析】 小莉给小刚24个时,小莉是小刚的74 (=1一73),即两人球数和的114;小刚给小莉24个时,小莉是两人球数和的118(=5888-+),因此24+24是两人球数和的118-114=114.从而,和是(24+24) ÷114=132(个). 【巩固】 某班一次集会,请假人数是出席人数的91,中途又有一人请假离开,这样一来,请假人数是出席人数的223,那么,这个班共有多少人? 【解析】 因为总人数未变,以总人数作为”1”.原来请假人数占总人数的119+,现在请假人数占总人数的3322+,这个班共有:l ÷(3322+-119+)=50(人). 【例 7】 小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数19,他今天比昨天多读了14页,这时已经读完的页数是还没读的页数的13,问题是,这本书共有多少页?”【解析】 首先,可以直接运算得出,第一天小明读了全书的11911019=+,而前二天小明一共读了全书的1131413=+,所以第二天比第一天多读的14页对应全书的111241020-⨯=。
所以整本书一共有11428020÷=(页)。
此外,如果对分数的掌握还不是很熟练的话,那么这道题可以采用设份数的方法:把这本书看作20份,那么昨天他看了2份,而今天他看了2份还多14页,两天一共看了4份还多14页,或者可以表示成()20135÷+=(份)。
那么每份是()145414÷-=(页),这本书共1420280⨯=(页)。
【例 8】 小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数19,他今天比昨天多读了14页,这时已经读完的页数是还没读的页数的13,问题是,这本书共有多少页?”【解析】 新三班人数占原来两班人数之和的11513412--=,所以,原来两班总人数为:5307212÷=(人),新一班与新二班人数之和为:723042-=(人),新二班人数是:142(11)2010÷++=(人),新一班人数为:422022-=(人),新一班与新二班人数之差为22202-=,而新一班与新二班人数之差为(原一班人数-原二班人数)11()34⨯-,故:原一班人数-原二班人数112()2434=÷-=(人),原一班人数(7224)248=+÷=(人).【巩固】 某工厂对一、二两个车间的职工进行重组,将原来的一车间人数的12和二车间人数的13分到一车间,将原来的一车间人数的13和二车间人数的12分到二车间,两个车间剩余的140人组成劳动服务公司,现在二车间人数比一车间人数多117,现在一车间有 人,二车间有 人.【解析】 由“将一车间人数的12和二车间人数的13分到一车间,将一车间人数的13和二车间人数的12分到二车间”可知,现在一、二两车间的人数之和为总人数的115236+=,所以劳动服务公司的140人占总人数的51166-=,那么总人数为:11408406÷=人,现在一、二两车间的人数之和为58407006⨯=人.由于现在二车间人数比一车间人数多117,所以现在一车间人数为1700(11)34017÷++=人,现在二车间人数为700340360-=人.提示:可以继续求出原来一车间和二车间的人数.由于现在二车间比一车间多20人,所以原来二车间人数的111236-=比一车间人数的16多20人,那么原来二车间人数比乙车间人数多1201206÷=人,原来一车间有(840120)2360-÷=人,原来二车间有360120480+=人.【例 9】 林林倒满一杯纯牛奶,第一次喝了13,然后加入豆浆,将杯子斟满并搅拌均匀,第二次林林又喝了13,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么第四次后,林林共喝了一杯纯牛奶总量的 (用分数表示)。