计算方法-4插值方法

合集下载

数值计算中的插值方法-教案

数值计算中的插值方法-教案

数值计算中的插值方法-教案一、引言1.1数值计算与插值方法的背景1.1.1数值计算在现代科学和工程中的重要性1.1.2插值方法在数值计算中的应用1.1.3插值方法的基本概念和分类1.1.4教学目标和意义1.2插值方法的历史发展1.2.1古典插值方法的发展历程1.2.2现代插值方法的发展趋势1.2.3插值方法在不同领域的应用案例1.2.4学生对插值方法历史了解的重要性1.3教学方法和组织形式1.3.1采用的教材和参考资料1.3.2教学方法和策略1.3.3教学活动的组织形式1.3.4学生参与和互动的重要性二、知识点讲解2.1插值函数的构造2.1.1拉格朗日插值多项式2.1.2牛顿插值多项式2.1.3埃尔米特插值多项式2.1.4各种插值方法的优缺点比较2.2插值误差分析2.2.1插值多项式的余项2.2.2插值误差的估计2.2.3插值误差与数据点分布的关系2.2.4提高插值精度的方法2.3插值方法的应用2.3.1数据拟合与逼近2.3.2数值微积分2.3.3工程问题中的插值应用2.3.4学生实际操作和案例分析的必要性三、教学内容3.1拉格朗日插值多项式3.1.1拉格朗日插值多项式的定义3.1.2拉格朗日插值多项式的构造方法3.1.3拉格朗日插值多项式的性质3.1.4拉格朗日插值多项式的应用实例3.2牛顿插值多项式3.2.1牛顿插值多项式的定义3.2.2牛顿插值多项式的构造方法3.2.3牛顿插值多项式的性质3.2.4牛顿插值多项式的应用实例3.3埃尔米特插值多项式3.3.1埃尔米特插值多项式的定义3.3.2埃尔米特插值多项式的构造方法3.3.3埃尔米特插值多项式的性质3.3.4埃尔米特插值多项式的应用实例四、教学目标4.1知识与技能目标4.1.1理解插值方法的基本概念和分类4.1.2掌握拉格朗日、牛顿和埃尔米特插值多项式的构造方法4.1.3学会分析插值误差,并了解提高插值精度的方法4.1.4能够运用插值方法解决实际问题4.2过程与方法目标4.2.1培养学生的数学建模能力4.2.2培养学生的数据分析能力4.2.3培养学生的逻辑思维能力和问题解决能力4.2.4培养学生的合作与交流能力4.3情感态度与价值观目标4.3.1培养学生对数学学习的兴趣和热情4.3.2培养学生的科学精神和创新意识4.3.3培养学生的团队协作意识和责任感4.3.4培养学生的国际视野和跨文化交流能力五、教学难点与重点5.1教学难点5.1.1插值多项式的构造方法5.1.2插值误差的分析与估计5.1.3插值方法在实际问题中的应用5.1.4学生对插值方法的理解和应用能力5.2教学重点5.2.1插值方法的基本概念和分类5.2.2拉格朗日、牛顿和埃尔米特插值多项式的性质5.2.3插值方法在数值计算中的应用5.2.4学生对插值方法的应用和实践能力六、教具与学具准备6.1教具准备6.1.1多媒体设备6.1.2白板和笔6.1.3教学软件和应用程序6.1.4教学视频和演示文稿6.2学具准备6.2.1笔记本和文具6.2.2计算器和数学软件6.2.3相关教材和参考资料6.2.4学生自主学习的资源七、教学过程7.1导入新课7.1.1引入数值计算和插值方法的背景7.1.2提出问题,激发学生的兴趣7.1.3引导学生回顾相关知识点7.1.4提出教学目标和要求7.2知识讲解与演示7.2.1讲解插值方法的基本概念和分类7.2.2演示拉格朗日、牛顿和埃尔米特插值多项式的构造方法7.2.3分析插值误差,并介绍提高插值精度的方法7.2.4通过实例讲解插值方法在实际问题中的应用7.3学生练习与讨论7.3.1布置练习题,让学生独立完成7.3.2组织学生进行小组讨论和合作7.3.3引导学生提出问题和解决问题的方法7.3.4检查学生的练习情况,并进行点评和指导7.4.2引导学生思考插值方法在其他领域的应用7.4.3提供相关资料和资源,鼓励学生进行深入学习7.4.4布置作业,巩固学生的学习成果八、板书设计8.1板书设计概述8.1.1板书设计的重要性8.1.2板书设计的原则和策略8.1.3板书设计的内容和方法8.1.4学生对板书的理解和记忆能力8.2板书设计的内容8.2.1插值方法的基本概念和分类8.2.2拉格朗日、牛顿和埃尔米特插值多项式的构造方法8.2.3插值误差的分析与估计8.2.4插值方法在实际问题中的应用8.3板书设计的策略8.3.1采用图表和示意图进行辅助说明8.3.2使用颜色和标记进行突出和区分8.3.3运用逻辑结构和层次进行组织8.3.4结合多媒体和教具进行补充和拓展九、作业设计9.1作业设计概述9.1.1作业设计的重要性9.1.2作业设计的原则和策略9.1.3作业设计的内容和方法9.1.4学生对作业的理解和完成能力9.2作业设计的内容9.2.1基本概念和分类的回顾题9.2.2插值多项式的构造和应用题9.2.3插值误差的分析和计算题9.2.4实际问题的建模和解决题9.3作业设计的策略9.3.1设计不同难度层次的作业题9.3.2提供相关资料和资源进行辅助9.3.3鼓励学生进行合作和讨论9.3.4安排作业的批改和反馈机制十、课后反思及拓展延伸10.1课后反思10.1.1教学目标的达成情况10.1.2教学难点和重点的处理情况10.1.3教学方法和策略的有效性10.1.4学生的学习情况和反馈意见10.2拓展延伸10.2.1插值方法在其他领域的应用10.2.2相关的数学建模和数据分析方法10.2.3国际视野下的数值计算方法10.2.4学生自主学习和研究的机会重点关注环节及其补充说明:1.教学难点与重点:在讲解插值多项式的构造方法和插值误差分析时,应结合实例和图表进行详细解释,并引导学生进行实际操作和练习,以提高他们的理解和应用能力。

计算方法-4插值方法

计算方法-4插值方法

( xi x j ) 0
i 1 j 0
n
i 1
9
4.2 拉格朗日(Lagerange)插值多项式
4.2.1 基本插值多项式 观察一个两点的插值情况:
a0 a1 x0 y0 a0 a1 x1 y1
可以构造函数P1(x)为
x x1 x x0 P ( x) y0 y1 1 x0 x1 x1 x0
P3’ (x1)=L2’ (x1)+Q’(x1)=m1
可得
22
( x1 x2 ) 2 x1 x0 x2 y0 y1 ( x0 x1 )( x0 x2 ) ( x1 x0 )( x1 x2 ) ( x1 x0 ) y2 A( x1 x0 )( x1 x2 ) m1 ( x2 x0 )( x2 x1 )
10
4.2.1 基本插值多项式
如果令:
x x1 x x0 l0 ( x ) ,l1 ( x ) x0 x1 x1 x0
P ( x ) y0l0 ( x ) y1l1 ( x ) 1

显然,l0(x)和l1(x)是满足插值条件的一次插值多项式
l0 ( x0 ) 1 l1 ( x0 ) 0 l0 ( x1 ) 0 l1 ( x1 ) 1
15
4.2.3 插值余项
在节点处
Ln ( x j ) f ( x j ) j 0,1,..., n
在其它点上,均是近似值。记
Rn ( x ) f ( x ) Ln ( x )
称Rn(x)为插值多项式的余项。
16
定理:设f(n)(x)在[a,b]上连续,f(n+1)(x)在(a,b)内存在 节点, a≤x0<x1<…<xn≤b, Ln(x) 是满足插值条件处 , Ln(xj) 是=yj(j=0,1,2,…,n)的n次多项式,则对任意x 属于[a,b],插值余项

数值计算方法第2版 第4章 插值法

数值计算方法第2版 第4章 插值法


l ( x ) 1 ( k i ) , k i l ( x ) 0 ( k i ) , i 、 k 0 , 1 , , n k i
lk (x)称为关于节点xi( i=0,1,…,n)的n次插值基函数。
基函数的特点
1. 基函数的个数等于节点数。 2. n+1个节点的基函数是n次代数多项式。 3. 基函数和每一个节点都有关。节点确定,基函数就唯 一的确定。 4. 基函数和被插值函数无关。 5. 基函数之和为1。
公式的结构:它是两个一次函数的线性组合 线性插值基函数
x x 1 l ( x ) , 0 x x 0 1 x x 0 l ( x ) 1 x x 1 0
3 线性插值的几何意义 用直线 P ( x ) 近似代替被插值函数 f ( x ) 。

造数学用表。平方根表
给定函数在100、121两点的平方根如下表,试用线性 插值求115的平方根。 x 100 121
其系数行列式
a0 a1 x0 a2 x02 an x0n y0 2 n a0 a1 x1 a2 x1 an x1 y1 2 n a a x a x a x n n yn 0 1 n 2 n
1 x 0 x 02
x 0n
2 n 1 x x x 1 1 ( x x 0 V ( x , x , , x ) 1 i j) 0 1 n 0 j i n
1 xn
x n2 x nn
,a , ,a 0 1 n ,因此P(x)存在且唯一。 方程组有唯一解 a
唯一性说明不论用那种方法构造的插值多 项式只要满足相同的插值条件,其结果都是互 相恒等的。 推论 当f(x)是次数不超过n的多项式时, 其n次插值多项式就是f(x)本身。

ch2-4Hermite插值

ch2-4Hermite插值

则Hermite插值多项式为:
H ( x ) hi ( x ) yi H i ( x ) y'i
i 0
n
Hermite插值多项式的构造
hi ( x )在x j ( j i )处的函数值与导数值均 为0,
故可设 : hi ( x ) [a b( x xi )] [l i ( x )]2
这里li(x)为拉格朗日插值基函数
把 hi ( xi ) 1 h'i ( xi ) 0 (i 0,1,, n) 代入得
hi ( xi ) b l ( xi ) 2[a b( x xi )]l i ( xi )l i ( xi ) a 1; b 2al i ( xi ) 0
2. Hermite插值的基本定理;
3. Hermite插值多项式的构造 4.分段三次Hermite插值; 5.一般插值问题。
对x x1 1有:h0 (1) 0, h1 (1) 1, H 0 (1) 0,
(0) 0可设 由条件h0 (0) 1, h0 (1) 0, h0 h0 ( x ) (ax b)( x 1)
(0) 0, 得b a 1 利用h0 (0) 1, h0 所以h0 ( x ) ( x 1)( x 1) 1 x
( x i ) y i ( i 0,1,2,...n) '( xi ) y
' i
( i 0,1,2,...n)
保持插值曲线在节点处有切线(光滑), 使插值函数和被插函数的密和程度更好 。
二、 Hermite插值问题的提法
设函数f(x) 在区间[ a, b] 上有 n+1个互异节点 a=x0<x1<x2<……<xn=b , 定义在[a,b]上函数f(x) 在节点上满足: f(xi) = yi, f ' (xi)=y ' i, i=0,1,2……n 求一个次数不高于2n+1次的插值多项式H(x)

数值计算方法第四章插值1

数值计算方法第四章插值1

代数插值
代数插值
当f(x)是次数不超过n的多项式时,给定n+1个节点,其n次插值多项式就是f(x)本身.
代数插值几何意义
拉格朗日插值 逐次线性插值 牛顿插值 等距节点插值 反插值 埃尔米特插值 分段插值法 三次样条插值
拉格朗日插值 线性插值
格朗日插值 抛物线插值
基函数之和为1.
拉格朗日插值 n次插值
当插值点x∈(a,b)时称为内插,否则称为外插。
内插的精度高于外插的精度。
拉格朗日插值余项
余项 设函数f(x)在包含节点x0 , x1 ,…, xn的区间[a,b]上有n+1阶导数,则
拉格朗日插值
活动14
写出3次拉格朗日插值多项式及余项
拉格朗日插值
拉格朗日插值
作业5
已知函数表
应用拉格朗日插值公式计算f(1.300)的近似值.
数值计算方法
苏 强
江苏师范大学连云港校区
数学与信息工程学院 E-mail: 412707233@
数值计算方法 第四章 插值与曲线拟合
没有明显的解析表达式
使用不便的解析表达式
简单函数代替
插值问题
插值问题
代数插值 插值函数
被插值函数 插值节点
插值区间
三角多项式插值 有理函数插值
代数插值
抛物线插值
三点插值
拉格朗日插值 抛物线插值
抛物线插值
三点插值
拉格朗日插值 抛物线插值
拉格朗日插值 n次插值
称为关于节点
的n次插值基函数.
拉格朗日插值n次插值
基函数的个数等于节点数.
n+1个节点的基函数是n次代数多项式 基函数和每一个节点都有关。节点确定,基函数就唯一的确定。 基函数和被插值函数无关

第4章插值法第2讲

第4章插值法第2讲

米插值基函数。
计算方法
第四章 函 数 插 值
下面利用拉格朗日插值基函数li(x)(i=0,1,…,n)来构
造ai(x)和βi(x)。
因关于节点x0,x1,…,xn的拉格朗日基函数li(x)满足:
(j≠i, j=0, 1, …,n) 且l2i(x)是2n次多项式,由条件(4.25)式,可设ai(x)为
计算方法
第四章 函 数 插 值
定理4.4 满足插值条件(4.24)式的埃尔米插值多项式是
唯一的。 证明 设H2n+1(x)和 H 2n1 x 都是满足条件(4.24)式的埃 尔米插值多项式,令
x H2n1 x H2n1 x
则每个节点xi(i=0,1,…,n)均为φ(x)的二重根,即φ(x)有 2n+2个根,但φ(x)是个不高于2n+1次的多项式,所以φ(x)≡0,
米(Hermit)插值,它是代数插值问题的推广。
.5.1 一般情形的埃尔米插值问题
已知函数y=f(x)在区间[a, b]上n+1个互异节点x0,
x1,…,xn处的函数值为yi=f(xi)(i=0, 1, 2, …,n),导数值为 f′(xi)(注意:函数值个数与导数值个数相同),现要求做一个 次数不超过2n+1次的多项式H2n+1(x),使其满足下述2n+2个 插值条件:
2 2
2
2
计算方法 例1.
第四章 函 数 插 值
已知f ( x)在节点1, 2处的函数值为 f (1) 2 , f ( 2 ) 3 f ( x)在节点1, 2处的导数值为 f (1) 0 , f ( 2 ) 1
求f ( x)的两点三次插值多项式 , 及f ( x)在x 1.5,1.7处的函数值 .

计算方法4_插值方法

计算方法4_插值方法

习题44.1 给出概率积分dx ex f xx⎰-=22)(π的数据表:试用二次插值计算)472.0(f .4.3 设j x 为互异节点(n j ,,1,0 =),求证(1)),,1,0()(0n k x x l xnj kj kj=≡∑=(2) ),,1,0(0)()(0n k x l x xnj j kj=≡-∑=4.4 若1)(57++=x x x f ,则=]2,,2,2[710 f ,=]2,,2,2[810 f 。

4.5 若n n y 2=,求n y 2∆和n y 4∆.4.6 设)5,4,3,2,1,0(=i x i 为互异节点,)(x l i 为对应的5次Lagrange 插值基函数,则∑==+++523)()12(i i i i ix l x x x___________________。

4.7 证明两点三次Hermite 插值余项是),(,)())((!41)(1212)4(3++∈--=k k k k x x x x x x fx R ξξ4.8 设ji j nji j i x x x x x l --=∏≠=1)(是Lagrange 基函数,则⎩⎨⎧=)(j i x l 。

4.9求一个次数不超过4次的多项式)(x P ,使它满足,1)2(,1)1()1(,0)0()0(=='=='=P P P P P ,并写出其余项表达式。

4.10 求一个四次插值多项式)(x H ,使0=x 时,2)0(',1)0(-=-=H H ;而1=x 时,20)1(",10)1(',0)1(===H H H ,并写出插值余项的表达式。

4.11 构造适合下列数据表的三次样条插值函数S (x )4.12 已知实验数据试用最小二乘法求经验直线x a a y 10+=。

4.13利用最小二乘法求一个形如2210)(x a x a a x y ++=的经验公式,使它与下列数据拟合:4.14 用最小二乘法求一个形如2bx a y +=的经验公式,使与下列数据相拟合。

第2章1-4节 插 值 法

第2章1-4节 插 值 法

12
图2-3
13
2.
n次插值多项式
根据插值的定义
Ln ( x j ) y j
Ln (x) 应满足
( j 0,1, , n).
为构造 L
n
( x),
先定义 n 次插值基函数.
14
定义1 若
n 次多项式 L j ( x) ( j 0,1, , n) 在 n 1 个节点
x0 x1 xn
b, Ln ( x)
( n1)
定理2 设 f
(n)
( x)
( x ) 在 ( a, b) 内
存在,节点 a x0 x1 xn
是满足条件
的插值多项式,则对任何 x [a, b] ,插值余项
Rn ( x) f ( x) Ln ( x) f
( n 1
( )
(n 1)!
11
显然,lk (x) 及 lk 1 ( x) 也是线性插值多项式,在节点 xk 及 上满足条件
lk ( xk ) 1, lk 1 ( xk ) 0, lk ( xk 1 ) 0, lk 1 ( xk 1 ) 1,
xk 1

lk (x) 及 lk 1 ( x) 为线性插值基函数, 图形见图2-3.
( xk 1 , yk 1 )
的直线. 如图2-2.
图2-2
10

L1 ( x)
的几何意义可得到表达式
yk 1 y k xk 1 xk ( x xk )
L1 ( x ) yk
(点斜式), (两点式),
L1 ( x )
xk 1 x xk 1 xk
yk
x xk xk 1 xk

插值方法

插值方法

点密度分析的工作原理Resource Center»专业库»地理处理»地理处理工具参考»Spatial Analyst 工具箱»密度分析工具集»密度分析工具集概念点密度分析工具用于计算每个输出栅格像元周围的点要素的密度。

从概念上讲,每个栅格像元中心的周围都定义了一个邻域,将邻域内点的数量相加,然后除以邻域面积,即得到点要素的密度。

如果Population 字段设置使用的是NONE 之外的值,则每项的值用于确定点被计数的次数。

例如,值为 3 的项会导致点被算作三个点。

值可以为整型也可以为浮点型。

如果选择的是面积单位,则计算所得的像元密度将乘以相应因子,然后写入到输出栅格。

例如,如果输入地面单位是米,将以米和千米为单位的单位比例因子进行比较,会得到相差1,000,000 (1,000 米x 1,000 米) 倍的值。

该工具可用于查明房屋、野生动物观测值或犯罪事件的密度。

可使用population 字段根据要素的重要程度赋予某些点比其他点更大的权重,该字段还允许使用一个点表示多个观测值。

例如,一个地址可以表示一栋包含六个独立单元的公寓,或者在确定总体犯罪率时可赋予某些罪行比其他罪行更大的权重。

增大半径不会使计算所得的密度值发生很大变化。

因为虽然落入较大邻域内的点会增多,但计算密度时该数值要除以的面积也将更大。

更大半径的主要影响是计算密度时需要考虑更多的点,这些点可能距栅格像元更远。

这样会得到更加概化的输出栅格。

示例下面是一些使用面积单位比例因子更改输出密度单位的示例:∙地图单位是米,所以密度的默认单位是邻域内每平方米的点数。

需要以每公顷(10,000 平方米)的点数为单位来计算密度。

o使用比例因子100(100 × 100 米为一公顷)。

∙地图单位是英尺,需要以每平方英里的点数为单位来计算密度。

o使用比例因子5,280(一英里含的英尺数)。

【推荐】数值计算方法:第4章-多项式插值方法.ppt

【推荐】数值计算方法:第4章-多项式插值方法.ppt

两点
多项式插值就是直线
, 经过这两点的
称给定
为线性插值多项式。称
为关于点
的线性插值基函数,其在节点处满足:
6
4.2.1 线性插值与二次插值 假定插值节点为 , , ,要求二次插值多项式
几何上
是通过三点
可以用基函数的方法求的表源自式,是二次函数,的抛物线.
7
4.2.2 拉格朗日插值多项式
求n+1个次数 满足
且次数不超过n 的多项式,其所给出形式的系数为

为牛顿(Newton)均差插值多项式.
系数 就是均差表4-1中主对角线上的各阶均差, 它比拉格朗日插值计算量省,且便于程序设计.
25
4.3.2 Newton均差插值多项式 (*)为插值余项,由插值多项式惟一性知,它与
拉格朗日插值多项式的余项应该是等价的. 事实上,利用均差与导数关系式就可以证明这一点. 但(3.7)更有一般性,它在 是由离散点(给3.出7)的
式求 x 的近似值。
解 (1) 选取节点x=2,3,4
xf 一 二 三
kk
(x k)
阶 均
阶 均
阶 均
31
32
4.4 分段低次插值
4.4.1 Runge现象 在次数 增加时逼近 的精度是否也增加?
问题:根据区间 上给出的节点做出的插值多项式
事实上,对于有些函数,插值多项式次数很高时会在某些区 间内产生较大的误差。例如著名的Runge现象。
分段插值的基本思想是将插值区间划分为若干个小区 间, 然后在每个小区间上做满足一定条件的低阶插值.
35
4.4.2 分段低次插值
例如分段线性插值。 所谓分段线性插值就是通过插值点用折线段连接起来

j计算方法4解析

j计算方法4解析
n
Rn ( x) = K ( x) ( x - xi ) n+1 个根 R n(x) 至少有 ( x Rolle’s Theorem: 若 ( x ) 充分光滑, 00) = ( x1 ) = 0 ,则 i= n ( x0 , x1 ) 使得 ( ) = 0 。 ( t ) = 存在 Rn ( t ) - K ( x ) ( t - x i ) 任意固定 x xi (i = 0, …, n), 考察 注意这里是对 t 求导 =0 0 ( x0 , x1 ), 1 i ( x1 , x2 ) 推广:若 ( x0 ) = ( x1 ) = ( x2 ) = 0 ( n1) (x)有 n使得 +2 个不同的根 x0 … xn x ( x ) = , ) (a, b) x0 ( 0 = (0 , 1 ) 使得 (0 ) = (1 ) = 0
注: 通常不能确定 x , 而是估计
M n 1 n 将 ( n 1)! | x - xi | 作为误差估计上限。 i =0
f ( n 1) ( x ) M n 1, x(a,b)
当 f(x) 为任一个次数 n 的多项式时, f
( n1)
( x) 0 ,
可知 Rn ( x ) 0 ,即插值多项式对于次数 n 的多项 式是精确的。
n=1
P1 ( x 0 ) = y0 , P1 ( x1 ) = y1
xi x j
P1 ( x ) = a0 a1 x 使得 已知 x0 , x1 ; y0 , y1/* ,求 称为拉氏基函数 Lagrange Basis */,
满足条件 li(xj)=ij /* Kronecker Delta */ 可见 P1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。 y1 - y 0 P1 ( x ) = y0 ( x - x0 ) x1 - x 0

4插值法

4插值法

4.1 函数插值的基本问题
4.1.1 插值问题的基本概念 函数插值的必要性

使复杂函数简单化 使无解析式的函数(离散型、图形图像)获得解析式

为其他数值方法提供支持手段(如数值积分、微分)
插值问题
定义4-1
4.1 函数插值的基本问题
4.1.1 插值问题的基本概念 代数多项式插值问题
由于多项式有其优良的特性,所以通常都是用多项式作为 插值函数。还有其它类型的插值函数,如有理函数插值、 三角函数插值等
4.1.3 插值多项式的误差估计
最大值估计
设 Max f
a x b ( n 1)
( x) M , 则 Rn ( x)
M n1 ( x) (n 1)!
事后估计
当 f
( n 1)
( ) 无法估计时,可作两次 插值,即
x 0 , x1 , , x n p n ( x )
i 0 n
拉格朗日插值的特点: 基函数整齐、对称,与被插函数无关,均为不超过n次的多项式 插值函数被表示为基函数与函数值的线性组合 不便于增加插值基点,因为基函数与插值基点和个数有关 公式的理论价值高于牛顿插值 例4-4 p70例3 例4-5 p71例4
例4-6 p71例5
4.2.4 拉格朗日插值在密钥管理中的应用
依赖于x的点 (a, b) ,使
f ( n 1) ( ) Rn ( x ) n 1 ( x) (n 1)!
n i 0
其中:
n 1 ( x) ( x x0 )(x x1 ) ( x x n ) ( x xi )
推论:当f(x)是次数不超过次的多项式时,pn(x)=f(x)。
函数插值涉及的基本问题

常见的插值方法及其基础原理

常见的插值方法及其基础原理

常见的插值方法及其原理这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。

为了进一步的简化难度,我们把讨论从二维图像降到一维上。

首先来看看最简单的‘最临近像素插值’。

A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。

我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。

显然,这种方法是非常苯的,同时会带来明显的失真。

在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。

最临近插值法唯一的优点就是速度快。

图10,最临近法插值原理接下来是稍微复杂点的‘线性插值’(Linear)线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。

换句话说,A,B间任意一点的值只跟A,B有关。

由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。

线性插值速度稍微要慢一点,但是效果要好不少。

如果讲究速度,这是个不错的折衷。

图11,线性插值原理其他插值方法立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。

图12,高级的插值原理如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。

计算量显然要比前两种大许多。

好了,以上就是基本知识。

所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。

在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。

他们的目的是使边缘的表现更完美。

插值(Interpolation),有时也称为“重置样本”,是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩。

4-插值法

4-插值法

jk jk
(j,k=0,1)
称l0 (x)及l1 (x)为线性插值基函数。
2. 抛物插值:n=2情形 假定插值节点为x0, x1, x2 ,求二次插值多项式 L2 (x), 使 L2(xj)=yj (j=0,1,2) y= L2 (x)的几何意义就是过 (x0, y0),(x1, y1) ,(x2, y2) 三点的抛物线。 采用基函数方法,设 L2 (x)=l0(x)y0+l1(x)y1+l2(x)y2 此时基函数l0(x), l1(x), l2(x)是二次函数,且在节点上满 足: l0(x0)=1 , l0(x1)=0 , l0(x2)=0. l1(x0)=0 , l1(x1)=1 , l1(x2)=0. l2(x0)=0 , l2(x1)=0 , l2(x2)=1.

( x x1 )( x x2 ) l0 ( x ) ( x0 x1 )( x0 x2 )
同理
( x x0 )( x x2 ) l1 ( x) ( x1 x0 )( x1 x2 ) ( x x0 )( x x1 ) l2 ( x ) ( x2 x0 )( x2 x1 )
4 x5 5x 4 2 x 2 1
(2) 特殊多项式的创建
(3)多项式的乘积
格式 p3=conv(p1,p2)
(4)多项式求值 格式 polyval(p,x0)
(5) 多项式符号表示 格式 poly2sym(p)
例:给出f(x)=lnx的数值表,用lagrange插值计算 ln0.54的近似值。
的线性组合得到,其系数分别为y0, y1。即
L1 ( x) l0 ( x) y0 l1 ( x) y1
显然, l0 (x)及l1 (x)也是线性插值多项式,在节点 x0,x1上满足条件: l0(x0)=1 , l0(x1)=0. l1(x0)=0 , l1(x1)=1. 即

数值计算方法教案插值方法

数值计算方法教案插值方法

复习:1.数值计算方法的含义 2.误差及误差限 3.误差与有效数字4.数值计算中应注意的问题第二章 插值方法一.插值的含义 问题提出:已知函数()y f x =在n+1个点01,,,n x x x 上的函数值01,,,n y y y ,求任意一点x '的函数值()f x '。

说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。

解决方法:构造一个简单函数()P x 来替代未知(或复杂)函数()y f x =,则用()P x '作为函数值()f x '的近似值。

二、泰勒(Taylor )插值 1.问题提出:已知复杂函数()y f x =在0x 点的函数值()0f x ,求0x 附近另一点0x h +的函数值()0f x h +。

2.解决方法:构造一个代数多项式函数()n P x ,使得()n P x 与()f x 在0x x =点充分逼近。

泰勒多项式为:()()()()()()()()()200000002!!n n n f x f x P x f x f x x x x x x x n '''=+-+-++-显然,()n P x 与()f x 在0x x =点,具有相同的i 阶导数值(i=0,1,…,n )。

3.几何意义为:()n P x 与()f x 都过点()()00,x f x ;()n P x 与()f x 在点()()00,x f x 处的切线重合; ()n P x 与()f x 在点()()00,x f x 处具有相同的凹凸性;其几何意义可以由下图描述,显然函数()3f x 能相对较好地在0x 点逼近()f x 。

4.误差分析(泰勒余项定理):()()()()()()1101!n n n f P x f x x x n ξ++-=-+,其中ξ在0x 与x 之间。

5.举例:已知函数()f x ()115f 。

《计算方法》第四章 插值方法

《计算方法》第四章 插值方法

Ln ( x) f ( xk ) l k ( x)
k 0
n
n
其中,
l k ( x)
j 0 j k
x xj x k x j (k 0,1,...n) .
20
构造插值多项式的方法:
(1) (2) 先求插值基函数. 构造插值多项式.
以下的问题:如何分析插值的余项?
21
例题 已知连续函数 f (x) 的函数表如下: x f (x) -1 0 1 2 -2 -2 1 2
Return
13
§4.2 拉格朗日多项式 /* Lagrange Polynomial */
1. 构造线性插值基函数的方法:
n=1 已知 x0 , x1 ; y0 , y1 ,求 L1(x) = a0 + a1 x 使得
L1 ( x0 ) y0 , L1 ( x1 ) y1
可见 L1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。
由 l k ( xk ) 1, 得:
1 A ( xk x0 ) ( xk xk 1 ) ( xk xk 1 ) ( xk xn )
l k ( x)
k = 0, 1 ,⋯, n .
( x x0 )( x xk 1 ) ( x xk 1 )( x xn ) , ( x k x0 )( xk xk 1 ) ( xk xk 1 )( xk xn )
18
一般情形
希望找到 li (x),i = 0, …, n 使得 li (xj) = ij ;然后令
Ln ( x ) f ( x k ) l k ( x ),则显然有 Pn(xi) = yi 。
k 0 n

《插值方法基本思想》课件

《插值方法基本思想》课件
量大、精度降低。
牛顿插值法
总结词
牛顿插值法是一种利用差商来构造插值多项式的方法,具有计算简便、精度高 等优点。
详细描述
牛顿插值法基于差商的性质,通过差商构造出一个插值多项式,该多项式在已 知数据点上与实际值相等,从而实现对未知点的估计。该方法计算简便、精度 高,适用于大规模数据的插值处理。
样条插值法
05
插值方法的发展趋势和未来展望
改进插值算法的稳定性
算法鲁棒性
提高算法对异常值和噪声的鲁棒性,使其 在复杂数据中仍能保持稳定。
适应性调整
根据数据分布特点,自适应地调整插值算 法的参数,以提高稳定性。
多方法融合
结合多种插ቤተ መጻሕፍቲ ባይዱ方法,取长补短,提高整体 稳定性。
探索更高效的计算方法
并行计算
利用多核处理器或多线程技术,实现插值算法的并行 化,提高计算效率。
插值方法基本思想
CONTENTS
• 插值方法的定义和分类 • 插值方法的数学原理 • 插值方法的应用场景 • 插值方法的优缺点 • 插值方法的发展趋势和未来展

01
插值方法的定义和分类
线性插值
总结词
线性插值是一种简单的插值方法,通过 连接两个已知数据点的直线来估计中间 的值。
VS
详细描述
线性插值基于两点之间的直线关系,通过 已知的两个数据点,计算出它们之间的线 性方程,然后利用该方程来估计中间的值 。线性插值的公式为(y = y_1 + (x - x_1) * (y_2 - y_1) / (x_2 - x_1)),其中(x_1)和 (y_1)是第一个已知数据点,(x_2)和(y_2) 是第二个已知数据点。
优化算法
简化算法步骤,减少不必要的计算量,提高计算速度 。

计算方法4

计算方法4

Newton插值的承袭性
c ( x x )( x x ) ( x x ) n 0 1 n 1
增加一个点后
N () x c cx ( x ) c ( x x ) ( x x ) n 1 0 1 0 2 0 1 c ( x x ) ( x x ) ( x x ) n 0 1 n 1 c ( x x ) ( x x ) ( x x ) ( x x ) n 1 0 1 n 1 n
N ( x ) c c ( x x ) c ( x x )( x x ) n 0 1 0 2 0 1
Newton插值
关键是 ci的求法!
可仿照泰勒公式里系数 的求法! N ( x ) c c ( x x ) c ( x x )( x x ) n 0 1 0 2 0 1 c ( x x )( x x ) ( x x ) n 0 1 n
插值问题讨论 x x x0 x 1 n 1 x n y y 0 y1 y n 1 y n
增加一个点后
x x0 x 1 y y 0 y1
x n 1 x n x n 1 y n 1 y n y n 1
Lagrange 插值虽然易算,但若要增加一个节点时, 全部基函数 li(x) 都需重新算过。
B
即基尼系数G的近似 计算公式为:
其中Wi表示从第1组 累计到第i组的人口 总收入占全部人口 总收入的百分比。

基尼系数,按照联合国有关组织规 定: 若低于0.2表示收入绝对平均; 0.2-0.3表示比较平均;

0.3-0.4表示相对合理;
0.4-0.5表示收入差距较大; 0.5以上表示收入差距悬殊。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( xi x j ) 0
i 1 j 0
n
i 1
8
4.2 拉格朗日(Lagerange)插值多项式
4.2.1 基本插值多项式 观察一个两点的插值情况:
a0 a1 x0 y0 a0 a1 x1 y1
可以构造函数P1(x)为
x x1 x x0 P y0 y1 1 ( x) x0 x1 x1 x0
x x0 , x x1,..., x xk 1, x xk 1,... x xn
11
因此,基本地,lk(x)可以写为:
lk ( x ) Ak ( x x0 )( x x1 )...( x xk 1 )( x xk 1 )...( x xn ) Ak ( x xi )
知点a≤x0<x1<…<xn≤b上的值为y0,y1,…,yn,若存在
一个简单的函数P(x)使得 P(xj)=yj (j=0,1,2…,n) 成立,称P(x)为f(x)的插值函数,点x0,x1,…,xn的为插 值节点,[a,b]为插值区间,f(x)为被插函数,这个条
件被称为插值条件
5
代数多项式插值就是一种典型的插值函数
高次插值和分段插值。
2
4.1 问题的提出
许多实际问题都用函数y=f(x)来表示某种内在规律 的数量关系,其中相当一部分函数是通过实验或观测 得到的。虽然f(x)在某个区间[a,b]上是存在的,有 的还是连续的,但却只能给出[a,b]上一系列点
y f ( xi )(i 1,2,..., n)
第4章 插值方法
§4–1 问题的提出
§4–2 拉格朗日插值多项式 §4–3 差商、差分及牛顿插值多项式
§4–4 高次插值的缺点及分段插值
§4–5 样条插值函数
1
学习要点
插值的基本概念,包括线性插值、抛物插值和多
项式插值的存在唯一性;
多项式插值方法,包括基于及函数的Lagrange
插值,插值余项定理;
f ( n 1) ( ) Rn ( x ) f ( x ) Ln ( x ) wn 1 ( x ) (n 1)! wn 1 ( x ) ( x x0 )( x x1 )...( x xn )
P( x) Pn ( x) a0 a1x a2 x
2
y=f(x) y=P(x)an xnYx06
x1
x2
X
xn-1 xn
4.1.2 插值多项式的存在唯一性
定理4.1:满足条件 P(xj)=yj (j=0,1,2…,n)的n次多项 式 P( x) Pn ( x) a0 a1x a2 x2 唯一的。
14
4.2.3 插值余项
在节点处
Ln ( x j ) f ( x j ) j 0,1,..., n
在其它点上,均是近似值。记
Rn ( x) f ( x) Ln ( x)
称Rn(x)为插值多项式的余项。
15
定理:设f(n)(x)在[a,b]上连续,f(n+1)(x)在(a,b)内存在 节点, a≤x0<x1<…<xn≤b, Ln(x) 是满足插值条件处 , Ln(xj) 是=yj(j=0,1,2,…,n)的n次多项式,则对任意x 属于[a,b],插值余项
有的函数虽然有解析表达式,但由于计算复杂,使用
不方便,通常也构造一个函数表。如三角函数表、对 数表、平方根表、立方根表等等。
3
4
4.1.1 插值函数的概念
可以通过构造简单函数P(x),使P(xi)=yi (i=1,2…,n), 这种求P(x)的方法称为插值法 定义4.1:设函数y=f(x)在区间[a,b]上有定义,且已
i 0 i k n
其中Ak为待定因子,由lk(xk)=1,得:
Ak ( xk xi ) 1 Ak 1 / ( xk xi )
i 0 i k i 0 i k
n
n
12
4.2.2 拉格朗日插值多项式
根据基本插值多项式可以得到满足插值条件的n次插 值多项式
Pn ( x ) yk lk ( x )
9
4.2.1 基本插值多项式
如果令:
x x1 x x0 l0 ( x ) ,l1 ( x ) x0 x1 x1 x0

P 1 ( x) y0l0 ( x) y1l1 ( x)
显然,l0(x)和l1(x)是满足插值条件的一次插值多项式
l0 ( x0 ) 1 l1 ( x0 ) 0 l0 ( x1 ) 0 l1 ( x1 ) 1
k 0
n
称上式为n次拉格朗日多项式,记为Ln(x) ,即
x xi Ln ( x ) yk lk ( x ) ( ) yk k 0 k 0 i 0 xk xi
n n n i k
13
练习:
已知x=1,2,3,4,5,对应的函数值f(x)=1,4,7,8,6
试构造4次拉格朗日插值多项式。
an x n 是存在而且
a0 a1 x0 a2 x0 2 an x0 n y0 2 n a a x a x a x 0 1 1 2 1 n 1 y1 ................................................ a a x a x 2 a x n y 0 1 n 2 n n n n
10
如对n次多项式,求一个n次多项式lk(x)满足:
lk ( x0 ) 0,..., lk ( xk ) 1,..., lk ( xn ) 0
或者写为:
0i k lk ( xi ) ki 0 i n 1i k
显然,lk(x)至少含有如下的n个一次因子:
上面的方程可以用待定系数法结合线性方程组解法
7
求解
4.1.2 插值多项式的存在唯一性
其系数行列式为范德蒙德(Vandermode)行列式
2 n 1 x0 x0 ... x0
det( A)
1 x1 x12 ... x1n ................
2 n 1 xn xn ... xn
相关文档
最新文档