八年级乘法公式(上册)
14.2 乘法公式 课件 人教版数学八年级上册
(-3y-4x)(3y-4x)=(-4x-3y)(-4x+3y) =(-4x)2-(3y)2=16x2-9y2.
知1-练
感悟新知
知1-练
1-1. 下列各式中,可以用平方差公式进行计算的是( B ) A. (a-1)(1-a) B. (-a+2)(-a-2) C. (a+2)(2+a) D. (a-b)(-a+b)
知2-练
(1)1022;
解:原式=(100+2)2=10 000+400+4=10 404;
(2)99.82;
原式=(100-0.2)2=10 000-40+0.04=9 960.04;
2
(3)
60
1 60
.
原式=60+6102=3
600+2+3
6100=3
6023
1 600.
感悟新知
知识点 3 添括号
为2 023.
2 022×2 024-2 0232=(2 023-1)×(2 023+1)-2 0232
=2 0232-12-2 0232=-1.
感悟新知
2-1. 运用平方差公式进行简便计算:
知1-练
(1)9.8×10.2;
解:原式=(10-0.2)×(10+0.2)=;
(2)(-4a+5b)2;
知2-练
括号不能漏掉.
(-4a+5b)2 =(5b-4a)2 =(5b)2-2·(5b)·(4a)+(4a)2 =25b2-40ab+16a2;
不 能 漏 掉 “ 2ab” 项 且 符 号 与完全平方中的符号一致.
感悟新知
(3)(-2m-n)2;
知2-练
解:(-2m-n)2 =(2m+n)2
感悟新知
知3-讲
特别解读 1. 添括号只是一个变形,不改变式子的值. 2. 添括号时,如果括号前面是负号,括号里的各项都要改
【精品讲义】人教版 八年级上册数学 乘法公式与因数分解 知识点讲解+练习题
讲 义(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4 1、计算下列各式:(1)[(x +y)3]4 ; (2) (a 4n )n -1 ;(3) (-a 3)2+(-a 2)3-(-a 2)·(-a)4 ;(4) x 3·x 2·x 4+(-x 4)2+4(-x 2)4例. 计算:()()53532222x y x y +-(二)、连用:连续使用同一公式或连用两个以上公式解题。
例. 计算:()()()()111124-+++a a a a例. 计算:()()57857822a b c a b c +---+例.(1)已知a b ab -==45,,求a b 22+的值。
(2) 已知2=+b a ,1=ab ,求22b a +的值。
(3) 已知8=+b a ,2=ab ,求2)(b a -的值。
(4) 已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
例:计算19992-2000×1998 例.已知13x x-=,求441x x +的值。
华师大版数学八年级上册12.3《乘法公式》说课稿
华师大版数学八年级上册12.3《乘法公式》说课稿一. 教材分析华师大版数学八年级上册12.3《乘法公式》这一节内容,是在学生已经掌握了有理数的乘法、平方差公式和完全平方公式的基础上进行讲解的。
本节课的主要内容是平方差公式和完全平方公式的推导以及应用。
这两个公式在数学中有着广泛的应用,对于学生解决实际问题具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法,具备了一定的数学基础。
但是,对于平方差公式和完全平方公式的推导过程,以及如何运用这两个公式解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 说教学目标1.知识与技能目标:使学生掌握平方差公式和完全平方公式的推导过程,理解其含义,并能熟练运用这两个公式解决实际问题。
2.过程与方法目标:通过观察、分析、推理等方法,培养学生发现规律、归纳总结的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力,使其在解决实际问题的过程中,体验到数学的价值。
四. 说教学重难点1.教学重点:平方差公式和完全平方公式的推导过程,以及如何运用这两个公式解决实际问题。
2.教学难点:平方差公式和完全平方公式的推导过程,以及如何灵活运用这两个公式解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、发现规律。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合数学软件和网络资源,为学生提供丰富的学习资源。
六. 说教学过程1.导入新课:通过复习有理数的乘法,引出平方差公式和完全平方公式,激发学生的学习兴趣。
2.自主探究:让学生通过观察、分析、推理等方法,发现平方差公式和完全平方公式的规律。
3.讲解与辅导:对学生的自主探究进行讲解和辅导,揭示平方差公式和完全平方公式的推导过程。
4.应用练习:布置一些实际问题,让学生运用平方差公式和完全平方公式进行解决,巩固所学知识。
八年级数学上册第十四章整式的乘法与因式分解知识归纳
第十四章整式的乘法与因式分解
14。
1 整式的乘法
同底数幂的乘法:a m ·a n = a m + n(m、n都是正整数)
幂的乘方:(a m)n = a m n(m、n都是正整数)
积的乘方:(ab)n = a n b n(n为正整数)
同底数幂的除法: a m ÷ a n = a m - n(a ≠ 0 ,m、n都是正整数,并且m>n)
零指数幂:a0 = 1(a ≠ 0 )
单项式与单项式相乘, 单项式与多项式相乘, 多项式与多项式相乘.(利用运算律和上面的运算性质解答)
14。
2 乘法公式
平方差公式:(a+b)(a-b)= a2 —b2
完全平方公式:(a+b)2 = a2 + 2ab + b2
(a—b)2 = a2—2ab + b2 添括号法则:a+b+c = a+(b+c) a-b—c = a —(b+c)举例:a—b+c = a —(b-c)
14.3 因式分解(几个整式乘积的形式)
式子的变形:这个多项式的因式分解= 把这个多项式因式分解。
1、提公因式法(多项式各项有公因式)
2、公式法(3个乘法公式左右互换)
3、十字相乘法(补充)。
人教版八年级数学上册《14.2乘法公式》PPT课件
填一填
ab 1x –3 a a1 0.3x 1
a2–b2 12–x2 (–3)2–a2 a2–12 ( 0.3x)2–12
探究新知
做一做
口答下列各题: (1)(–a+b)(a+b)=__b_2_–_a_2 ___. (2)(a–b)(b+a)= __a_2_–_b_2____. (3)(–a–b)(–a+b)= _a_2_–_b_2___. (4)(a–b)(–a–b)= __b_2_–_a_2___.
解:原式=4x2–y2–(4y2–x2) =4x2–y2–4y2+x2 =5x2–5y2.
当x=1,y=2时, 原式=5×12–5×22=–15.
巩固练习
3. 先化简,再求值: (3–x)(3+x)+(x+1)(x–1),其中x=2. 解:(3–x)(3+x)+2(x+1)(x–1)
=9–x2+2(x2–1) =9–x2+2x2–2 =7+x2 当x=2时, 原式=7+22 =7+4=11
巩固练习
1. 利用平方差公式计算: (1)(3x–5)(3x+5); (3)(–7m+8n)(–8n–7m).
(2)(–2a–b)(b–2a);
解:(1)原式=(3x)2–52=9x2–25; (2)原式=(–2a)2–b2=4a2–b2; (3)原式=(–7m)2–(8n)2=49m2–64n2;
探究新知
素养考点 1 利用平方差公式计算
例1 计算:(1) (3x+2 )( 3x–2 ) ; (2)(–x+2y)(–x–2y).
解: (1)原式=(3x)2–22
=9x2–4; (2) 原式= (–x)2 – (2y)2
人教版数学八年级上册-14.2--乘法公式
方法总结:对于平方差中的 a 和 b 可以是具体的数, 也可以是单项式或多项式,在探究整除性或倍数问 题时,一般先将整式化为最简,然后根据结果的特 征,判断其是否具有整除性或倍数关系.
例5 王大伯家把一块边长为 a 米的正方形土地租给了 邻居李大妈.今年王大伯对李大妈说:“我把这块地 一边减少 4 米,另外一边增加 4 米,继续原价租给你, 你看如何?”李大妈一听,就答应了.你认为李大妈 吃亏了吗?为什么? 解:李大妈吃亏了.理由如下:原正方形的面积为 a2,
(3) 通过以上规律请你进行下面的探索: ① (a-b)(a+b)=_a_2_-__b_2_; ② (a-b)(a2+ab+b2)=__a_3-__b_3__; ③ (a-b)(a3+a2b+ab2+b3)=__a_4-__b_4__.
内容
两个数的和与这两个数的差的积, 等于这两个数的平方差
平方差 公式
a−b b
a−b (a−b)2 b(a−b) a
b
ab
a (a − b)2 = a2 − ab − b(a − b) = a2 − 2ab + b2 差的完全平方公式: (a - b)2 = a2 - 2ab + b2 .
问题 观察下面两个完全平方式,比一比,回答下列问题:
(a + b)2 = a2 + 2ab + b2, (a - b)2 = a2 - 2ab + b2.
1. 字母表示:(a + b)(a-b) = a2-b2
注意
2. 紧紧抓住 “一同一反”这一特征, 在应用时,只有两个二项式的积才有 可能应用平方差公式;不能直接应用 公式的,要经过适当变形才可以应用
人教版数学八年级上册
人教版初中数学八年级上册14.2乘法公式(教案)示例
此外,我发现学生们在解决具体问题时,对于何时使用平方差公式和立方和差公式还不够自信。这可能是因为他们在公式选择和应用上缺乏足够的练习。因此,我计划在下一节课中增加更多针对性的练习,特别是那些涉及公式选择和综合应用的题目。
2.培养学生的数学运算能力,使学生能够熟练运用乘法公式进行简便计算,解决实际问题,增强数学运算的准确性。
3.培养学生的空间想象力和抽象思维能力,通过乘法公式的学习,引导学生从具体实例中提炼出数学规律,提升对数学概念的理解。
4.培养学生的团队协作和交流表达能力,课堂上鼓励学生进行小组讨论,分享乘法公式的发现与应用,提高学生的沟通能力。
-灵活运用乘法公式:学生在解决问题时,可能难以判断何时使用哪个乘法公式,需要通过大量练习和讲解,让学生掌握乘法公式的应用场景。
-识别并分解问题中的乘法结构:学生在面对复杂问题时,可能难以识别其中的乘法结构,需要教师指导如何分解问题,找到适用的乘法公式。
举例:
-难点突破:通过展开(a+b)²和(a-b)²,让学生观察并发现完全平方公式的规律,理解平方差公式的来源。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了乘法公式的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对乘法公式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在小组讨论环节,我观察到学生们在讨论乘法公式在日常生活中的应用时,能够提出一些很有创意的想法。这表明他们能够将学到的知识应用到实际问题中。然而,我也发现有些小组在讨论时,成员之间的交流并不充分,导致部分学生的参与度不高。在未来的教学中,我需要更加注重引导学生之间的互动,确保每个学生都能积极参与讨论。
人教版八年级数学上册课件 14.2 乘法公式(付,156)
(1)在运用平方差公式之前,一定要看是否具备公式 的结构特征;
(2)一定要找准哪个数或式相当于公式中的a,哪个 数或式相当于公式中的b;
(3)总结规律:一般地,“第一个数”a 的符号相同, “第二个数”b 的符号相反;
总结经验
从例题1和练习1中,你认为运用公式解决问题时应 注意什么?
(3) 51×49;
(4)(3x+ 4)(3 x- 4)-(2 x+3)(2 x-3).
课堂小结
(1)本节课学习了哪些主要内容? (2)平方差公式的结构特征是什么? (3)应用平方差公式时要注意什么?
布置作业
教科书习题14.2第1题.
八年级 上册
14.2 乘法公式 (第2课时)
课件说明
• 本课是在学生已经学习了平方差公式的基础上,研 究第二个乘法公式,它是具有特殊形式的两个多项 式相乘得到的一种特殊形式,也是后续学习因式分 解、分式运算的重要基础.
判定正误
练习 下面各式的计算是否正确?如果不正确,应 当怎样改正? (1)(x+y)2 =x2+y2; (2)(x-y)2 =x2 -y2; (3)(x-y)2 =x2+2xy+y2; (4)(x+y)2 =x2+xy+y2.
课件说明
• 学习目标: 1.理解完全平方公式,能用公式进行计算. 2.经历探索完全平方公式的过程,进而感受特殊 到一般、数形结合思想,发展符号意识和几何 直观观念.
• 学习重点: 完全平方公式.
导入新知
问题1 计算下列各式: (1)(p+1)2 =______;(m+2)2 =______; (2)(p-1)2 =______;(m-2)2 =______.
八年级数学上册《乘法公式》教案、教学设计
1.教学活动设计:将学生分成若干小组,每组针对以下问题进行讨论:
a.平方差公式和完全平方公式的推导过程;
b.乘法公式在解决实际问题中的应用;
c.运用乘法公式进行整式乘法的优点。
2.教师指导:在学生讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨。
(四)课堂练习
1.教学内容:设计以下几类练习题,巩固学生对乘法公式的掌握:
7.信息技术辅助教学:利用多媒体、网络资源等信息技术手段,形象直观地展示乘法公式的推导过程,提高教学效果。
8.关注个体差异,因材施教:针对不同学生的特点,给予个性化的指导,使每个学生都能在原有基础上得到提高。
9.定期评估,总结提高:通过定期测试和评估,了解学生的学习情况,总结教学经验,不断调整和优化教学方法,提高教学质量。
a.平方差公式:a² - b² = (a + b)(a - b)
通过具体的数值代入,引导学生观察、发现并总结出平方差公式的规律。
b.完全平方公式:a² + 2ab + b² = (a + b)²
同样,通过具体的数值代入,引导学生观察、发现并总结出完全平方公式的规律。
2.教学方法:采用引导式教学,让学生通过观察、思考和总结,自主发现乘法公式的规律。
4.利用信息技术手段,如多媒体、网络资源等,辅助教学,提高课堂教学效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、积极思考的学习态度,使学生养成良好的学习习惯。
3.培养学生合作交流的意识,学会倾听他人意见,提高人际沟通能力。
4.培养学生认识到数学知识在实际生活中的重要性,增强学生的应用意识和实践能力。
最新人教版八年级数学上册第十四章《乘法公式》教材梳理
庖丁巧解牛知识·巧学·升华一、乘法公式把具有特殊形式的多项式相乘的式子及其结果写成公式的形式,就是乘法公式.在多项式乘以多项式时,有一些问题形式固定、结果固定,因此我们把它归纳为乘法公式,利用乘法公式计算比利用多项式乘法法则计算简便得多.二、平方差公式(a+b)(a-b)=a2-b21.语言叙述:两个数的和与这两个数的差的积等于这两个数的平方差.例如:(2a+3b)(2a-3b)=(2a)2-(3b)2=4a2-9b22.特征:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方),而不要认为是前项的平方减去后项的平方,这和项的位置无关,应该首先分清相同项和相反项.3.公式中的字母a、b可以表示数,也可以表示单项式、多项式.某些式子,可以通过添加括号,变成平方差公式再应用.如果是单项式或多项式运用平方差公式,平方时,应把单项式或多项式加上括号.例如:(a+b-c)(a-b+c)=[a+(b-c)][a-(b-c)]=a2-(b-c)2=a2-(b-c)(b-c)=a2-(b2-2bc+c2)=a2-b2+2bc-c2三、完全平方差公式(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b21.语言叙述:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.例如:(a+3b)2=a2+2×a×3b+(3b)2=a2+6ab+9b2(2x-3)2=(2x)2-2×2x×3+32=4x2-12x+9记忆要诀简记为“首平方,末平方,积的2倍放中央”.2.特征:左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.3.公式中的a、b可以表示数,也可以表示单项式或多项式.4.有些问题要用到添括号法则、运算律或幂的有关性质.如(-a-b)2=[-(a+b)]2=(a+b)2;(-a+b)2=(b-a)2.5.两个完全公式之间的关系:(a+b)2=(a-b)2+4ab,(a-b)2=(a+b)2-4ab.四、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不改变符号;如果括号前面是负号,括到括号里的各项都改变符号.a+b+c=a+(b+c),a-b-c=a-(b+c)注意:(1)括号内的项是指哪些项;(2)括号前是正号还是负号.(3)逆用乘法分配律也具有添括号的作用.如-10x+5y+15z=-5(2x-y-3z).问题·思路·探究问题 在一次数学课外活动中,四个同学进行比赛,其计算的题目和过程如下: A :98×102=(100-2)(100+2)=1002-22=9 996;B :(2x-1)(-2x-1)=(-1+2x )(-1-2x )=(-1)2-(2x )2=12-2x 2=1-2x 2;C :2 0042-1 9962=(2 004+1 996)(2 004-1 996)=32 000;D :(2a +b )(3a-b )=(2a )2-b 2=4a 2-b 2.谁对谁错,请你当评委.思路:该问题主要是对平方差公式 (a +b )(a-b )=a 2-b 2的运用及其逆用.平方差公式实质上进行的是特殊形式的多项式乘法,运用平方差公式及其逆用往往使计算更简便.如(a-b +c )2-(a +b-c )2=[(a-b +c )+(a +b-c )][(a-b +c )-(a +b-c )]=-4ab +4ac.此外,平方差公式有如下的几何意义.如图15-3-1,平方差公式表示从边长为a 的大正方形面积中去掉边长为b 的小正方形后的阴影部分的面积.图15-3-1探究:98×102=(100-2)(100+2)=1002-22=9 996,故A 对;(2x-1)(-2x-1)=(-1+2x )(-1-2x )=(-1)2-(2x )2=1-4x 2,故B 错,他们都是利用平方差公式进行计算.2 0042-19962=(2 004+1 996)(2 004-1 996)=32 000,是逆用平方差公式,故C 对;而(2a +b )(3a-b )不符合平方差公式的特征不能用平方差公式,只能根据多项式乘法法则计算,结果为6a 2+ab-b 2,故D 错.典题·新题·热题例1计算:(1)5012;(2)99.82;(3)6031×5932;(4)2 0062-2 005×2 007. 思路解析:本题是利用平方差公式和完全平方公式进行简便运算,关键是写成公式的形式.解:(1)5012=(500+1)2=5002+2×500×1+12=250 000+1 000+1=251 001.(2)99.82=(100-0.2)2=1002-2×100×0.2+0.22=10 000-40+0.04=9 960.04.(3)6031×5932=(60+31)(60-31)=602-(31)2=3 600-91=3 59998. (4)原式=2 0062-(2 006-1)×(2 006+1)=2 0062-(2 0062-1)=1.深化升华 利用公式可以简便运算,应观察每个题的特征,找到符合公式的特征,利用公式,达到简便运算的目的.例2大家已经知道,完全平方公式和平方差公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:2x (x +y )=2x 2+2xy 就可以用图15-3-2(1)的面积表示.图15-3-2(1)请写出图15-3-2(2)所表示的代数恒等式:________________;(2)请写出图15-3-2(3)所表示的代数恒等式:________________;(3)试画出一个几何图形,使它的面积能表示(x +y )(x +3y )=x 2+4xy +3y 2. 思路解析:本题是图形的拼接问题,可以看成是一种图形的两种面积表示方法,所以它们是相等的.计算面积时,列出的是整式的乘法式.解:(1)(x +y )(2x +y )=2x 2+3xy +y 2.(2)(2x +y )(x +2y )=2x 2+5xy +2y 2.(3)答案不唯一,如图15-3-3.图15-3-3例3已知(a +b )2=7,(a-b )2=4,求a 2+b 2和ab 的值.思路解析:由于(a +b )2和(a-b )2的展开式中都只含有a 2+b 2和ab ,所以把(a +b )2和(a-b )2展开,已知的两个等式可看成是关于a 2+b 2和ab 的二元一次方程组,可求a 2+b 2和ab 的值.解:由(a +b )2=7,得________ a 2+2ab +b 2=7.①由(a-b )2=4,得a 2-2ab +b 2=4.②①+②得________2(a 2+b 2)=11,________∴a 2+b 2=211. ①-②得4ab =3,∴ab =43. 深化升华 完全平方和、完全平方差与平方和之间的关系是整式变形的基础: (a +b )2-(a-b )2=4ab ,(a +b )2=(a 2+b 2)+2ab ,(a-b )2=(a 2+b 2)-2ab.例4已知△ABC的三边a、b、c满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状.思路解析:式子a2+b2+c2-ab-bc-ac=0体现了三角形三边a、b、c的关系,从形式上看与完全平方式相仿,但差着2ab中的2倍,因此可以对等式两边都扩大2倍,从而得到结论.解:∵a2+b2+c2-ab-bc-ac=0,∴2a2+2b2+2c2-2ab-2bc-2ac=0,即(a2-2ab+b2)+(b2-2bc+c2)+(c2+a2-2bc)=0.∴a-b=0,b-c=0,c-a=0,即a=b=c,所以△ABC是等边三角形.深化升华和例3一样,当式子中有平方和时,经常“凑”乘积的2倍,构造完全平方和,构造出非负数的和为0的情况.。
八年级数学上册 乘法公式 人教版
先将式子进行变形,再 利用平方差公式计算
解: (1)原式=(2 016+1)×(2 016-1)-2 0162
=2 0162-1-2 0162= -1.
(2)原式=
2
1
1 2
1
1 2
1
1 22
1
1 24
1
1 28
解: (1)原式=4(a2-2ab+b2)-[(2a)2-b2] =(4a2-8ab+4b2)-(4a2-b2)=5b2-8ab.
(2)原式=[(3x-y)-(2x+y)]2=(x-2y)2=x2-4xy+4y2.
方法点拨: 在计算前应先仔细观察式子的特点,如果出现平方
差公式的形式或完全平方公式的形式,那么就可以利用 公式进行计算,特别注意的是一定要将结果化成最简形 式.
例13 (湖北武汉中考)运用乘法公式计算(x+3)2的结果是
=40 000-800+4=39 204.
添括号的法则
例3 计算:(1)(x-2y+3z)(x+2y-3z) ;(2)(a+b-c)2.
解:(1)(x-2y+3z)(x+2y-3z)=[x-(2y-3z)][x+(2y-3z)] =x2-(2y-3z)2 =x2-(4y2-12yz+9z2) =x2-4y2+12yz-9z2.
(2)(a+b-c)2=[a+(b-c)]2 =a2+2a(b-c)+(b-c)2 =a2+2ab-2ac+b2-2bc+c2.
人教版八年级上册1.乘法公式课件
15. 已知△ABC的三边a、b、c满足a2+b2+c2-ab-bc-ac=0,试 判断△ABC的形状.
16. 利用乘法公式进行简便运算: ①20042; ②999.82; ③(2+1)(22+1)(24+1)(28+1)(216+1)+1
9. 下列各式中,不能用平方差公式计算的是( ) A.(−2b−5)(2b−5) B.(b2+2x2)(2x2−b2) C.(−1− 4a)(1− 4a) D.(−m2n+2)(m2n−2)
10. 若x2-y2=100, x+y= -25,则x-y的值是( ) A.5 B. 4 C. -4 D. 以上都不对
观察上述算式,你能发现什么规律?运算出结果后,你又发现什么 规律?
平方差公式
(a+b)(a- b)=a2- ab+ab- b2= a2- b2.
即两个数的和与这两个数的差的积,等于这两个数的平方差. 平方差公式的逆用: a2-b2 = (a+b)(a-b)
证明
请从这个正方形纸板上,剪下一个边长为b的小正方形,如图1,拼
5. 用简便方法计算: 503×497=_______;1.02×0.98=______
6. 计算: (1)(3a-2b)(9a+6b) (2)(2y-1)(4y2+1)(2y+1)
7. 已知a2-b2=8,a+b=4,求a、b的值
8. 下列计算正确的是( ) A.( 2a+b)( 2a−b) = 2a2−b2 B.(0.3x+0.2)(0.3x−0.2) = 0.9x2−0.4 C.(a2+3b3)(3b3−a2) = a4−9b6 D.( 3a−bc)(−bc− 3a) = − 9a2+b 2c2
八年级数学上册第十四章乘法公式《完全平方公式》
教学设计2024秋季八年级数学上册第十四章乘法公式《完全平方公式》教学目标(核心素养)1.知识与技能:学生能够理解并掌握完全平方公式的两种形式((a+b)2=a2+2ab+b2和(a−b)2=a2−2ab+b2),并能熟练地进行展开和应用。
2.过程与方法:通过观察、比较、归纳等数学活动,培养学生的数学思维能力;通过动手操作和合作交流,提升学生的问题解决能力。
3.情感态度价值观:激发学生对数学的兴趣,培养探索精神和创新意识;增强数学学习的自信心和成就感。
教学重点•掌握完全平方公式的两种形式及其推导过程。
•能够熟练运用完全平方公式进行整式的展开和化简。
教学难点•理解完全平方公式中各项系数的来源和意义。
•灵活运用完全平方公式解决实际问题。
教学资源•多媒体课件(包含公式推导动画、例题解析视频)•黑板与粉笔•学生练习册•几何图形(如正方形纸片,用于直观展示)教学方法•讲授法:介绍完全平方公式的基本概念和推导过程。
•演示法:通过例题展示公式的应用,强调公式的灵活性和广泛性。
•动手操作法:利用几何图形帮助学生直观理解公式的形成。
•讨论法:组织学生讨论,分享解题思路和经验,促进知识内化。
教学过程导入新课•生活实例引入:以计算正方形面积为例,引导学生思考如何表示正方形的边长与面积之间的关系,从而引出完全平方公式的概念。
•复习旧知:回顾平方差公式和整式的乘法运算,为学习完全平方公式做铺垫。
新课教学1.公式推导•利用几何图形(如正方形纸片)进行直观展示,通过分割和重组的方式引导学生发现完全平方公式的结构。
•讲解公式的推导过程,强调公式中各项系数的来源和意义。
2.公式讲解•分别介绍完全平方公式的两种形式((a+b)2和(a−b)2),对比它们的异同点。
•强调公式中的“平方项”、“两倍乘积项”和“另一项的平方”的识别方法。
3.例题演示•选择几个典型例题,逐步展示完全平方公式的应用过程。
•强调在应用公式时,要仔细识别题目中的整式结构,判断其是否适合使用完全平方公式进行化简。
八年级乘法公式知识点
八年级乘法公式知识点乘法运算是小学数学的基础知识,而在初中阶段,乘法公式更是必不可少的知识点。
在乘法公式中,我们会涉及到一些重要的概念和技巧,接下来我们就来一起学习一下八年级乘法公式的知识点。
一、分配律分配律也叫乘法分配律,指的是把一个数与括号中的两个数相乘时,可以先分别与这两个数相乘,再把两个结果相加。
即:a x (b + c) = a x b + a x c例如:3 x (4 + 5) = 3 x 4 + 3 x 5 = 27二、结合律结合律也叫乘法结合律,指的是对于三个数相乘,我们可以先算前两个数的积,再乘以第三个数,也可以先算后两个数相乘再乘以第一个数。
即:a xb xc = (a x b) x c = a x (b x c)例如:2 x 3 x 5 = (2 x 3) x 5 = 6 x 5 = 30三、交换律交换律也叫乘法交换律,指的是两个数相乘时,先后次序可以交换,积不变。
即:a xb = b x a例如:4 x 6 = 6 x 4 = 24四、乘方乘方是指将一个数自乘若干次,用a的n次方表示。
其中,a 称为底数,n称为指数。
an = a x a x … x a (自乘n次)例如:23 = 2 x 2 x 2 = 8五、科学计数法科学计数法是一种方便表示极大数或极小数的方法,以10的正整数次幂为底数,以小于10的正整数为系数进行表达。
即:a x 10b(a是小于10的整数,b是任意整数)例如:4000 = 4 x 1000 = 4 x 10³总结:在掌握以上的八年级乘法公式知识点的基础上,我们可以更轻松的解决乘法运算问题。
但是,在实际的乘法运算过程中,我们还需要灵活应用这些知识点,从而更快速地得到正确的答案。
最后,通过我们对于这些知识点的学习,我们也可以更好地理解基础数学知识的重要性。
因为只有打牢基础,我们才可以更好地迎接高中阶段的挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级乘法公式
必修作业模版内容
1.教学设计学科名称
2.所在班级情况,学生特点分析
3.教学内容分析
4.教学目标
5.教学难点分析
6.教学课时
7.教学过程
8.课堂练习
9.作业安排
10.附录(教学资料及资源)
11.自我问答
一、教学设计学科名称:乘法公式──平方差公式(初中数学八年级)
二、所在班级情况,学生特点分析:
学生两极分化年较严重,差生基础很差。
三、教学内容
教学重点:理解并掌握平方差公式及其结构特征;会运用此公式进行计算。
教学难点:理解乘法公式的结构特征及几何意义,并能灵活运用平方差公式。
四、教学目标
1、了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题.
2、经历平方差公式产生的过程,体验知识的产生与发展,感受利用归纳、数形结合等数学思想方法解决数学问题的策略,培养学生观察、归纳、概括的能力.
3、在探索平方差公式的过程和在解决问题过程中学会与他人合作交流.在公式的学习及运用中积累解题的经验、体验成功的喜悦,提高学生学习数学的兴趣.
五、学情分析
学生的认知基础有:第一、七年级学生已有用字母表示数的基础.第二、学生已学习了多项式的乘法,但本节课所给特殊形式的多项式相乘,主要体现在结构特征的特殊性上,而这种特殊形式又灵活多样,学生常常在字母表示的广泛含义上不易掌握(如字母表示负数,多项式等),在平方差公式的灵活运用时常发生多种错误,如:① 符号错误(-5a- 3)(+5a-3)=25a2-9 ② 系数不平方(2a-1)(2a+1)=2a2-1 ③ 不能运用公式的而运
用公式(a+0.5b)(b-0.5 a)=a2-0.25b2,其原因就是只了解公式(a+b)(a-b)=a2-b2的表面形式,而未真正掌握平方差公式的本质特征.
六、教具准备
利用多媒体展示教学的部分环节,如创设情景、公式的几何意义等,从而支持课堂教学,突出重点,突破难点.
七、教学过程设计
(一)创设情境,快乐起航
从前,有一个狡猾的庄园主,把一块边长为a米的正方形土地租给张老汉种植.第二年,他对张老汉说:“我把这块地的一边减少5米,相邻的另一边增加5米,继续租给你,租金不变,你也没有吃亏,你看如何?”张老汉一听,觉得好像没有吃亏,就答应道:“好吧”.回到家中,他把这事和邻居们一讲,大家都说:“张老汉,你吃亏了!”张老汉非常吃惊.你知道张老汉是否吃亏了吗?学习了本节课的知识,你将能轻松地解决.[设计意图]从生活中的实例引入,一是激发学生求知兴趣;二是为说明平方差公式的几何意义做好铺垫.
(二)自主探索,获取新知
问题1:利用多项式的乘法法则,计算下面各题.再观察、分析这组题目左边的算式和右边的结果,你能从中发现什么规律?(小组讨论)
(1)(a+b)(m+n)=am+an+bm+bn (4)(a+5)(a-5)
(2)(x+3)(y+4)=xy+4x+3y+12 (5)(p+q) (p-q)
(3)(y+3)(y-2)=y2+y-6 (6)(2x+1)(2x-1)
问题2:通过这些题目的计算,你发现了什么?
(视学生活动情况,可预设以下两个追问)
(追问1):(4)(5)(6)题在形式和结果上与其它各题有什么区别?
(追问2):观察、分析(4)(5)(6)左边的算式和右边的结果,你能从中发现什么规律?(小组讨论)
(4)(a+5)(a-5)= a2-5a+5a -52 =a2- 52
(5)(p+q) (p-q) = p2-pq+pq-q2 = p2 - q2
(6)(2x+1)(2x-1)=(2x)2-2x+2x-12 = (2x)2-12
发现:【左边】两个数的和与这两个数的差的积【右边】这两个数的平方差
猜想:(a+b)(a-b)=?
[设计意图] 在教学中以一组相关联但又有区别的题目为载体,学生通过计算,观察每个算式的特点、结果的特点,挖掘题目间的共性,发现规律,举三反一,猜想公式,让学生经历从一般到特殊,从具体到抽象的过程,体会归纳这一数学思想方法.
问题3:你能通过计算(a+b)
(a-b),说明猜想的合理性吗?
(a+b)(a-b)=a2-ab+ ab-b2 =a2-b2
归纳平方差公式:(a+b)(a-b)= a2-b2,即:两个数的和与这两个数的差的积等于这两个数的平方差.
[设计意图]通过多项式的乘法法则践行猜想,让感知得到到理性的检验,体现数学学科思维的严谨,让合情推理与演绎推理完美并进,进而准确的用数学语言表述公式.
(三)剖析公式,揭示本质
问题4:你能揭示公式的结构特征吗?(学生先自主辨析,再交流互补,不但完善)
左边右边
结构特征(a+b)(a-b)= a2 - b2
相同项相反项相同项2 - 相反项2
[a与a] [b与-b]
[设计意图]揭示公式的结构特征,是学生理解公式、进而灵活运用公式解决问题的前提条件.让学生自主辨析、合作交流、共同总结得以明晰,既体现了学生学习的主动性,又为学生学习公式进行了学法指导,可谓“一箭双雕”.
(四)数形结合,几何说理
问题5:现在,你知道张老汉是否吃亏了吗?吃亏了多少?
追问:如果将张老汉所租的正方形土地的一边减少b米,相邻另一边增加b米,现在的土地面积是多少?原来的土地面积是多少?两者相比,发生了怎样的变化?请你将图(1)重新拼图,验证结论的正确性.它说明了什么公式?
[设计意图]使学生直观地经历变化的过程,从数形结合的角度加深对公式的理解.
(五)巩固运用,内化新知
开心一试真我巧变
1.你能用□和○分别代表a和b来表示平方差公式吗?
(□+○)(□-○) =□2-○2
2.请你根据等式在□和○里填数或式
如(2a +⑤)(2a -⑤)=2a2-⑤2
教师可根据学生的回答,补充多项式的形式.
小结:其中□(即a)和○(即b)可以表示数,单项式或多项式.
[设计意图] 这道开放题的设计,以剖析a、b的广泛含义为目的,对于认清公式的结构特征起到事半功倍的作用,在后面公式的运用中相信学生会更加得心应手.
锋芒毕露模拟演练
3.填一填
[设计意图] 设计此题旨在将算式中的各项与公式里的a、b进行对照,进一步体会字母a、b的含义,举一反三,加深对字母含义广泛性的理解.你挑我选慧眼识珠
4.判断对错,如果有错,如何改正?(大组竞赛)
(1)(x-2)(x+2)=x2-2 ()(2)(2a+5)(2a-5)=2a2-25 ()
(3)(-1+3m)(1+3m)=1-9m2 ()(4)(a+b)(b-a)=a2-b2 ()
(5)(1/3-4xy)(1/3+4xy)=1/9-16x2y2()(6)(4x+3b)(4x-3b)=16x2-9()
[设计意图] 对学生常出现的错误,进行预设,防微杜渐.
例题:计算
(1)10298 (2)(y+2)(y-2)-(y-1)(y+5)
大显身手巧用善用
5.计算
(1)5149 (2)(3x+4)(3x-4)-(x+3)(x-2)
[设计意图] 通过转化,利用公式计算,体会平方差公式的便捷.
争我风采易如反掌
6.变式练习
(1)填空:① (-m+___)(n+____)=n2-m2
② 写出与(-a+b)相乘能用平方差公式的因式
___________________.
③(5a+b+3c)(5a+b-3c)=A2-B2,则A=_______B=______.
(2)计算: (x+y)(x-y)(x2+y2),并根据此题自编一道类似的题,同桌交换做一做.
(3)20082-20092007
[设计意图] 通过变式训练,让学生学会逆向思维和发散思维,从而加强学生对公式结构特征的理解,连续使用平方差公式是对公式应用的拓展与提高.
(六)小结梳理,布置作业
1.小结
(1)本节课你学到了什么数学知识?
(a+b)(a-b)=a2-b2
(2)平方差公式的结构特征是什么?
左边:两个因式中一定有相同项和相反项
右边:相同项的平方减去相反项的平方.
(3)本节课你感悟到哪些数学思想方法?(转化、数形结合)
2.作业
①、P156 T1
②、先化简,再求值x(x+2)-(x+1)(x-1),其中x=1/2
[设计反思]设计不同形式的问题,考察学生对平方差公式的理解与应用.对学生的学习效果进行检测,给学生自我评价的机会,对“教”与“学”及时反馈.师生一起查漏补缺,扬长避短,自我完善。