【配套K12】2018年高考数学二轮复习第二部分专题五解析几何第1讲直线与圆课时规范练理
高考数学大二轮复习 层级二 专题五 解析几何 第1讲 直线与圆课时作业-人教版高三全册数学试题
第1讲 直线与圆限时40分钟 满分80分一、选择题(本大题共11小题,每小题5分,共55分)1.(2020·某某二诊)设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx -sin B ·y +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:C [由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin Aa,bx -sin B ·y +sin C =0的斜率k 2=b sin B ,故k 1k 2=-sin A a ·b sin B=-1,则直线sin A ·x +ay -c =0与直线bx -sin B ·y +sin C =0垂直,故选C.]2.(2020·某某质检)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34解析:D [点(-2,-3)关于y 轴的对称点为(2,-3),故可设反射光线所在直线的方程为y +3=k (x -2),∵反射光线与圆(x +3)2+(y -2)2=1相切,∴圆心(-3,2)到直线的距离d =|-3k -2-2k -3|k 2+1=1,化简得12k 2+25k +12=0,解得k =-43或-34.] 3.(2020·某某模拟)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上运动,则AB 的中点M 到原点的距离的最小值为( )A. 2 B .2 2 C .3 2D .4 2解析:C [由题意知AB 的中点M 的集合为到直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则点M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据两平行线间的距离公式得,|m +7|2=|m +5|2,即|m +7|=|m+5|,所以m =-6,即l :x +y -6=0,根据点到直线的距离公式,得点M 到原点的距离的最小值为|-6|2=3 2.]4.(2020·某某六校联考)已知直线x +y =a 与圆x 2+y 2=1交于A ,B 两点,O 是坐标原点,向量OA →,OB →满足|OA →+OB →|=|OA →-OB →|,则实数a 的值为( )A .1B .2C .±1D .±2解析:C [由OA →,OB →满足|OA →+OB →|=|OA →-OB →|,得OA →⊥OB →, 因为直线x +y =a 的斜率是-1, 所以A ,B 两点在坐标轴上并且在圆上;所以(0,1)和(0,-1)两点都适合直线的方程,故a =±1.]5.(2020·怀柔调研)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34 B .y =-12C .y =-32D .y =-14解析:B [圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=1-12+-2-02=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.]6.(2020·某某模拟)已知圆C :(x -2)2+y 2=2,直线l :y =kx ,其中k 为[-3,3]上的任意一个实数,则事件“直线l 与圆C 相离”发生的概率为( )A.33B.34C.14D.3-33解析:D [当直线l 与圆C 相离时,圆心C 到直线l 的距离d =|2k |k 2+1>2,解得k >1或k <-1,又k ∈[-3,3],所以-3≤k <-1或1<k ≤3,故事件“直线l 与圆C 相离”发生的概率P =3-1+-1+323=3-33,故选D.]7.(2019·潍坊三模)已知O 为坐标原点,A ,B 是圆C :x 2+y 2-6y +5=0上两个动点,且|AB |=2,则|OA →+OB →|的取值X 围是( )A .[6-23,6+23]B .[3-3,3+3]C .[3,9]D .[3,6]解析:A [圆C :x 2+(y -3)2=4,取弦AB 的中点M ,连接CM ,CA ,在直角三角形CMA 中,|CA |=2,|MA |=1,则|CM |=|CA |2-|MA |2=3,则点M 的轨迹方程为x 2+(y -3)2=3,则|OA →+OB →|=2|OM →|∈[6-23,6+23].]8.(多选题)直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点的一个充分不必要条件是( )A .0<m <1B .m <1C .-2<m <1D .-3<m <1解析:AC [本题主要考查直线与圆的位置关系的判断.圆x 2+y 2-2x -1=0的圆心为(1,0),半径为 2.因为直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点,所以直线与圆相交,因此圆心到直线的距离d =|1+m |1+1<2,所以|1+m |<2,解得-3<m <1,求其充分条件,即求其子集,故由选项易得AC 符合.故选AC.]9.(2020·某某质检)已知圆C 1:(x +2)2+(y -3)2=5与圆C 2相交于A (0,2),B (-1,1)两点,且四边形C 1AC 2B 为平行四边形,则圆C 2的方程为( )A .(x -1)2+y 2=5 B .(x -1)2+y 2=92C.⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=5 D.⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=92解析:A [通解 (常规求解法)设圆C 2的圆心坐标为(a ,b ),连接AB ,C 1C 2.因为C 1(-2,3),A (0,2),B (-1,1),所以|AC 1|=|BC 1|=5,所以平行四边形C 1AC 2B 为菱形,所以C 1C 2⊥AB且|AC 2|= 5.可得⎩⎪⎨⎪⎧3-b -2-a ×1-2-1-0=-1,a 2+b -22=5,解得⎩⎪⎨⎪⎧a =1,b =0或⎩⎪⎨⎪⎧a =-2,b =3,则圆心C 2的坐标为(1,0)或(-2,3)(舍去).因为圆C 2的半径为5,所以圆C 2的方程为(x -1)2+y 2=5.故选A.优解 (特值验证法)由题意可知,平行四边形C 1AC 2B 为菱形,则|C 2A |=|C 1A |=22+2-32=5,即圆C 2的半径为5,排除B ,D ;将点A (0,2)代入选项A ,C ,显然选项A 符合.故选A.]10.(2020·某某二测)已知圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)的圆心在直线3x -y +3=0上,且圆C 上的点到直线3x +y =0的距离的最大值为1+3,则a 2+b 2的值为( )A .1B .2C .3D .4解析:C [化圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)为标准方程得C :(x -a )2+(y -b )2=1,其圆心为(a ,b ),故3a -b +3=0,即b =3a +3,(a ,b )到直线3x +y =0的距离d =|3a +b |3+1=|3a +b |2=|3a +3a +3|2,因为圆C 上的点到直线3x +y =0的距离的最大值为1+3,故d +1=32|2a +1|+1=1+3,得到|2a +1|=2,解得a =-32或a =12(舍去),故b =3×⎝ ⎛⎭⎪⎫-32+3=-32,故a 2+b 2=⎝ ⎛⎭⎪⎫-322+⎝ ⎛⎭⎪⎫-322=3.选C.] 11.(2019·某某三模)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B 使得MA ⊥MB ,则实数t 的取值X 围是( )A .[-2,6]B .[-3,5]C .[2,6]D .[3,5]解析:C [当MA ,MB 是圆C 的切线时,∠AMB 取得最大值,若圆C 上存在两点A ,B 使得MA ⊥MB ,则MA ,MB 是圆C 的切线时,∠AMB ≥90°,∠AMC ≥45°,且∠AMC <90°,如图,所以|MC |=5-12+t -42≤10sin 45°=20,所以16+(t -4)2≤20,所以2≤t ≤6,故选C.] 二、填空题(本大题共5小题,每小题5分,共25分)12.(双空填空题)在平面直角坐标系xOy 中,已知圆C 过点A (0,-8),且与圆x 2+y 2-6x -6y =0相切于原点,则圆C 的方程为___________________________________________,圆C 被x 轴截得的弦长为________.解析:本题考查圆与圆的位置关系.将已知圆化为标准式得(x -3)2+(y -3)2=18,圆心为(3,3),半径为3 2.由于两个圆相切于原点,连心线过切点,故圆C 的圆心在直线y =x 上.由于圆C 过点(0,0),(0,-8),所以圆心又在直线y =-4上.联立y =x 和y =-4,得圆心C 的坐标(-4,-4).又因为点(-4,-4)到原点的距离为42,所以圆C 的方程为(x +4)2+(y +4)2=32,即x 2+y 2+8x +8y =0.圆心C 到x 轴距离为4,则圆C 被x 轴截得的弦长为2×422-42=8.答案:x 2+y 2+8x +8y =0 813.(2019·某某二模)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为________________.解析:当直线l 的斜率不存在时,直线l 的方程为x =0,联立方程得⎩⎪⎨⎪⎧x =0,x 2+y 2-2x -2y -2=0.得⎩⎨⎧x =0,y =1-3或⎩⎨⎧x =0,y =1+3,∴|AB |=23,符合题意.当直线l 的斜率存在时,设直线l 的方程为y =kx +3,∵圆x 2+y 2-2x -2y -2=0,即(x -1)2+(y -1)2=4,其圆心为C (1,1),圆的半径r =2,圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,∵d 2+⎝ ⎛⎭⎪⎫|AB |22=r 2,∴k +22k 2+1+3=4,解得k =-34,∴直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0.答案:x =0或3x +4y -12=014.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为|-5|a 2+4a2=5a(a >0).故222-⎝⎛⎭⎪⎫5a 2=22, 解得a 2=52,因为a >0,所以a =102. 答案:10215.(2018·某某卷)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________.解析:∵AB 为直径 ∴AD ⊥BD∴BD 即B 到直线l 的距离 |BD |=|0-2×5|12+22=2 5. ∵|CD |=|AC |=|BC |=r ,又CD ⊥AB . ∴|AB |=2|BC |=210 设A (a,2a ) |AB |=a -52+4a 2=210⇒a =-1或3(-1舍去)答案:316.(2020·某某模拟)为保护环境,建设美丽乡村,镇政府决定为A ,B ,C 三个自然村建造一座垃圾处理站,集中处理A ,B ,C 三个自然村的垃圾,受当地条件限制,垃圾处理站M 只能建在与A 村相距5 km ,且与C 村相距31 km 的地方.已知B 村在A 村的正东方向,相距3 km ,C 村在B 村的正北方向,相距3 3 km ,则垃圾处理站M 与B 村相距________km.解析:以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系(图略),则A (0,0),B (3,0),C (3,33).由题意得垃圾处理站M 在以A (0,0)为圆心,5为半径的圆A 上,同时又在以C (3,33)为圆心,31为半径的圆C 上,两圆的方程分别为x 2+y 2=25和(x -3)2+(y -33)2=31.由⎩⎨⎧x 2+y 2=25,x -32+y -332=31,解得⎩⎪⎨⎪⎧x =5,y =0或⎩⎪⎨⎪⎧x =-52,y =532,∴垃圾处理站M 的坐标为(5,0)或⎝ ⎛⎭⎪⎫-52,532,∴|MB |=2或|MB |=⎝ ⎛⎭⎪⎫-52-32+⎝ ⎛⎭⎪⎫5322=7, 即垃圾处理站M 与B 村相距2 km 或7 km. 答案:2或7。
2018年高考数学二轮复习第二部分专题五解析几何第1讲直线与圆课时规范练理
第1讲 直线与圆一、选择题1.(2017·日照二模)已知命题p :“m =-1”,命题q :“直线x -y =0与直线x +m 2y =0互相垂直”,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要解析:“直线x -y =0与直线x +m 2y =0互相垂直”的充要条件是1×1+(-1)·m 2=0⇔m =±1.所以命题p 是命题q 的充分不必要条件. 答案:A2.(2017·忻州模拟)过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0解析:依题意,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点.因为圆心(1,0)与切点(3,1)连线的斜率为12,所以切线的斜率k =-2,故圆的切线方程为y -1=-2(x -3),即2x +y -7=0.答案:B3.(2015·全国卷Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53 B.213C.253D.43解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,所以⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,所以⎩⎪⎨⎪⎧D =-2,E =-433,F =1,所以△ABC 外接圆的圆心为⎝⎛⎭⎪⎫1,233,因此圆心到原点的距离d =12+⎝ ⎛⎭⎪⎫2332=213.答案:B4.(2017·济南调研)若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( )(导学号 54850124)A .1B .-3C .1或-3D .2解析:因为圆(x -1)2+y 2=5的圆心C (1,0),半径r = 5.又直线x -y +m =0被圆截得的弦长为2 3.所以圆心C 到直线的距离d =r 2-(3)2=2, 因此|1-0+m |12+(-1)2=2,所以m =1或m =-3. 答案:C5.(2017·汉中模拟)已知过点(-2,0)的直线与圆C :x 2+y 2-4x =0相切于点P (P 在第一象限内),则过点P 且与直线3x -y =0垂直的直线l 的方程为( )A .x +3y -2=0B .x +3y -4=0 C.3x +y -2=0D .x +3y -6=0解析:圆C :x 2+y 2-4x =0的标准方程(x -2)2+y 2=4, 所以圆心C (2,0),半径r =2.又过点(-2,0)的直线与圆C 相切于第一象限, 所以易知倾斜角θ=30°,切点P (1,3), 设直线l 的方程为x +3y +c =0,把点P (1,3)代入,所以1+3+c =0,所以c =-4. 所以直线l 的方程为x +3y -4=0. 答案:B 二、填空题6.(2017·菏泽二模)已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.解析:圆C 的标准方程为(x -4)2+(y -1)2=9,所以圆C 的圆心C (4,1),半径r =3. 又直线y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短. 因此a ·k CP =a ·1-04-3=-1,所以a =-1.故所求直线的方程为y =-(x -3),即x +y -3=0. 答案:x +y -3=07.(2017·北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.解析:法一 由题意知,AO →=(2,0),令P (cos α,sin α),则AP →=(cos α+2,sin α),AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6,故AO →·AP →的最大值为6. 法二 由题意知,AO →=(2,0),令P (x ,y ),-1≤x ≤1,则AO →·AP →=(2,0)·(x +2,y )=2x +4≤6,故AO →·AP →的最大值为6. 答案:68.(2016·全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析:由圆x 2+y 2=12知圆心O (0,0),半径r =23,所以圆心(0,0)到直线x -3y +6=0的距离d =61+3=3,|AB |=212-32=2 3.过C 作CE ⊥BD 于E .如图所示,则|CE |=|AB |=2 3. 因为直线l 的方程为x -3y +6=0,所以直线l 的倾斜角∠BPD =30°,从而∠BDP =60°,因此|CD |=|CE |sin 60°=23sin 60°=4.答案:4 三、解答题9.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5).(导学号 54850125)(1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S . 解:(1)由圆C :x 2+y 2-4x -6y +12=0,配方, 得(x -2)2+(y -3)2=1,圆心C (2,3). 当斜率存在时,设过点A 的圆的切线方程为y -5=k (x -3),即kx -y +5-3k =0.由d =|2k -3+5-3k |k 2+1=1,得k =34.又斜率不存在时直线x =3也与圆相切, 故所求切线方程为x =3或3x -4y +11=0. (2)直线OA 的方程为y =53x ,即5x -3y =0,点C 到直线OA 的距离为d =|5×2-3×3|52+32=134, 又|OA |=32+52=34, 所以S =12|OA |d =12.10.(2017·天津南开中学模拟)在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切.(导学号 54850126)(1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程. 解:(1)将圆C :x 2+y 2+4x -2y +m =0化为(x +2)2+(y -1)2=5-m , 因为圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切, 所以圆心(-2,1)到直线x -3y +3-2=0的距离d =41+3=2=r ,所以圆C 的方程为(x +2)2+(y -1)2=4.(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,则可设直线MN 的方程为2x -y +c =0,因为|MN |=23,半径r =2,所以圆心(-2,1)到直线MN 的距离为22-(3)2=1.则|-4-1+c |5=1,所以c =5±5, 所以直线MN 的方程为2x -y +5± 5=0.11.(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程; (3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.解:(1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25,圆心M (6,7),半径r =5, 由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0),且(6-6)2+(b -7)2=b +5.解得b =1,所以圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为k OA =2,所以可设直线l 的方程为y =2x +m ,即2x -y +m =0. 又|BC |=|OA |=22+42=25,由题意,圆M 的圆心M (6,7)到直线l 的距离为d =52-⎝ ⎛⎭⎪⎫|BC |22=25-5=25,即|2×6-7+m |22+(-1)2=25,解得m =5或m =-15.所以直线l 的方程为2x -y +5=0或2x -y -15=0. (3)由TA →+TP →=TQ →,则四边形AQPT 为平行四边形, 又因为P ,Q 为圆M 上的两点, 所以|PQ |≤2r =10. 所以|TA |=|PQ |≤10, 即(t -2)2+42≤10, 解得2-221≤t ≤2+221.故所求t 的取值范围为[2-221,2+221 ].。
2018届高考数学理二轮复习江苏专用课件:专题五 解析几何 第1讲 精品
解析 由已知,可设圆 M 的圆心坐标为(a,0),a>-2, (a+2)2+( 3)2=r2,
半径为 r,得|2a4-+45|=r, 解得满足条件的一组解为ar==2-,1, 所以圆 M 的方程为(x+1)2+y2=4. 答案 (x+1)2+y2=4
T→A+T→P=T→Q,求实数 t 的取值范围.
解 (1)圆 M 的方程化为标准形式为(x-6)2+(y-7)2= 25,圆心 M(6,7),半径 r=5, 由题意,设圆 N 的方程为(x-6)2+(y-b)2=b2(b>0). 且 (6-6)2+(b-7)2=b+5.解得 b=1, ∴圆 N 的标准方程为(x-6)2+(y-1)2=1.
2.圆的方程 (1)圆的标准方程:(x-a)2+(y-b)2=r2(r>0),圆心为(a, b),半径为 r. (2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0), 圆心为-D2 ,-E2,半径为 r= D2+2E2-4F;对于二元二 次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆的充要条件 B=0, 是A=C≠0, D2+E2-4AF>0.
(2)依题意得△OO1A 是直角三角形,
∴OO1= 5+20=5,
S△OO1A=12·A2B·OO1=12·OA·AO1,
因此 AB=2·OOAO·1 AO1=2×
5×2 5
5=4.
答案 (1)45π (2)4
探究提高 (1)直线与圆相切时利用“切线与 过切点的半径垂直,圆心到切线的距离等于 半径”建立切线斜率的等式,所以求切线方 程时主要选择点斜式. (2)过圆外一点求解切线长转化为圆心到圆外 点距离,利用勾股定理处理.
2018高考数学理二轮复习课件:1-5-1 直线与圆 精品
解得 D=-2,E=4,F=-20,所求圆的方程为 x2+y2-2x+4y-20=0,令 x=0,得 y2+4y-20=0,
设 M(0,y1),N(0,y2),则 y1+y2=-4,y1y2=-20,所以|MN|=|y1-y2|= y1+y22-4y1y2=4 6.故选 C.
2.[2015·湖北高考]如图,已知圆 C 与 x 轴相切于点 T(1,0),与 y 轴正半轴交于两点 A,B(B 在 A 的上 方),且|AB|=2.
D.2x-y+ 5=0 或 2x-y- 5=0
解析
设所求直线的方程为 2x+y+c=0(c≠1),则
|c| = 22+12
5,所以 c=±5,故所求直线的方程
为 2x+y+5=0 或 2x+y-5=0.
2.[2015·重庆高考]若点 P(1,2)在以坐标原点为圆心的圆上,则该圆在点 P 处的切线方程为_x_+__2_y_-__5_=__0.
主干知识整合
1.直线方程的五种形式 (1)点斜式: y-y1=k(x-x1) . (2)斜截式: y=kx+b .
[必记公式]
(3)两点式: yy2--yy11=xx2--xx11
(x1≠x2,y1≠y2).
(4)截距式: ax+by=1 (a≠0,b≠0).
(5)一般式:Ax+By+C=0(A,B 不同时为 0). 2.圆的三种方程 (1)圆的标准方程: (x-a)2+(y-b)2=r2 .
热点探究悟道
热点一 直线与方程
例 1 (1)[2015·郑州质量预测]“a=1”是“直线 ax+y+1=0 与直线(a+2)x-3y-2=0 垂直”的
()
A.充要条件
B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
高考数学二轮专题五解析几何第讲直线与圆课件
(2,3),则圆C的半径为
()
A.2 2
B.8
C.5
D. 5
返回
解析:∵圆C截两坐标轴所得弦长相等,∴圆心C在直线y =x或y=-x上. ①当圆心C在直线y=x上时,设C(m,m),半径为R,则 (m+1)2+m2=(m-2)2+(m-3)2=R2,可得m=1,R2= 5,∴R= 5; ②当圆心C在直线y=-x上时,设C(m,-m),半径为 R,则(m+1)2+(-m)2=(m-2)2+(-m-3)2=R2,该方 程组无解. ∴圆C的半径为 5,故选D. 答案:D
到直线方程. “专题检测”见“专题检测” (十八)
考点3 直线与圆的位置关系
考点3 直线与圆的位置关系
“专题检测”见“专题检测” (十八)
考点3 直线与圆的位置关系
考点3 直线与圆的位置关系
考点3 直线与圆的位置关系
考点3 直线与圆的位置关系
返回
2.轴对称问题的两种类型及求解方法 若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By +C=0对称,则线段P1P2的中点在对称轴l上,而 且连接P1,P2的直线垂直于对称轴l.由方程组
[答案] (1)ABC (2)ACD
返回
解题方略
求圆的方程的2种方法 几何 通过研究圆的性质,直线和圆、圆与圆的位置关系,
法 从而求得圆的基本量和方程 代数 用待定系数法先设出圆的方程,再由条件求得各系 法 数,从而求得圆的方程
返回
[跟踪训练]
1.已知圆C截两坐标轴所得弦长相等,且圆C过点(-1,0)和
0,则下列说法正确的是
()
A.圆A的半径为2
B.圆A截y轴所得的弦长为2 3
C.圆A上的点到直线3x-4y+12=0的最小距离为1
高考数学二轮复习 第二层提升篇 专题五 解析几何 第1讲 直线与圆讲义-高三全册数学教案
第1讲 直线与圆[全国卷3年考情分析](1)圆的方程近几年成为高考全国课标卷命题的热点,需重点关注.此类试题难度中等偏下,多以选择题或填空题形式呈现.(2)直线与圆的方程偶尔单独命题,单独命题时有一定的深度,有时会出现在第11题或第15题位置,难度较大,对直线与圆的方程(特别是直线)的考查主要体现在圆锥曲线的综合问题上.[例1] (1)已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与坐标轴围成一个四边形,则使这个四边形面积最小的k 的值为( )A.18B.12C.14D.2 (2)若直线l 1:y =kx -k +2与直线l 2关于点(2,1)对称,则直线l 2过定点( )A.(3,1)B.(3,0)C.(0,1)D.(2,1)[解析] (1)直线l 1,l 2恒过点P (2,4),直线l 1在y 轴上的截距为4-k ,直线l 2在x 轴上的截距为2k 2+2,因为0<k <4,所以4-k >0,2k 2+2>0,所以四边形的面积S =12×2×(4-k )+12×4×(2k 2+2)=4k 2-k +8=4⎝ ⎛⎭⎪⎫k -182+12716,故当k =18时,面积最小. (2)∵y =kx -k +2=k (x -1)+2,∴l 1:y =kx -k +2过定点(1,2).设定点(1,2)关于点(2,1)对称的点的坐标为(x ,y ),则⎩⎪⎨⎪⎧1+x 2=2,2+y 2=1,得⎩⎪⎨⎪⎧x =3,y =0,∴直线l 2过定点(3,0).故选B. [答案] (1)A (2)B[解题方略]1.两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断.2.轴对称问题的两种类型及求解方法[跟踪训练]1.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( )A.423B.42C.823D.22解析:选C 因为l 1∥l 2,所以1a -2=a 3≠62a,解得a =-1,所以l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2的距离d =⎪⎪⎪⎪⎪⎪6-232=823. 2.在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=( )A.102B.10C.5D.10解析:选D 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴MP ⊥MQ ,∴|MP |2+|MQ |2=|PQ |2=9+1=10,故选D.[例2] (1)已知点A 是直角三角形ABC 的直角顶点,且A (2a ,2),B (-4,a ),C (2a +2,2),则三角形ABC 外接圆的方程是( )A.x 2+(y -3)2=5B.x 2+(y +3)2=5 C.(x -3)2+y 2=5 D.(x +3)2+y 2=5 (2)圆心在直线y =-4x 上,并且与直线l :x +y -1=0相切于点P (3,-2)的圆的方程为________________.[解析] (1)∵AB ―→=(-4-2a ,a -2),AC―→=(2,0),∴AB ―→·AC―→=-8-4a =0,解得a =-2.∴A (-4,2),B (-4,-2),C (-2,2),|BC |=25,又BC 的中点坐标为(-3,0),∴三角形ABC 外接圆的圆心为(-3,0),半径为|BC |2=5,∴三角形ABC 外接圆的方程为(x +3)2+y 2=5.(2)设圆心M 为(x ,-4x ),k MP =2-4x x -3, k l =-1,所以k MP ·k l =-1,所以x =1,所以M (1,-4),所以r =|MP |=(1-3)2+(-4+2)2=22所以所求圆的方程为(x -1)2+(y +4)2=8.[答案] (1)D (2)(x -1)2+(y +4)2=8[解题方略] 求圆的方程的2种方法[跟踪训练]1.已知圆C 1:(x +2)2+(y -3)2=5与圆C 2相交于A (0,2),B (-1,1)两点,且四边形C 1AC 2B 为平行四边形,则圆C 2的方程为( )A.(x -1)2+y 2=5B.(x -1)2+y 2=92C.⎝ ⎛⎭⎪⎫x -122+⎝⎛⎭⎪⎫y -122=5 D.⎝ ⎛⎭⎪⎫x -122+⎝⎛⎭⎪⎫y -122=92 解析:选A 法一:(常规求解法)设圆C 2的圆心坐标为(a ,b ),连接AB ,C 1C 2.因为C 1(-2,3),A (0,2),B (-1,1),所以|AC 1|=|BC 1|=5,所以平行四边形C 1AC 2B 为菱形,所以C 1C 2⊥AB 且|AC 2|= 5.可得⎩⎪⎨⎪⎧3-b -2-a ×1-2-1-0=-1,a 2+(b -2)2=5,解得⎩⎪⎨⎪⎧a =1,b =0或⎩⎪⎨⎪⎧a =-2,b =3,则圆心C 2的坐标为(1,0)或(-2,3)(舍去).因为圆C 2的半径为5,所以圆C 2的方程为(x -1)2+y 2=5.故选A.法二:(特值验证法)由题意可知,平行四边形C 1AC 2B 为菱形,则|C 2A |=|C 1A |=22+(2-3)2=5,即圆C 2的半径为5,排除B 、D ;将点A (0,2)代入选项A 、C ,显然选项A 符合.故选A.2.若不同两点P ,Q 的坐标分别为(a ,b ),(3-b ,3-a ),则线段PQ 的垂直平分线l 的斜率为________,圆(x -2)2+(y -3)2=1关于直线l 对称的圆的方程为____________.解析:k PQ =3-a -b 3-b -a=1,故直线l 的斜率为-1, 由点斜式可知l 的方程为y =-x +3,圆心(2,3)关于直线y =-x +3的对称点为(0,1),故所求圆的方程为x 2+(y -1)2=1.答案:-1 x 2+(y -1)2=1考点三直线与圆的位置关系 题型一 圆的切线问题[例3] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( )A.3x +4y -4=0B.4x -3y +4=0C.x =2或4x -3y +4=0D.y =4或3x +4y -4=0(2)设点M (x 0,y 0)为直线3x +4y =25上一动点,过点M 作圆x 2+y 2=2的两条切线,切点为B ,C ,则四边形OBMC 面积的最小值为________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆心O 到直线3x +4y =25的距离d =259+16=5, 则|OM |≥d =5,所以切线长|MB |=|OM |2-2≥d 2-2=23,所以S 四边形OBMC =2S △OBM ≥2×12×23×2=46. [答案] (1)C (2)46[变式1] 本例(2)变为:过点A (1,3),作圆x 2+y 2=2的两条切线,切点为B ,C ,则四边形OBAC 的面积为________.解析:由相切可得S 四边形OBAC =2S △OBA , 因为△OAB 为直角三角形,且|OA |=10,|OB |=2, 所以|AB |=22,即S △OBA =12×22×2=2, 所以S 四边形OBAC =2S △OBA =4.答案:4[变式2] 本例(2)变为:设点M (x 0,y 0)为直线3x +4y =25上一动点,过点M 作圆x 2+y 2=2的两条切线l 1,l 2,则l 1与l 2的最大夹角的正切值是________.解析:设一个切点为B ,圆心O 到直线3x +4y =25的距离为d=259+16=5,则tan∠OMB=|OB||MB|≤223,所以tan2∠OMB=2tan∠OMB1-tan2∠OMB=21tan∠OMB-tan∠OMB≤24621.故所求最大夹角的正切值为24621.答案:24621[解题方略] 直线与圆相切问题的解题策略直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.题型二圆的弦长问题[例4] 已知圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P,Q两点.(1)求圆C的方程;(2)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M,N 两点,求四边形PMQN面积的最大值.[解] (1)设圆心C(a,a),半径为r,因为圆C经过点A(-2,0),B(0,2),所以|AC|=|BC|=r,即(a +2)2+(a -0)2=(a -0)2+(a -2)2=r , 解得a =0,r =2,故所求圆C 的方程为x 2+y 2=4.(2)设圆心C 到直线l ,l 1的距离分别为d ,d 1,四边形PMQN 的面积为S .因为直线l ,l 1都经过点(0,1),且l 1⊥l ,根据勾股定理,有d 21+d 2=1.又|PQ |=2×4-d 2,|MN |=2×4-d 21,所以S =12|PQ |·|MN |, 即S =12×2×4-d 2×2×4-d 21 =216-4(d 21+d 2)+d 21d 2=212+d 21d 2≤212+⎝ ⎛⎭⎪⎫d 21+d 222 =212+14=7, 当且仅当d 1=d 时,等号成立,所以四边形PMQN 面积的最大值为7.[解题方略] 求解圆的弦长的3种方法[跟踪训练]1.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y-3)2=1交于M ,N 两点,若|MN |=255,则直线l 的方程为________.解析:直线l 的方程为y =kx +1,圆心C (2,3)到直线l 的距离d =|2k -3+1|k 2+1=|2k -2|k 2+1, 由r 2=d 2+⎝ ⎛⎭⎪⎫|MN |22,得1=(2k -2)2k 2+1+15, 解得k =2或12, 故所求直线l 的方程为y =2x +1或y =12x +1. 答案:y =2x +1或y =12x +1 2.(2019·山东枣庄期末改编)若点P (1,1)为圆x 2+y 2-6x =0中弦AB 的中点,则弦AB 所在直线的方程为________________,|AB |=________.解析:圆x 2+y 2+6x =0的标准方程为(x -3)2+y 2=9.又因为点P (1,1)为圆中弦AB 的中点,所以圆心与点P 所在直线的斜率为1-01-3=-12,故弦AB 所在直线的斜率为2,所以直线AB 的方程为y -1=2(x -1),即2x -y -1=0.圆心(3,0)与点P (1,1)之间的距离d =5,圆的半径r =3,则|AB |=2r 2-d 2=4.答案:2x -y -1=0 43.已知从圆C :(x +1)2+(y -2)2=2外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,则当|PM |取最小值时点P 的坐标为________.解析:如图所示,连接CM ,CP .由题意知圆心C (-1,2),半径r = 2.因为|PM |=|PO |,所以|PO |2+r 2=|PC |2,所以x 21+y 21+2=(x 1+1)2+(y 1-2)2,即2x 1-4y 1+3=0.要使|PM |的值最小,只需|PO |的值最小即可.当PO 垂直于直线2x -4y +3=0时,即PO 所在直线的方程为2x +y =0时,|PM |的值最小,此时点P 为两直线的交点,则⎩⎪⎨⎪⎧2x -4y +3=0,2x +y =0,解得⎩⎪⎨⎪⎧x =-310,y =35,故当|PM |取最小值时点P的坐标为⎝ ⎛⎭⎪⎫-310,35. 答案:⎝ ⎛⎭⎪⎫-310,35 数学建模——直线与圆最值问题的求解[典例] 已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,则当△OPQ 的面积最大时,直线l 的方程为( )A.x -y -3=0或7x -y -15=0B.x +y +3=0或7x +y -15=0C.x +y -3=0或7x -y +15=0D.x +y -3=0或7x +y -15=0[解析] 当直线l 的斜率不存在时,l 的方程为x =2,则P (2,5),Q (2,-5),所以S △OPQ =12×2×25=25,当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝ ⎛⎭⎪⎫k ≠12,则圆心到直线l的距离d =|1-2k |1+k2,所以|PQ |=29-d 2,S △OPQ =12×|PQ |×d =12×29-d 2×d =(9-d 2)d 2≤9-d 2+d 22=92,当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92,因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0,故选D.[答案] D[素养通路]本题考查了直线与圆的最值问题,结合题目的条件,设元、列式、建立恰当的函数,利用基本不等式模型解决相关的最值问题.考查了数学建模这一核心素养.[专题过关检测] A 组——“6+3+3”考点落实练一、选择题1.“ab =4”是“直线2x +ay -1=0与直线bx +2y -2=0平行”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C 因为两直线平行,所以斜率相等,即-2a =-b 2,可得ab =4,又当a =1,b =4时,满足ab =4,但是两直线重合,故选C.2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( )A.相离B.相交C.外切D.内切 解析:选B 圆O 1:x 2+y 2-2x =0,即(x -1)2+y 2=1,圆心是O 1(1,0),半径是r 1=1,圆O 2:x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心是O 2(0,2),半径是r 2=2,因为|O 1O 2|=5,故|r 1-r 2|<|O 1O 2|<|r 1+r 2|所以两圆的位置关系是相交.3.已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A.(3,3)B.(2,3)C.(1,3)D.⎝ ⎛⎭⎪⎪⎫1,32 解析:选C 直线l 1的斜率k 1=tan30°=33,因为直线l 2与直线l 1垂直,所以直线l 2的斜率k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2),联立⎩⎪⎨⎪⎧y =33(x +2),y =-3(x -2),解得⎩⎪⎨⎪⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).4.(2019·江苏徐州期末)若圆(x +1)2+y 2=m 与圆x 2+y 2-4x +8y -16=0内切,则实数m 的值为( )A.1B.11C.121D.1或121 解析:选D 圆(x +1)2+y 2=m 的圆心坐标为(-1,0),半径为m ;圆x 2+y 2-4x +8y -16=0,即(x -2)2+(y +4)2=36,故圆心坐标为(2,-4),半径为 6.由两圆内切得32+42=|m -6|,解得m =1或m =121.故选D.5.在平面直角坐标系中,O 为坐标原点,直线x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM ―→=OA ―→+OB ―→,若点M 在圆C 上,则实数k 的值为( )A.-2B.-1C.0D.1 解析:选C法一:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -ky +1=0,x 2+y 2=4得(k 2+1)y 2-2ky -3=0,则Δ=4k 2+12(k 2+1)>0,y 1+y 2=2k k 2+1,x 1+x 2=k (y 1+y 2)-2=-2k 2+1,因为OM ―→=OA ―→+OB ―→,故M ⎝ ⎛⎭⎪⎫-2k 2+1,2k k 2+1,又点M 在圆C 上,故4(k 2+1)2+4k 2(k 2+1)2=4,解得k =0.法二:由直线与圆相交于A ,B 两点,OM ―→=OA ―→+OB―→,且点M 在圆C 上,得圆心C (0,0)到直线x -ky +1=0的距离为半径的一半,为1,即d =11+k2=1,解得k =0. 6.(2019·广东省广州市高三测试)已知圆C :x 2+y 2=1,点A (-2,0)及点B (2,a ),若直线AB 与圆C 没有公共点,则a 的取值范围是( )A.(-∞,-1)∪(1,+∞)B.(-∞,-2)∪(2,+∞)C.⎝ ⎛⎭⎪⎪⎫-∞,-433∪⎝ ⎛⎭⎪⎪⎫433,+∞ D.(-∞,-4)∪(4,+∞)解析:选C 由点A (-2,0)及点B (2,a ),得k AB =a 4,所以直线AB 的方程为y =a 4(x +2),即ax -4y +2a =0.因为直线AB 与圆C 没有公共点,所以|2a |a 2+(-4)2>1,解得a >433或a <-433,所以a 的取值范围是⎝ ⎛⎭⎪⎪⎫-∞,-433∪⎝ ⎛⎭⎪⎪⎫433,+∞,故选C.二、填空题7.(2019·贵阳市第一学期监测)已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.解析:由题意,圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),所以所求直线的方程为y -2=-12(x +1),即x +2y -3=0.答案:x +2y -3=08.已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则直线l 的方程为________________.解析:由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 1与l 2的交点为(1,2).显然直线x =1不满足P (0,4)到直线l 的距离为2.设直线l 的方程为y -2=k (x -1),即kx -y +2-k =0,因为P (0,4)到直线l 的距离为2,所以|-4+2-k |1+k2=2,所以k =0或k =43.所以直线l 的方程为y =2或4x -3y +2=0.答案:y =2或4x -3y +2=09.(2019·广东六校第一次联考)已知点P (-1,2)及圆(x -3)2+(y -4)2=4,一光线从点P 出发,经x 轴上一点Q 反射后与圆相切于点T ,则|PQ |+|QT |的值为________.解析:点P 关于x 轴的对称点为P ′(-1,-2),如图,连接PP ′,P ′Q ,由对称性可知,P ′Q 与圆相切于点T ,则|PQ |+|QT |=|P ′T |.圆(x -3)2+(y -4)2=4的圆心为A (3,4),半径r =2,连接AP ′,AT ,则|AP ′|2=(-1-3)2+(-2-4)2=52,|AT |=r =2,所以|PQ |+|QT |=|P ′T |=|AP ′|2-|AT |2=4 3.答案:43三、解答题10.已知圆(x -1)2+y 2=25,直线ax -y +5=0与圆相交于不同的两点A ,B .(1)求实数a 的取值范围;(2)若弦AB 的垂直平分线l 过点P (-2,4),求实数a 的值. 解:(1)把直线ax -y +5=0代入圆的方程,消去y 整理,得(a 2+1)x 2+2(5a -1)x +1=0,由于直线ax -y +5=0交圆于A ,B 两点,故Δ=4(5a -1)2-4(a 2+1)>0,即12a 2-5a >0,解得a >512或a <0, 所以实数a 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫512,+∞. (2)由于直线l 为弦AB 的垂直平分线,且直线AB 的斜率为a ,则直线l 的斜率为-1a, 所以直线l 的方程为y =-1a(x +2)+4, 即x +ay +2-4a =0,由于l 垂直平分弦AB ,故圆心M (1,0)必在l 上,所以1+0+2-4a =0,解得a =34,由于34∈⎝ ⎛⎭⎪⎫512,+∞, 所以a =34. 11.在平面直角坐标系xOy 中,直线x -y +1=0截以原点O 为圆心的圆所得的弦长为 6.(1)求圆O 的方程;(2)若直线l 与圆O 相切于第一象限,且直线l 与坐标轴交于点D ,E ,当线段DE 的长度最小时,求直线l 的方程.解:(1)因为点O 到直线x -y +1=0的距离为12, 所以圆O 的半径为⎝ ⎛⎭⎪⎪⎫122+⎝ ⎛⎭⎪⎪⎫622=2, 故圆O 的方程为x 2+y 2=2.(2)设直线l 的方程为x a +y b=1(a >0,b >0),即bx +ay -ab =0, 由直线l 与圆O 相切,得|-ab |b 2+a2=2,即1a 2+1b 2=12,则|DE |2=a 2+b 2=2(a 2+b 2)⎝ ⎛⎭⎪⎫1a 2+1b 2=4+2b 2a 2+2a 2b 2≥8,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.12.已知A (2,0),直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43,且P 为圆C 上任意一点.(1)求|PA |的最大值与最小值;(2)圆C 与坐标轴相交于三点,求以这三个点为顶点的三角形的内切圆的半径.解:(1)∵直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43,∴圆心到直线的距离d =|-12+3m +1|5=(13)2-(23)2=1. ∵m <3,∴m =2,∴|AC |=(-3-2)2+(2-0)2=29, ∴|PA |的最大值与最小值分别为29+13,29-13.(2)由(1)可得圆C 的方程为(x +3)2+(y -2)2=13, 令x =0,得y =0或4;令y =0,得x =0或-6,∴圆C 与坐标轴相交于三点M (0,4),O (0,0),N (-6,0), ∴△MON 为直角三角形,斜边|MN |=213,∴△MON 内切圆的半径为4+6-2132=5-13. B 组——大题专攻强化练1.已知点M (-1,0),N (1,0),曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍.(1)求曲线E 的方程;(2)已知m ≠0,设直线l 1:x -my -1=0交曲线E 于A ,C 两点,直线l 2:mx +y -m =0交曲线E 于B ,D 两点.当CD 的斜率为-1时,求直线CD 的方程.解:(1)设曲线E 上任意一点的坐标为(x ,y ),由题意得(x +1)2+y 2=3·(x -1)2+y 2,整理得x 2+y 2-4x +1=0,即(x -2)2+y 2=3为所求.(2)由题意知l 1⊥l 2,且两条直线均恒过点N (1,0).设曲线E 的圆心为E ,则E (2,0),设线段CD 的中点为P ,连接EP ,ED ,NP ,则直线EP :y =x -2.设直线CD :y =-x +t ,由⎩⎪⎨⎪⎧y =x -2,y =-x +t 解得点P ⎝ ⎛⎭⎪⎫t +22,t -22, 由圆的几何性质,知|NP |=12|CD |=|ED |2-|EP |2, 而|NP |2=⎝ ⎛⎭⎪⎫t +22-12+⎝ ⎛⎭⎪⎫t -222,|ED |2=3, |EP |2=⎝ ⎛⎭⎪⎪⎫|2-t |22, 所以⎝ ⎛⎭⎪⎫t 22+⎝ ⎛⎭⎪⎫t -222=3-(t -2)22,整理得t 2-3t =0, 解得t =0或t =3,所以直线CD 的方程为y =-x 或y =-x +3.2.已知点A (1,a ),圆x 2+y 2=4.(1)若过点A 的圆的切线只有一条,求a 的值及切线方程;(2)若过点A 且在两坐标轴上截距相等的直线被圆截得的弦长为23,求a 的值.解:(1)由过点A 的圆的切线只有一条,得点A 在圆上,故12+a 2=4,解得a =± 3.当a =3时,A (1,3),根据直线的点斜式方程,易知所求的切线方程为x +3y -4=0;当a =-3时,A (1,-3),根据直线的点斜式方程,易知所求的切线方程为x -3y -4=0.综上所述,当a =3时,切线方程为x +3y -4=0;当a =-3时,切线方程为x -3y -4=0.(2)设直线方程为x +y =b ,由于直线过点A ,则1+a =b ,即a =b -1,又圆心(0,0)到直线x +y =b 的距离d =|b |2.所以⎝ ⎛⎭⎪⎪⎫|b |22+⎝ ⎛⎭⎪⎪⎫2322=4,则b =±2,因此a =b -1=-1± 2.3.在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解:(1)因为圆心在直线l :y =2x -4上,也在直线y =x -1上,所以解方程组⎩⎪⎨⎪⎧y =2x -4,y =x -1,得圆心C (3,2),又因为圆的半径为1,所以圆的方程为(x -3)2+(y -2)2=1,又因为点A (0,3),显然过点A ,圆C 的切线的斜率存在, 设所求的切线方程为y =kx +3,即kx -y +3=0,所以|3k -2+3|k 2+12=1,解得k =0或k =-34, 所以所求切线方程为y =3或y =-34x +3,即y -3=0或3x +4y -12=0.(2)因为圆C 的圆心在直线l :y =2x -4上, 所以设圆心C 为(a ,2a -4), 又因为圆C 的半径为1,则圆C 的方程为(x -a )2+(y -2a +4)2=1. 设M (x ,y ),又因为|MA |=2|MO |,则有x 2+(y -3)2=2x 2+y 2,整理得x 2+(y +1)2=4,其表示圆心为(0,-1),半径为2的圆,设为圆D ,所以点M 既在圆C 上,又在圆D 上,即圆C 与圆D 有交点,所以2-1≤a 2+(2a -4+1)2≤2+1,解得0≤a ≤125,所以圆心C 的横坐标a的取值范围为⎣⎢⎡⎦⎥⎤0,125.4.在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况. (2)证明:由(1)知BC的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎪⎫x -x 22.由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m2.联立⎩⎪⎨⎪⎧x =-m2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,x 22+mx 2-2=0可得⎩⎪⎨⎪⎧x =-m2,y =-12. 所以过A ,B ,C三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C三点的圆在y 轴上截得的弦长为定值.。
最新-2018届高考数学二轮复习 第1讲 直线与圆考点突破课件 新 精品
l2:y=-24mx-146,
∵l1∥l2∴-m+ 1 1=-24m且-4≠2m-+m1
∴m=1,故选 B.
答案:B
拓展提升——开阔思路 提炼方法 (1)在研究两直线平行时,要注意排除两直线重合的情况. (2)在利用斜率研究问题时,要注意斜率不存在的情况.
2.(2010·北京)在平面直角坐标系 xOy 中,点 B 与点 A(-1,1)关于原 点 O 对称,P 是动点,且直线 AP 与 BP 的斜率之积等于-13. (1)求动点 P 的轨迹方程; (2)设直线 AP 和 BP 分别与直线 x=3 交于点 M、N,问:是否存在点 P 使得△PAB 与△PMN 的面积相等?若存在,求出点 P 的坐标;若 不存在,说明理由. 解:(1)因为点 B 与点 A(-1,1)关于原点 O 对称,所以点 B 的坐标为 (1,-1).设点 P 的坐标为(x,y). 由题意得xy-+11·xy+-11=-13, 化简得 x2+3y2=4(x≠±1).故动点 P 的轨迹方程为 x2+3y2=4(x≠±1).
故 8-4m2=89,解得 m=±43.
所以 l 的方程为 3x+4y+3=0,3x-4y+3=0.
又由①知 y2-y1=± 4m2-4×4=±43 7,
7.直线与圆的位置关系 直线 l:Ax+By+C=0(A2+B2≠0)与圆:(x-a)2+(y-b)2=r2(r>0) 的位置关系如下表.
方法 位置 关系
几何法:根据 d=|Aa+A2B+b+B2C| 与 r 的大小关系
代数法:Axx-+aBy2++Cy=-0b,2=r2, 消元得一元二次方程的判别式 Δ 的 符号
利用 d=r 得 k=±33,故应为- 33, 33.
答案:C
拓展提升——开阔思路 提炼方法 对斜率的取值范围有正有负的情况,要注意分段.
15第一部分 板块二 专题五 解析几何 第1讲 直线与圆(小题)
第1讲 直线与圆(小题)热点一 直线的方程及应用 1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程要注意几种直线方程的局限性.点斜式、斜截式方程要求直线不能与x 轴垂直,两点式不能表示与坐标轴垂直的直线,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 3.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2(A 2+B 2≠0).(2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2(A 2+B2≠0). 例1 (1)(2019·宝鸡模拟)若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( )A .1B .-2C .1或-2D .-32(2)我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆x 2+y 2=2的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( ) A .x +(2-1)y -2=0 B .(1-2)x -y +2=0 C .x -(2+1)y +2=0D .(2-1)x -y +2=0跟踪演练1 (1)已知直线l 1:x ·sin α+y -1=0,直线l 2:x -3y ·cos α+1=0,若l 1⊥l 2, 则sin 2α等于( ) A.23 B .±35 C .-35 D.35(2)已知直线l 的斜率为3,在y 轴上的截距为直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A .y =3x +2 B .y =3x -2 C .y =3x +12D .y =-3x +2热点二 圆的方程及应用 1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆.3.解决与圆有关的问题一般有两种方法(1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程. (2)代数法:即用待定系数法先设出圆的方程,再由条件求得各系数.例2 (1)(2018·天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为____________.方法二 画出示意图如图所示,则△OAB 为等腰直角三角形, 故所求圆的圆心为(1,0),半径为1, ∴所求圆的方程为(x -1)2+y 2=1, 即x 2+y 2-2x =0.(2)抛物线x 2=4y 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,则△FPM 的外接圆的方程为________.跟踪演练2 (1)(2019·黄冈调研)已知圆x 2+y 2+2k 2x +2y +4k =0关于y =x 对称,则k 的值为( )A .-1B .1C .±1D .0(2)(2019·河北省级示范性高中联合体联考)已知A ,B 分别是双曲线C :x 2m -y 22=1的左、右顶点,P (3,4)为C 上一点,则△P AB 的外接圆的标准方程为________________. 热点三 直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离,判断的方法 (1)点线距离法.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0(A 2+B 2≠0),方程组⎩⎪⎨⎪⎧Ax +By +C =0,(x -a )2+(y -b )2=r 2, 消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.3.圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.例3 (1)(2019·莆田质检)直线y =x +m 与圆x 2+y 2=4相交于M ,N 两点.若|MN |≥22,则m 的取值范围是( ) A .[-2,2] B .[-4,4]C .[0,2]D .(-22,-2]∪[2,22)(2)(2019·长沙市长郡中学模拟)已知圆C 1:(x -2)2+(y -2)2=r 21(r 1>0),圆C 2:(x +1)2+(y +1)2=r 22(r 2>0),圆C 1与圆C 2相切,并且两圆的一条外公切线的斜率为7,则r 1r 2为________. 跟踪演练3 (1)(2019·柳州模拟)已知点M 是抛物线y 2=2x 上的动点,以点M 为圆心的圆被y 轴截得的弦长为8,则该圆被x 轴截得的弦长的最小值为( ) A .10 B .4 3 C .8 D .215(2)(2019·绵阳诊断)已知圆C 1:x 2+y 2=r 2,圆C 2:(x -a )2+(y -b )2=r 2(r >0)交于不同的A (x 1,y 1),B (x 2,y 2)两点,给出下列结论:①a (x 1-x 2)+b (y 1-y 2)=0;②2ax 1+2by 1=a 2+b 2;③x 1+x 2=a ,y 1+y 2=b .其中正确结论的个数是( ) A .0 B .1 C .2 D .3真题体验1.(2018·全国Ⅲ,文,8)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]2.(2016·全国Ⅱ,文,6)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a 等于( )A .-43B .-34C. 3 D .23.(2018·全国Ⅰ,文,15)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________. 押题预测1.圆(x -2)2+y 2=1与直线3x +4y +2=0的位置关系是( ) A .相交 B .相切C .相离D .以上三种情况都有可能2.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________. 3.甲、乙两人参加歌咏比赛的得分(均为两位数)如茎叶图所示,甲的平均数为b ,乙的众数为a ,且直线ax +by +8=0与以A (1,-1)为圆心的圆交于B ,C 两点,且∠BAC =120°,则圆A 的标准方程为________.A 组 专题通关1.(2019·衡水质检)直线2x ·sin 210°-y -2=0的倾斜角是( ) A .45° B .135° C .30° D .150°2.(2019·黄冈调研)过点A (1,2)的直线在两坐标轴上的截距相等,则该直线方程为( ) A .y -x =1B .y +x =3C .2x -y =0或x +y =3D .2x -y =0或-x +y =13.(2019·厦门模拟)在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切,则圆O 的方程为( ) A .x 2+(y -1)2=4 B .(x -1)2+y 2=4 C .(x +1)2+(y -1)2=4D .x 2+y 2=44.(2019·湘赣十四校联考)圆(x +2)2+(y -3)2=9上到直线x +y =0的距离等于2的点有( ) A .4个 B .3个 C .2个 D .1个5.(2019·黄山质检)直线2x -y -3=0与y 轴的交点为P ,点P 把圆(x +1)2+y 2=36的直径分为两段,则较长一段与较短一段的长度的比值等于( ) A .2 B .3 C .4 D .56.若直线ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0,则(a -2)2+(b -2)2的最小值为( )A. 5 B .5 C .2 5 D .107.(2019·河北省五个一名校联盟诊断)已知点P 为圆C :(x -1)2+(y -2)2=4上一点,A (0,-6),B (4,0),则|P A →+PB →|的最大值为( ) A.26+2 B.26+4 C .226+4D .226+28.(2019·菏泽模拟)已知点P 是直线l :3x +4y -7=0上的动点,过点P 引圆C :(x +1)2+y 2=r 2(r >0)的两条切线PM ,PN .M ,N 为切点,当∠MPN 的最大值为π3时,则r 的值为( )A .4B .3C .2D .1 9.(2019·宝鸡模拟)设D 为椭圆x 2+y 25=1上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD |=|BD |,则点P 的轨迹方程为( ) A .x 2+(y -2)2=20 B .x 2+(y -2)2=5 C .x 2+(y +2)2=20D .x 2+(y +2)2=510.(2019·德阳模拟)已知点P (-3,0)在动直线m (x -1)+n (y -3)=0上的投影为点M ,若点N ⎝⎛⎭⎫2,32,那么|MN |的最小值为( ) A .2 B.32 C .1 D.1211.已知圆C :x 2+y 2=1,点P 为直线x +2y -4=0上一动点,过点P 向圆C 引两条切线分别为P A ,PB ,A ,B 为切点,则直线AB 经过定点( ) A.⎝⎛⎭⎫12,14 B.⎝⎛⎭⎫14,12 C.⎝⎛⎭⎫34,0D.⎝⎛⎭⎫0,34 12.(2019·南昌模拟)已知A (-3,0),B (3,0),P 为圆x 2+y 2=1上的动点,AP →=PQ →,过点P 作与AP 垂直的直线l 交直线QB 于点M ,则M 的横坐标的取值范围是( ) A .|x |≥1 B .|x |>1 C .|x |≥2D .|x |≥2213.(2019·福建四校联考)已知直线3x +4y -3=0,6x +my +14=0平行,则它们之间的距离是________.14.(2019·天津市十二重点中学联考)已知圆C 的圆心在x 轴的正半轴上,且y 轴和直线3x +4y +4=0均与圆C 相切,则圆C 的标准方程为________.15.(2019·晋中模拟)已知圆C 经过点A (1,3),B (4,2),与直线2x +y -10=0相切,则圆C 的标准方程为________.16.(2019·宝鸡质检)圆x 2+y 2=1的任意一条切线与圆x 2+y 2=4相交于A (x 1,y 1),B (x 2,y 2)两点,O 为坐标原点,则x 1x 2+y 1y 2=________.B 组 能力提高17.(2019·齐齐哈尔模拟)已知半圆C :x 2+y 2=1(y ≥0),A ,B 分别为半圆C 与x 轴的左、右交点,直线m 过点B 且与x 轴垂直,点P 在直线m 上,纵坐标为t ,若在半圆C 上存在点Q 使∠BPQ =π3,则t 的取值范围是( )A.⎣⎡⎭⎫-233,0∪(0,3] B .[-3,0)∪⎝⎛⎦⎤0,233C.⎣⎡⎭⎫-33,0∪⎝⎛⎦⎤0,33 D.⎣⎡⎭⎫-233,0∪⎝⎛⎦⎤0,233 18.(2019·淮南模拟)在平面直角坐标系中,设点P (x ,y ),定义[OP ]=|x |+|y |,其中O 为坐标原点,对于下列结论:①符合[OP ]=2的点P 的轨迹围成的图形面积为8;②设点P 是直线l 1:3x +2y -2=0上任意一点,则[OP ]min =1;③设点P 是直线l 2:y =kx +1(k ∈R )上任意一点,则使得“[OP ]最小的点P 有无数个”的充要条件是k =1;④设点P 是圆x 2+y 2=2上任意一点,则[OP ]max =2. 其中正确的结论序号为( ) A .①②③ B .①③④ C .②③④ D .①②④。
2018届高三理科数学二轮复习讲义模块二 专题五 第一讲 直线与圆 Word版含解析
专题五解析几何第一讲直线与圆高考导航. 求直线的方程;两条直线平行与垂直的判定;两条直线的交点和距离问题..结合直线的方程用几何法或待定系数法确定圆的标准方程;直线与圆、圆与圆的位置关系问题,其中含参数问题为命题热点..(·全国卷Ⅱ)圆+--+=的圆心到直线+-=的距离为,则=( ).-.-.[解析]由已知可得圆的标准方程为(-)+(-)=,故该圆的圆心为(),由点到直线的距离公式得==,解得=-,故选.[答案].(·山东卷)一条光线从点(-,-)射出,经轴反射后与圆(+)+(-)=相切,则反射光线所在直线的斜率为( ).-或-.-或-.-或-.-或-[解析]由题意知,反射光线所在直线过点(,-),设反射光线所在直线的方程为+=(-),即---=.∵圆(+)+(-)=的圆心为(-),半径为,且反射光线与该圆相切,∴=,化简得++=,解得=-或=-.[答案].(·山东卷)已知圆:+-=(>)截直线+=所得线段的长度是,则圆与圆:(-)+(-)=的位置关系是( ).内切.相交.外切.相离[解析]由题知圆:+(-)=(>),圆心(,)到直线+=的距离=,所以=,解得=.圆,圆的圆心距=.两圆半径之差为,故两圆相交.[答案].(·湖北孝感五校月联考)已知直线=是△中∠的平分线所在的直线,若点,的坐标分别是(-),(),则点的坐标为( ).(-) .(-,-).() .(,-)[解析]设(-)关于直线=的对称点为(,),则,,(+)=×(-+),))解得(\\(=,=-,))∴所在直线方程为-=(-),即+-=.同理可得点()关于直线=的对称点为(-),∴所在直线方程为-=·(+),即-+=.联立得(\\(+-=,-+=,))解得(\\(=,=,))则().故选.[答案].(·天津卷)已知圆的圆心在轴的正半轴上,点(,)在圆上,且圆心到直线-=的距离为,则圆的方程为.[解析]因为圆的圆心在轴的正半轴上,设(),且>,所以圆心到直线-=的距离==,解得=,所以圆的半径===,所以圆的方程为(-)+=.。
高考数学统考二轮复习 第二部分 专题5 解析几何 第1讲 直线与圆(教师用书)教案 理
学习资料解析几何专题5第1讲直线与圆直线的方程授课提示:对应学生用书第44页考情调研考向分析以考查直线方程的求法、两条直线的位置关系、两点间的距离、点到直线的距离、两条直线的交点坐标为主,有时也会与圆、椭圆、双曲线、抛物线交汇考查.题型主要以选择题,填空题为主,要求相对较低,但内容很重要,特别是距离公式,是高考考查的重点。
1。
求直线的方程.2。
判断两直线的位置关系.3.直线恒过定点问题。
[题组练透]1.过点(2,1)且与直线3x-2y=0垂直的直线方程为()A.2x-3y-1=0B.2x+3y-7=0C.3x-2y-4=0 D.3x+2y-8=0解析:设要求的直线方程为2x+3y+m=0,,把点(2,1)代入可得4+3+m=0,解得m =-7。
故所求直线方程为:2x+3y-7=0,故选B.答案:B2.(2020·淮南模拟)设λ∈R,则“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:当λ=-3时,两条直线的方程分别为6x+4y+1=0,3x+2y-2=0,此时两条直线平行;若两条直线平行,则2λ×(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的充分不必要条件,故选A。
答案:A3.已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是()A.1 B.-1C.2或1 D.-2或1解析:当a=0时,直线方程为y=2,显然不符合题意,当a≠0时,令y=0时,得到直线在x轴上的截距是错误!,令x=0时,得到直线在y轴上的截距为2+a,根据题意得错误!=2+a,解得a=-2或a=1,故选D。
答案:D4.(2020·保定模拟)设点P为直线l:x+y-4=0上的动点,点A(-2,0),B(2,0),则|P A|+|PB|的最小值为()A.210 B.26C.2错误! D.错误!解析:依据题意作出图象如下:设点B(2,0)关于直线l的对称点为B1(a,b),则它们的中点坐标为错误!,且|PB|=|PB1|.由对称性可得错误!,解得a=4,b=2.所以B1(4,2).因为|P A|+|PB|=|P A|+|PB1|,所以当A,P,B1三点共线时,|P A|+|PB|最小.此时最小值为|AB1|=(4+2)2+(2-0)2=2错误!.故选A.答案:A[题后悟通]1.两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断.2.轴对称问题的两种类型及求解方法点关于直线的对称若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By+C=0对称,则线段P1P2的中点在对称轴l上,而且连接P1,P2的直线垂直于对称轴l.由方程组错误!,可得到点P1关于l对称的点P2的坐标(x2,y2)(其中B≠0,x1≠x2)直线关于直线的对称有两种情况,一是已知直线与对称轴相交;二是已知直线与对称轴平行.一般转化为点关于直线的对称来解决圆的方程授课提示:对应学生用书第45页考情调研考向分析考查圆的方程,与圆有关的轨迹问题、最值问题是考查的热点,属中档题.题型主要以选择、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.1。
2023年高考数学二轮复习第二篇经典专题突破专题五解析几何第1讲直线与圆
第二篇 专题五 第1讲一、选择题1.过点A (1,2)的直线在两坐标轴上的截距之和为零,则该直线方程为( D ) A .y -x =1B .y +x =3C .2x -y =0或x +y =3D .2x -y =0或y -x =1【解析】当直线过原点时,可得斜率为2-01-0=2,故直线方程为y =2x ,即2x -y =0, 当直线不过原点时,设方程为x a +y-a =1,代入点(1,2)可得1a -2a =1,解得a =-1,方程为x -y +1=0,故所求直线方程为2x -y =0或y -x =1.2.若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( A ) A .1 B .-2 C .1或-2D .-32【解析】由两直线平行的条件可得-2+m +m 2=0, ∴m =-2(舍)或m =1.3.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |=23,则k 的值是( C )A .-34B .0C .0或-34D .34【解析】 由题意,知|MN |=23,圆心为(3,2).设圆的半径为r ,则r =2, 所以圆心到直线的距离d =r 2-⎝⎛⎭⎫MN 22=4-3=1. 由点到直线的距离公式,得|3k -2+3|k 2+1=1, 解得k =0或k =-34.故选C.4.(2022·贵阳模拟)已知圆O :x 2+y 2=10,已知直线l :ax +by =2a -b (a ,b ∈R )与圆O 的交点分别M ,N ,当直线l 被圆O 截得的弦长最小时,|MN |=( C )A .352B .552C .25D .35【解析】直线方程即a (x -2)+b (y +1)=0, 则直线恒过定点(2,-1),圆心与定点之间的距离为:(2-0)2+(-1-0)2=5,结合圆的性质可知直线l 被圆O 截得的弦长最小值|MN |=210-(5)2=2 5. 故选C.5.(2020·潍坊模拟)已知直线l 过点A (a ,0)且斜率为1,若圆x 2+y 2=4上恰有3个点到l 的距离为1,则a 的值为( D )A .32B .±32C .±2D .±2 【解析】直线l 的方程为y =x -a ,即x -y -a =0.圆上恰有三个点到直线l 的距离为1,可知圆心到直线的距离等于半径的一半,即|a |2=1,a =± 2. 6.已知圆C :(x -2)2+(y -6)2=4,点M 为直线l :x -y +8=0上一个动点,过点M 作圆C 的两条切线,切点分别为A ,B ,则当四边形CAMB 周长取最小值时,四边形CAMB 的外接圆方程为( D )A .(x -7)2+(y -1)2=4B .(x -1)2+(y -7)2=4C .(x -7)2+(y -1)2=2D .(x -1)2+(y -7)2=2【解析】圆C :(x -2)2+(y -6)2=4的圆心C (2,6),半径r =2, 点C 到直线的距离d =|2-6+8|12+(-1)2=22,依题意,CA ⊥AM ,四边形CAMB 周长2|CA |+2|AM |=4+2CM 2-CA 2≥4+2d 2-4=4+2(22)2-4=8,当且仅当CM ⊥l 时取“=”,此时直线CM :x +y -8=0,由⎩⎪⎨⎪⎧x -y +8=0,x +y -8=0,得点M (0,8), 四边形CAMB 的外接圆圆心为线段CM 中点(1,7),半径2,方程为(x -1)2+(y -7)2=2.故选D.7.如图,P 为圆O :x 2+y 2=4外一动点,过点P 作圆O 的切线P A ,PB ,切点分别为A ,B ,∠APB =120°,直线OP 与AB 相交于点Q ,点M (3,3),则|MQ |的最小值为( A )A .3B .2C .332D .433【解析】过点P 作圆O 的切线P A ,PB ,切点分别为A ,B ,∠APB =120°, 由圆与切线的平面几何性质知,∠APO =60°, 又|OA |=2,则可得|OP |=433, 由平面几何知识可得|OQ |=3,∴Q 点的轨迹是以O 为圆心,3为半径的圆,方程为x 2+y 2=3; |MQ |的最小值即为|OM |-r =9+3-3=23-3= 3. 故选A.8.(2020·辽宁省大连模拟)已知圆C :x 2+y 2=4,直线l :x -y +6=0,在直线l 上任取一点P 向圆C 作切线,切点为A ,B ,连接AB ,则直线AB 一定过定点( A )A .⎝⎛⎭⎫-23,23 B .(1,2) C .(-2,3)D .⎝⎛⎭⎫-43,43 【解析】设点P (x 0,y 0),则x 0-y 0+6=0.过点P 向圆C 作切线,切点为A ,B ,连接AB ,以CP 为直径的圆的方程为x (x -x 0)+y (y -y 0)=0,又圆C :x 2+y 2=4,作差可得直线AB 的方程为xx 0+yy 0=4,将y 0=x 0+6, 代入可得(x +y )x 0+6y -4=0,满足⎩⎪⎨⎪⎧x +y =0,6y -4=0,⇒⎩⎨⎧x =-23,y =23,故直线AB 过定点⎝⎛⎭⎫-23,23. 9.已知P (3,4-22),过点P 作圆C :(x -a )2+(y -a -1)2=1(a 为参数,且a ∈R )的两条切线分别切圆C 于点A 、B ,则sin ∠APB 的最大值为( C )A .1B .12C .32D .64【解析】圆心C (a ,a +1),半径为1,圆心C 在直线y =x +1上运动,设∠APC =θ,则∠APB =2θ, 由圆的几何性质可知tan θ=|AC ||P A |=1|P A |, 所以sin ∠APB =sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=2tan θ+1tan θ=21|P A |+|P A |, 当直线PC 与直线y =x +1垂直时,|PC |取最小值, 则|P A |=|PC |2-1取最小值, 且|PC |min =|3-(4-22)+1|2=2,则|P A |min =22-1=3,则|P A |≥3,由对勾函数的单调性可知,函数y =x +1x 在[3,+∞)上为增函数,且y =x +1x >0,故函数f (x )=2x +1x 在[3,+∞)上为减函数,故当|P A |=3时,sin ∠APB 取得最大值234=32.故选C. 二、填空题10.已知直线l 1:kx -y +4=0与直线l 2:x +ky -3=0(k ≠0)分别过定点A ,B ,又l 1,l 2相交于点M ,则|MA |·|MB |的最大值为__252__.【解析】由题意可知,直线l 1:kx -y +4=0经过定点A (0,4), 直线l 2:x +ky -3=0经过定点B (3,0).易知直线l 1:kx -y +4=0和直线l 2:x +ky -3=0始终垂直,又M 是两条直线的交点,所以MA ⊥MB ,所以|MA |2+|MB |2=|AB |2=25, 故|MA |·|MB |≤252⎝⎛⎭⎫当且仅当|MA |=|MB |=522时取“=”.11.已知A ,B 分别是双曲线C :x 2m -y 22=1的左、右顶点,P (3,4)为C 上一点,则△P AB的外接圆的标准方程为__x 2+(y -3)2=10__.【解析】∵P (3,4)为C 上一点,∴9m -162=1,解得m =1,则B (1,0),∴k PB =42=2,PB 的中点坐标为(2,2),PB 的中垂线方程为y =-12(x -2)+2,令x =0,则y =3, 设外接圆圆心为M (0,t ),则M (0,3),r =|MB |=1+32=10, ∴△P AB 外接圆的标准方程为x 2+(y -3)2=10.12.已知⊙O :x 2+y 2=1.若直线y =kx +2上总存在点P ,使得过点P 的⊙O 的两条切线互相垂直,则实数k 的取值范围是__(-∞,-1]∪[1,+∞)__.【解析】∵⊙O 的圆心为(0,0),半径r =1, 设两个切点分别为A ,B ,则由题意可得四边形P AOB 为正方形, 故有|PO |=2r =2,∴圆心O 到直线y =kx +2的距离d ≤2, 即|2|1+k 2≤2, 即1+k 2≥2,解得k ≥1或k ≤-1. 三、解答题13.设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【解析】 (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2.由题设知4k 2+4k 2=8,解得k =-1(舍去)或k =1.因此l 的方程为y =x -1.(2)由(1)得,AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0), 则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16,解得⎩⎪⎨⎪⎧ x 0=3,y 0=2,或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.。
(新课标)高考数学二轮复习专题五解析几何第1讲直线与圆学案理新人教A版
(新课标)高考数学二轮复习专题五解析几何第1讲直线与圆学案理新人教A 版第1讲 直线与圆[做真题]题型一 圆的方程1.(2016·高考全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C . 3D .2解析:选A .由题可知,圆心为(1,4),结合题意得|a +4-1|a 2+1=1,解得a =-43.2.(2015·高考全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析:由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254.所以圆的标准方程为(x -32)2+y 2=254.答案:(x -32)2+y 2=2543.(2018·高考全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16, 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6. 因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144. 题型二 直线与圆、圆与圆的位置关系1.(2018·高考全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]解析:选A .圆心(2,0)到直线的距离d =|2+0+2|2=22,所以点P 到直线的距离d 1∈[2,32].根据直线的方程可知A ,B 两点的坐标分别为A (-2,0),B (0,-2),所以|AB |=22,所以△ABP 的面积S =12|AB |d 1=2d 1.因为d 1∈[2,32],所以S ∈[2,6],即△ABP面积的取值范围是[2,6].2.(2015·高考全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )A .2 6B .8C .4 6D .10解析:选C .设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0. 解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20.所以圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y =-2+26或y =-2-26,所以M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26),所以|MN |=46,故选C .3.(2016·高考全国卷Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.解析:设圆心到直线l :mx +y +3m -3=0的距离为d ,则弦长|AB |=212-d 2=23,得d =3,即||3m -3m 2+1=3,解得m =-33,则直线l :x -3y +6=0,数形结合可得|CD |=|AB |cos 30°=4.答案:4[明考情]1.近两年圆的方程成为高考全国卷命题的热点,需重点关注.此类试题难度中等偏下,多以选择题或填空题形式考查.2.直线与圆的方程偶尔单独命题,单独命题时有一定的深度,有时也会出现在压轴题的位置,难度较大,对直线与圆的方程(特别是直线)的考查主要体现在圆锥曲线的综合问题上.直线的方程 [考法全练]1.若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A .1±2或0 B .2-52或0C .2±52D .2+52或0解析:选A .因为平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,所以k AB =k AC ,即a 2+a2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1± 2.故选A .2.若直线mx +2y +m =0与直线3mx +(m -1)y +7=0平行,则m 的值为( ) A .7 B .0或7 C .0D .4解析:选B .因为直线mx +2y +m =0与直线3mx +(m -1)y +7=0平行,所以m (m -1)=3m ×2,所以m =0或7,经检验,都符合题意.故选B .3.已知点A (1,2),B (2,11),若直线y =⎝⎛⎭⎪⎫m -6m x +1(m ≠0)与线段AB 相交,则实数m的取值范围是( )A .[-2,0)∪[3,+∞)B .(-∞,-1]∪(0,6]C .[-2,-1]∪[3,6]D .[-2,0)∪(0,6]解析:选C .由题意得,两点A (1,2),B (2,11)分布在直线y =⎝⎛⎭⎪⎫m -6m x +1(m ≠0)的两侧(或其中一点在直线上),所以⎝⎛⎭⎪⎫m -6m-2+1⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫m -6m -11+1≤0,解得-2≤m ≤-1或3≤m ≤6,故选C .4.已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则直线l 的方程为__________________.解析:由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 1与l 2的交点为(1,2).显然直线x =1不符合,即所求直线的斜率存在,设所求直线的方程为y -2=k (x -1),即kx -y +2-k =0,因为P (0,4)到直线l 的距离为2,所以|-4+2-k |1+k 2=2,所以k =0或k =43.所以直线l 的方程为y =2或4x -3y +2=0.答案:y =2或4x -3y +2=05.(一题多解)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于直线l 对称,则直线l 2的方程是________.解析:法一:l 1与l 2关于l 对称,则l 1上任意一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上的一点,设其关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧x 2-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1. 即(1,0),(-1,-1)为l 2上两点,故可得l 2的方程为x -2y -1=0.法二:设l 2上任一点为(x ,y ),其关于l 的对称点为(x 1,y 1),则由对称性可知⎩⎪⎨⎪⎧x +x 12-y +y 12-1=0,y -y1x -x 1×1=-1,解得⎩⎪⎨⎪⎧x 1=y +1,y 1=x -1.因为(x1,y 1)在l1上,所以2(y+1)-(x-1)-2=0,即l2的方程为x-2y-1=0.答案:x-2y-1=0(1)两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断.(2)轴对称问题的两种类型及求解方法点关于直线的对称若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By+C=0对称,则线段P1P2的中点在对称轴l上,而且连接P1,P2的直线垂直于对称轴l.由方程组⎩⎪⎨⎪⎧A·x1+x22+B·y1+y22+C=0.y2-y1x2-x1·⎝⎛⎭⎪⎫-AB=-1,可得到点P1关于l对称的点P2的坐标(x2,y2)(其中B≠0,x1≠x2)直线关于直线的对称有两种情况,一是已知直线与对称轴相交;二是已知直线与对称轴平行.一般转化为点关于直线的对称来解决圆的方程[典型例题]在平面直角坐标系xOy中,曲线Γ:y=x2-mx+2m(m∈R)与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由.(2)求证:过A,B,C三点的圆过定点.【解】由曲线Γ:y=x2-mx+2m(m∈R),令y=0,得x2-mx+2m=0.设A(x1,0),B(x2,0),则可得Δ=m2-8m>0,x1+x2=m,x1x2=2m.令x=0,得y=2m,即C(0,2m).(1)若存在以AB为直径的圆过点C,则AC→·BC→=0,得x1x2+4m2=0,即2m+4m2=0,所以m=0或m=-12.由Δ>0得m<0或m>8,所以m=-12,此时C (0,-1),AB 的中点M ⎝ ⎛⎭⎪⎫-14,0即圆心,半径r =|CM |=174, 故所求圆的方程为⎝ ⎛⎭⎪⎫x +142+y 2=1716.(2)证明:设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0, 将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0, 整理得x 2+y 2-y -m (x +2y -2)=0. 令⎩⎪⎨⎪⎧x 2+y 2-y =0,x +2y -2=0,可得⎩⎪⎨⎪⎧x =0,y =1或⎩⎪⎨⎪⎧x =25,y =45,故过A ,B ,C 三点的圆过定点(0,1)和⎝ ⎛⎭⎪⎫25,45.求圆的方程的2种方法几何法 通过研究圆的性质、直线和圆、圆与圆的位置关系,从而求得圆的基本量和方程 代数法用待定系数法先设出圆的方程,再由条件求得各系数,从而求得圆的方程1.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( ) A .(-∞,-2) B .⎝ ⎛⎭⎪⎫-23,0 C .(-2,0)D .⎝⎛⎭⎪⎫-2,23 解析:选D .若方程表示圆,则a 2+(2a )2-4(2a 2+a -1)>0,化简得3a 2+4a -4<0,解得-2<a <23.2.经过原点且与直线x +y -2=0相切于点(2,0)的圆的标准方程是( ) A .(x -1)2+(y +1)2=2 B .(x +1)2+(y -1)2=2 C .(x -1)2+(y +1)2=4 D .(x +1)2+(y -1)2=4解析:选A .设圆心的坐标为(a ,b ),则a 2+b 2=r 2①,(a -2)2+b 2=r 2②,ba -2=1③,联立①②③解得a =1,b =-1,r 2=2.故所求圆的标准方程是(x -1)2+(y +1)2=2.故选A .3.(2019·安徽合肥模拟)已知圆M :x 2+y 2-2x +a =0,若AB 为圆M 的任意一条直径,且OA →·OB →=-6(其中O 为坐标原点),则圆M 的半径为( )A . 5B . 6C .7D .2 2解析:选C .圆M 的标准方程为(x -1)2+y 2=1-a (a <1),圆心M (1,0),则|OM |=1,因为AB 为圆M 的任意一条直径,所以MA →=-MB →,且|MA →|=|MB →|=r ,则OA →·OB →=(OM →+MA →)·(OM →+MB →)=(OM →-MB →)·(OM →+MB →)=OM →2-MB →2=1-r 2=-6,所以r 2=7,得r =7,所以圆的半径为7,故选C .直线与圆、圆与圆的综合问题[典型例题]命题角度一 切线问题已知圆O :x 2+y 2=1,点P 为直线x 4+y2=1上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,则直线AB 经过定点( )A .⎝ ⎛⎭⎪⎫12,14 B .⎝ ⎛⎭⎪⎫14,12 C .⎝⎛⎭⎪⎫34,0 D .⎝ ⎛⎭⎪⎫0,34 【解析】 因为点P 是直线x 4+y2=1上的一动点,所以设P (4-2m ,m ).因为PA ,PB 是圆x 2+y 2=1的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,所以点A ,B 在以OP 为直径的圆C 上,即弦AB 是圆O 和圆C 的公共弦.所以圆心C 的坐标是⎝ ⎛⎭⎪⎫2-m ,m 2,且半径的平方r 2=(4-2m )2+m24,所以圆C 的方程为(x -2+m )2+⎝ ⎛⎭⎪⎫y -m 22=(4-2m )2+m 24,①又x 2+y 2=1,②所以②-①得,(2m -4)x -my +1=0, 即公共弦AB所在的直线方程为(2x -y )m +(-4x +1)=0,所以由⎩⎪⎨⎪⎧-4x +1=0,2x -y =0得⎩⎪⎨⎪⎧x =14,y =12,所以直线AB 过定点⎝ ⎛⎭⎪⎫14,12.故选B .【答案】 B过一点求圆的切线方程的方法(1)过圆上一点(x 0,y 0)的圆的切线的方程的求法若切线斜率存在,则先求切点与圆心连线所在直线的斜率k (k ≠0),由垂直关系知切线斜率为-1k,由点斜式方程可求切线方程.若切线斜率不存在,则可由图形写出切线方程x =x 0.(2)过圆外一点(x 0,y 0)的圆的切线的方程的求法当切线斜率存在时,设切线斜率为k ,切线方程为y -y 0=k (x -x 0),即kx -y +y 0-kx 0=0.由圆心到直线的距离等于半径,即可得出切线方程.当切线斜率不存在时要加以验证.命题角度二 弦长问题已知圆C 经过点A (-2,0),B (0,2),且圆心C 在直线y =x 上,又直线l :y =kx+1与圆C 相交于P ,Q 两点.(1)求圆C 的方程;(2)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M ,N 两点,求四边形PMQN 面积的最大值.【解】 (1)设圆心C (a ,a ),半径为r ,因为圆C 经过点A (-2,0),B (0,2),所以|AC |=|BC |=r ,即(a +2)2+(a -0)2=(a -0)2+(a -2)2=r ,解得a =0,r =2,故所求圆C 的方程为x 2+y 2=4.(2)设圆心C 到直线l ,l 1的距离分别为d ,d 1,四边形PMQN 的面积为S . 因为直线l ,l 1都经过点(0,1),且l 1⊥l ,根据勾股定理,有d 21+d 2=1. 又|PQ |=2×4-d 2,|MN |=2×4-d 21, 所以S =12|PQ |·|MN |=12×2×4-d 2×2×4-d 21=216-4(d 21+d 2)+d 21d 2 =212+d 21d 2≤212+⎝ ⎛⎭⎪⎫d 21+d 222=212+14=7,当且仅当d 1=d 时,等号成立, 所以四边形PMQN 面积的最大值为7.求解圆的弦长的3种方法关系法根据半径,弦心距,弦长构成的直角三角形,构成三者间的关系r 2=d 2+l 24(其中l 为弦长,r 为圆的半径,d 为圆心到直线的距离)公式法根据公式l =1+k 2|x 1-x 2|求解(其中l 为弦长,x 1,x 2为直线与圆相交所得交点的横坐标,k 为直线的斜率)距离法 联立直线与圆的方程,解方程组求出两交点坐标,用两点间距离公式求解 已知圆C 经过点A (0,2),B (2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x+4y +5=0被圆C 所截得的弦长为2 3.点P 为圆C 上异于A ,B 的任意一点,直线PA 与x 轴交于点M ,直线PB 与y 轴交于点N .(1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求BA 1→·BA 2→; (3)求证:|AN |·|BM |为定值.【解】 (1)易知圆心C 在线段AB 的中垂线y =x 上, 故可设C (a ,a ),圆C 的半径为r .因为直线3x +4y +5=0被圆C 所截得的弦长为23,且r =a 2+(a -2)2, 所以C (a ,a )到直线3x +4y +5=0的距离d =|7a +5|5=r 2-3=2a 2-4a +1,所以a =0或a =170.又圆C 的圆心在圆x 2+y 2=2的内部,所以a =0,此时r =2,所以圆C 的方程为x 2+y 2=4. (2)将y =x +1代入x 2+y 2=4得2x 2+2x -3=0. 设A 1(x 1,y 1),A 2(x 2,y 2), 则x 1+x 2=-1,x 1x 2=-32.所以BA 1→·BA 2→=(x 1-2)(x 2-2)+y 1y 2=x 1x 2-2(x 1+x 2)+4+(x 1+1)(x 2+1)=2x 1x 2-(x 1+x 2)+5=-3+1+5=3.(3)证明:当直线PA 的斜率不存在时,|AN |·|BM |=8. 当直线PA 与直线PB 的斜率都存在时,设P (x 0,y 0), 直线PA 的方程为y =y 0-2x 0x +2,令y =0得M ⎝ ⎛⎭⎪⎫2x 02-y 0,0.直线PB 的方程为y =y 0x 0-2(x -2),令x =0得N ⎝ ⎛⎭⎪⎫0,2y 02-x 0. 所以|AN |·|BM |=⎝ ⎛⎭⎪⎫2-2y 02-x 0⎝ ⎛⎭⎪⎫2-2x 02-y 0=4+4⎣⎢⎡⎦⎥⎤y 0x 0-2+x 0y 0-2+x 0y 0(x 0-2)(y 0-2)=4+4×y 20-2y 0+x 20-2x 0+x 0y 0(x 0-2)(y 0-2)=4+4×4-2y 0-2x 0+x 0y 0(x 0-2)(y 0-2)=4+4×4-2y 0-2x 0+x 0y 04-2y 0-2x 0+x 0y 0=8,综上,|AN |·|BM |为定值8.讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.[对点训练]1.自圆C :(x -3)2+(y +4)2=4外一点P (x ,y )引该圆的一条切线,切点为Q ,PQ 的长度等于点P 到原点O 的距离,则点P 的轨迹方程为( )A .8x -6y -21=0B .8x +6y -21=0C .6x +8y -21=0D .6x -8y -21=0解析:选D .由题意得,圆心C 的坐标为(3,-4),半径r =2,如图.因为|PQ |=|PO |,且PQ ⊥CQ , 所以|PO |2+r 2=|PC |2,所以x 2+y 2+4=(x -3)2+(y +4)2,即6x -8y -21=0,所以点P 的轨迹方程为6x -8y -21=0,故选D .2.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点,若|MN |=255,则直线l 的方程为________.解析:直线l 的方程为y =kx +1,圆心C (2,3)到直线l 的距离d =|2k -3+1|k 2+1=|2k -2|k 2+1,由R 2=d 2+⎝ ⎛⎭⎪⎫|MN |22,得1=(2k -2)2k 2+1+15,解得k =2或12,故所求直线l 的方程为y =2x +1或y =12x +1.答案:y =2x +1或y =12x +13.在平面直角坐标系xOy 中,已知圆C 与y 轴相切,且过点M (1,3),N (1,-3). (1)求圆C 的方程;(2)已知直线l 与圆C 交于A ,B 两点,且直线OA 与直线OB 的斜率之积为-2.求证:直线l 恒过定点,并求出定点的坐标.解:(1)因为圆C 过点M (1,3),N (1,-3), 所以圆心C 在线段MN 的垂直平分线上,即在x 轴上, 故设圆心为C (a ,0),易知a >0, 又圆C 与y 轴相切, 所以圆C 的半径r =a ,所以圆C 的方程为(x -a )2+y 2=a 2. 因为点M (1,3)在圆C 上, 所以(1-a )2+(3)2=a 2,解得a =2. 所以圆C 的方程为(x -2)2+y 2=4. (2)记直线OA 的斜率为k (k ≠0), 则其方程为y =kx .联立⎩⎪⎨⎪⎧(x -2)2+y 2=4,y =kx ,消去y ,得(k 2+1)x 2-4x =0,解得x 1=0,x 2=4k 2+1. 所以A ⎝⎛⎭⎪⎫4k 2+1,4k k 2+1.由k ·k OB =-2,得k OB =-2k,直线OB 的方程为y =-2kx , 在点A 的坐标中用-2k 代替k ,得B ⎝ ⎛⎭⎪⎫4k2k 2+4,-8k k 2+4.当直线l 的斜率不存在时,4k 2+1=4k 2k 2+4,得k 2=2,此时直线l 的方程为x =43.当直线l的斜率存在时,4k2+1≠4k2k2+4,即k2≠2.则直线l的斜率为4kk2+1--8kk2+44k2+1-4k2k2+4=4k(k2+4)+8k(k2+1)4(k2+4)-4k2(k2+1)=3k(k2+2)4-k4=3k2-k2.故直线l的方程为y-4kk2+1=3k2-k2⎝⎛⎭⎪⎫x-4k2+1.即y=3k2-k2⎝⎛⎭⎪⎫x-43,所以直线l过定点⎝⎛⎭⎪⎫43,0.综上,直线l恒过定点,定点坐标为⎝⎛⎭⎪⎫43,0.一、选择题1.已知直线l1过点(-2,0)且倾斜角为30°,直线l2过点(2,0)且与直线l1垂直,则直线l1与直线l2的交点坐标为( )A.(3,3) B.(2,3)C.(1,3) D.⎝⎛⎭⎪⎫1,32解析:选C.直线l1的斜率k1=tan 30°=33,因为直线l2与直线l1垂直,所以直线l2的斜率k2=-1k1=-3,所以直线l1的方程为y=33(x+2),直线l2的方程为y=-3(x-2),联立⎩⎪⎨⎪⎧y=33(x+2),y=-3(x-2),解得⎩⎨⎧x=1,y=3,即直线l1与直线l2的交点坐标为(1,3).2.圆C与x轴相切于T(1,0),与y轴正半轴交于A、B两点,且|AB|=2,则圆C的标准方程为( )A.(x-1)2+(y-2)2=2B.(x-1)2+(y-2)2=2C.(x+1)2+(y+2)2=4D.(x-1)2+(y-2)2=4解析:选A.由题意得,圆C的半径为1+1=2,圆心坐标为(1,2),所以圆C的标准方程为(x-1)2+(y-2)2=2,故选A.3.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离解析:选B .圆M :x 2+y 2-2ay =0(a >0)可化为x 2+(y -a )2=a 2,由题意,M (0,a )到直线x +y =0的距离d =a2,所以a 2=a 22+2,解得a =2.所以圆M :x 2+(y -2)2=4,所以两圆的圆心距为2,半径和为3,半径差为1,故两圆相交.4.(2019·皖南八校联考)圆C 与直线2x +y -11=0相切,且圆心C 的坐标为(2,2),设点P 的坐标为(-1,y 0).若在圆C 上存在一点Q ,使得∠CPQ =30°,则y 0的取值范围是( )A .[-12,92]B .[-1,5]C .[2-11,2+11]D .[2-23,2+23]解析:选C .由点C (2,2)到直线2x +y -11=0的距离为|4+2-11|5=5,可得圆C 的方程为(x -2)2+(y -2)2=5.若存在这样的点Q ,当PQ 与圆C 相切时,∠CPQ ≥30°,可得sin ∠CPQ =CQ CP=5CP≥sin 30°,即CP ≤25,则9+(y 0-2)2≤25,解得2-11≤y 0≤2+11.故选C .5.在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=( )A .102B .10C .5D .10解析:选D .由题意知P (0,1),Q (-3,0),因为过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以MP ⊥MQ ,所以|MP |2+|MQ |2=|PQ |2=9+1=10,故选D .6.(一题多解)(2019·河南郑州模拟)在平面直角坐标系中,O 为坐标原点,直线x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM →=OA →+OB →,若点M 在圆C 上,则实数k 的值为( )A .-2B .-1C .0D .1解析:选C .法一:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -ky +1=0,x 2+y 2=4得(k 2+1)y 2-2ky -3=0,则Δ=4k 2+12(k 2+1)>0,y 1+y 2=2k k 2+1,x 1+x 2=k (y 1+y 2)-2=-2k 2+1,因为OM →=OA →+OB →,故M ⎝ ⎛⎭⎪⎫-2k 2+1,2k k 2+1,又点M 在圆C 上,故4(k 2+1)2+4k 2(k 2+1)2=4,解得k =0.法二:由直线与圆相交于A ,B 两点,OM →=OA →+OB →,且点M 在圆C 上,得圆心C (0,0)到直线x -ky +1=0的距离为半径的一半,为1,即d =11+k2=1,解得k =0.二、填空题7.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.解析:令P (2,0),如图,易知|OA |=|OB |=1,所以S △AOB =12|OA |·|OB |·sin ∠AOB =12sin ∠AOB ≤12,当∠AOB =90°时,△AOB 的面积取得最大值,此时过点O 作OH ⊥AB 于点H , 则|OH |=22, 于是sin ∠OPH =|OH ||OP |=222=12,易知∠OPH 为锐角,所以∠OPH =30°,则直线AB 的倾斜角为150°,故直线AB 的斜率为tan 150°=-33. 答案:-338.已知圆O :x 2+y 2=4到直线l :x +y =a 的距离等于1的点至少有2个,则实数a 的取值范围为________.解析:由圆的方程可知圆心为(0,0),半径为2.因为圆O 到直线l 的距离等于1的点至少有2个,所以圆心到直线l 的距离d <r +1=2+1,即d =|-a |12+12=|a |2<3,解得a ∈(-32,32).答案:(-32,32)9.(2019·高考浙江卷)已知圆C 的圆心坐标是(0,m ),半径长是r .若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________.解析:法一:设过点A (-2,-1)且与直线2x -y +3=0垂直的直线方程为l :x +2y +t=0,所以-2-2+t =0,所以t =4,所以l :x +2y +4=0.令x =0,得m =-2,则r =(-2-0)2+(-1+2)2= 5.法二:因为直线2x -y +3=0与以点(0,m )为圆心的圆相切,且切点为A (-2,-1),所以m +10-(-2)×2=-1,所以m =-2,r =(-2-0)2+(-1+2)2= 5.答案:-2 5三、解答题10.已知点M (-1,0),N (1,0),曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍.(1)求曲线E 的方程;(2)已知m ≠0,设直线l 1:x -my -1=0交曲线E 于A ,C 两点,直线l 2:mx +y -m =0交曲线E 于B ,D 两点.当CD 的斜率为-1时,求直线CD 的方程.解:(1)设曲线E 上任意一点的坐标为(x ,y ), 由题意得(x +1)2+y 2=3·(x -1)2+y 2, 整理得x 2+y 2-4x +1=0,即(x -2)2+y 2=3为所求.(2)由题意知l 1⊥l 2,且两条直线均恒过点N (1,0).设曲线E 的圆心为E ,则E (2,0),设线段CD 的中点为P ,连接EP ,ED ,NP ,则直线EP :y =x -2.设直线CD :y =-x +t ,由⎩⎪⎨⎪⎧y =x -2,y =-x +t ,解得点P ⎝ ⎛⎭⎪⎫t +22,t -22, 由圆的几何性质,知|NP |=12|CD |=|ED |2-|EP |2,而|NP |2=⎝ ⎛⎭⎪⎫t +22-12+⎝ ⎛⎭⎪⎫t -222,|ED |2=3,|EP |2=⎝ ⎛⎭⎪⎫|2-t |22,所以⎝ ⎛⎭⎪⎫t 22+⎝ ⎛⎭⎪⎫t -222=3-(t -2)22,整理得t 2-3t =0,解得t =0或t =3, 所以直线CD 的方程为y =-x 或y =-x +3.11.在平面直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC的情况.(2)证明:BC 的中点坐标为(x 22,12),可得BC 的中垂线方程为y -12=x 2(x -x 22).由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m2.联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2(x -x 22),又x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为(-m2,-12),半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-(m2)2=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.12.在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解:(1)因为圆心在直线l :y =2x -4上,也在直线y =x -1上,所以解方程组⎩⎪⎨⎪⎧y =2x -4,y =x -1,得圆心C (3,2),又因为圆C 的半径为1,所以圆C 的方程为(x -3)2+(y -2)2=1,又因为点A (0,3),显然过点A ,圆C 的切线的斜率存在,设所求的切线方程为y =kx +3,即kx -y +3=0,所以|3k -2+3|k 2+12=1,解得k =0或k =-34, 所以所求切线方程为y =3或y =-34x +3,即y -3=0或3x +4y -12=0.(2)因为圆C 的圆心在直线l :y =2x -4上,所以设圆心C 为(a ,2a -4), 又因为圆C 的半径为1,则圆C 的方程为(x -a )2+(y -2a +4)2=1. 设M (x ,y ),又因为|MA |=2|MO |,则有x 2+(y -3)2=2x 2+y 2,整理得x 2+(y +1)2=4,其表示圆心为(0,-1),半径为2的圆,设为圆D ,所以点M 既在圆C 上,又在圆D 上,即圆C 与圆D 有交点,所以2-1≤a 2+(2a -4+1)2≤2+1,解得0≤a ≤125,所以圆心C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.。
2018高考数学二轮复习专题五解析几何第1讲直线与圆课件文
ห้องสมุดไป่ตู้ 热点 1 直线方程
1.两条直线平行与垂直 若两条不重合的直线 l1,l2 的斜率 k1,k2 存在,则 l1∥l2 ⇔k1=k2,l1⊥l2⇔k1k2=-1.若给出的直线方程中存在字母 系数,则要考虑斜率是否存在.
2.求直线方程
要注意几种直线方程的局限性.点斜式、斜截式要 求直线不能与 x 轴垂直,两点式方程不能表示垂直于坐标 轴的直线,截距式方程不能表示过原点的直线,也不能 表示垂直于坐标轴的直线.
|a+4-1|
依题意,
=1,解得
a2+1
a=-43.
答案:A
2.(2016·山东卷)已知圆 M:x2+y2-2ay=0(a>0)
截直线 x+y=0 所得线段的长度是 2 2,则圆 M 与圆 N:
(x-1)2+(y-1)2=1 的位置关系是( )
A.内切
B.相交 C.外切
D.相离
解析:圆 M:x2+y2-2ay=0(a>0)可化为 x2+(y-
因此 S△AOB=12ab≥12,即 S△AOB 的最小值为 12. 答案:(1)A (2)12
[规律方法] 1.求解两条直线平行的问题时,在利用 A1B2-A2B1 =0 建立方程求出参数的值后,要注意代入检验,排除两 条直线重合的可能性. 2.求直线方程时应根据条件选择合适的方程形式利 用待定系数法求解,同时要考虑直线斜率不存在的情况是 否符合题意.
4.(2017·天津卷)设抛物线 y2=4x 的焦点为 F,准线 为 l.已知点 C 在 l 上,以 C 为圆心的圆与 y 轴的正半轴相 切于点 A.若∠FAC=120°,则圆的方程为____________.
解析:由题意知该圆的半径为 1,设圆心 C(-1,a)(a
高考数学二轮复习第2部分专题篇素养提升文理专题5解析几何第1讲直线与圆课件新人教版
2021/4/17
高考数学二轮复习第2部分专题篇素
3
1 解题策略 • 明方向 2 考点分类 • 析重点 3 易错清零 • 免失误 4 真题回放 • 悟高考 5 预测演练 • 巧押题
2021/4/17
高考数学二轮复习第2部分专题篇素
4
01 解题策略 • 明方向
2021/4/17
高考数学二轮复习第2部分专题篇素
接圆方程是
(B )
A.x2+y2-4x+2y=0
B.x2+y2+4x-2y=0
C.x2+y2-8x+4y=0
D.x2+y2+8x-4y=0
28
【解析】 矩形OABC的顶点坐标分别为O(0,0),A(-4,0),B(- 4,2),C(0,2),
所以OB的中点为M(-2,1),r=12|OB|=12 -42+22= 5; 所以矩形OABC的外接圆方程是(x+2)2+(y-1)2=5, 化为一般式方程为x2+y2+4x-2y=0. 故选B.
23
考点二 圆的方程
1.圆的标准方程 当圆心为(a,b),半径为r时,其标准方程为(x-a)2+(y-b)2=r2, 特别地,当圆心在原点时,方程为x2+y2=r2. 2.圆的一般方程 x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0)表示以 -D2 ,-E2 为圆 心, D2+2E2-4F为半径的圆.
8
(文科)
年份 卷别 题号
考查角度
2020
Ⅰ卷 Ⅱ卷 Ⅲ卷
6 圆的简单几何性质,以及几何法求弦长
8 圆心到直线距离的计算,求出圆的方程
8
直线过定点问题
分值 5 5 5
9
年份 2019
2018
卷别 Ⅰ卷 Ⅱ卷 Ⅲ卷 Ⅰ卷 Ⅱ卷
高考数学二轮复习第二部分专题五解析几何第1讲直线与圆课件理
2021/12/13
第十三页,共四十七页。
因为 θ∈[0,π),所以 θ=23π,则 tan θ=- 3, 所以直线 l 的方程为 y-1=- 3(x- 3), 即 3x+y-4=0. 答案:B
2021/12/13
第十四页,共四十七页。
2.直线 l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y
第八页,共四十七页。
理由如下: 设 M(x,y),由已知得⊙M 的半径为 r=|x+2|, |AO|=2. 由于 MO⊥AO,故可得 x2+y2+4=(x+2)2,化简得 M 的轨迹方程为 y2=4x. 因为曲线 C:y2=4x 是以点 P(1,0)为焦点,以直线 x=-1 为准线的抛物线,所以|MP|=x+1. 因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1, 所以存在满足条件的定点 P.
2021/12/13
第六页,共四十七页。
4.(2019·全国卷Ⅰ)已知点 A,B 关于坐标原点 O 对 称,|AB|=4,⊙M 过点 A,B 且与直线 x+2=0 相切.
(1)若 A 在直线 x+y=0 上,求⊙M 的半径; (2)是否存在定点 P,使得当 A 运动时,|MA|-|MP| 为定值?并说明理由. 解:(1)因为⊙M 过点 A,B,所以圆心 M 在 AB 的 垂直平分线上,由已知 A 在直线 x+y=0 上,且 A,B 关 于坐标原点 O 对称,
2021/12/13
第二十四页,共四十七页。
则圆上的点到直线 AB 的最短距离为 d-r=|a+22|-1. 又|AB|= 22+22=2 2, 故(S△ABC)min=12×2 2×|a+2|2- 2=3- 2. 解之得 a=1 或 a=-5. 答案:(1)(x-1)2+y2=4 (2)1 或-5
【中小学资料】2018版高考数学二轮复习 第1部分 重点强化专题 专题5 解析几何 专题限时集训11 直线与圆 理
专题限时集训(十一) 直线与圆(对应学生用书第99页)(限时:40分钟)1.(2017·豫北名校4月联考)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4D [设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ),则有⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y-3)2=4.故选D.]2.(2017·陕西教学质量检测(一))圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( ) A .1+ 2 B .2 C .1+22D .2+2 2A [将圆的方程化为(x -1)2+(y -1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1,选A.]3.(2017·福建厦门4月联考)若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )【导学号:07804083】A .0B .1C .2D .3B [方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,故选B.]4.(2017·湖北七市联考)已知圆C :(x -1)2+y 2=r 2(r >0).设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件C [圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|12+32=2. 当0<r <1时,直线在圆外,圆上没有点到直线的距离为1; 当r =1时,直线在圆外,圆上只有1个点到直线的距离为1; 当1<r <2时,直线在圆外,此时圆上有2个点到直线的距离为1; 当r =2时,直线与圆相切,此时圆上有2个点到直线的距离为1; 当2<r <3时,直线与圆相交,此时圆上有2个点到直线的距离为1.综上,当0<r <3时,圆C 上至多有2个点到直线x -3y +3=0的距离为1,由圆C 上至多有2个点到直线x -3y +3=0的距离为1可得0<r <3,故p 是q 的充分必要条件,故选C.]5.(2017·安徽芜湖六校联考)在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.若圆C 上存在点M ,使MA =2MO ,则圆心C 的横坐标a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,125B .[0,1]C.⎣⎢⎡⎦⎥⎤1,125 D .⎝⎛⎭⎪⎫0,125A [因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO ,所以x 2+y -2=2x 2+y 2,化简得x 2+y 2+2y-3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1,即1≤a 2+a -2≤3.由a 2+a -2≥1得5a 2-12a +8≥0,解得a ∈R ;由a 2+a -2≤3得5a 2-12a ≤0,解得0≤a ≤125.所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.故选A.]6.(2017·武汉4月模拟)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B ,使得MA ⊥MB ,则实数t 的取值范围为( ) A .[-2,6] B .[-3,5] C .[2,6]D .[3,5]C [由题意,圆C 上存在两点使MA ⊥MB ,则|CM |=-2+t -2≤20⇒2≤t ≤6,故选C.]7.(2017·石家庄一模)若a ,b 是正数,直线2ax +by -2=0被圆x 2+y 2=4截得的弦长为23,则t =a 1+2b 2取得最大值时a 的值为( ) A.12 B .32C.34D .34D [因为圆心到直线的距离d =24a 2+b2,则直线被圆截得的弦长L =2r 2-d 2=24-44a 2+b 2=23,所以4a 2+b 2=4.t =a 1+2b 2=122·(22a )1+2b 2≤122·12·[(22a )2+(1+2b 2)2]=142[8a 2+1+2(4-4a 2)]=942,当且仅当⎩⎪⎨⎪⎧8a 2=1+2b 24a 2+b 2=4时等号成立,此时a =34,故选D.]8.(2017·安徽淮北一模)已知直线l 1与圆C :(x -1)2+(y -2)2=4相交于不同的A ,B 两点,对平面内任意的点Q 都有QC →=λQA →+(1-λ)QB →.设P 为直线l 2:3x +4y +4=0上的动点,则PA →·PB →的最小值为( )【导学号:07804084】A .21B .9C .5D .0C [由QC →=λQA →+(1-λ)QB →可知,A ,B ,C 三点共线,即弦AB 为圆C 的直径.又因为P 为直线l 2:3x +4y +4=0上的动点,且PA →·PB →=(PC →+CA →)·(PC →+CB →)=PC →2-CB→2=PC →2-4,故PA →·PB →的最小值为PC →2-4的最小值.又因为圆心C (1,2)到直线l 2:3x +4y +4=0的距离为3+8+45=3,故|PC →|min =3,所以PA →·PB →的最小值为9-4=5.故选C.] 二、填空题9.(2017·湖南五市十校联考)已知直线l :mx +y +3=0与圆(x +1)2+y 2=2相交,弦长为2,则m =________.33 [由已知可得圆心(-1,0)到直线的距离d =|3-m |m 2+1,所以⎝ ⎛⎭⎪⎫|3-m |m 2+12+1=2, 解得m =33.] 10.(2016·承德二模)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为________.-43或-34 [由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k ,则反射光线所在直线方程为y +3=k (x -2),即kx -y -2k -3=0.又因为光线与圆(x +3)2+(y -2)2=1相切,所以|-3k -2-2k -3|k 2+1=1,整理得12k 2+25k +12=0,解得k =-43或k =-34.]11.(2016·郑州二模)已知⊙M 的圆心在第一象限,过原点O 被x 轴截得的弦长为6,且与直线3x +y =0相切,则圆M 的标准方程为________.10 [法一:(几何性质法)设⊙M 的方程为(x -a )2+(y -b )2=r 2(a >0,b >0,r >0),由题意知⎩⎪⎨⎪⎧b 2+9=r 2,|3a +b |32+12=r ,a 2+b 2=r 2,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=10,故⊙M 的方程为(x -3)2+(y -1)2=10.法二:(待定系数法)因为圆M 过原点,故可设方程为x 2+y 2+Dx +Ey =0,又被x 轴截得的弦长为6且圆心在第一象限,则⎝ ⎛⎭⎪⎫-D 22=32,故D =-6,与3x +y =0相切,则-E2-D 2=13,即E =13D =-2,因此所求方程为x 2+y 2-6x -2y =0.故⊙M 的标准方程为(x -3)2+(y -1)2=10.]12.(2017·广东五校联考)两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a2+1b2的最小值为________.1 [两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0配方得,(x +a )2+y 2=4,x 2+(y -2b )2=1,依题意得两圆相外切,故a 2+4b 2=1+2=3,即a 2+4b 2=9,1a2+1b 2=⎝ ⎛⎭⎪⎫a 29+4b 29⎝ ⎛⎭⎪⎫1a 2+1b 2=19+a 29b 2+4b 29a 2+49≥59+2a 29b 2×4b 29a 2=1,当且仅当a 29b 2=4b 29a2,即a 2=2b 2时等号成立,故1a 2+1b2的最小值为1.]三、解答题13.(2017·河北衡水中学调研)已知直角三角形ABC 的斜边为AB ,且A (-1,0),B (3,0).求:(1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.[解] (1)法一:(直接法)设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,所以k AC ·k BC =-1,又k AC =y x +1,k BC =y x -3,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).法二:(定义法)设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点). 所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得(2x-4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).14.(2016·湖南六校联考)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.【导学号:07804085】[解] (1)设圆心C (a,0)⎝ ⎛⎭⎪⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍).所以圆C :x 2+y 2=4.(2)存在.当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1)(k ≠0),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k x -,得(k 2+1)x 2-2k 2x +k 2-4=0,所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t=0⇒k x 1-x 1-t+k x 2-x 2-t=0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒k 2-k 2+1-2k2t +k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,x 轴平分∠ANB .。
高考数学二轮复习 专题五 解析几何第1讲 直线与圆配套课件
而 P (0,2),Q (6,0), PQ(6,2),
所以 OAOB与PQ 共线等价于
-2(x1+x2)=6(y1+y2), 将②③代入上式,解得 k=-43,
由(1)知 k∈-34,0,故没有符合题意的常数 k.
返回
知能提升演练
一、选择题
1.已知直线 l1 的方向向量 a=(1,3),直线 l2 的方向向
量 b=(-1,k).若直线 l2 经过点(0,5)且 l1⊥l2,则
直线 l2 的方程为
( B)
A.x+3y-5=0
B.x+3y-15=0
C.x-3y+5=0
D.x-3y+15=0
解析 ∵l1⊥l2,∴a·b=0. ∴-1+3k=0,∴k=13,∴b=-1,13. ∴l2 的方程为 y=-13x+5,即 x+3y-15=0.
8.(2010·江苏)在平面直角坐标系 xOy 中,已知圆 x2+ y2=4 上有且只有四个点到直线 12x-5y+c=0 的距 离为 1,则实数 c 的取值范围是_(_-__1_3_,_1_3_)_.
解析 由题设得,若圆上有四个点到直线的距离为 1, 则需圆心(0,0)到直线的距离 d 满足 0≤d<1. ∵d= 12|c2+| 52=1|c3|,∴0≤|c|<13,即 c∈(-13,13).
线 x+3y+6=0 相交于点 N,则|AM|·|AN|=____5____.
解析 若直线 l 的斜率不存在,则直线 l⊥x 轴,l 的方 程为 x=-1,l 被圆截得的弦的中点为 M(-1,3),l 与 直线 x+3y+6=0 的交点为 N(-1,-35),所以|AM|·|AN| =3×53=5.若直线 l 的斜率存在,设直线 l 的方程为 y =k(x+1),联立圆的方程并结合中点坐标公式得点 M 的坐标为(3kk2-+k12,3kk22++1k),则|AM|=|3kk2++11| 1+k2,又 l 与直线 x+3y+6=0 相交于点 N,则点 N 的坐标为 (-36k+-13k,3-k+5k1),进而可得|AN|=5|3k1++1k|2,则|AM|·|AN| =5.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 直线与圆一、选择题1.(2017·日照二模)已知命题p :“m =-1”,命题q :“直线x -y =0与直线x +m 2y =0互相垂直”,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要解析:“直线x -y =0与直线x +m 2y =0互相垂直”的充要条件是1×1+(-1)·m 2=0⇔m =±1.所以命题p 是命题q 的充分不必要条件. 答案:A2.(2017·忻州模拟)过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0解析:依题意,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点.因为圆心(1,0)与切点(3,1)连线的斜率为12,所以切线的斜率k =-2,故圆的切线方程为y -1=-2(x -3),即2x +y -7=0.答案:B3.(2015·全国卷Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53 B.213C.253D.43解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,所以⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,所以⎩⎪⎨⎪⎧D =-2,E =-433,F =1,所以△ABC 外接圆的圆心为⎝⎛⎭⎪⎫1,233,因此圆心到原点的距离d =12+⎝ ⎛⎭⎪⎫2332=213.答案:B4.(2017·济南调研)若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( )(导学号 54850124)A .1B .-3C .1或-3D .2解析:因为圆(x -1)2+y 2=5的圆心C (1,0),半径r = 5.又直线x -y +m =0被圆截得的弦长为2 3.所以圆心C 到直线的距离d =r 2-(3)2=2, 因此|1-0+m |12+(-1)2=2,所以m =1或m =-3. 答案:C5.(2017·汉中模拟)已知过点(-2,0)的直线与圆C :x 2+y 2-4x =0相切于点P (P 在第一象限内),则过点P 且与直线3x -y =0垂直的直线l 的方程为( )A .x +3y -2=0B .x +3y -4=0 C.3x +y -2=0D .x +3y -6=0解析:圆C :x 2+y 2-4x =0的标准方程(x -2)2+y 2=4, 所以圆心C (2,0),半径r =2.又过点(-2,0)的直线与圆C 相切于第一象限, 所以易知倾斜角θ=30°,切点P (1,3), 设直线l 的方程为x +3y +c =0,把点P (1,3)代入,所以1+3+c =0,所以c =-4. 所以直线l 的方程为x +3y -4=0. 答案:B 二、填空题6.(2017·菏泽二模)已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.解析:圆C 的标准方程为(x -4)2+(y -1)2=9,所以圆C 的圆心C (4,1),半径r =3. 又直线y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短. 因此a ·k CP =a ·1-04-3=-1,所以a =-1.故所求直线的方程为y =-(x -3),即x +y -3=0. 答案:x +y -3=07.(2017·北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.解析:法一 由题意知,AO →=(2,0),令P (cos α,sin α),则AP →=(cos α+2,sin α),AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6,故AO →·AP →的最大值为6. 法二 由题意知,AO →=(2,0),令P (x ,y ),-1≤x ≤1,则AO →·AP →=(2,0)·(x +2,y )=2x +4≤6,故AO →·AP →的最大值为6. 答案:68.(2016·全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析:由圆x 2+y 2=12知圆心O (0,0),半径r =23,所以圆心(0,0)到直线x -3y +6=0的距离d =61+3=3,|AB |=212-32=2 3.过C 作CE ⊥BD 于E .如图所示,则|CE |=|AB |=2 3. 因为直线l 的方程为x -3y +6=0,所以直线l 的倾斜角∠BPD =30°,从而∠BDP =60°,因此|CD |=|CE |sin 60°=23sin 60°=4.答案:4 三、解答题9.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5).(导学号 54850125)(1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S . 解:(1)由圆C :x 2+y 2-4x -6y +12=0,配方, 得(x -2)2+(y -3)2=1,圆心C (2,3). 当斜率存在时,设过点A 的圆的切线方程为y -5=k (x -3),即kx -y +5-3k =0.由d =|2k -3+5-3k |k 2+1=1,得k =34.又斜率不存在时直线x =3也与圆相切, 故所求切线方程为x =3或3x -4y +11=0. (2)直线OA 的方程为y =53x ,即5x -3y =0,点C 到直线OA 的距离为d =|5×2-3×3|52+32=134, 又|OA |=32+52=34, 所以S =12|OA |d =12.10.(2017·天津南开中学模拟)在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切.(导学号 54850126)(1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程. 解:(1)将圆C :x 2+y 2+4x -2y +m =0化为(x +2)2+(y -1)2=5-m , 因为圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切, 所以圆心(-2,1)到直线x -3y +3-2=0的距离d =41+3=2=r ,所以圆C 的方程为(x +2)2+(y -1)2=4.(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,则可设直线MN 的方程为2x -y +c =0,因为|MN |=23,半径r =2,所以圆心(-2,1)到直线MN 的距离为22-(3)2=1.则|-4-1+c |5=1,所以c =5±5, 所以直线MN 的方程为2x -y +5± 5=0.11.(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程; (3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.解:(1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25,圆心M (6,7),半径r =5, 由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0),且(6-6)2+(b -7)2=b +5.解得b =1,所以圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为k OA =2,所以可设直线l 的方程为y =2x +m ,即2x -y +m =0. 又|BC |=|OA |=22+42=25,由题意,圆M 的圆心M (6,7)到直线l 的距离为d =52-⎝ ⎛⎭⎪⎫|BC |22=25-5=25,即|2×6-7+m |22+(-1)2=25,解得m =5或m =-15.所以直线l 的方程为2x -y +5=0或2x -y -15=0. (3)由TA →+TP →=TQ →,则四边形AQPT 为平行四边形, 又因为P ,Q 为圆M 上的两点, 所以|PQ |≤2r =10. 所以|TA |=|PQ |≤10, 即(t -2)2+42≤10, 解得2-221≤t ≤2+221.故所求t 的取值范围为[2-221,2+221 ].。