2014年湖南省株洲市中考数学试题(扫描版)

合集下载

2014年株洲湘教版九年级全册期末模拟试卷

2014年株洲湘教版九年级全册期末模拟试卷

2014年株洲初三全册期末模拟试卷( 时量:120分钟 满分:120 分 命题人:孙祺 )班级 姓名: 学号: 分数:一. 耐心填一填,旗开得胜(每小题3分,共24分) 1. 方程x 2=x 的解是___________________.2. 人们口语中常说的:“鸡蛋里挑骨头”是指某一事件______发生.(填“必然”、 “不可能”或“有可能”)3. 设25a b =, 则a b =_______ ,a bb-=________. 4. 某人沿坡度为1:3的山坡向上走100m ,则山坡的坡角= ; 他上升的垂直高度为 m. 5. 如图:在△ABC 中,DE ∥BC ,12AD BD =,则△ADE 与△ABC 的面积之比为 ;若BC=3cm ,则DE=______cm .6. 命题“全等三角形的对应角相等”的逆命题是___________________________________ , 该逆命题为 命题.(填“真”或“假”)7. 已知反比例函数()0≠=k xky 的图象经过点(2,-1),则k 的值是_______,图象在__________象限,当x>0时,y 随x 的增大而__________. 8. 如图所示,将矩形ABCD 沿EF 折叠,使得点A恰与点C重合.折叠后测得∠BCE =30°,BE =2cm ,那么折痕EF = cm .二. 精心选一选,一锤定音(每小题3分,共24分,请将正确答案的序号填写在下表内) 9. 下列命题是假命题的是( )A .三角形三条角平分线的交点到三边的距离相等B .等腰梯形同一底上的两个角相等C .对角线相等的四边形是矩形D .相似多边形的周长之比等于相似比 10. 已知线段AB=2,点C 为AB 的黄金分割点,且AC >BC ,则AC 的长是( )A .15+ B.15- C .215+ D .215- 11. 在△ABC 中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( ) A.sinA=34 B.cosA=35 C.tanA=34 D.cosB=3512. 若关于x 的一元二次方程0122=-+x kx 有实数根,则k 的取值范围是( )A .k >-1B .k ≥-1C .k >-1且k ≠0D .k ≥-1且k ≠013. 学校评选出30名优秀学生,要选5名代表参加全市优秀学生表彰会,已经确定了1名代表,则剩余学生参加全市优秀学生表彰会的概率是( ) A.61 B.152 C.295 D.294 14. 已知等腰梯形ABCD 中, AD ∥BC ,∠B =60°, AD =2 , BC =6 ,则此梯形的周长( ) A. 14 B. 15 C. 16 D.1715. 一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡90张,则这个小组共有( ) A. 8人 B. 9人 C. 10人 D. 11人16. 如图: △ABC 中,D,E 分别在AB 、AC 上,且DE 与BC 不平行,请填上一个适当的条件,使得△ADE ∽△ACB ,则添加的以下条件不成立...的是( ) A. ∠ADE=∠C B.∠AED=∠B C. D.三.细心想一想,慧眼识金(17-18每小题5分,19-20每小题7分,21-22每小题8分,23-24每小题6分,共42分)17. 计算: 101(12cos 603-⎛⎫+- ⎪⎝⎭+tan45°- |-2| 18.解方程:22520x x -+=19. 如图所示,点E 、F 、G 、H 分别为□ABCD 的边AB 、BC 、CD 、DA 的中点,求证:EF=HG.20. 如图正比例函数y=k 1x 所构成的正方形的面积为(1(2(3)求△ODC 的面积。

湖南省株洲市2024年中考数学试卷(解析版)

湖南省株洲市2024年中考数学试卷(解析版)

湖南省株洲市2024年中考数学试卷一、选择题1.下列数中,﹣3的倒数是()A.﹣13B.13C.﹣3D.3【答案】A.【解析】试题分析:1÷(﹣3)=13-=﹣13.故选A.考点:倒数.2.下列等式错误的是()A.222(2)4mn m n=B.222(2)4mn m n-=C.22366(2)8m n m n=D.22355(2)8m n m n-=-【答案】D.【解析】考点:幂的乘方与积的乘方.3.甲、乙、丙、丁四名射击队员考核赛的平均成果(环)及方差统计如表,现要依据这些数据,从中选出一人参与竞赛,假如你是教练员,你的选择是()队员平均成绩方差甲9.7 2.12乙9.6 0.56丙9.7 0.56丁9.6 1.34A.甲B.乙C.丙D.丁【答案】C.【解析】试题分析:∵=x x甲丙=9.7,22S S>甲乙,∴选择丙.故选C.考点:方差.4.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【答案】B.【解析】考点:旋转的性质.5.不等式21120xx-≥⎧⎨-<⎩的解集在数轴上表示为()A.B.C.D.【答案】C.【解析】试题分析:解不等式2x﹣1≥1,得:x≥1,解不等式x﹣2<0,得:x<2,∴不等式组的解集为:1≤x<2,故选C.考点:解一元一次不等式组;在数轴上表示不等式的解集.6.在解方程13132x xx-++=时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+x=3(x+1)【答案】B.【解析】试题分析:方程两边同时乘以6得:2(x﹣1)+6x=3(3x+1),故选B.考点:解一元一次方程.7.已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE=12DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE【答案】D.【解析】考点:平行四边形的性质.8.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种状况的面积关系满意S1+S2=S3图形个数有()A.1B.2C.3D.4【答案】D.【解析】故选D.考点:勾股定理.9.已知,如图一次函数1y ax b=+与反比例函数2ky x =的图象如图示,当12y y <时,x 的取值范围是( )A .x <2B .x >5C .2<x <5D .0<x <2或x >5 【答案】D . 【解析】试题分析:依据题意得:当12y y <时,x 的取值范围是0<x <2或x >5.故选D .考点:反比例函数与一次函数的交点问题.10.已知二次函数2y ax bx c =++(a >0)的图象经过点A (﹣1,2),B (2,5),顶点坐标为(m ,n ),则下列说法错误的是( )A .c <3B .m ≤12 C .n ≤2 D .b <1【答案】B . 【解析】考点:二次函数的性质;二次函数图象上点的坐标特征. 二、填空题11.计算:3a ﹣(2a ﹣1)= . 【答案】a+1. 【解析】试题分析:原式=3a ﹣2a+1=a+1,故答案为:a+1. 考点:整式的加减.12.据民政部网站消息,截至2024年底,我国60岁以上老年人口已经达到2.12亿,其中2.12亿用科学记数法表示为 . 【答案】2.12×108.【解析】试题分析:2.12亿=212000000=2.12×108,故答案为:2.12×108.考点:科学记数法—表示较大的数.13.从1,2,3…99,100个整数中,任取一个数,这个数大于60的概率是.【答案】0.4.【解析】试题分析:从1,2,3…99,100个整数中,任取一个数,这个数大于60的概率=40100=0.4.故答案为:0.4.考点:概率公式.14.如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为.【答案】π.【解析】试题分析:如图,连接OA、OB,∵ABCDEF为正六边形,∴∠AOB=360°×16=60°,AB的长为603180π⨯=π.故答案为:π.考点:正多边形和圆;弧长的计算.15.分解因式:(x﹣8)(x+2)+6x= .【答案】(x+4)(x﹣4).考点:因式分解-运用公式法.16.△ABC的内切圆的三个切点分别为D、E、F,∠A=75°,∠B=45°,则圆心角∠EOF= 度.【答案】120.【解析】试题分析:∵∠A=75°,∠B=45°,∴∠C=180°﹣75°﹣45°=105°﹣45°=60°.∵△ABC的内切圆的三个切点分别为D、E、F,∴∠OEC=∠OFC=90°,∵四边形OECF的内角和等于360°,∴∠EOF=360°﹣(90°+90°+60°)=360°﹣240°=120°.故答案为:120.考点:三角形的内切圆与内心.17.已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1,直线CD的表达式为y2=k2x+b2,则k1k2= .【答案】1.【解析】试题分析:设点A(0,a)、B(b,0),∴OA=a,OB=﹣b,∵△AOB≌△COD,∴OC=a,OD=﹣b,∴C(a,0),D(0,b),∴k1=OAOB=ab-,k2=ODOC=ba-,∴k1k2=1,故答案为:1.考点:两条直线相交或平行问题;全等三角形的性质.18.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat point),已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点,若P就是△ABC的费马点,若点P2的等腰直角三角形DEF的费马点,则PD+PE+PF= .31.【解析】考点:解直角三角形;等腰直角三角形;新定义.三、解答题19.计算:20169(1)4cos 60+--.【答案】2.【解析】试题分析:原式利用算术平方根定义,乘方的意义,以及特别角的三角函数值计算即可得到结果.试题解析:原式=3+1﹣2=2.考点:实数的运算;零指数幂;特别角的三角函数值.20.先化简,再求值:2114()22xx x--⋅+,其中x=3.【答案】2xx-,13.【解析】考点:分式的化简求值.21.某社区从2024年起先,组织全民健身活动,结合社区条件,开展了广场舞、太极拳、羽毛球和跑步四个活动项目,现将参与项目活动总人数进行统计,并绘制成每年参与总人数折线统计图和2024年各活动项目参与人数的扇形统计图,请你依据统计图解答下列题(1)2024年比2024年增加人;(2)请依据扇形统计图求出2024年参与跑步项目的人数;(3)组织者预料2024年参与人员人数将比2024年的人数增加15%,名各活动项目参与人数的百分比与2024年相同,请依据以上统计结果,估计2024年参与太极拳的人数.【答案】(1)990;(2)880;(3)184.【解析】试题解析:(1)1600﹣610=(人);故答案为:990人;(2)1600×55%=880(人);答:2024年参与跑步项目的人数为880人;(3)1600×(1+15%)×(1﹣55%﹣30%﹣5%)=184(人);答:估计2024年参与太极拳的人数为184人.考点:折线统计图;用样本估计总体;扇形统计图.22.某市对初二综合素养测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成果(满分100分)和平常成果(满分100分)两部分组成,其中测试成果占80%,平常成果占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成果和平常成果两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成果和平常成果各得多少分?(2)某同学测试成果为70分,他的综合评价得分有可能达到A等吗?为什么?(3)假如一个同学综合评价要达到A等,他的测试成果至少要多少分?【答案】(1)孔明同学测试成果位90分,平常成果为95分;(2)不行能;(3)75.【解析】试题分析:(1)分别利用孔明同学的测试成果和平常成果两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;(2)利用测试成果占80%,平常成果占20%,进而得出答案;(3)首先假设平常成果为满分,进而得出不等式,求出测试成果的最小值.考点:一元一次不等式的应用;二元一次方程组的应用.23.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A 作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.【答案】(1)证明见解析;(2)9 13.【解析】试题分析:(1)依据协助线的性质得到AD=AB,∠ADC=∠ABC=90°,由邻补角的定义得到∠ADF=∠ABE=90°,于是得到结论;(2)过点A作AH⊥DE于点H,依据勾股定理得到1022CD CE=5,依据三角形的面积S△AED=12AD×BA=92,S△ADE=12ED×AH=92,求得AH=1.8,由三角函数的定义即可得到结论.试题解析:(1)正方形ABCD中,∵AD=AB,∠ADC=∠ABC=90°,∴∠ADF=∠ABE=90°,在△ADF与△ABE 中,∵AD=AB,∠ADF=∠ABE,DF=BE,∴△ADF≌△ABE;考点:正方形的性质;全等三角形的判定与性质.24.平行四边形ABCD的两个顶点A、C在反比例函数k yx =(k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)若△APO的面积为2,求点D到直线AC的距离.【答案】(1)k=6,C(﹣2,﹣3);(2)1213.【解析】试题分析:(1)依据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数kyx=(k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)依据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再依据等积法可以求得点D到直线AC的距离.试题解析:(1)∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数kyx=(k≠0)图象上,点B 、D 在x 轴上,且B 、D 两点关于原点对称,∴3=2k,点C 与点A 关于原点O 对称,∴k=6,C (﹣2,﹣3),即k 的值是6,C 点的坐标是(﹣2,﹣3);考点:反比例函数与一次函数的交点问题;平行四边形的性质;函数及其图象.25.已知AB 是半径为1的圆O 直径,C 是圆上一点,D 是BC 延长线上一点,过点D 的直线交AC 于E 点,且△AEF 为等边三角形.(1)求证:△DFB 是等腰三角形;(2)若DA=7AF ,求证:CF ⊥AB .【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由AB 是⊙O 直径,得到∠ACB=90°,由于△AEF 为等边三角形,得到∠CAB=∠EFA=60°,依据三角形的外角的性质即可得到结论;试题解析:(1)∵AB 是⊙O 直径,∴∠ACB=90°,∵△AEF 为等边三角形,∴∠CAB=∠EFA=60°,∴∠B=30°,∵∠EFA=∠B+∠FDB ,∴∠B=∠FDB=30°,∴△DFB 是等腰三角形;(2)过点A作AM⊥DF于点M,设AF=2a,∵△AEF是等边三角形,∴FM=EN=a,AM=3a,在Rt△DAM中,AD=7AF=27a,AM=3,∴DM=5a,∴DF=BF=6a,∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=CE=2a,∴∠ECF=∠EFC,∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.考点:圆周角定理;等腰三角形的判定与性质;垂径定理.26.已知二次函数22(21)y x k x k k=-+++(k>0).(1)当k=12时,求这个二次函数的顶点坐标;(2)求证:关于x的一元次方程22(21)0x k x k k-+++=有两个不相等的实数根;(3)如图,该二次函数与x轴交于A、B两点(A点在B点的左侧),与y轴交于C点,P是y轴负半轴上一点,且OP=1,直线AP交BC于点Q,求证:222 111OA AB AQ+=.【答案】(1)(1,14-);(2)证明见解析;(3)证明见解析.【解析】试题分析:(1)干脆将k的值代入函数解析式,进而利用配方法求出顶点坐标;(2)利用根的判别式得出△=1,进而得出答案;(3)依据题意首先表示出Q点坐标,以及表示出OA,AB的长,再利用两点之间距离求出AQ的长,进而求出答案.试题解析:(1)将k=12代入二次函数可求得,2324y x x=++=21(1)4x+-,故抛物线的顶点坐标为:(1,14-);考点:二次函数综合题.。

2014年湖南省株洲市中考数学试卷(含解析版)

2014年湖南省株洲市中考数学试卷(含解析版)

2014年湖南省株洲市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2014•株洲)下列各数中,绝对值最大的数是()A.﹣3 B.﹣2 C.0D.12.(3分)(2014•株洲)x 取下列各数中的哪个数时,二次根式有意义()A.﹣2 B.0C.2D.43.(3分)(2014•株洲)下列说法错误的是()A.必然事件的概率为1B.数据1、2、2、3的平均数是2C.数据5、2、﹣3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖4.(3分)(2014•株洲)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)5.(3分)(2014•株洲)下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A.正方体B.圆柱C.圆锥D.球6.(3分)(2014•株洲)一元一次不等式组的解集中,整数解的个数是()A.4B.5C.6D.77.(3分)(2014•株洲)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④8.(3分)(2014•株洲)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(共8小题,每小题3分,满分24分)9.(3分)(2014•株洲)计算:2m2•m8=.10.(3分)(2014•株洲)据教育部统计,参加2014年全国高等学校招生考试的考生约为9390000人,用科学记数法表示9390000是.11.(3分)(2014•株洲)如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是.12.(3分)(2014•株洲)某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为.13.(3分)(2014•株洲)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).14.(3分)(2014•株洲)分解因式:x2+3x(x﹣3)﹣9=.15.(3分)(2014•株洲)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.16.(3分)(2014•株洲)如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是.三、解答题(共8小题,满分52分)17.(4分)(2014•株洲)计算:+(π﹣3)0﹣tan45°.18.(4分)(2014•株洲)先化简,再求值:•﹣3(x﹣1),其中x=2.19.(6分)(2014•株洲)我市通过网络投票选出了一批“最有孝心的美少年”.根据各县市区的入选结果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后三行中有一个数据是错误的.请回答下列问题:(1)统计表中a=,b=;(2)统计表后三行中哪一个数据是错误的?该数据的正确值是多少?(3)株洲市决定从来自炎陵县的4位“最有孝心的美少年”中,任选两位作为市级形象代言人.A、B是炎陵县“最有孝心的美少年”中的两位,问A、B同时入选的概率是多少?区域频数频率炎陵县 4 a茶陵县 5 0.125攸县 b 0.15醴陵市8 0.2株洲县 5 0.125株洲市城区12 0.2520.(6分)(2014•株洲)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?21.(6分)(2014•株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.22.(8分)(2014•株洲)如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).(1)求证:△ACE≌△AFE;(2)求tan∠CAE的值.23.(8分)(2014•株洲)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).24.(10分)(2014•株洲)已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2.(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.2014年湖南省株洲市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2014•株洲)下列各数中,绝对值最大的数是()A.﹣3 B.﹣2 C.0D.1考点:绝对值;有理数大小比较分析:根据绝对值是实数轴上的点到原点的距离,可得答案.解答:解:|﹣3|>|﹣2|>>|0|,故选:A.点评:本题考查了绝对值,绝对值是实数轴上的点到原点的距离.2.(3分)(2014•株洲)x取下列各数中的哪个数时,二次根式有意义()A.﹣2 B.0C.2D.4考点:二次根式有意义的条件.分析:二次根式的被开方数是非负数.解答:解:依题意,得x﹣3≥0,解得,x≥3.观察选项,只有D符合题意.故选:D.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.(3分)(2014•株洲)下列说法错误的是()A.必然事件的概率为1B.数据1、2、2、3的平均数是2C.数据5、2、﹣3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖考点:概率的意义;算术平均数;极差;随机事件分析:A.根据必然事件和概率的意义判断即可;B.根据平均数的秋乏判断即可;C.求出极差判断即可;D.根据概率的意义判断即可.解答:解:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B.数据1、2、2、3的平均数是=2,本项正确;C.这些数据的极差为5﹣(﹣3)=8,故本项正确;D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选:D.点评:本题主要考查了概率的意义、求算术平均数以及极差的方法,比较简单.4.(3分)(2014•株洲)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)考点:反比例函数图象上点的坐标特征.分析:先根据点(2,3),在反比例函数y=的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断.解答:解:∵反比例函数y=的图象经过点(2,3),∴k=2×3=6,A、∵(﹣6)×1=﹣6≠6,∴此点不在反比例函数图象上;B、∵1×6=6,∴此点在反比例函数图象上;C、∵2×(﹣3)=﹣6≠6,∴此点不在反比例函数图象上;D、∵3×(﹣2)=﹣6≠6,∴此点不在反比例函数图象上.故选B.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy的特点是解答此题的关键.5.(3分)(2014•株洲)下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A.正方体B.圆柱C.圆锥D.球考点:简单几何体的三视图.分析:根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.解答:解:A、主视图、俯视图都是正方形,故A不符合题意;B、主视图、俯视图都是矩形,故B不符合题意;C、主视图是三角形、俯视图是圆形,故C符合题意;D、主视图、俯视图都是圆,故D不符合题意;故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上面看得到的图形是俯视图.6.(3分)(2014•株洲)一元一次不等式组的解集中,整数解的个数是()A.4B.5C.6D.7考点:一元一次不等式组的整数解.分析:先求出不等式的解集,再求出不等式组的解集,找出不等式组的整数解即可.解答:解:∵解不等式2x+1>0得:x>﹣,解不等式x﹣5≤0得:x≤5,∴不等式组的解集是﹣<x≤5,整数解为0,1,2,3,4,5,共6个,故选C.点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.7.(3分)(2014•株洲)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.点评:本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.8.(3分)(2014•株洲)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)考点:坐标确定位置;规律型:点的坐标.分析:根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.解答:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选C.点评:本题考查了坐标确定位置,点的坐标的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.二、填空题(共8小题,每小题3分,满分24分)9.(3分)(2014•株洲)计算:2m2•m8=2m10.考点:单项式乘单项式.分析:先求出结果的系数,再根据同底数幂的乘法进行计算即可.解答:解:2m2•m8=2m10,故答案为:2m10.点评:本题考查了单项式乘以单项式,同底数幂的乘法的应用,主要考查学生的计算能力.10.(3分)(2014•株洲)据教育部统计,参加2014年全国高等学校招生考试的考生约为9390000人,用科学记数法表示9390000是9.39×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将9390000用科学记数法表示为:9.39×106.故答案为:9.39×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(3分)(2014•株洲)如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是28°.考点:圆周角定理.分析:根据圆周角定理即可推出∠AOB=2∠ACB,再代入∠AOB+∠ACB=84°通过计算即可得出结果.解答:解:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°∴3∠ACB=84°∴∠ACB=28°.故答案为:28°.点评:此题主要考查圆周角定理,关键在于找出两个角之间的关系,利用代换的方法结论.12.(3分)(2014•株洲)某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为108°.考点:扇形统计图.分析:根据C等级的人数与所占的百分比计算出参加中考的人数,再求出A等级所占的百分比,然后乘以360°计算即可得解.解答:解:参加中考的人数为:60÷20%=300人,A等级所占的百分比为:×100%=30%,所以,表示A等级的扇形的圆心角的大小为360°×30%=108°.故答案为:108°.点评:本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.13.(3分)(2014•株洲)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为182米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).考点:解直角三角形的应用-仰角俯角问题.分析:作出图形,可得AB=500米,∠A=20°,在Rt△ABC中,利用三角函数即可求得BC 的长度.解答:解:在Rt△ABC中,AB=500米,∠BAC=20°,∵=tan20°,∴BC=ACtan20°=500×0.3640=182(米).故答案为:182.点评:本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.14.(3分)(2014•株洲)分解因式:x2+3x(x﹣3)﹣9=(x﹣3)(4x+3).考点:因式分解-十字相乘法等.分析:首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.解答:解:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).故答案为:(x﹣3)(4x+3).点评:此题主要考查了分组分解法分解因式,正确分组得出是解题关键.15.(3分)(2014•株洲)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于4.考点:两条直线相交或平行问题.分析:根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得.解答:解:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.故答案为4.点评:本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.16.(3分)(2014•株洲)如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是a<﹣5.考点:抛物线与x轴的交点分析:函数图象经过四个象限,需满足3个条件:(I)函数是二次函数;(II)二次函数与x轴有两个交点;(III)二次函数与y轴的正半轴相交.解答:解:函数图象经过四个象限,需满足3个条件:(I)函数是二次函数.因此a﹣1≠0,即a≠1①(II)二次函数与x轴有两个交点.因此△=9﹣4(a﹣1)=﹣4a﹣11>0,解得a<﹣②(III)二次函数与y轴的正半轴相交.因此>0,解得a>1或a<﹣5③综合①②③式,可得:a<﹣5.故答案为:a<﹣5.点评:本题考查二次函数的图象与性质、二次函数与x轴的交点、二次函数与y轴交点等知识点,解题关键是确定“函数图象经过四个象限”所满足的条件.三、解答题(共8小题,满分52分)17.(4分)(2014•株洲)计算:+(π﹣3)0﹣tan45°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=4+1﹣1=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(4分)(2014•株洲)先化简,再求值:•﹣3(x﹣1),其中x=2.考点:分式的化简求值.专题:计算题.分析:原式第一项约分,去括号合并得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•﹣3x+3=2x+2﹣3x+3=5﹣x,当x=2时,原式=5﹣2=3.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)(2014•株洲)我市通过网络投票选出了一批“最有孝心的美少年”.根据各县市区的入选结果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后三行中有一个数据是错误的.请回答下列问题:(1)统计表中a=0.1,b=6;(2)统计表后三行中哪一个数据是错误的?该数据的正确值是多少?(3)株洲市决定从来自炎陵县的4位“最有孝心的美少年”中,任选两位作为市级形象代言人.A、B是炎陵县“最有孝心的美少年”中的两位,问A、B同时入选的概率是多少?区域频数频率炎陵县 4 a茶陵县 5 0.125攸县 b 0.15醴陵市8 0.2株洲县 5 0.125株洲市城区12 0.25考点:频数(率)分布表;列表法与树状图法.分析:(1)由茶陵县频数为5,频率为0.125,求出数据总数,再用4除以数据总数求出a 的值,用数据总数乘0.15得到b的值;(2)根据各组频数之和等于数据总数可知各组频数正确,根据频率=频数÷数据总数可知株洲市城区对应频率错误,进而求出正确值;(3)设来自炎陵县的4位“最有孝心的美少年”为A、B、C、D,根据题意列出表格,然后由表格求得所有等可能的结果与A、B同时入选的情况,再利用概率公式即可求得答案.解答:解:(1)∵茶陵县频数为5,频率为0.125,∴数据总数为5÷0.125=40,∴a=4÷40=0.1,b=40×0.15=6.故答案为0.1,6;(2)∵4+5+6+8+5+12=40,∴各组频数正确,∵12÷40=0.3≠0.25,∴株洲市城区对应频率0.25这个数据是错误的,该数据的正确值是0.3;(3)设来自炎陵县的4位“最有孝心的美少年”为A、B、C、D,列表如下:∵共有12种等可能的结果,A、B同时入选的有2种情况,∴A、B同时入选的概率是:=.点评:本题考查读频数(率)分布表的能力和列表法与树状图法.同时考查了概率公式.用到的知识点:频率=频数÷总数,各组频数之和等于数据总数,概率=所求情况数与总情况数之比.20.(6分)(2014•株洲)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?考点:一元一次方程的应用.分析:由(1)得v=(v上+1)千米/小时.下由(2)得S=2v上+1由(3)、(4)得2v上+1=v下+2.根据S=vt求得计划上、下山的时间,然后可以得到共需的时间为:上、下上时间+山顶游览时间.解答:解:设上山的速度为v,下山的速度为(v+1),则2v+1=v+1+2,解得v=2.即上山速度是2千米/小时.则下山的速度是3千米/小时,山高为5千米.则计划上山的时间为:5÷2=2.5(小时),计划下山的时间为:1小时,则共用时间为:2.5+1+1=4.5(小时),所以出发时间为:12:00﹣4小时30分钟=7:30.答:孔明同学应该在7点30分从家出发.点评:本题考查了应用题.该题的信息量很大,是不常见的应用题.需要进行相关的信息整理,只有理清了它们的关系,才能正确解题.21.(6分)(2014•株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.考点:一元二次方程的应用.分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.解答:解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.点评:此题主要考查了一元二次方程的应用以及根的判别式和勾股定理逆定理等知识,正确由已知获取等量关系是解题关键.22.(8分)(2014•株洲)如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).(1)求证:△ACE≌△AFE;(2)求tan∠CAE的值.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;锐角三角函数的定义分析:(1)根据角的平分线的性质可求得CE=EF,然后根据直角三角形的判定定理求得三角形全等.(2)由△ACE≌△AFE,得出AC=AF,CE=EF,设BF=m,则AC=2m,AF=2m,AB=3m,根据勾股定理可求得,tan∠B==,CE=EF=,在RT△ACE中,tan∠CAE===;解答:(1)证明:∵AE是∠BAC的平分线,EC⊥AC,EF⊥AF,∴CE=EF,在Rt△ACE与Rt△AFE中,,∴Rt△ACE≌Rt△AFE(HL);(2)解:由(1)可知△ACE≌△AFE,∴AC=AF,CE=EF,设BF=m,则AC=2m,AF=2m,AB=3m,∴BC===m,∴在RT△ABC中,tan∠B===,在RT△EFB中,EF=BF•tan∠B=,∴CE=EF=,在RT△ACE中,tan∠CAE===;∴tan∠CAE=.点评:本题考查了直角三角形的判定、性质和利用三角函数解直角三角形,根据已知条件表示出线段的值是解本题的关键.23.(8分)(2014•株洲)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).考点:圆的综合题;等边三角形的性质;勾股定理;切线的性质;相似三角形的判定与性质;特殊角的三角函数值.专题:综合题;动点型.分析:(1)连接OA,如下图1,根据条件可求出AB,然后AC的高BH,求出BH就可以求出△ABC的面积.(2)如下图2,首先考虑临界位置:当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;当线段AB所在的直线与圆O相切时,线段AB与圆O只有一个公共点,此时α=60°.从而定出α的范围.(3)设AO与PM的交点为D,连接MQ,如下图3,易证AO∥MQ,从而得到△PDO∽△PMQ,△BMQ∽△BAO,又PO=OQ=BQ,从而可以求出MQ、OD,进而求出PD、DM、AM、CM的值.解答:解:(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.∵AB与⊙O相切于点A,∴OA⊥AB.∴∠OAB=90°.∵OQ=QB=1,∴OA=1.∴AB===.∵△ABC是等边三角形,∴AC=AB=,∠CAB=60°.∵sin∠HAB=,∴HB=AB•sin∠HAB=×=.∴S△ABC=AC•BH=××=.∴△ABC的面积为.(2)①当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;②当线段A1B所在的直线与圆O相切时,如图2所示,线段A1B与圆O只有一个公共点,此时OA1⊥BA1,OA1=1,OB=2,∴cos∠A1OB==.∴∠A1OB=60°.∴当线段AB与圆O只有一个公共点(即A点)时,α的范围为:0°≤α≤60°.(3)连接MQ,如图3所示.∵PQ是⊙O的直径,∴∠PMQ=90°.∵OA⊥PM,∴∠PDO=90°.∴∠PDO=∠PMQ.∴△PDO∽△PMQ.∴==∵PO=OQ=PQ.∴PD=PM,OD=MQ.同理:MQ=AO,BM=AB.∵AO=1,∴MQ=.∴OD=.∵∠PDO=90°,PO=1,OD=,∴PD=.∴PM=.∴DM=.∵∠ADM=90°,AD=A0﹣OD=,∴AM===.∵△ABC是等边三角形,∴AC=AB=BC,∠CAB=60°.∵BM=AB,∴AM=BM.∴CM⊥AB.∵AM=,∴BM=,AB=.∴AC=.∴CM===.∴CM的长度为.点评:本题考查了等边三角形的性质、相似三角形的性质与判定、直线与圆相切、勾股定理、特殊三角函数值等知识,考查了用临界值法求角的取值范围,综合性较强.24.(10分)(2014•株洲)已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2.(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.考点:二次函数综合题分析:(1)由判别式△=(k+2)2﹣4×1×=k2﹣k+2=(k﹣)2+>0,即可证得无论k取何实数值,抛物线总与x轴有两个不同的交点;(2)由抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,可得x1•x2=,x3=﹣(k+1),继而可求得答案;(3)由CA•GE=CG•AB,易得△CAG∽△CBE,继而可证得△OAD∽△OBE,则可得,又由抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,可得OA•OB=,OD=,OE=(k+1)2,继而求得点B的坐标为(0,k+1),代入解析式即可求得答案.解答:(1)证明:∵△=(k+2)2﹣4×1×=k2﹣k+2=(k﹣)2+,∵(k﹣)2≥0,∴△>0,∴无论k取何实数值,抛物线总与x轴有两个不同的交点;(2)解:∵抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,∴x1•x2=,令0=(k+1)x+(k+1)2,解得:x=﹣(k+1),即x3=﹣(k+1),∴x1•x2•x3=﹣(k+1)•=﹣(k+)2+,∴x1•x2•x3的最大值为:;(3)解:∵CA•GE=CG•AB,∴,∵∠ACG=∠BCE,∴△CAG∽△CBE,∴∠CAG=∠CBE,∵∠AOD=∠BOE,∴△OAD∽△OBE,∴,∵抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,∴OA•OB=,OD=,OE=(k+1)2,∴OA•OB=OD,∴,∴OB2=OE,∴OB=k+1,∴点B(k+1,0),将点B代入抛物线y=x2﹣(k+2)x+得:(k+1)2﹣(k+2)(k+1)﹣=0,解得:k=2,∴抛物线的解析式为:y=x2﹣4x+3.点评:此题属于二次函数的综合题,综合性很强,难度较大,主要考查了一次函数与二次函。

株洲中考数学试题及解答分析

株洲中考数学试题及解答分析

绝密★启用前数学试题及解答时量:120分钟满分:100分注意事项:1、答题前,请按要求在答题卡上填写自己的姓名和准考证号。

2、答题时,切记答案要填写在答题卡上,答在试题卷上的答案无效.3、考试结束后,请将试题卷和答题卡都交给监考老师。

选择题:答案为A D D B C C B C一、选择题(每小题有且只有一个正确答案,本题共8小题,每小题3分,共24分)1、下列各数中,绝对值最大的数是A、-3B、-2C、0D、12、取下列各数中的哪个数时,二次根式有意义A、-2B、0C、2D、4解:本题变相考二次根式有意义的条件3、下列说法错误的是A、必然事件的概率为1B、数据1、2、2、3的平均数是2C、数据5、2、-3、0的极差是8D、如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖4、已知反比例函数的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是A、(-6,1)B、(1,6)C、(2,-3)D、(3,-2)解:本题主要考查反比例函数三种表达中的5、下列几何何中,有一个几何体的主视图与俯视图形状不一样,这个几何体是6、一元一次不等式组的解集中,整数解的个数是A、4B、5C、6D、7解:分析本题主要考查学生解一元一次不等式的能力及找特解的能力。

7、已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是A、选①②B、选②③C、选①③D、选②④解:分析本题主要考查学生由平行四边形判定要正方形的判定方法答案:选B8、在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点和,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步走1个单位……依此类推,第步的是:当能被3整除时,则向上走1个单位;当被3除,余数是1时,则向右走1个单位,当被3除,余数为2时,则向右走2个单位,当他走完第100步时,棋子所处位置的坐标是:A、(66,34)B、(67,33)C、(100,33)D、(99,34)解:本题主要考查学生对信息的分类在1至100这100个数中:(1)能被3整除的为33个,故向上走了33个单位(2)被3除,余数为1的数有34个,故向右走了34个单位(3)被3除,余数为2的数有33个,故向右走了66个单位故总共向右走了34+66=100个单位,向上走了33个单位。

株洲市2014年数学知识点中考分值分布

株洲市2014年数学知识点中考分值分布
2014 有理数 3分 实数 3分
年株洲中考数学知识点分值分布 整式 3分 数与代数式 因式分解 3分 4分 一元一次不等式(组) 3分 分式 二次根解答题 52分
一元一次方程 选择题 填空题 解答题
分式方程
4分 方程与不等式 二元一次方程(组) 一元二次方程
6分 平面直角坐标系与函数 3分 一次函数 3分
6分 函数 反比例函数 3分 三角函数 3分 图形的认识 四边形 3分 二次函数 3分 10分 立体图形 3分
选择题 填空题 解答题
角、平行线和相交线 选择题 填空题 解答题 圆的性质计算 选择题 填空题 解答题 3分 8分
三角形
8分 圆 圆的位置关系
统计与概率 数据的收集、整理、分析 选择题 填空题 解答题 3分 6分 概率 3分

专题 压轴题--湖南省2014-2017年中考数学试题分项解析(解析版)

专题 压轴题--湖南省2014-2017年中考数学试题分项解析(解析版)

一、选择题1.(2014年,湖南省长沙市,3分)函数y=ax与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()【考点】1.二次函数的图象;2.反比例函数的图象.2.(2014年湖南省株洲市,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)3.(2016年湖南省娄底市,3分)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小【答案】C.考点:锐角三角函数的增减性.4.(2016年湖南省永州市,4分)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:3根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 2=﹣1.其中正确的是( ) A .①② B .①③ C .②③ D .①②③ 【答案】B. 【解析】试题分析:根据表格中的规律可得:①因为24=16,此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=21,所以此选项正确;故答案选B . 考点:实数的运算.5. (2016年湖南省岳阳市,3分)对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a ≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是( ) A .0B .2C .3D .4【答案】B 【解析】考点:分段函数6.(2016年湖南省长沙市,3分)已知抛物线y=ax 2+bx+c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧; ②关于x 的方程ax 2+bx+c+2=0无实数根; ③a ﹣b+c ≥0; ④的最小值为3.其中,正确结论的个数为( ) A .1个 B .2个 C .3个 D .4个 【答案】D .考点:二次函数的图象与系数的关系.1.(2014年,湖南省衡阳市,3分)如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为▲ .2.(2015·湖南常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1。

株洲中考数学试题及解答分析

株洲中考数学试题及解答分析

绝密★启用前数学试题及解答时量:120分钟满分:100分注意事项:1、答题前,请按要求在答题卡上填写自己的姓名和准考证号.2、答题时,切记答案要填写在答题卡上,答在试题卷上的答案无效。

3、考试结束后,请将试题卷和答题卡都交给监考老师。

选择题:答案为A D D B C C B C一、选择题(每小题有且只有一个正确答案,本题共8小题,每小题3分,共24分)1、下列各数中,绝对值最大的数是A、-3B、-2C、0D、12、取下列各数中的哪个数时,二次根式有意义A、-2B、0C、2D、4解:本题变相考二次根式有意义的条件3、下列说法错误的是A、必然事件的概率为1B、数据1、2、2、3的平均数是2C、数据5、2、-3、0的极差是8D、如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖4、已知反比例函数的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是A、(-6,1)B、(1,6)C、(2,-3)D、(3,-2)解:本题主要考查反比例函数三种表达中的5、下列几何何中,有一个几何体的主视图与俯视图形状不一样,这个几何体是6、一元一次不等式组的解集中,整数解的个数是A、4B、5C、6D、7解:分析本题主要考查学生解一元一次不等式的能力及找特解的能力.7、已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是A、选①②B、选②③C、选①③D、选②④解:分析本题主要考查学生由平行四边形判定要正方形的判定方法答案:选B8、在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点和,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步走1个单位……依此类推,第步的是:当能被3整除时,则向上走1个单位;当被3除,余数是1时,则向右走1个单位,当被3除,余数为2时,则向右走2个单位,当他走完第100步时,棋子所处位置的坐标是: A、(66,34)B、(67,33)C、(100,33)D、(99,34)解:本题主要考查学生对信息的分类在1至100这100个数中:(1)能被3整除的为33个,故向上走了33个单位(2)被3除,余数为1的数有34个,故向右走了34个单位(3)被3除,余数为2的数有33个,故向右走了66个单位故总共向右走了34+66=100个单位,向上走了33个单位。

株洲中考数学试题及解答分析

株洲中考数学试题及解答分析

圆柱B圆椎C球D绝密★启用前株洲市2014年初中毕业学业考试数学试题及解答时量:120分钟 满分:100分注意事项:1、答题前,请按要求在答题卡上填写自己的姓名和准考证号.2、答题时,切记答案要填写在答题卡上,答在试题卷上的答案无效.3、考试结束后,请将试题卷和答题卡都交给监考老师.选择题:答案为A D D B C C B C一、选择题(每小题有且只有一个正确答案,本题共8小题,每小题3分,共24分) 1、下列各数中,绝对值最大的数是A 、-3B 、-2C 、0D 、1 2、xA 、-2B 、0C 、2D 、4 解:本题变相考二次根式有意义的条件 3、下列说法错误的是 A 、必然事件的概率为1B 、数据1、2、2、3的平均数是2C 、数据5、2、-3、0的极差是8D 、如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖 4、已知反比例函数ky x=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是 A 、(-6,1) B 、(1,6) C 、(2,-3) D 、(3,-2) 解:本题主要考查反比例函数三种表达中的xy k =5、下列几何何中,有一个几何体的主视图与俯视图形状不一样,这个几何体是6、一元一次不等式组21050x x +>⎧⎨-≤⎩的解集中,整数解的个数是A 、4B 、5C 、6D 、7解:分析本题主要考查学生解一元一次不等式的能力及找特解的能力。

7、已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种 A第12题图第11题图选法,其中错误的是A 、选①②B 、选②③C 、选①③D 、选②④ 解:分析本题主要考查学生由平行四边形判定要正方形的判定方法 答案:选B8、在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点和,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步走1个单位……依此类推,第n 步的是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数是1时,则向右走1个单位,当n 被3除,余数为2时,则向右走2个单位,当他走完第100步时,棋子所处位置的坐标是: A 、(66,34) B 、(67,33) C 、(100,33) D 、(99,34) 解:本题主要考查学生对信息的分类 在1至100这100个数中:(1)能被3整除的为33个,故向上走了33个单位(2)被3除,余数为1的数有34个,故向右走了34个单位 (3)被3除,余数为2的数有33个,故向右走了66个单位 故总共向右走了34+66=100个单位,向上走了33个单位。

株洲中考数学试题及解答分析

株洲中考数学试题及解答分析

圆柱B圆椎C球D绝密★启用前株洲市2014年初中毕业学业考试数学试题及解答时量:120分钟 满分:100分注意事项:1、答题前,请按要求在答题卡上填写自己的姓名和准考证号。

2、答题时,切记答案要填写在答题卡上,答在试题卷上的答案无效。

3、考试结束后,请将试题卷和答题卡都交给监考老师。

选择题:答案为A D D B C C B C一、选择题(每小题有且只有一个正确答案,本题共8小题,每小题3分,共24分) 1、下列各数中,绝对值最大的数是A 、-3B 、-2C 、0D 、1 2、x 取下列各数中的哪个数时,有意义A 、-2B 、0C 、2D 、4 解:本题变相考二次根式有意义的条件 3、下列说法错误的是 A 、必然事件的概率为1B 、数据1、2、2、3的平均数是2C 、数据5、2、-3、0的极差是8D 、如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖 4、已知反比例函数ky x=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是 A 、(-6,1) B 、(1,6) C 、(2,-3) D 、(3,-2) 解:本题主要考查反比例函数三种表达中的xy k =5、下列几何何中,有一个几何体的主视图与俯视图形状不一样,这个几何体是6、一元一次不等式组21050x x +>⎧⎨-≤⎩的解集中,整数解的个数是A 、4B 、5C 、6D 、7解:分析本题主要考查学生解一元一次不等式的能力及找特解的能力。

7、已知四边形ABCD 是平行四边形,再从①AB =BC,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选 A第12题图第11题图法,其中错误的是A 、选①②B 、选②③C 、选①③D 、选②④ 解:分析本题主要考查学生由平行四边形判定要正方形的判定方法 答案:选B 8、在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点和,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步走1个单位……依此类推,第n 步的是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数是1时,则向右走1个单位,当n 被3除,余数为2时,则向右走2个单位,当他走完第100步时,棋子所处位置的坐标是: A 、(66,34) B 、(67,33) C 、(100,33) D 、(99,34) 解:本题主要考查学生对信息的分类 在1至100这100个数中:(1)能被3整除的为33个,故向上走了33个单位(2)被3除,余数为1的数有34个,故向右走了34个单位 (3)被3除,余数为2的数有33个,故向右走了66个单位 故总共向右走了34+66=100个单位,向上走了33个单位。

2014年湖南省湘潭市中考数学试卷(含答案)

2014年湖南省湘潭市中考数学试卷(含答案)

湖南省湘潭市2014年中考数学试卷一、选择题=23.(3分)(2014•湘潭)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=()米.4.(3分)(2014•湘潭)分式方程的解为()5.(3分)(2014•湘潭)如图,所给三视图的几何体是()6.(3分)(2014•湘潭)式子有意义,则x的取值范围是()题考查了二次根式的意义和性质.概念:式子(8.(3分)(2014•湘潭)如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()二、填空题9.(3分)(2014•湘潭)﹣3的相反数是3.10.(3分)(2014•湘潭)分解因式:ax﹣a=a(x﹣1).则这两种电子表走时稳定的是甲.12.(3分)(2014•湘潭)计算:()2﹣|﹣2|=1.13.(3分)(2014•湘潭)如图,直线a、b被直线c所截,若满足∠1=∠2,则a、b平行.14.(3分)(2014•湘潭)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=4.=415.(3分)(2014•湘潭)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为2x+56=589﹣x.16.(3分)(2014•湘潭)如图,按此规律,第6行最后一个数字是16,第672行最后一个数是2014.三、综合解答题17.(2014•湘潭)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).18.(2014•湘潭)先化简,在求值:(+)÷,其中x=2.=[+=•,=19.(2014•湘潭)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)CD=400≈20.(2014•湘潭)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.,21.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.,22.(2014•湘潭)有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?23.(2014•湘潭)从全校1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间≤1小时;B、1小时<上网时间≤4小时;C、4小时<上网时间≤7小时;D、上网时间>7小时.统计结果制成了如图统计图:(1)参加调查的学生有200人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数.÷=200×=96024.(2014•湘潭)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.x+325.(2014•湘潭)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.=,m×mm m)×(m.m m+2((.其中∵﹣.═﹣+3.EDF=EAF==.=tan60.EF=EF=.=.∴此圆直径长为26.(2014•湘潭)已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k.﹣)易得=∴﹣=====2x=x=,,,,且+4••=•﹣。

湖南省株洲市中考化学真题试题(含答案)1

湖南省株洲市中考化学真题试题(含答案)1

株洲市2014年初中毕业学业考试化 学 试 题 卷时量:90分钟 满分:100分 注意事项:1.答题前,请按要求在答题卡上填写好自己的姓名和准考证号。

2.答题时,切记答案要填在答题卡上,答在试题卷上的答案无效。

3.考试结束后,请将试题卷和答题卡都交给监考老师。

可能用到的相对原子质量:H :1 O :16 Al :27 S :32 Cl :35.5 Cu :64 Zn :65一、选择题(本题共20小题,每小题2分,共40分。

每小题只有一个选项符合题意)1.下列物质不属于...有机高分子材料的是 A .普通玻璃 B .合成纤维 C .天然橡胶 D .塑料薄膜2.下列过程发生了化学变化的是A .水的沸腾B .胆矾研碎C .过滤液体D .酸碱中和3.今年中国环境日(6月5日)的主题是“向污染宣战”。

下列措施会引起环境污染的是A .合理推广使用新能源B .大量燃烧含硫燃料C .控制家用汽车的使用D .分类回收处理垃圾4.下列有关的图示和图标中正确的是A .浓硫酸的稀释B .实验室制取CO 2C .当心火灾D .禁止吸烟5.下列说法正确的是A .化石燃料主要包括煤、石油、天然气,属于可再生能源B .可燃冰就是干冰,主要成分为CO 2C .乙醇是一种很好的燃料,属于不可再生能源D .点燃氢气前一定要检验其纯度6.溶液是自然界中常见的物质。

下列有关溶液的说法正确的是A .溶液的上层浓度小,下层浓度大B .溶液蒸干后,均能得到固体溶质C .溶液中只有一种溶质时,溶液为纯净物D .物质在溶解得到溶液的过程中,通常有放热或吸热的现象出现7.下列说法正确的是A .糖类、油脂、蛋白质都是由C 、H 、O 三种元素组成的高分子化合物B .我们不需要从食物中摄取维生素,因为多数维生素能在人体内合成C .由于缺碘会引起甲状腺肿大,所以我们要多食用加碘食盐D .由于霉变食物中含有能损害人的肝脏、诱发肝癌等疾病的黄曲霉毒素,因此,我们绝对不能食用霉变食物8.在光照或点燃条件下,氢气和氯气发生反应生成氯化氢,其反应的微观示意图如右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档