5、复合函数微分法与隐函数微分法解析

合集下载

多元复合函数与隐函数微分法知识分享

多元复合函数与隐函数微分法知识分享
du z dv,
u
v
dzzdxzdy x y
zduzdv. u v
z f [ u ( x ,y ) ,v ( x ,y ) ] zf(u ,v)
结论:无论 u , v 是自变量还是中间变量,
其全微分表达形式都一样,
这性质叫做全微分形式不变性.
例4 求下列函数的偏导数和全微分: ( 1 ) zxln x (2y);(2)zxarctayn. x
xfx(x,y)yfy(x,y)kf(x,y). 证明 在 zf(t,x t)y中 ,令 u tx ,vt,y
其x 中 ,y相对 t是 于常 , 数
则由复合函数求偏导数的链式法则可得
d dzt u fd du t fvd dvt f 1 ( t, t x ) x y f 2 ( t, t x ) y y
§ 7.4 多元复合函数与隐函数微 分法
一、多元复合函数微分法 二、一阶全微分的形式不变性 三、隐函数微分法
一、多元复合函数微分法
定理7.3 设z f(u,v)在(u,v)处可,微 函数u u(x, y),vv(x, y),在(x, y)处的偏导数都 ,则存 复合函z数 f[u(x, y),v(x, y)]在(x, y)处的偏导 数 都 存, 且 在有 如 下 的 链 式 法 则
解 (1)由微分运算法则可得
d z lx n 2 y ) d x ( x d lx n 2 y )(
lnx (2y)dxxd(x2y) x2y
lnx (2y)dxxdx2dy x2y
[lx n 2 (y) x]x d 2xd y x2y x2y
因此 zlnx(2y) x , z 2x .
x
二、一阶全微分的形式不变性
设函数 z f ( u , v ) , u u ( x , y ) , v v ( x , y ) 都可微, 则复合函数 zf[u (x,y),v(x,y)]的全微分为

复合函数微分法

复合函数微分法

前页 后页 返回
注 上面第一个等式中,左边的 d z 是作为一元函数 dt
的复合函数对 t 求导数 (这种导数又称为“全导数”);
右边的
z t
是外函数
(作为
u,
v,
t
的三元函数)

t
求偏导数.二者所用的符号必须有所区别.
例4 用多元复合微分法计算下列一元函数的导数:
(1)
y

x
x
x
;
(1 x2 )ln x
(2) y
.
sin x cos x
解 (1) 令 y u v , v w x , u x, w x, 从而有
前页 后页 返回
dy dx

y u

du dx

y v
v


w

dw dx


v x

v uv1 uv ln u [ x w x1 w x ln w ]
(1
x2 )ln x

(
sin
x

cos
x
)(
2
x
ln
x

1
x x
2
)
.
由此可见,以前用 “对数求导法” 求一元函数导数
的问题, 如今可用多元复合函数的链式法则来计算.
例 5 设 f ( x, y) 为可微函数, f (1,1) 1, fx (1,1) a,
前页 后页 返回
f y (1,1) b, ( x) f ( x, f ( x, f ( x, x))), 试求 (1). 解 令 ( x) f ( x, y), y f ( x, z), z f ( x,u), u x,

高等数学第五节多元复合函数与隐函数微分法ppt课件

高等数学第五节多元复合函数与隐函数微分法ppt课件
x y
这就是说,不论x,y是自变量还是中间变量,其微 分形式不变,称为(二元函数)一阶微分的形式不变性.
20
例10 求下列函数的偏导数和全微分.
(1) z ( x y)exy
解 dz d[( x y)exy ] ( x y)de xy exyd( x y)
( x y)exy ( y dx x dy) exy(dx dy)
dz z du z dv dx u dx v dx
vuv1 1 uvlnv 1 x x x1 x xlnx
10
情形3 z f (x,v),v v(x, y) 则有
z f f v ; x x v x
z f v y v y
或者 z f (x, y,v),v v(x, y) 则有
z Fx , z Fy . x Fz y Fz
dz z dx z dy x y
dz
Fx' Fz'
dx
Fy' Fz'
dy
所以
Fx'dx Fy'dy Fz'dz 0
dF( x, y, z) Fx'dx Fy'dy Fz'dz 0
33
例13 设隐函数 z z( x, y) 由 sin z x2 yz 0 确定,
12
课堂 设 z f (u, v, t) uv sint ,其中 u et , 练习 v cost ,
求全导数 dz . dt
dz f du f dv f 解
dt u dt v dt t
vet usint cos t
et cos t et sint cos t
et (cos t sint ) cos t .
z f f v ; x x v x

多元复合函数与隐函数微分法

多元复合函数与隐函数微分法
解 在 z f ( x x2 y2 )中, 令 u x x2 y2 ,
则由复合函数求偏导数的链式法则可得
z f (u) u (1 2xy2 ) f ( x x2 y2 ),
x
x
z f (u) u 2x2 y f ( x x2 y2 ).
z f u f v x u x v x
f1( x y, xy) y f2( x y, xy), z f u f v y u y v y
f1( x y, xy) x f2( x y, xy).
例2 设 z f ( x x2 y2 ), 且 f (u) 可微, 求 z 与 z . x y
x 0 时, u 0, v 0, 从而 0.
由 7 11 可得
z z u z v ( ) x u x v x x
(7 12)
在 (7 12)中
lim u u , lim v v x0 x x x0 x x
z xz

z
u z
u
x u

z
v z
v
x v
y u y v y
(7 10)
证明 我们只证 (7 10) 中的第一个等式,第二个 等式可类似地证明.
对于任意固定的 y , 给 x 一个改变量 x , 则得到u 和 v 的改变量 u 和 v , u u( x x, y) u( x, y), v v( x x, y) v( x, y), 从而得到 z f (u,v) 的改变量
z z u z v . x u x v x
同理可证
u
x
z
z z u z v .

第五节复合函数微分法与隐函数微分法在一元函数的复合求导中,有...

第五节复合函数微分法与隐函数微分法在一元函数的复合求导中,有...

第五节 复合函数微分法与隐函数微分法在一元函数的复合求导中,有所谓的“链式法则”,这一法则可以推广到多元复合函数的情形. 下面分几种情况来讨论.分布图示★ 链式法则(1) ★ 链式法则(2) ★ 链式法则(3)★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6★ 例7 ★ 全微分形式的不变性★ 例 8 ★ 例 9 ★ 例 10 ★ 例 11 ★ 隐函数微分法(1)★ 例12 ★ 例13 ★ 隐函数微分法(2)★ 例14 ★ 例15 ★ 例16★ 例17★ 例18★ 内容小结★ 课堂练习 ★ 习题6-5内容要点一、多元复合函数微分法1.复合函数的中间变量为一元函数的情形设函数),(v u f z =,)(t u u =,)(t v v =构成复合函数)](),([t v t u f z =.dtdvv z dt du u z dt dz ∂∂+∂∂= (5.1) 公式(5.1)中的导数dtdz称为全导数. 2、复合函数的中间变量为多元函数的情形设),,(v u f z =),,(y x u u =),(y x v v =构成复合函数)],,(),,([y x v y x u f z =,xv v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂ (5.3) ,yv v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ (5.4) 3、复合函数的中间变量既有一元也有为多元函数的情形定理3 如果函数),(y x u u =在点),(y x 具有对x 及对y 的偏导数, 函数)(y v v =在点y 可导,函数),(v u f z =在对应点),(v u 具有连续偏导数, 则复合函数)](),,([y v y x u f z =在对应点),(y x 的两个偏导数存在, 且有,xu u z x z ∂∂∂∂=∂∂ (5.7) .dydv v z y u u z y z ∂∂+∂∂∂∂=∂∂ (5.8) 注:这里x z ∂∂与x f ∂∂是不同的,x z ∂∂是把复合函数],),,([y x y x u f z =中的y 看作不变而对x 的偏导数,x f ∂∂是把函数),,(y x u f z =中的u 及y 看作不变而对x 的偏导数. y z ∂∂与yf∂∂也有类似的区别.在多元函数的复合求导中,为了简便起见,常采用以下记号:,),(1u v u f f ∂∂=' ,),(2v v u f f ∂∂='vu v u f f ∂∂∂=''),(212 ,这里下标1表示对第一个变量u 求偏导数,下标2表示对第二个变量v 求偏导数,同理有2211,f f '''' , 等等.二、全微分形式的不变性根据复合函数求导的链式法则,可得到重要的全微分形式不变性. 以二元函数为例,设),(v u f z =, ),(),,(y x v v y x u u ==是可微函数,则由全微分定义和链式法则,有dy y z dx x z dz ∂∂+∂∂=dy y v v z y u u z dx x v v z x u u z ⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂+⎪⎭⎫⎝⎛∂∂⋅∂∂+∂∂⋅∂∂= ⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=dy y v dx x v v z dy y u dx x u u z .dv vz du u z ∂∂+∂∂=由此可见,尽管现在的u 、v 是中间变量,但全微分dz 与x 、y 是自变量时的表达式在形式上完全一致. 这个性质称为全微分形式不变性. 适当应用这个性质,会收到很好的效果.三、 隐函数微分法在一元微分学中,我们曾引入了隐函数的概念,并介绍了不经过显化而直接由方程0),(=y x F (5.11)来求它所确定的隐函数的导数的方法. 这里将进一步从理论上阐明隐函数的存在性,并通过多元复合函数求导的链式法则建立隐函数的求导公式,给出一套所谓的“隐式”求导法.定理4 设函数),(y x F 在点),(00y x P 的某一邻域内具有连续的偏导数, 且,0),(00≠y x F y ,0),(00=y x F 则方程0),(=y x F 在点),(00y x P 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数),(x f y = 它满足),(00x f y = 并有.yx F Fdx dy -= (5.12) 定理5 设函数),,(z y x F 在点),,(000z y x P 的某一邻域内有连续的偏导数, 且,0),,(,0),,(000000≠=z y x F z y x F z则方程0),,(=z y x F 在点),,(000z y x P 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数),(y x f z =, 它满足条件),(000y x f z =,并有.,zy zx F F y zF F x z -=∂∂-=∂∂ (5.14)例题选讲多元复合函数微分法例1 (E01) 设,sin t uv z +=而,cos ,t v e u t == 求导数.dtdz 解dt dz tzdt dv v z dt du u z ∂∂+⋅∂∂+⋅∂∂=t t u ve t cos sin +-= t t e t e t t cos sin cos +-=.cos )sin (cos t t t e t +-=例2 (E02) 设,sin v e z u =而,,y x v xy u +== 求x z ∂∂和.yz ∂∂ 解x z ∂∂xvv z x u u z ∂∂⋅∂∂+∂∂⋅∂∂=1c o s s i n ⋅+⋅=v e y v e u u )cos sin (v v y e u +=)],cos()sin([y x y x y e xy +++= y z ∂∂yv v z y u u z ∂∂⋅∂∂+∂∂⋅∂∂=1cos sin ⋅+⋅=v e x v e u u )cos sin (v v x e u +=)].cos()sin([y x y x x e xy +++=例3 求y x y x z 2422)3(++=的偏导数.解 设,322y x u +=,24y x v +=则.v u z = 可得,1-⋅=∂∂v u v u z ,ln u u vz v ⋅=∂∂ ,6x x u =∂∂,2y y u =∂∂,4=∂∂xv2=∂∂y v 则x z ∂∂xvv z x u u z ∂∂∂∂+∂∂∂∂=4ln 61⋅⋅+⋅⋅=-u u x u v v v 12422)3)(24(6-+++=y x y x y x x )3ln()3(4222422y x y x y x ++++ y z ∂∂yv v z y u u z ∂∂∂∂+∂∂∂∂=2ln 21⋅⋅+⋅⋅=-u u y u v v v 12422)3)(24(2-+++=y x y x y x y ).3ln()3(2222422y x y x y x ++++例4 设,sin ,),,(2222y x z e z y x f u z y x ===++ 求xu∂∂和.y u ∂∂ 解x u ∂∂xzz f x f ∂∂∂∂+∂∂=y x ze xe z y x z y x sin 222222222⋅+=++++ ,)sin 21(22422sin 22yx y xe y x x +++=y u ∂∂yzz f y f ∂∂∂∂+∂∂=y x ze ye z y x z y x cos 222222222⋅+=++++ .yx y xe y y x y 2422sin 4)cos sin (2+++=例5 (E03) 设),,(,y x u u xy z ϕ=+= 求.,,222yx zx z x z ∂∂∂∂∂∂∂ 解),,(y x y xu y x z x ϕ+=∂∂+=∂∂ ),,(2222y x x u x u y x x z x x z xx ϕ=∂∂=⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂).,(1122y x yx ux u y y x z y y x z xy ϕ+=∂∂∂+=⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂例6 设),,(22y x e f z xy-= 其中),(ηξf 有连续的二阶偏导数, 求.,22yz y z ∂∂∂∂解 设,xy e =ξ,22y x -=η则xz ∂∂x f x f ∂∂⋅∂∂+∂∂⋅∂∂=ηηξξξ∂∂=f ye xy η∂∂+f x 2 y x z ∂∂∂2⎪⎪⎭⎫ ⎝⎛∂∂∂∂=ξf ye y xy ⎪⎪⎭⎫⎝⎛∂∂∂∂+ηf x y 2 ξ∂∂=f exyξ∂∂+f xye xy 22ξ∂∂+f xye xy ηξ∂∂∂-f e y xy 222ηξ∂∂∂+f e x xy 222224η∂∂-f xy ξ∂∂+=f xy e xy)1(222ξ∂∂+f xye xy 例7 (E04) 设),,(xyz z y x f w ++= 其中函数f 有二阶连续偏导数,求x w∂∂和zx w ∂∂∂2.解 令,z y x u ++=,xyz v =记,),(1uv u f f ∂∂=',),(212v u v u f f ∂∂∂='' 同理记,2f ',11f '',22f ''. x w ∂∂xvv f x u u f ∂∂⋅∂∂+∂∂⋅∂∂=;21f yz f '+'= z x w ∂∂∂2)(21f yz f z '+'∂∂=;221z f yz f y z f ∂'∂+'+∂'∂= z f ∂'∂1zvv f z u u f ∂∂⋅∂'∂+∂∂⋅∂'∂=11;1211f xy f ''+''= z f ∂'∂2zvv f z u u f ∂∂⋅∂'∂+∂∂⋅∂'∂=22;2221f xy f ''+''= zx w∂∂∂2)(222121211f xyf f yz f y f xy f ''+''+'+''+''=.)(22221211f y f z xy f z x y f '+''+''++''=例8 利用全微分形式不变性解本节的例2.设,sin v e z u = 而,xy u = ,y x v += 求x z 和.y z解 dz )s i n (v e d u =,c o s s i nv d v e v d u e u u+= 因du )(xy d =,xdy ydx +=dv )(y x d +=,dy dx +=代入后归并含dx 及dy 的项,得dz dx v e y v e u u )cos sin (+⋅=,)cos sin (dy v e x v e u u +⋅+即dy yzdx x z ∂∂+∂∂dx y x y x y e xy )]cos()sin([+++=.)]cos()sin([dy y x y x x e xy ++++ 比较上式两边的dx 、dy 的系数,得x z )],cos()sin([y x y x y e xy +++=y z )].cos()sin([y x y x x e xy +++=它们与例2的结果一样.全微分形式的不变性例9 (E05) 利用一阶全微分形式的不变性求函数222z y x xu ++=的偏导数.解du =2222222222)()()(z y x z y x xd dx z y x ++++-++2222222)()222()(z y x zdz ydy xdx x dx z y x ++++-++= .)(22)(2222222z y x xzdzxydy dx x z y ++---+=所以 x u ∂∂,)(2222222z y x x z y ++-+=y u ∂∂,)(22222z y x xy ++-=z u∂∂.)(22222z y x xz ++-=例10 求函数xyyx z -+=1arctan的全微分. 解 设,y x u +=,1xy v -=则,arctan vuz =于是dz dv v z du u z ∂∂+∂∂=du v v u 1)(112⋅+=dv v u vu ⎪⎭⎫⎝⎛-++22)(11).(122udv vdu v u -⋅+= 由,y x u +=,1xy v -=,dy dx du +=),(xdy ydx dv +-=代入上式,得 =dz22)1()(1xy y x -++[)1(xy -)(dy dx +)(y x ++)(xdy ydx +].1122y dyx dx +++=例11 (E06) 已知,02=+--z xy e z e 求x z ∂∂和yz∂∂. 解 ,0)2(=+--z xy e z e d∴,02)(=+---dz e dz xy d e z xydz e z )2(-),(ydx xdy e xy +=- dz .)2()2(dy e xe dx e ye z xyz xy -+-=--故所求偏导数x z∂∂,2-=-z xy e ye y z ∂∂.2-=-z xy e xe隐函数微分法例12 (E07) 验证方程0122=-+y x 在点(0, 1)的某邻域内能唯一确定一个有连续导 数、当0=x 时1=y 的隐函数)(x f y =,求这函数的一阶和二阶导数在0=x 的值.证 令,1),(22-+=y x y x F 则x F ,2x =y F ,2y =)1,0(x F ,0=)1,0(y F 2=,0≠依定理知方程0122=-+y x 在点)1,0(的某领域内能唯一确定一个有连续导数,当0=x 时1=y 的隐函数),(x f y =函数的一阶和二阶导数为dx dy yxF F =,y x -=0=x dx dy ,0= 22dx y d 2y y x y '-=2)(yyx x y --=,13y -=022=x dx y d .1-=例13 求由方程0=+-y x e e xy 所确定的隐函数y 的导数.,0=x dxdydx dy解 此题在第二章第六节采用两边求导的方法做过,这里我们直接用公式求之. 令,y x e e xy F +-=则x F ,x e y -=y F ,ye x +=dxdy y x F F -=,y x e x y e +-=由原方程知0=x 时,,0=y 所以0=x dx dy 00==+-=y x yx e x y e .1=例14 (E08) 求由方程y z z x ln =所确定的隐函数),(y x f z =的偏导数.,yz x z ∂∂∂∂ 解 设,ln ),,(yzz x z y x F -=则,0),,(=z y x F 且.1,1,1222z zx y z y z x z F y y z z y y F z x F +-=⋅--=∂∂=⎪⎪⎭⎫ ⎝⎛--=∂∂=∂∂ 利用隐函数求导公式,得.)(,2z x y z F F y z z x z F F x z z y z x +=-=∂∂+=-=∂∂例15 求由方程a a xyz z (333=-是常数)所确定的隐函数),(y x f z =的偏导数xz ∂∂和.yz ∂∂ 解 令,3),,(33a xyz z z y x F --=则x F ',3yz -=y F ',3xz -=z F '.332xy z -=显然都是连续.所以,当z F 'xy z 332-=0≠时,由隐函数存在定理得x z ∂∂zx F F ''=xy z yz 3332---=,2xy z yz -=y z ∂∂z y F F ''=xy z xz 3332---=.2xyz xz -=例16 (E09) 设,04222=-++z z y x 求 .22x z∂∂ 解 令,4),,(222z z y x z y x F -++=则x F ,2x =z F ,42-=z∴xz ∂∂z x F F -=,2z x -=22x z ∂∂2)2()2(z x z xz -∂∂+-=2)2(2)2(z z xx z --⋅+-=.)2()2(322z x z -+-=注:在实际应用中,求方程所确定的多元函数的偏导数时,不一定非得套公式,尤其在方程中含有抽象函数时,利用求偏导或求微分的过程则更为清楚.例17 设),,(xyz z y x f z ++= 求.,,zy y x x z ∂∂∂∂∂∂ 解 z 看成y x ,的函数对x 求偏导数得x z∂∂⎪⎭⎫ ⎝⎛∂∂+⋅+⎪⎭⎫ ⎝⎛∂∂+⋅=x z xy yz f x z f v u 1x z ∂∂,1vu v u xyf f yzf f --+= 把x 看成y z ,的函数对y 求偏导数得0⎪⎪⎭⎫⎝⎛∂∂+⋅+⎪⎪⎭⎫ ⎝⎛+∂∂⋅=y x yz xz f y x f v u 1y x∂∂,v u v u y z ff x z f f ++= 把y 看成z x ,的函数对z 求偏导数得1⎪⎭⎫ ⎝⎛∂∂+⋅+⎪⎭⎫⎝⎛+∂∂⋅=z y xz xy f z y f v u 1zy ∂∂.1v u vu x z f f xyf f +--=例18 设方程ze z y x =++确定了隐函数),,(y x z z =求.,,22222y zy x z x z ∂∂∂∂∂∂∂解 方程两边分别对x 求偏导和对y 求偏导,得,1xze x z z ∂∂=∂∂+.1x z e y z z ∂∂=∂∂+ 所以,11-=∂∂z e x z .11-=∂∂z e y z 22x z ∂∂⎪⎭⎫ ⎝⎛∂∂∂∂=x z x x z e e z z ∂∂⋅-=2)1(111)1(2-⋅--=z z z e e e .)1(3--=z z e e 同理 22y z∂∂.)1(3--=z z e e课堂练习1.设),(xyz xy x f w ++= 求.,,zw y w x w ∂∂∂∂∂∂ 2.设),sin (sin sin x y F x u -+=其中F 是可微函数, 证明.cos cos cos cos y x x yuy x u ⋅=∂∂+∂∂ 3.设,⎪⎭⎫⎝⎛=z y z x ϕ其中ϕ为可微函数, 求y z y x z x ∂∂+∂∂.。

6-5复合函数与隐函数的微分法

6-5复合函数与隐函数的微分法
∂z ∂z u = g ( x, y ) 均可微, 求 . , ∂x ∂y

x
g
x
y
z
u v
x
y
∂z ∂f ∂f ∂g = + ∂x ∂x ∂u ∂x ∂f ∂ϕ ∂ϕ ∂g
+
+ ∂v ∂x ∂u ∂x
ϕ
x y
u
g

设函数 z = f ( x, u , v) , v = ϕ ( x, y, u ) ,
当 →0时 ∆x , ∆u ∂u ∆v ∂v → , → . ∆x ∂x ∆x ∂x
(∆u)2 +(∆v)2 ∂u 2 ∂v 2 |α⋅ | →0⋅ ( ) +( ) = 0 (∆x →0). ∂x ∂x ∆x
从 而
因此 类似地
(∆u)2 +(∆v)2 α⋅ →0 ∆x →0), ( ∆x
∂z ∂z ∂u ∂z ∂v = ⋅ + ⋅ ∂x ∂u ∂x ∂v ∂x ∂z ∂z ∂u ∂z ∂v = ⋅ + ⋅ ∂y ∂u ∂y ∂v ∂y

∂z ∂ f ∂u + ∂ f ⋅ ∂v + ∂ f ⋅ ∂w, = ⋅ ∂x ∂u ∂x ∂v ∂x ∂w ∂x
∂z ∂ f ∂u ∂ f ∂v ∂ f ∂w = ⋅ + ⋅ + ⋅ . ∂y ∂u ∂y ∂v ∂y ∂w ∂y
(3) 既有中间变量又有自变量
z
u v w
u x
x y
x
y
z = f (u , x , y ) , u = u ( x, y ) ⇒ z = f (u ( x, y ) , x , y ) 则有
∂z ∂z ∆z = ∆u + ∆v +α ( ρ ) ∂u ∂v

5.4复合函数微分与隐函数微分

5.4复合函数微分与隐函数微分
z 。 y r sin , 其中 f C , 求 r
1

令ux y , v cos xy ,
2 2
z
u v
x
y
r

则 z f (u , v) ,
z z u x z u y z v x z v y r u x r u y r v x r v y r

F xy xy ye ye z x z z F x e 2 2e z
(e 2 0)
z

u f (1 ( x), , m ( x)) .
若 i ( x) 在点 x 处可微, 函数 f (v1 ,, vm ) 在相应于x 的点 (v1 ,, vm ) 处可微 , 则复合函数u f (1 ( x),, m ( x)) 在点 x 处
可偏导, 且
d u m u d vi . d x i 1 vi d x
因为 F ( x, y, z) C1 (U(x0 , y0 , z0 )) , Fz( x0 , y0 , z0 ) 0 , 由连续函数性质 U((x0 , y0 )) , 在其中 Fz( x, y, z ) 0 , 故
F z x F x z
,
公 式
F z y . F y z
请同学自己写
开始对答案
z f ( x, y) , x x(t ) , y y(t ) ;
dz zdx zd y dt x dt y dt
z
x
y
t
u f ( x, y, z ) , x x(t ) , y y(t ) , z z (t ) ;
du ud x ud y ud z dt x dt y dt z dt

7.5 多元复合函数与隐函数的微分法解析

7.5  多元复合函数与隐函数的微分法解析


z z u z v …(7.5.3) x u x v x
z
u
x y
z z u z v y u y v y
…(7.5.4)
v
9
注1 此定理也可称为求导的链式法则. 事实上, 当z对x求偏导时, 应将y看作常数, 此时的中间变量 u,v均是x的一元函数, 从而z亦是x的一元函数, 于是可利用公 式(7.5.1). 此时应把相应的导数记号改写成偏导数记号, 就可 得公式(7.5.3);类似地可得公式(7.5.4). 可将此定理中复合函数的中间变量推广到多于两个的情形. 例如, 设由函数
(t ), (t )均连续, 所以当t 0时, 0;
x dx y dy 同时亦有 , ; 于是有 t dt t dt o( ) o( ) o( ) x 2 y 2 lim lim lim ( ) ( ) 0 t 0 t 0 t t t 0 t t

dz z z dx z dy lim dt t 0 t x dt y dt
4
即复合函数z f ( (t ), (t ))在点t处可导, 且有公式(7.5.1)
成立.
由于多元函数的复合关系可能出现多种情形, 因此, 分清复
合函数的复合层次是求偏导数的关键.
u s t x y z
f u f s f t f 2y t y s y t y s
u f s f t f f 2z z s z t z s t
15
注2 在计算多元复合函数的偏导数时, 可不写中间变量, 而
又有

z z u z v y u y v y
u v 2 y, x y y

多元复合函数与隐函数的微分法

多元复合函数与隐函数的微分法
z z u z v y u y v y
这个复合过程,可以形 象的用链来描述:
z
u
x
v
y
z z 例1 设z e ln v , u xy, v x y . 求 , x y z z u z v u x 解 z x u x v x y v 1 u u . y e ln v e 2 x
z u
u
x
v
y
2 2 2 2 z z z z u z v x 2 u u2 y uv y u uv y
同理讨论
2z 2z z x 2 1 v v y v u
例2 设方程e z xyz确定函数z f ( x , y ),
z z 求 及 . x y
解 令 F ( x , y , z ) e z xyz
Fx yz
F y xz
2z ? x y
z e Fz xy
yz yz Fx z z z e xy e xy Fz x
注意:
若u ( x ), v ( x ), 1. 在定理中,对 z f (u , v), 则复合函数z f [ ( x ), ( x )]是x的函数,
此时z对x的导数称为全导数,
dz z du z dv 且有 dx u dx v dx
z
u
v
x
例3 求y (sin x)
定理 设u ( x, y ), v ( x, y )在点( x, y )处有偏导数,
则复合函数 z f (u , v)在对应点(u , v)处可微,
且 z f [ ( x , y ), ( x , y )]在点( x, y )处有偏导数,

复合函数和隐函数微分

复合函数和隐函数微分

上定理的结论可推广到中间变量多于两个的情况.
如 dz z du z dv z dw dt u dt v dt w dt
u
z
v
t
w
以上公式中的导数 dz 称为全导数.
dt
例1 求导数
⑴ 设 z e uv u sin x v cos x 求 dz
dx
解 dz z du z dv dx u dx v dx
例2 设z=eu sinv
解:
z exy
而u=xy,v=x+y
sin(x y)
求 z 和
x
z y
z yexy sin(x y) exy cos(x y) x
exy[ y sin(x y) cos(x y)]
z xexy sin(x y) exy cos(x y) y
§1.5
复合函数和隐函数微分
一、多元复合函数的微分法
定理 如果函数u (t )及v (t)都在点t 可导,
函数z f (u,v)在对应点(u,v)具有连续偏导数,则
复合函数z f [ (t), (t)]在对应点t 可导,且其导
数可用下列公式计算:
dz z du z dv . dt u dt v dt

y 1 (xy)2

1

x ( xy)2
ex
(x 1)e x 1 x2e 2x
[注记]:
求多元复合函数的偏导数应注意到:
① 必须严格分清自变量与中间变量,及其关系;
② 求对某个自变量的偏导数时,应经过一切有 关的中间变量(纵向的和横向的)最后归结 到自变量;
③ 有几个中间变量,就应含有几项;有几次复 合,每项就应有几个因子相乘。

5多元复合函数及隐函数的微分法

5多元复合函数及隐函数的微分法
类似地,可求得
z y
1 x
f1 2 f2 sin xf3 .
例 4 设 z xy f (x y, x y), 求 z , z .
x y
解 在这个函数的表达式中, 乘法中有复合
函数,所以先用乘法求导公式.
z x
y
f (x y, x y) xy f11
f2 1
y f (x y, x y) xy f1 f2,
dx
2y
y
定理 2 (隐函数存在定理) 设函数 F (x, y, z)在 点 P0 (x0 , y0 , z0 ) 的某个邻域内连续且有连续的偏导数 Fx (x, y, z), Fy (x, y, z), Fz (x, y, z),又 F (x0 , y0 , z0 ) 0, Fz (x0 , y0 , z0 ) 0,则存在惟一的函数 z f (x, y)在(x0 , y0 ) 的某个邻域内满足方程 F (x, y, z) 0,即
2(1 6z)2 6(2x y)2 (1 6z)3

2z x 2
(1, 2,1)
2 5
例 设 (cx az , cy bz) 0 , 证明 a z
x
b z c , 其中 a , b , c 为常数,函数 可微
y
(a1 b2 0).
证 解得
两边对 x 求导
1
(c
a
z x
)
w
y sin x, 于是
z f (u,v, w).
因为
u y x x2 ,
v 1, x
w y cos x, x
u 1 ,
v 2,
w sin x,
y x y
y
所以
z x
f u

从全微分法看多元复合函数和隐函数的导数

从全微分法看多元复合函数和隐函数的导数

从全微分法看多元复合函数和隐函数的导数
多元复合函数的求偏导
例1. 设z f xy, x y ,其中f 具有连续的偏导数,求 z , z .
x y 解: 法一,方程两边直接取微分
dz f1d(xy)+ f 2d(x+ y) f1(xdy + ydx) + f 2(dx+dy)
( yf1+ f2)dx+ (xf1 f 2)dy
yf1 f2
f1 xy
x
f
f2 x y
y
z f u f v y u y v y
xf1 f2
注:全微分法与多元复合函数偏导法,所得结果是一模一样的.
从全微分法看多元复合函数和隐函数的导数
隐函数求导
例2 设 z z(x, y)由方程 exy 2z ez 2 所确定,求 z , z .
第九章 多元函数微分学
从全微分法看 多元复合函数和隐函数的导数
从全微分法看多元复合函数和隐函数的导数
一元函数微分形式不变性 函数f(u),不论u 是自变量还是中间变量,均有 dy f (u)du
全微分形式不变性 二元函数z=f(u,v),无论u,v是自变量还是中间变量,均有 dz z du zdv u v
注: 整理方向
从而有:
dz dx dy
z x
yf1
f2,
z y
xf1
f2.
从全微分法看多元复合函数和隐函数的导数
多元复合函数的求偏导
例1. 设z f xy, x y ,其中f 具有连续的偏导数,求 z , z .
x y 解 : 法二,首先给出多元复合函数关系图
由:连线相乘,分线相加,得
z f u f v x u x v x

微积分,赵树嫄编,第八章6

微积分,赵树嫄编,第八章6

F y 2 y Fz 2z 4
Fy z y y Fz 2 z
x Fx z x 2 z Fz
z ( 2 z ) x( ) 2 2 2z z ( 2 z ) x x 2 2 (2 z ) x x x (2 z ) 3来自 2z 4 2 0 x
z y y 2 z
6
上页 下页 返回 结束
x z z z 例3 设 ln , 求 , z y x y
x z 解: 令 F ( x , y , z ) ln z y
1 1 Fx , Fy , y z
x 1 xz Fz 2 2 z z z
5
上页 下页 返回 结束
解法2 利用隐函数求导 两边对 x 求导
x 2 y 2 z 2 4z 0
同理
z z 2 x 2z 4 0 x x
再对 x 求导
z x 两边对 y 求导 x 2 z z z 2 y 2z 4 0 y y
2
z 2 1 ( ) x
不能设为
F ( x, y ) x 2 y 2
解法1 利用公式,设
F ( x, y ) x 2 y 2 1,
dy x Fx dx Fy y
d 2 y d dy y xy y2 x2 1 3 2 2 3 dx dx dx y y y
v 1 1 (a b)( x y ) cxy (a b)v( ) cxy x y xy
w v (a b) cy 0 2 x x
解得 x y
3
a
x
z a
y
w v (a b) cx 0 2 y y

微积分 (中国人民大学出版社)

微积分 (中国人民大学出版社)

= e u sin v ⋅ y + e u cos v ⋅ 1 = e u ( y sin v + cos v ),
∂z ∂z ∂u ∂z ∂v = ⋅ + ⋅ ∂y ∂u ∂y ∂v ∂y u u = e sin v ⋅ x + e cos v ⋅ 1 = e u ( x sin v + cos v ).
函数 z = f [φ ( x , y ),ψ ( x , y ), w( x , y )]在对应点( x , y ) 两个偏导数存在, 两个偏导数存在,且可用下列公式计算
∂ z ∂z ∂ u ∂ z ∂v ∂ z ∂ w , = + + ∂x ∂ u ∂ x ∂ v ∂x ∂ w ∂ x z ∂z ∂z ∂ u ∂z ∂ v ∂ z ∂ w . = + + ∂y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ y
y 其中为可导函数, , 其中为可导函数, 2 2 f (x − y ) 1 ∂z 1 ∂z z 验证: 验证: + = 2. x ∂x y ∂y y 具有二阶导数, 八、设 z = φ [ x + ϕ ( x − y ), y ], 其中 φ , ϕ 具有二阶导数,求 ∂2z ∂2z , 2. 2 ∂ x ∂y
七、设 z =
练习题答案
cos y(cos x + x sin x ) x cos x ( y sin y + cos y ) 一、1、 ; ,− 2 2 2 y cos x y cos x 2x 3x2 2、 2、 2 ln( 3 x − 2 y ) + , 2 y (3 x − 2 y ) y 2x2 2x2 ; − 3 ln( 3 x − 2 y ) − 2 y (3 x − 2 y ) y 3(1 − 4t 2 ) . 3、 3、 3 2 1 − ( 3t − 4t )

求微分的方法

求微分的方法

求微分的方法
微分的方法有多种,以下是常见的微分方法:
1. 基本微分法则:基本微分法则包括常数微分法则、幂函数微分法则、指数函数微分法则、对数函数微分法则、三角函数微分法则、反三角函数微分法则等。

通过应用这些基本微分法则,可以对各种函数进行微分。

2. 链式法则:链式法则是一种用于求复合函数的导数的方法。

如果一个函数是由两个函数复合而成,那么它的导数可以通过链式法则求得。

链式法则的表达式为:如果y = f(g(x)),那么
y关于x的导数可以表示为dy/dx = d(g(x))/dx * df(g(x))/dg(x)。

3. 隐函数微分法:隐函数微分法是一种用于求隐函数的导数的方法。

如果一个函数无法通过常规的函数表达式表示,而是通过一个方程来描述,那么它的导数可以通过隐函数微分法求得。

4. 参数方程微分法:参数方程微分法是一种用于求参数方程所表示的曲线的切线和法线的方法。

通过对参数方程的参数分别求导,可以得到曲线上任意一点的切线和法线的斜率。

5. 一阶线性微分方程法:一阶线性微分方程法是一种用于求解一阶线性微分方程的方法。

通过对微分方程进行变形和积分,可以得到微分方程的解析解。

这些方法并不是全部,还有其他方法,如泰勒展开法、几何微分法等。

具体选择哪种方法取决于问题的性质和要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

显函数
u t
v t
证略
推广: 设z=f(u,v,w) ,u=u(t),v=v(t),w=w(t) ,
则z=f(u(t),v(t),w(t))对t的导数为
z u t v t w t
全 导 数 公 式

dz z du z dv z dw dt u dt v dt w dt
复合函数微分法与隐函数微分法
注意:本节的知识点容易让人产生混乱
一、复合函数微分法 复习: 一元复合函数 y f (u), u ( x)
dy dy du 求导法则 f (u ) u dx du dx
微分法则 dy f (u)du f (u) ( x)dx 要求:熟练掌握多元复合显函数求导的链式法则
df y df 1 x 2 y 0 du x du x
dz z du z dv dt u dt v dt
2、复合函数的中间变量均为多元函数的情形
定理:若函数u=u(x,y),v=v(x,y)都在点(x,y)处具有对x 及y的偏导数,函数z=f(u,v)在点(u,v)处偏导数连 续,则复合函数z=f(u(x,y),v(x,y))在点(x,y)处对x 及y的偏导数都存在,且有: z z z u z v f1 u1 f 2 v1 x u x v x u v
1、复合函数的中间变量均为一元函数的情形 定理:若函数u=u(t),v=v(t)都在点t可导,函数z=f(u,v) 在点(u,v)处偏导数连续,则复合函数z=f(u(t),v(t)) 在点t可导,且有链式法则: z
dz z du z dv dt u dt v dt
(1)z只有一个自变量 (2)z有两个中间变量 (3)两个中间变量u,v都只一个自变量
z z u z v f1 u2 f 2 v2 y u y v y x (1)因变量z有两个自变量x,y
(2)在对应法则f下z有两个中间变量u,v
y
x
y
(3)两个中间变量u,v都分别有两个自变量x,y
公式记忆法: 总原则 “联线相乘,分线相加” z z u t v t u v
z z u z v x u x v x
eu sin v y eu cos v
y sin v e cos v e xy y sin( x y ) e cos( x y )
e
u
z z u z v y u y v y
f u f dv 2 z x 2 f12 2 y 2 x f1 y 1 1 2 x f1 y f11 u y v dy xy


y 例4:设 z f , f (u ) 为可微函数,证明: x z z z x y 0 x y u z df u z df u , x du x y du y x y z z df u df u x y x y x y du x du y
vet u ( sin t ) cos t cos tet et ( sin t ) cos t et cos t sin t cos t
u t
v t
t
小结:使用复合函数求导的链式法则,要 “弄清结构,选对公式”
2 2 z z z 2 2 例3:设z=f(x y,y ),求 , 2 , y x xy 令u=x2y,v=y2
z u v y
z f u f dv x 2 f1 2 yf 2 x y y u y v dy z f u 2 2 z f u , v , u x y , v y 2 xyfu 2 xyf1 1 x u x f1 u 2 z 2 yx 2 y f1 x 2 y f1 xf11 2 x u x
x
y
x
y
(1)几条路线,就是几项的和 (2)对于每一项,路线上有几步,就是几步的乘积 (3)对于每一步,从前向后有分支,说明是多元函数, 前面变量就对后面变量求偏导;没分支,说明是 一元函数,前面变量就对后面变量求导数。
3、复合函数的中间变量既有一元函数,又有多元 函数的情形 z=f 函数 z f ( x, v), v ( x, y) 都具有可微条件时,由公式记忆法有: x v z f v f f v z y v y x v x x x y f1 f 2 1 f 2 2
z (1)因变量z有两个自变量x,y,求 x 时y为常数 f (2)函数z在对应法则f下有两个变量x,v,求 时v为常数 x z f 注意:区别 和 x x
小结:三种多元复合显函数求偏导的方法
例1:设z=eusinv,而u=xy,v=x+y,求
z z 和 x y
z u x y x v y
eu sin v x eu cos v
eu x sin v cos v exy x sin( x y) cos( x y)
例2:设z=uv+sint,u=et,v=cost,求全导数
dz dt
z
dz z du z dv z dt u dt v dt t
相关文档
最新文档