2008中考数学模拟试题及答案(1)

合集下载

2008年中考数学模拟试卷+

2008年中考数学模拟试卷+

2008年中考数学模拟试卷班别 姓名: 得分:一、选择题1. 下列调查方式合适的是( )A. 为了了解炮弹的杀伤力,采用普查的方式B. 为了了解全国中学生的睡眠状况,采用普查的方式C. 为了了解人们保护水资源的意识,采用抽样调查的方式D. 对载人航天器“神舟五号”零部件的检查,采用抽样调查的方式 2. 下面的4幅图中,经过折叠不能围成一个立体图的一幅是( )3. 如图,E 、F 、G 、H 分别是正方形ABCD 各边的中点,要使中间阴影部分小正方形的面积是5,那么大正方形的边长应该是( )A B C D (25)35554. 随着计算机技术的迅速发展,电脑价格不断降低。

某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为( )A B .().()4554n m n m ++元元C D .().()55m n n m ++元元580.如图,已知在⊙中,是直径,,∠=°,则∠等O BC AB DC AOD ABC ⋂=⋂于( )A. 40°B. 65°C. 100°D. 105°6. 正比例函数y =kx 的图象经过二、四象限,则抛物线y =kx 2-2x +k 2的大致图象是( )二、填空题:7232.()计算:÷-=x x8. 据中新社报道:2010年我国粮食产量将达到540000000000千克,用科学记数法表示这个粮食产量为_____________千克。

9. 用一个半径为6cm 的半圆围成一个圆锥的侧面,则这个圆锥的侧面积为__________cm 2。

(结果保留π) 10. 如图:三角形纸片ABC 中,∠A =55°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,则∠1+∠2的度数为_____________;11. 如图,已知平行四边形ABCD 中,F 为BC 上一点,BF :FC =1:2,则△ABF 与△ADC 的面积比是____________。

2008年中考数学模拟试卷(1)

2008年中考数学模拟试卷(1)

2008年中考数学模拟试卷(1)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷10小题,共30分,第Ⅱ卷90分,共120分.考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)1、下列各式中正确的是 ( )A 、242-=-B 、()33325=C 、1)1-21)(2(=+D 、x x x 842÷=2、如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是 ( ) A 、102cm B 、102πcm C 、202cm D 、202πcm3、10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( ) A 、284+x B 、542010+x C 、158410+x D 、1542010+ 4、为了判断甲、乙两个小组学生英语口语测验成绩哪一组比较整齐,通常需要知道两组成绩的( ) A 、平均数B 、方差C 、众数D 、频率分布5、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。

游客爬山所用时间t 与山高h 间的函数关系用图形表示是 ( )ABCD6、如图,已知四边形ABCD 是⊙O 的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题错误的是( ) A 、△AED ∽△BECB 、∠AEB=90ºC 、∠BDA=45ºD 、图中全等的三角形共有2对7、一个等腰梯形的高恰好等于这个梯形的中位线,若分别以这个梯形的上底和下底为直径作圆,则这两个圆的位置关系是 ( ) A 、相离B 、相交C 、外切D 、内切8、已知一元二次方程2x 2-3x -6=0有两个实数根x 1、x 2,直线l 经过点A (x 1+x 2,0)、B (0,x 1·x 2),则直线l 的解析式为 ( ) A 、y=2x -3B 、y=2x +3C 、y=-2x -3D 、y=-2x +39、将图形(1)按顺时针方向旋转900后的图形是 ( )图形(1)ABCD10、在一列数1,2,3,4,…,1000中,数字“0”出现的次数一共是() A 、182B 、189C 、192D 、194第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)11.随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2005年海外学 习汉语的学生人数已达38 200 000人),用科学记数法表示为人(保留3个有效数字). 12.从两副拿掉大、小王的扑克牌中,各抽取一X ,两X 牌都是红桃的概率是.13.要在一个矩形纸片上画出半径分别是4cm 和1cm 的两个外切圆,该矩形纸片面积的最小值... 是.14.右图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形 的边长是a ,则六边形的周长是.15.党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。

2008年苏科版中考数学模拟试题及答案试题试卷

2008年苏科版中考数学模拟试题及答案试题试卷

南京市江宁区2OO8年中考复习第一次质量检测卷数 学(总计120分 考试时间120分钟)下列各题所用的四个选项中,有且只有一个是正确的.一、选择题(每小题2分,共20分)1. 比-2小的有理数是( ).A .-2B .-3C .0D .12.91的平方根是 A. 31 B .31- C .31± D .8113.2007年10月24日,我国在西昌卫星发射中心成功发射首颗月球探测卫星“嫦娥一号”,已知地球距离月球表面约为384000千米,那么这个距离用科学记数法表示应为 A .41084.3⨯千米 B . 51084.3⨯千米 C . 61084.3⨯千米 D . 4104.38⨯千米 4.下列计算中,正确的是A .523a a a =+ B .325⋅=a a a C .923)(a a = D .32-=a a a5.下列奥运会会徽的图案中是轴对称图形的是A. B. C. D.6.如图,在△ABC 中,AC=3,BC=4,AB=5,则tan B 的值是A .43B .34C .53D .54(第6题图) (第7题图)7. 如图,点A 、B 、C 、D 、E 在⊙O 上,则BOD ∠的度数是 A.550 B.1250 C.1100 D.1502008年北京 2004年雅典 1988年汉城 1980年莫斯科BAC8.如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是A B C D (第8题图) 9.在相同条件下重复试验,若事件A 发生的概率是1007,下列陈述中,正确的是 A .说明做100次这种试验,事件A 必发生7次 B .说明事件A 发生的频率是1007 C .说明反复大量做这种试验,事件A 平均发生大约7次 D .说明做100次这种试验,事件A 可能发生7次10. 如图(甲),水平地面上有一面积为30π cm 2的灰色扇形OAB ,其中OA 的长度为6cm ,且与地面垂直.若在没有滑动的情况下,将图(甲)的扇形向右滚动至OB 垂直地面为止,如图(乙)所示,则O 点移动的距离为( )A. 20cmB. 24cmC. 10π cmD.30π cm二、填空题(每小题3分,共18分)11.已知∠α与∠β互余,且∠α=15°,则∠β为 度. 12.则全体参赛选手年龄的中位数是 岁.13.已知⊙O 的半径为5厘米,若⊙O ′与⊙O 外切时,圆心距为7厘米,则⊙O ′与⊙O内切时,圆心距为 厘米.14.写出和为2的两个无理数: (只需写出一对).15.已知y 是x 的反比例函数,且当x =3时,y =8,那么当x =4时, y = . 16.如图,阳光从教室的窗户射入室内,窗户框AB 在地面上的影长DE =1.8m ,窗户下檐到地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为 m .三、(第17题5分,第18和19题每小题6分,共17分)17. 计算: ()3222143-⎪⎭⎫⎝⎛-⨯+18.先将)11(122aa a a -⋅-+化简,然后请你自选一个合理的a 值,代入求出原式的值.19.某养鸡专业户饲养了一批草鸡共500只.为在“五·一”节期间上市销售,该专业户随(1) (2) 估计该养殖户饲养的这种鸡总质量约是多少千克?四、(第21题6分,第20和22题每小题7分,共20分)20.已知:如图,D 是△ABC 的BC 边上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别是E 、F ,且BF=CE .(1)求证:△ABC 是等腰三角形; (2)当∠A=90°时,试判断四边形AFDE 是怎样的特殊四边形?并说明理由.FED CBA(第20题图)21.小强和小新都喜爱如图所示的三幅手机彩屏图片,假定他俩各为自己的手机从中随机选取一幅图片,{1}小强恰好选中小鸟图片的概率是多少?(2)试用树状图或列表法求小强和小新都选中小鸟图片的概率.22.一位祖籍江宁的台商,应区政府的邀请,到科学园考察投资环境.他驱车在东西走向的天元路上由西向东缓慢地前进着,车载GPS (全球卫星定位系统)显示,方山风景区(点C )在其(点A )南偏东45°的方向上,AC=4km .他继续向东前进到点B 的位置,发现方山风景区在其南偏西60°的方向上.试求该台商由西向东前进的路程AB 是多少千米?(结果精确到0.1km )1.41 ,3≈1.73,6≈2.45)(第22题图)北北卡通人物 花 小鸟23.如图是9×7的正方形点阵,其水平方向和竖直方向相邻的两格点间的长度都是1个单位,以这些点为顶点的三角形称为格点三角形.请通过画图分析、探究回答下列问题: (1)请在图中画出以AB 为边且面积为3的一个格点三角形(记为△ABC );(2)将你所画的三角形绕着点A 沿逆时针方向旋转90°,画出旋转后的图形(记为''C AB ).24.5月份是空调销售和安装的高峰时期.某区域售后服务中心现有600台已售空调尚待安装,另外每天还有新销售的空调需要安装.设每天新销售的空调台数相同,每个空调安装小组每天安装空调的台数也相同.若同时安排3个装机小组,恰好60天可将空调安装完毕;若同时安排5个装机小组,恰好20天就能将空调安装完毕. (1)求每天新销售的空调数;(2)如果要在5天内将空调安装完毕,那么该区域售后服务中心至少需要安排几个空调安装小组同时进行安装?(第23题)25.某书店用两种方式进行促销活动:第一种是九折优惠,凡在书店购书的按九折优惠,第二种优惠方式是:凡在书店一年内购书金额累积满200元的,赠购书券20元;满500元的,赠购书券75元。

2008年河北中考数学试题及答案 (全)

2008年河北中考数学试题及答案   (全)

数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(08河北)8-的倒数是( d ) A .8B .8-C .18D .18-2.(08河北)计算223a a +的结果是( b ) A .23aB .24aC .43aD .44a3.(08河北)把某不等式组中两个不等式的解集表示在数轴上,如图1则这个不等式组可能是( b ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.(08河北)据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为(A .80.155110⨯ B .4155110⨯C .71.55110⨯D .615.5110⨯5.(08河北)图2中的两个三角形是位似图形,它们的位似中心是( A .点P B .点O C .点M D .点N6.(08河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( a )A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.(08河北)如图3,已知O 的半径为5,点O 到弦AB 的距离为3,则到弦AB 所在直线的距离为2的点有( c )A .1个B .2个C .3个D .4个8.(08河北)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( b ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2图1图2 图3C .两枚骰子朝上一面的点数均为偶数D .两枚骰子朝上一面的点数均为奇数9.(08河北)如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( d )10.(08河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( c )A .上B .下C .左D .右卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.(08河北)如图6,直线a b ∥,直线c 与a b , 相交.若170∠=, 则<2=7012.(08河北)当x = 1 时,分式31x -无意义. 13.(08河北)若m n ,互为相反数,则555m n +-= -5 .14.(08河北)如图7,AB 与O 相切于点B ,AO 的延长线交O 连结BC .若36A ∠=,则<c=27.15.(08图4 x A . x B . x C . D . 图5-1 图5-2 图5-3 …1 2b ac 图7则这些学生成绩的众数为 9 .16.(08河北)图8所示的两架天平保持平衡,且每块巧克力的质量相等, 每个果冻的质量也相等,则一块巧克力的质量是 20 g . 17.(08河北)点(231)P m -,在反比例函数1y x=的图象上,则m =18.(08河北)图9-1全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 76 .三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(08河北)(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.=-1/320.(08河北)(本小题满分8分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图. (1)D 型号种子的粒数是 500 ; (2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广; (4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率. 1/521.(08河北)(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,ABC图9-1 图9-2图8A35% B20% C 20% 25各型号种子数的百分比 图10-1 图10-2直线1l ,2l 交于点C . (1)求点D 的坐标;D(1,0)(2)求直线2l 的解析表达式; Y=2/3X-6(3)求ADC △的面积; S ADC △=2/3(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标. P(6,3)22.(08河北)(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系. (1)台风中心生成点B 的坐标为 (100^3,-100^3) ,台风中心转折点C 的坐标为 (100^3,200-100^3) ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?11小时。

2008年天津中考数学试题及答案

2008年天津中考数学试题及答案

2008年天津市初中毕业生学业考试试卷数 学第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 60cos 的值等于( )A .21B .22C .23D .12.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有( ) A .1个B .2个C .3个D .4个3.边长为a 的正六边形的面积等于( ) A .243aB .2aC .2233a D .233a4.纳米是非常小的长度单位,已知1纳米=610-毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是( ) A .210个B .410个C .610个D .810个5.把抛物线22x y =向上平移5个单位,所得抛物线的解析式为( ) A .522+=x yB .522-=x yC .2)5(2+=x yD .2)5(2-=x y6.掷两枚质地均匀的硬币,则两枚硬币全部正面朝上的概率等于( )A .1B .21 C .41 D .07.下面的三视图所对应的物体是( )A .B .C .D . 8.若440-=m ,则估计m 的值所在的范围是( )第(14)题A .21<<mB .32<<mC .43<<mD .54<<m9.在平面直角坐标系中,已知点A (0,2),B (32-,0),C (0,2-),D (32,0),则以这四个点为顶点的四边形ABCD 是( ) A .矩形B .菱形C .正方形D .梯形10.在平面直角坐标系中,已知点A (4-,0),B (2,0),若点C 在一次函数221+-=x y 的图象上,且△ABC 为直角三角形,则满足条件的点C 有( ) A .1个B .2个C .3个D .4个2008年天津市初中毕业生学业考试试卷数 学第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,每小题3分,共24分.请将答案直接填在题中横线上. 11.不等式组322(1)841x x x x +>-⎧⎨+>-⎩,的解集为 .12.若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为 .13.已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 .14.如图,是北京奥运会、残奥会赛会志愿者 申请人来源的统计数据,请你计算:志愿者申 请人的总数为 万;其中“京外省区市” 志愿者申请人数在总人数中所占的百分比约 为 %(精确到0.1%),它所对应的 扇形的圆心角约为 (度)(精确到度). 15.如图,已知△ABC 中,EF ∥GH ∥IJ ∥BC , 则图中相似三角形共有 对.16.如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1=AG ,2=BF ,︒=∠90GEF ,则GF 的长为 .AG EH FJI BC 第(15)题第(16)题 ADC B FG E17.已知关于x 的函数同时满足下列三个条件: ①函数的图象不经过第二象限; ②当2<x 时,对应的函数值0<y ;③当2<x 时,函数值y 随x 的增大而增大.你认为符合要求的函数的解析式可以是: (写出一个即可). 18.如图①,1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分) 解二元一次方程组3582 1.x y x y +=⎧⎨-=⎩,20.(本小题8分)已知点P (2,2)在反比例函数xky =(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值; (Ⅱ)当31<<x 时,求y 的取值范围.21.(本小题8分)如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长22.(本小题8分)下图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).A B D CEO第(18)题图①第(18)题图②请分别计算这些车辆行驶速度的平均数、中位数和众数(结果精确到0.1).23.(本小题8分)热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.天津市奥林匹克中心体育场——“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x 千米/时,利用速度、时间、路程之间的关系填写下表. (要求:填上适当的代数式,完成表格)(Ⅱ)列出方程(组),并求出问题的解.25.(本小题10分)已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(Ⅰ)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图①,求证:222BN AM MN +=; 思路点拨:考虑222BN AM MN +=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以C A BCABEF M N 图①CABE MN 图②了.请你完成证明过程:(Ⅱ)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由. 26.(本小题10分) 已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围; (Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.2008年天津市初中毕业生学业考试数学参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分. 1.A 2.D 3.C 4.B 5.A 6.C 7.A 8.B9.B10.D二、填空题:本大题共8小题,每小题3分,共24分. 11.34<<-x12.513.(4,5)14.112.6;25.9,︒9315.616.317.2-=x y (提示:答案不惟一,如652-+-=x x y 等)18.1O ,3O ,如图① (提示:答案不惟一,过31O O 与42O O 交点O 的任意直线都能将四个圆分成面积相等的两部分);5O ,O ,如图② (提示:答案不惟一,如4AO ,3DO ,2EO ,1CO 等均可).三、解答题:本大题共8小题,共66分. 19.本小题满分6分.解 ∵3582 1.x y x y +=⎧⎨-=⎩,①②由②得12-=x y ,③ ·················································································· 2分 将③代入①,得8)12(53=-+x x .解得1=x .代入③,得1=y . ∴原方程组的解为11.x y =⎧⎨=⎩,··············································································· 6分20.本小题满分8分.解 (Ⅰ)∵点P (2,2)在反比例函数xky =的图象上, ∴22k=.即4=k . ······················································································ 2分 ∴反比例函数的解析式为xy 4=.第(18)题图②∴当3-=x 时,34-=y . ··············································································· 4分 (Ⅱ)∵当1=x 时,4=y ;当3=x 时,34=y , ·············································· 6分 又反比例函数xy 4=在0>x 时y 值随x 值的增大而减小, ······································ 7分 ∴当31<<x 时,y 的取值范围为434<<y . ······················································· 8分 21.本小题满分8分. 解(Ⅰ)∵AB ∥CD ,∴︒=∠+∠180ADC BAD . ··········································································· 1分 ∵⊙O 内切于梯形ABCD ,∴AO 平分BAD ∠,有BAD DAO ∠=∠21,DO 平分ADC ∠,有ADC ADO ∠=∠21.∴︒=∠+∠=∠+∠90)(21ADC BAD ADO DAO .∴︒=∠+∠-︒=∠90)(180ADO DAO AOD . ·························································· 4分 (Ⅱ)∵在Rt △AOD 中,8=AO cm ,6=DO cm ,∴由勾股定理,得1022=+=DO AO AD cm . ·················································· 5分 ∵E 为切点,∴AD OE ⊥.有︒=∠90AEO . ······················································· 6分 ∴AOD AEO ∠=∠.又OAD ∠为公共角,∴△AEO ∽△AOD . ····················································· 7分 ∴AD AO OD OE =,∴8.4=⋅=ADODAO OE cm . ··························································· 8分 22.本小题满分8分. 解 观察直方图,可得车速为50千米/时的有2辆,车速为51千米/时的有5辆, 车速为52千米/时的有8辆,车速为53千米/时的有6辆, 车速为54千米/时的有4辆,车速为55千米/时的有2辆,车辆总数为27, ·························································································· 2分 ∴这些车辆行驶速度的平均数为4.52)255454653852551250(271≈⨯+⨯+⨯+⨯+⨯+⨯. ········································ 4分 ∵将这27个数据按从小到大的顺序排列,其中第14个数是52,∴这些车辆行驶速度的中位数是52. ····························································· 6分B∵在这27个数据中,52出现了8次,出现的次数最多,∴这些车辆行驶速度的众数是52. ····································································· 8分 23.本小题满分8分.解 如图,过点A 作BC AD ⊥,垂足为D ,根据题意,可得︒=∠30BAD ,︒=∠60CAD ,66=AD . ······································ 2分 在Rt △ADB 中,由ADBDBAD =∠tan , 得322336630tan 66tan =⨯=︒⨯=∠⋅=BAD AD BD . 在Rt △ADC 中,由ADCDCAD =∠tan , 得36636660tan 66tan =⨯=︒⨯=∠⋅=CAD AD CD . ········································ 6分 ∴2.152388366322≈=+=+=CD BD BC .答:这栋楼高约为152.2 m . ·································································· 8分 24.本小题满分8分. 解 (Ⅰ)··················································· 3分 (Ⅱ)根据题意,列方程得3121010+=x x . ························································ 5分 解这个方程,得15=x . ··········································································· 7分 经检验,15=x 是原方程的根. 所以,15=x .答:骑车同学的速度为每小时15千米. ···························································· 8分 25.本小题满分10分.(Ⅰ)证明 将△ACM 沿直线CE 对折,得△DCM ,连DN ,则△DCM ≌△ACM . ············································································· 1分 有CA CD =,AM DM =,ACM DCM ∠=∠,A CDM ∠=∠. 又由CB CA =,得 CB CD =. ··································· 2分 由DCM DCM ECF DCN ∠-︒=∠-∠=∠45,CABDCA BEFDMNACM ECF ACB BCN ∠-∠-∠=∠ ACM ACM ∠-︒=∠-︒-︒=454590,得BCN DCN ∠=∠. ······················································································ 3分 又CN CN =,∴△CDN ≌△CBN . ··············································································· 4分 有BN DN =,B CDN ∠=∠.∴︒=∠+∠=∠+∠=∠90B A CDN CDM MDN . ···················································· 5分 ∴在Rt △MDN 中,由勾股定理,得222DN DM MN +=.即222BN AM MN +=. ················································ 6分 (Ⅱ)关系式222BN AM MN +=仍然成立. ···················································· 7分 证明 将△ACM 沿直线CE 对折,得△GCM ,连GN , 则△GCM ≌△ACM . ············································· 8分 有CA CG =,AM GM =,ACM GCM ∠=∠,CAM CGM ∠=∠.又由CB CA =,得 CB CG =.由︒+∠=∠+∠=∠45GCM ECF GCM GCN ,ACM ACM ECF ACN ACB BCN ∠+︒=∠-∠-︒=∠-∠=∠45)(90.得BCN GCN ∠=∠. ··················································································· 9分 又CN CN =,∴△CGN ≌△CBN .有BN GN =, 45=∠=∠B CGN ,︒=∠-︒=∠=∠135180CAB CAM CGM , ∴ 9045135=-=∠-∠=∠CGN CGM MGN . ∴在Rt △MGN 中,由勾股定理,得222GN GM MN +=.即222BN AM MN +=. ················································ 10分 26.本小题满分10分.解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. ········································· 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.CABE FMN G对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31. ·································· 3分①当31=c 时,由方程031232=++x x ,解得3121-==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭,. ···························· 4分②当31<c 时, 11-=x 时,c c y +=+-=1231,12=x 时,c c y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x ,应有1200.y y ⎧⎨>⎩≤, 即1050.c c +⎧⎨+>⎩≤,解得51c -<-≤.综上,31=c 或51c -<-≤. (Ⅲ)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23.于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .∴0>>c a . ∵关于x 的一元二次方程0232=++c bx ax 的判别式 0])[(412)(4124222>+-=-+=-=∆ac c a ac c a ac b ,∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方. ························· 8分又该抛物线的对称轴a b x 3-=,由0=++c b a ,0>c ,02>+b a ,得a b a -<<-2,∴32331<-<a b .又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象,可知在10<<x 范围内,该抛物线与x 轴有两个公共点. ····································· 10分。

2008年中考数学试题及答案解析

2008年中考数学试题及答案解析

2008年中等学校招生统一考试数学试卷*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( ) A .525.310⨯亩B .62.5310⨯亩C .425310⨯亩D .72.5310⨯亩2)3.下列各点中,在反比例函数2y x=-图象上的是()A .(21),B .233⎛⎫⎪⎝⎭,C .(21)--,D .(12)-,4.下列事件中必然发生的是( )A .抛两枚均匀的硬币,硬币落地后,都是正面朝上B .掷一枚质地均匀的骰子,朝上一面的点数是3C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取 值范围是( ) A .0x > B .0x <C .2x >D .2x <6.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或807.二次函数22(1)3y x =-+的图象的顶点坐标是( )A .(13),B .(13)-,C .(13)-,D .(13)--, 8.如图所示,正方形ABCD 中,点E 是CD 边上一点,连接AE , 交对角线BD 于点F ,连接CF ,则图中全等三角形共有( )正面第2题图A .B .C .D .第5题图xADCEFB第8题图A .1对B .2对C .3对D .4对二、填空题(每小题3分,共24分)9.已知A ∠与B ∠互余,若70A ∠=,则B ∠的度数为 . 10.分解因式:328m m -= .11.已知ABC △中,60A ∠=,ABC ∠,ACB ∠的平分线交于点O ,则BOC ∠的度数为 .12.如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补 充一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可). 13.不等式26x x -<-的解集为 .14.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE 为 米.15.观察下列图形的构成规律,根据此规律,第8第15题图16.在平面直角坐标系中,点A 的坐标为(11),,点B 的坐标为(111),,点C 到直线AB 的距离为4,且ABC △是直角三角形,则满足条件的点C 有 个.三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.计算:101(1)52-⎛⎫π-+-+- ⎪⎝⎭18.解分式方程:1233xx x=+--.19.先化简,再求值:222()()2y x y x y x y ++---,其中13x =-,3y =.第1个 ……第2个 第3个 第4个ADC BO 第12题图 B C DA 第14题图20.如图所示,在66⨯的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,如图①中的三角形是格点三角形. (1)请你在图①中画一条直线将格点三角形分割成两部分,将这两部分重新拼成两个不同的格点四边形,并将这两个格点四边形分别画在图②,图③中; (2)直接写出这两个格点四边形的周长.四、(每小题10分,共20分)21.如图所示,AB 是O 的一条弦,OD AB ⊥,垂足为C ,交O 于点D ,点E 在O 上.(1)若52AOD ∠=,求DEB ∠的度数;(2)若3OC =,5OA =,求AB 的长.22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C ,,分别表示小刚的象、虎、鼠三张牌,用1A ,1B ,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.图① 第20题图图②图③第21题图 小刚 小明A 1B 1C 1A B C 第22题图23.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2)请你将表格补充完整:(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩. 六、(本题12分)24.一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少升?(3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B 地.(货车在D 处加油过程中的时间和路程忽略不计)第23题图 一班竞赛成绩统计图 二班竞赛成绩统计图25.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AMN △是等腰三角形.(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.八、(本题14分) 26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.2008年沈阳市中等学校招生统一考试C E ND A BM图① C A EM B D N图② 第25题图第26题图数学试题参考答案及评分标准一、选择题(每小题3分,共24分) 1.B 2.A 3.D 4.C 5.C 6.D7.A8.C二、填空题(每小题3分,共24分) 9.2010.2(2)(2)m m m +-11.12012.90BAD ∠=(或AD AB ⊥,AC BD =等)13.4x >14.1215.65 16.8 三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.解:原式1(2)5=+-+- ···························································· 4分125=-+- ··················································································· 5分6= ······································································································ 6分18.解:12(3)x x =-- ·················································································· 2分126x x =--7x = ··········································································································· 5分 检验:将7x =代入原方程,左边14==右边 ························································ 7分所以7x =是原方程的根 ·················································································· 8分 (将7x =代入最简公分母检验同样给分)19.解:原式2222222xy y x xy y x y =++-+-- ················································ 4分 xy =- ········································································································· 6分 当13x =-,3y =时,原式1313⎛⎫=--⨯= ⎪⎝⎭······················································································ 8分 20.解:(1)答案不唯一,如分割线为三角形的三条中位线中任意一条所在的直线等.································· 2分拼接的图形不唯一,例如下面给出的三种情况:图① 图② 图③ 图④图①~图④,图⑤~图⑦,图⑧~图⑨,画出其中一组图中的两个图形. ······················ 6分 (2)对应(1)中所给图①~图④的周长分别为4+8,4+4+ 图⑤~图⑦的周长分别为10,8+8+图⑧~图⑨的周长分别为2+4+ ···································· 10分 四、(每小题10分,共20分) 21.解:(1)OD AB ⊥,AD DB ∴= ··························································· 3分 11522622DEB AOD ∴∠=∠=⨯= ································································· 5分 (2)OD AB ⊥,AC BC ∴=,AOC △为直角三角形, 3OC =,5OA =,由勾股定理可得4AC == ·············································· 8分 28AB AC ∴== ························································································· 10分 22.解:(1)1()3P =一次出牌小刚出象牌“” ··················································· 4分(2)树状图(树形图):·············································································· 8分图⑤ 图⑥图⑦图⑧ 图⑨A 1B 1C 1 AA 1B 1C 1 BA 1B 1C 1C开始小刚 小明或列表···························································· 8分 由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种. ········································································ 9分1()3P ∴=一次出牌小刚胜小明. ····································································· 10分 五、(本题12分) 23.解:(1)21······························································································ 2分 (2)一班众数为90,二班中位数为80 ······························································· 6分 (3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好; ···································································································· 8分 ②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; ················································································································· 10分 ③从B 级以上(包括B 级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班成绩好. ······························································································· 12分 六、(本题12分) 24.解:(1)设y 与x 之间的关系为一次函数,其函数表达式为y kx b =+ ················ 1分将(0100),,(180),代入上式得, 10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩20100y x ∴=-+ ·························································································· 4分验证:当2x =时,20210060y =-⨯+=,符合一次函数; 当 2.5x =时,20 2.510050y =-⨯+=,也符合一次函数.∴可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律. ··················································· 5分 y ∴与x 之间的关系是一次函数,其函数表达式为20100y x =-+ ··························· 6分 (2)当 4.2x =时,由20100y x =-+可得16y =即货车行驶到C 处时油箱内余油16升. ····························································· 8分 (3)方法不唯一,如:方法一:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 设在D 处至少加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯+=+, ··················································· 11分 解得,69a =(升) ····················································································· 12分方法二:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 汽车行驶18千米的耗油量:1820 4.580⨯=(升) D B ,之间路程为:63680 4.218282-⨯-=(千米)汽车行驶282千米的耗油量:2822070.580⨯=(升) ················································································· 11分 70.510(16 4.5)69+--=(升) ···································································· 12分 方法三:由(1)得,货车行驶中每小时耗油20升, ············································· 9分设在D 处加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯++≤,解得,69a ≥ ····························································································· 11分 ∴在D 处至少加油69升,货车才能到达B 地. ················································· 12分七、(本题12分) 25.证明:(1)①BAC DAE ∠=∠ BAE CAD ∴∠=∠AB AC =,AD AE = ABE ACD ∴△≌△BE CD ∴= ·································································································· 3分 ②由ABE ACD △≌△得ABE ACD ∠=∠,BE CD =M N ,分别是BE CD ,的中点,BM CN ∴= ················································· 4分 又AB AC = ABM ACN ∴△≌△AM AN ∴=,即AMN △为等腰三角形 ···························································· 6分 (2)(1)中的两个结论仍然成立. ···································································· 8分 (3)在图②中正确画出线段PD由(1)同理可证ABM ACN △≌△ CAN BAM ∴∠=∠ BAC MAN ∴∠=∠ 又BAC DAE ∠=∠MAN DAE BAC ∴∠=∠=∠AMN ∴△,ADE △和ABC △都是顶角相等的等腰三角形 ································· 10分 PBD AMN ∴∠=∠,PDB ADE ANM ∠=∠=∠PBD AMN ∴△∽△ ···················································································· 12分 八、(本题14分)26.解:(1)点E 在y 轴上 ·············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·················································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨+=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:2829y x x =--+ ·················································· 9分(3)存在符合条件的点P ,点Q . ································································· 10分。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

2008年中考数学试题答案

2008年中考数学试题答案

数学试卷答案及评分参考第 1 页(共 10 页)2008年北京市高级中等学校招生考试数学试卷参考答案及评分参考 第Ⅰ卷 (机读卷 共32分)第Ⅱ卷 (非机读卷共88分)二、填空题(共4道小题,每小题4分,共16分)13.(本小题满分5分)0112sin 45(2)()3π-︒+--.解:0112sin 45(2)()3π-︒+--=213- ………………………………………………………………… 4分 2 .…………………………………………………………………………… 5分14.(本小题满分5分)解不等式 512x -≤2(43)x -,并把它的解集在数轴上表示出来.解:去括号,得 512x -≤86x -.……………………………………………………… 1分移项,得 58x x -≤612-+.……………………………………………………… 2分 合并,得 3x -≤6 . ………………………………………………… 3分 系数化为1,得 x ≥2- . …………………………………………………… 4分 不等式的解集在数轴上表示如下:…………………………… 5分15.(本小题满分5分)已知:如图,C 为BE 上一点,点A 、D 分别在BE 两侧,AB ∥ED ,AB =CE ,BC =ED . 求证:AC =CD . 证明:∵ AB ∥ED ,∴ ∠B =∠E .……………………………… 2分数学试卷答案及评分参考第 2 页(共 10 页)在△ABC 和 △CED 中,,,,AB CE B E BC ED =⎧⎪∠=∠⎨⎪=⎩∴ △ABC ≌△CED .……………………………………………………………… 4分 ∴ AC =CD .………………………………………………………………………5分16.(本小题满分5分)如图,已知直线3y kx =-经过点M ,求此直线与x 轴、y 轴的交点坐标. 解:由图象可知,点M (2,1)-在直线3y kx =-上,……1分∴ 231k --=.解得 2k =-. ……………………………………… 2分 ∴ 直线的解析式为 23y x =--. ……………… 3分 令0y =,可得32x =-.∴ 直线与x 轴的交点坐标为(32-,0).………… 4分 令0x =,可得3y =-.∴ 直线与y 轴的交点坐标为(0,3-). ………………………………………… 5分17.(本小题满分5分)已知 30x y -=,求222()2x yx y x xy y +⋅--+的值.解:222()2x yx y x xy y +⋅--+=22()()x yx y x y +⋅-- ……………………………………………………………………… 2分=2x yx y+- . ……………………………………………………………………… 3分 当30x y -=时, 3x y = . ……………………………………………………………4分 原式=677322y y y y y y +==- . ……………………………………………………………… 5分四、解答题(共2道小题,共10分) 18.(本小题满分5分)如图,在梯形ABCD 中,AD //BC , AB ⊥AC ,∠B =45°, ADBC=, 求DC 的长.解法一:如图1,分别过点A 、D 作AE ⊥BC 于点E ,DF ⊥BC 于点F .…………………………………1分数学试卷答案及评分参考第 3 页(共 10 页)∴ AE // DF . 又 AD // BC ,∴ 四边形AEFD 是矩形.∴ EF =AD2分 ∵ AB ⊥AC ,∠B =45°,BC=, ∴ AB =AC .∴ AE =EC =12BC=.∴ DF =AE=,CF EC EF =-= 4分在Rt △DFC 中,∠DFC =90°,∴ DC………………………………… 5分解法二:如图2,过点D 作DF // AB ,分别交AC 、BC 于点E 、F .………………… 1分 ∵ AB ⊥AC ,∴ ∠AED=∠BAC =90°. ∵ AD // BC ,∴ ∠DAE=180°-∠B -∠BAC =45°.在Rt △ABC 中,∠BAC =90°,∠B =45°,BC=, ∴sin 454AC BC =⋅︒==.……………… 2分 在Rt △ADE 中,∠AED =90°,∠DAE =45°,AD∴ DE =AE =1.∴ 3CE AC AE =-=.…………………………………………………………… 4分 在Rt △DEC 中,∠CED =90°,∴DC =5分19.(本小题满分5分)已知:如图,在Rt △ABC 中,∠C =90°,点O 在AB 上, 以O 为圆心, OA 长为半径的圆与AC 、AB 分别交于点D 、 E ,且∠CBD =∠A .(1)判断直线BD 与⊙O 的位置关系,并证明你的结论; (2)若AD ∶AO =8∶5,BC =2,求BD 的长.解:(1)直线BD 与⊙O 相切.证明:如图1,连结OD .∵ OA =OD ,∴ ∠A =∠ADO . ∵ ∠C =90°,∴ ∠CBD +∠CDB =90°.数学试卷答案及评分参考第 4 页(共 10 页)又∵ ∠CBD =∠A ,∴ ∠ADO +∠CDB =90°. ∴ ∠ODB =90°.∴ 直线BD 与⊙O 相切. …………………………………………… 2分(2)解法一:如图1,连结DE .∵ AE 是⊙O 的直径,∴ ∠ADE =90°. ∵ AD ∶AO =8∶5,∴ 4cos 5AD A AE ==. ∵ ∠C =90°,∠CBD =∠A , ∴ 4cos 5BC CBD BD ∠==. ∵ BC = 2,∴ BD =52. ………………………………………………………… 5分 解法二:如图2,过点O 作OH ⊥AD 于点H .∴ 12AH DH AD ==. ∵ AD ∶AO =8∶5, ∴ 4cos 5AH A AO ==. ∵ ∠C =90°,∠CBD =∠A , ∴ 4cos 5BC CBD BD ∠==. ∵ BC = 2,∴ BD =52. ………………………………………………………… 5分 五、解答题(本题满分6分)20.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有 偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用 问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市使用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:“限塑令”实施前,平均一次购物使用 不同数量塑料..购物袋的人数统计图“限塑令”实施后,使用各种 购物袋的人数分布统计图数学试卷答案及评分参考第 5 页(共 10 页)“限塑令”实施后,塑料购物袋使用后的处理方式统计表请你根据以上信息解答下列问题:(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物,根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑 料购物袋;(2)补全图2,并根据统计图.....和统计...表说明...,购物时怎样选用购物袋,塑料购物袋使用后怎 样处理,能对环境保护带来积极的影响. 解:(1)补全图1见下图.………………………………………………………………………1分9137226311410546373003100100⨯+⨯+⨯+⨯+⨯+⨯+⨯==(个). 这100位顾客平均一次购物使用塑料购物袋的平均数为3个.…………………… 3分2 000×3=6 000 .估计这个超市每天需要为顾客提供6 000个塑料购物袋.………………………… 4分 (2)图2中,使用收费塑料购物袋的人数所占百分比为25% .……………………… 5分 根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购 物袋的使用量,为环保做贡献.……………………………………………………… 6分六、解答题(共2道小题,共9分) 21.(本小题满分5分)列方程或方程组解应用题:京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运 行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟, 由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速度是每小时()40x + 千米.………………………………………………………1分“限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图数学试卷答案及评分参考第 6 页(共 10 页)依题意,得()30+6140602x x =+. …………………………………………………3分 解得 200x =.……………………………………………………………………… 4分答:这次试车时,由北京到天津的平均速度是每小时200千米.……………………… 5分 22. (本小题满分4分)已知等边三角形纸片ABC 的边长为8,D 为AB 边上的点,过点D 作DG //BC 交AC 于点G ,DE ⊥BC 于点E ,过点G 作GF ⊥BC 于点F ,把三角形纸片ABC 分别沿DG 、DE 、GF 按图1所示方式折叠,点A 、B 、C 分别落在点A '、B '、C '处.若点A '、B '、C '在矩形DEFG 内或 其边上,且互不重合,此时我们称△A 'B 'C '(即图中阴影部分)为“重叠三角形”. (1)若把三角形纸片ABC 放在等边三角形网格图中(图中每个小三角形都是边长为1的等 边三角形),点 A 、B 、C 、D 恰好落在网格图中的格点上,如图2所示,请直接写出此 时重叠三角形A 'B 'C '的面积;(2)实验探究:设AD 的长为m ,若重叠三角形A 'B 'C '存在,试用含m 的代数式表示重叠三角形A 'B 'C '的面积,并写出m 的取值范围(直接写出结果,备用图供实验探究使用).解:(1)重叠三角形A 'B 'C '.………………………………………… 1分(2)用含m 的代数式表示重叠三角形A 'B 'C ';……… 2分m 的取值范围为843m ≤<.……………………………………………………… 4分七、解答题(本题满分7分)23.已知:关于x 的一元二次方程 22220mx m x m -+++=(3)(m >0).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x <2x ),若y 是关于m 的函数,且212y x x =-,求这个函数的解析式; (3)在(2)的条件下,结合函数的图象回答:当自变量m 的取值满足什么条件时,y ≤2m .(1)证明:∵ 232220mx m x m -+++=()是关于x 的一元二次方程,图1 图2备用图 备用图数学试卷答案及评分参考第 7 页(共 10 页)∴ []222(32)4(22)44(2m m m m m m ∆=-+-+=++=+).∵ 当 m >0时,22m +()>0,即∆>0.∴ 方程有两个不相等的实数根. ………………………………………… 2分(2)解: 由求根公式,得(32)(2)2m m x m+±+=.∴ 22m x m+=或1x =. ……………………………………………………… 3分 ∵ m >0, ∴222(1)m m m m++=>1. ∵ 1x <2x , ∴ 12221m x x m+==,.……………………………………………………………4分 ∴ 21222221m y x x m m+=-=-⨯=. 即 2y m=(m >0)为所求. …………… 5分 (3)解:在同一平面直角坐标系中分别画出2y m=(m >0) 与2y m =(m >0)的图象. ………………6分由图象可得,当m ≥1时,y ≤2m .………7分 八、解答题(本题满分7分)24.在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B 的左.侧.),与y 轴交于点C ,点B 的坐标为(3,0),将直线y kx =沿y 轴向上平移3个单位长度后恰好经过B 、C 两点.(1)求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标; (3)连结CD ,求∠OCA 与∠OCD 两角和的度数. 解:(1)∵ y kx =沿y 轴向上平移3个单位长度后经过y 轴上的点C ,∴ C (0, 3).设直线BC 的解析式为3y kx =+,∵ B (3, 0)在直线BC 上, ∴ 3k +3=0 . 解得 1k =-.∴ 直线BC 的解析式为3y x =-+.……………………………………………… 1分数学试卷答案及评分参考第 8 页(共 10 页)∵ 抛物线2y x bx c =++过点B 、C , ∴ 930,3.b c c ++=⎧⎨=⎩解得 4,3.b c =-⎧⎨=⎩∴ 抛物线的解析式为 243y x x =-+.……………2分 (2) 由243y x x =-+,可得 D (2,-1),A (1,0).∴ OB =3, OC =3,OA =1,AB = 2. 可得 △OBC 是等腰直角三角形.∴ ∠OBC =45°,CB =如图1, 设抛物线对称轴与x 轴交于点F ,∴ AF =12AB =1.过点A 作AE ⊥BC 于点E . ∴ ∠AEB =90°.可得 BE =CE=.在△AEC 与△AFP 中 ,∠AEC =∠AFP =90°, ∠ACE =∠APF , ∴ △AEC ∽△AFP . ∴AE CE AF PF =,= 解得 PF =2.∵ 点P 在抛物线的对称轴上,∴ 点P 的坐标为(2,2)或(2,-2).……5分(3)解法一:如图2,作点A (1, 0)关于y 轴的对称点A ',则 A '( -1, 0) . 连结A 'C 、A 'D ,可得 A 'C=ACOC A '=∠OCA . 由勾股定理可得 220CD =,2'10A D =. 又 A 'C 2=10,∴ 222''A D A C CD +=.∴ △A 'DC 是等腰直角三角形,∠CA 'D =90°. ∴ ∠DC A '=45°.∴ ∠OC A '+∠OCD = 45°. ∴ ∠OCA +∠OCD = 45°.即 ∠OCA 与∠OCD 两角和的度数为45°.………………………………………… 7分 解法二:如图3,连结BD .同解法一可得CD =AC =在R t △DBF 中,∠DFB =90°,BF = DF=1,数学试卷答案及评分参考第 9 页(共 10 页)∴DB = 在△CBD 和△COA 中,DB BC CD AO OC CA ====== ∴DB BC CDAO OC CA==. ∴ △CBD ∽△COA . ∴ ∠BCD =∠OCA . ∵ ∠OCB= 45°, ∴ ∠OCA +∠OCD = 45°.即 ∠OCA 与∠OCD 两角和的度数为45°.…………………………………………7分九、解答题(本题满分8分) 25.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点 A 、B 、E 在同一条直线上,P 是线段DF 的中点,连结 PG 、PC .若∠ABC =∠BEF =60°,探究PG 与PC 的位 置关系及PGPC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造 全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值;(2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同 一条直线上,原问题中的其他条件不变(如图2), 你在(1)中得到的两个结论是否发生变化?写出 你的猜想并加以证明;(3)若图1中∠ABC =∠BEF =2α(0°<α<90°),将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).解:(1)线段PG 与PC 的位置关系是PG ⊥PC ;PGPC=…………………………………………………………………… 2分 (2)猜想:(1)中的结论没有发生变化.证明:如图,延长GP 交AD 于点H ,连结CH 、CG . ∵ P 是线段DF 的中点, ∴ FP = DP .图1数学试卷答案及评分参考第 10 页(共 10 页)由题意可知 AD ∥FG . ∴ ∠GFP =∠HDP . ∵ ∠GPF =∠HPD , ∴ △GFP ≌△HDP . ∴ GP =HP , GF =HD . ∵ 四边形ABCD 是菱形,∴ CD =CB ,∠HDC =∠ABC =60°. 由∠ABC =∠BEF =60°,且菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上, 可得 ∠GBC =60°. ∴ ∠HDC =∠GBC .∵ 四边形BEFG 是菱形, ∴ GF =GB . ∴ HD =GB .∴ △HDC ≌△GBC .∴ CH =CG ,∠DCH =∠BCG .∴ ∠DCH +∠HCB =∠BCG+∠HCB =120°. 即 ∠HCG =120°. ∵ CH = CG ,PH=PG ,∴ PG ⊥PC ,∠GCP =∠HCP=60°.∴PGPC……………………………………………………………… 6分 (3)tan(90)PGPCα=︒-.………………………………………………………… 8分。

2008年中考数学模拟试题及答案

2008年中考数学模拟试题及答案

2008年中考模拟试题---数学试题说明:本试题共四个大题,考试时间120分钟,满分150分 一、选择题(每题4分共68分)。

1、0.0002002 用科学记数法表示为( )(A )2.002×10-6 (B )2.002×10-5 (C )2.002×10-2 (D )2.002×10-42、在5,•30.2,26,5,π,73中无理数的个数为( ) (A )2 (B )3 (C )4 (D )53、若521-=a , 521+=b ,则a+b+ab 的值为( )(A )521+ (B )521- (C )-5 (D )34、已知等腰三角形的一边等于3,一边等于6,则它的周长为( ) (A )12 (B )12或15 (C )15 (D )15或185、函数xx--=13y 中自变量x 的取值范围是( ) (A )x ≤3 (B )x ≠1 (C )x ≤3且x ≠1 (D )x<3且x ≠1 6、下列方程中,有实数根的是( )(A )021=+-x (B )x 2+3x+4=0(C )01=+xx (D )5-x 5=-x7、已知如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上一个动点,则OP 长的取值范围为( ) (A )OP <5 (B )8<OP <10 (C )3<OP <5 (D )3≤OP ≤58、直角坐标系中,P (-1,2)关于x 轴对称的点的坐标为( ) (A )(-1,-2) (B )(1,-2) (C )(1,2) (D )(-1,2)9、两圆的半径分别为R 和r ,(R >r ),圆心距为d ,若关于x 的方程x 2-2rx+(R -d)2=0有相等的实根,则两圆的位置关系为( )(A )内切 (B )外切 (C )相交 (D )内切或外切10、两个相似三角形的面积比为4:9,周长和是20cm ,则这两个三角形的周长分别是( ) (A )8cm 和12cm (B )7cm 和13cm (C )9cm 和11cm (D )6cm 和14cm 11、△ABC 中,AC=5,中线AD=7,则AB 边的取值范围为( )(A )1<AB <29 (B )4<AB <24 (C )5<AB <19 (D )9<AB <1912、函数y=ax 2-2与xa =y (a ≠0)在同一直角坐标系中的图象可能是( )13、圆外切等腰梯形一腰长为5cm ,则梯形的中位线长为( )(A )10cm (B )5cm (C )20cm (D )15cm14、一个圆柱的侧面展开图是一个面积为10的矩形,这个圆柱的母线长l 与这个圆柱的底面半径r 之间的函数关系为( )(A )正比例函数 (B )反比例函数 (C )一次函数 (D )二次函数 15、在多边形中,内角中锐角的个数不能多于( ) (A )2个 (B )3个 (C )4个 (D )5个16、样本数据10,10,x ,8的众数与平均数相同,那么这组数据的中位数是( ) (A )12 (B )10 (C )9 (D )817、已知αβ都是锐角,且sin α<sin β,则下列关系中准确的是( )(A ) α>β (B )tan α>tan β (C )cos α>cos β (D )cot α<tan β 二、(本题21分,每题各7分)18、计算:132|31|64)21()60tan 1(23202---++-+︒-+--。

2008年江西省中考数学试题及答案

2008年江西省中考数学试题及答案

一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内. 1.15-的相反数是( ) A .5B .5-C .15-D .152.计算23(2)(2)---的结果是( )A .4-B .2C .4D .12 3.“5·12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是( ) A .91.51410⨯B .100.151410⨯C .61.51410⨯D .815.1410⨯4.不等式组2131x x -<⎧⎨>-⎩,的解集是( )A .2x <B .1x >-C .12x -<<D .无解 5.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )6.如图,在□ABCD ,E 是BC 的中点,且∠AEC =∠DCE ,则下列结论不正..确.的是( ) A .12BF DF =B . 2AFD EFB S S =△△C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠7.把二次函数243y x x =-+化成2()y a x h k =-+的形式是( ) A .2(2)1y x =--B .2(2)1y x =+- C .2(2)7y x =-+D .2(2)7y x =++8.下列四个三角形中,与右图中的三角形相似的是( )9.某校对学生上学方式进行了一次抽样调查,右图是根据此次调查结果所绘制的、一个未完成的扇形统计图,已知该校学生共有2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确...的是( ) A .被调查的学生有60人 B .被调查的学生中,步行的有27人C .估计全校骑车上学的学生有1152人D .扇形图中,乘车部分所对应的圆心角为54° 10.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个 B .5个 C .6个 D .7个二、填空题(本大题共6小题,每小题3分,共18分) 11.分解因式:34x x - = .12.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .13.选做题(从下面两题中只选做一题,如果做了两题的,只按第(........................I .)题评分....); (Ⅰ)计算:1sin 60cos302-= . (Ⅱ)用“>”或“<”号填空:1sin 50cos 402- 0.(可用计算器计算) 14.一元二次方程(1)x x x -=的解是 .15.如图,Rt OAB △的直角边OA 在y 轴上,点B 在第一象限内,2OA =,1AB =,若将OAB △绕点O 按顺时针方向旋转90°,则点B 的对应点的坐标是 .16.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d与x 之间满足关系:355d x =-(05x ≤≤),则结论:①2AF =;②5BF =;③5OA =;④3OB =中,正确结论的序号是_ .三、(本大题共3小题,第17小题6分,第18、19小题各7分,共20分) 17.先化简,再求值:(2)(1)(1)x x x x +-+-, 其中12x =-.18.如图,点A,B,C 的坐标分别为(0,1),(1-,0),(1,0),设点D 与A,B,C 三点构成平行四边形. (1)写出所有符合条件的点D 的坐标;(2)选择(1)中的一点D ,求直线BD 的解析式.19.有两个不同形状的计算器(分别记为A ,B )和与之匹配的保护盖(分别记为a ,b )(如图所示)散乱地放在桌子上.(1)若从计算器中随手取一个,再从保护盖中随手取一个,求恰好匹配的概率. (2)若从计算器和保护盖中任意取出两个,用树形图或表格,求恰好匹配的概率.A B a b四、(本大题共2小题,每小题8分,共16分)20.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B '处,点A 落在点A '处. (1)求证:B E BF '=;(2)设AE a AB b BF c ===,,,试猜想a b c ,,之间有何等量关系,并给予证明.21.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,乙同学说:“我俩所用的全部时间的和为50秒,捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?五、(本大题共2小题,每22小题8分,第23小题9分,共17分)22.如图,ABC △是⊙O 的内接三角形,点C 是优弧AB 上一点(点C 不与A B ,重合),设OAB α∠=,C β∠=.(1)当35α=时,求β的度数;(2)猜想α与β之间的关系,并给予证明.23.为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字.但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下:(1)观察、分析上图,写出三.条.不同类型的正确结论; (2)若对甲、乙两同学进行第6次测试,①请你用统计知识分别预测他们估计字数的偏差率(从一个角度预测即可.........) ②若所圈出的实际字数为100,请根据①中预测的偏差率推算出他们估计的字数所在的范围. 六、(本大题共2小题,第24小题9分,第25小题10分,共19分) 24.已知:如图所示的两条抛物线的解析式分别是211y ax ax =--+,221y ax ax =--(其中a 为常数,且0a >).(1)请写出三条..与上述抛物线有关的不同类型的结论; (2)当12a =时,设211y ax ax =--+与x 轴分别交于M,N 两点(M 在N 的左边),221y ax ax =--与x 轴分别交于E,F 两点(E 在F 的左边),观察M,N,E,F 四点坐标,请写出一.个.你所得到的正确结论,并说明理由;(3)设上述两条抛物线相交于A,B 两点,直线12l l l ,,都垂直于x 轴,12l l ,分别经过A,B 两点,l 在直线12l l ,之间,且l 与两条抛物线分别交于C,D 两点,求线段CD 的最大值.25.如图1,正方形ABCD 和正三角形EFG 的边长都为1,点E F ,分别在线段AB,AD 上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E,F 分别与B,A 重合时,记0α=). (1)当0α=时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角线AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);0.03 0 0.29 (4)若将“点E,F 分别在线段AB,AD 上滑动”改为“点E,F 分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.62621.732sin150.259sin750.96644-+==,≈,≈.)2008年江西省中考数学试题参考答案一、选择题(本大题共10小题,每小题3分,共30分) 1.D 2.D 3.A 4.C 5.B 6.B 7.A 8.B 9.C 10.C二、填空题(本大题共6小题,每小题3分,共18分) 11.(2)(2)x x x +-12.12513.(Ⅰ)14(Ⅱ)>14.10x =,22x = 15.(21)-,16.①②③说明:第16题,填了④的,不得分;未填④的,①,②,③中每填一个得1分. 三、(本大题共3小题,第17小题6分,第18,19小题各7分,共20分)17.21x =+. ······························ 4分 当12x =-时,原式12102⎛⎫=⨯-+= ⎪⎝⎭. ··················· 6分 18.解:(1)符合条件的点D 的坐标分别是1(21)D ,,2(21)D -,,3(01)D -,. ······················ 3分 (2)①选择点1(21)D ,时,设直线1BD 的解析式为y kx b =+, ········· 4分 由题意得021k b k b -+=⎧⎨+=⎩, 解得1313k b ⎧=⎪⎪⎨⎪=⎪⎩, ···················· 6分∴直线1BD 的解析式为1133y x =+.····················· 7分 ②选择点2(21)D -,时,类似①的求法,可得 直线2BD 的解析式为1y x =--. ······················ 7分③选择点3(01)D -,时,类似①的求法,可得直线3BD 的解析式为1y x =--. ··· 7分说明:第(1)问中,每写对一个得1分.19.解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种情况,恰好匹配的有Aa ,Bb 两种情况,21()42P ∴==恰好匹配. ························· 3分 (2)方法一:画树状图如下:所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba ······· 5分 可见,从计算器和保护盖中任意选取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,ABaBAaa ABb AB41()123P ∴==恰好匹配. ························· 7分 方法二:列表格如下:A B a b A AB Aa Ab B BA Ba Bb aaAaBabb bA bB ba···················· 5分 可见,从计算器和保护盖中任意选取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ························· 7分 四、(本大题共2小题,每小题8分,共16分) 20.(1)证一:由题意得B F BF '=,B FE BFE '∠=∠, ··········· 1分 在矩形ABCD 中,AD BC ∥, B EF BFE '∴∠=∠, ··············· 2分 B FE B EF ''∴∠=∠. ··············· 3分 B F B E ''∴=. ················· 4分 B E BF '∴=. ·················· 5分 证二:连结BE ,由题意得, B E BE '=.B EF BEF '∴∠=∠ ···························· 1分 在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠ ···························· 2分BEF BFE ∴∠=∠.···························· 3分 BE BF ∴=.······························· 4分 B E BF '∴=. ······························ 5分 (2)解:可猜想a b c ,,之间存在关系:222a b c +=. ············ 6分 证一:由题意知,A E AE A B AB '''==,. 由(1)知B E BF '=. 在Rt A EB ''△中,90A A E a A B b B E c '''''∠====,,,,∴222a b c +=. ················· 8分证二:由题意知,BE B E '=.由(1)知BF B F '=,BF BE ∴=.在Rt AEB △中,90A AE a AB b BE c ∠====,,,,∴222a b c +=. ····························· 8分21.解法一:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, ····· 1分 根据题意,得60606501.2x x⎛⎫++=⎪⎝⎭, ···················· 3分 解得 2.5x =.······························· 4分经检验, 2.5x =是方程的解,且符合题意. ·················· 5分A B CDF A ' B 'E ABCDFA 'B 'E∴甲同学所用的时间为:606261.2x +=(秒), ················ 6分 乙同学所用的时间为:6024x=(秒). ···················· 7分 2624>,∴乙同学获胜. ························ 8分 解法二:设甲同学所用的时间为x 秒,乙同学所用的时间为y 秒, ········ 1分根据题意,得5060601.26x y x y +=⎧⎪⎨=⨯⎪-⎩, ······················· 3分解得2624.x y =⎧⎨=⎩,······························· 6分经检验,26x =,24y =是方程组的解,且符合题意.x y >,∴乙同学获胜. ························· 8分五、(本大题共2小题,每22小题8分,第23小题9分,共17分) 22.(1)解:连接OB ,则OA OB =,35OBA OAB ∴∠=∠=. ·············· 1分180110AOB OAB OBA ∴∠=-∠-∠=. ······ 2分1552C AOB β∴=∠=∠=.(2)答:α与β之间的关系是90αβ+=. ················ 4分 证一:连接OB ,则OA OB =.OBA OAB α∴∠=∠=. ··········· 5分1802AOB α∴∠=-. ·························· 6分11(1802)9022C AOB βαα∴=∠=∠=-=-.∴90αβ+=. ····························· 8分证二:连接OB ,则OA OB =.22AOB C β∴∠=∠=.··········· 5分 过O 作OD AB ⊥于点D ,则OD 平分AOB ∠. · 6分12AOD AOB β∴∠=∠=.在Rt AOD △中,90OAD AOD ∠+∠=, ··· 7分∴90αβ+=. ····························· 8分证三:延长AO 交O 于E ,连接BE ,则E C β∠=∠=. ·············· 5分AE 是O 的直径,∴90ABE ∠=. ····· 6分90BAE E ∴∠+∠=,∴90αβ+=. ····························· 8分23.(1)答案不惟一,例如:①甲同学对字数的估计能力没有明显的提高,或乙同学经反馈后对字数的估计能力有明显提高; ②甲同学的偏差率最小值是13%,或乙同学的偏差率最小值是4%,或甲、乙两同学的偏差率最大值者是20%;③从第二次开始,乙同学的偏差率都低于甲同学的偏差率,即从第二次开始,乙同学每次都比甲同学的估计更准确;④甲同学的平均偏差率是16%,或乙同学的平均偏差率是11%;⑤甲同学的偏差率的极差是7%,或乙同学的偏差率的极差是16%;等等. ···· 3分 (2)①对甲同学第6次偏差率的预测,答案不唯一,例如:(i )从平均偏差率的角度预测,甲同学字数估计的偏差率是16%;(ii )从偏差率的最大值与最小值的平均值预测,甲同学字数估计的偏差率是16.5%; (iii )从偏差率的中位数角度预测,甲同学字数估计的偏差率是15%;等等. ·· 5分 对乙同学第6次偏差率的预测,答案不唯一,例如:(i )从平均偏差率的角度预测,乙同学字数估计的偏差率是11%;(ii )从偏差率的变化趋势预测,乙同学字数估计的偏差率在04%%之间;(iii )从偏差率的中位数角度预测,乙同学字数估计的偏差率是10%;等等. ·· 7分 ②根据偏差率的计算公式,得估计的字数=实际字数±(实际数字⨯偏差率).当所圈出的实际字数为100时,可相应地推算出甲、乙估计的字数所在的范围. 对甲同学而言,相应地有(i )从平均偏差率的角度预测,估计的字数所在的范围是84~116;(ii )从偏差率的最大值与最小值的平均值预测,估计的字数所在的范围是:84~116或83~117; (iii )从偏差率的中位数角度预测,估计的字数所在的范围是:85~115;等等. ·· 8分 对乙同学而言,相应地有(i )从平均偏差率的角度预测,估计的字数所在的范围是89~111;(ii )从偏差率的变化趋势预测,估计的字数所在的范围是:96~104,或其它; (iii )从偏差率的中位数角度预测,估计的字数所在的范围是:90~110;等等. ·· 9分 说明:1.第(1)问中,答对了一条得1分,共3分;2.偏差率预测,每答对一条得2分;估计的字数范围,每答对一条得1分; 3.答案与上述不同,但言之有理的,酌情给分; 4.未写过程但结果正确的得满分. 六、(本大题共2小题,第24小题9分,第25小题10分,共19分) 24.(1)解:答案不唯一,只要合理均可.例如:①抛物线211y ax ax =--+开口向下,或抛物线221y ax ax =--开口向上; ②抛物线211y ax ax =--+的对称轴是12x =-,或抛物线221y ax ax =--的对称轴是12x =; ③抛物线211y ax ax =--+经过点(01),,或抛物线221y ax ax =--经过点(01)-,;④抛物线211y ax ax =--+与221y ax ax =--的形状相同,但开口方向相反;⑤抛物线211y ax ax =--+与221y ax ax =--都与x 轴有两个交点;⑥抛物线211y ax ax =--+经过点(11)-,或抛物线221y ax ax =--经过点(11)-,;等等. ·································· 3分(2)当12a =时,2111122y x x =--+,令2111022x x --+=, 解得21M N x x =-=,. ·························· 4分 2211122y x x =--,令2111022x x --=,解得12E F x x =-=,. ······· 5分 ①00M F N E x x x x +=+=∴,,点M 与点F 对称,点N 与点E 对称; ②0M F N E x x x x M N E F +++=∴,,,,四点横坐标的代数和为0;③33MN EF MN EF ==∴=,,(或ME NF =). ············· 6分 (3)0a >,∴抛物线211y ax ax =--+开口向下,抛物线221y ax ax =--开口向上. ···· 7分根据题意,得22212(1)(1)22CD y y ax ax ax ax ax =-=--+---=-+. ···· 8分∴当0x =时,CD 的最大值是2. ······················ 9分 说明:1.第(1)问每写对一条得1分;2.第(2)问中,①②③任意写对一条得1分;其它结论参照给分.25.解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .60ABG ∠=,1BG =,MG ∴=,12BM =.1x ∴=12y =. ·························· 2分 (2)当45α=时,点G 在对角线AC 上,其理由是: ············· 3分 过G 作IQ BC ∥交AB CD ,于I Q ,,过G 作JP AB ∥交AD BC ,于J P ,. AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=. GE GF =,Rt Rt GEI GFJ ∴△≌△,GEI GFJ ∴∠=∠. 60GEF GFE ∠=∠=,AEF AFE ∴∠=∠. B (E ) A (F ) DCG K M NH D Q90EAF ∠=,45AEF AFE ∴∠=∠=.即45α=时,点G 落在对角线AC 上. ··················· 4分 (以下给出两种求x y ,的解法)方法一:4560105AEG ∠=+=,75GEI ∴∠=.在Rt GEI △中,6sin 75GI GE ==, 14GQ IQ GI ∴=-=-. (5)分 14x y ∴==-. ·························· 6分 方法二:当点G在对角线AC 上时,有12=··························· 5分解得14x =-14x y ∴==-. ··························6分 (3)α 0 15 30 45 60 75 90 x0.13 0.03 0 0.03 0.13 0.29 0.50 y 0.50 0.29 0.13 0.03 0 0.03 0.13···················· 8分(4)由点G 所得到的大致图形如图所示:························ 10分 说明:1.第(1)问中,写对x y ,的值各得1分;2.第(2)问回答正确的得1分,证明正确的得1分,求出x y ,的值各得1分;3.第填对其中4空得1分; 3.图形大致画得正确的得2分.HA C DB。

2008年中考数学模拟试卷

2008年中考数学模拟试卷

2008年中考数学模拟试卷(全卷三个大题,共26个小题,共5页;满分120分,考试时间120分钟)一. 选择题 (本大题共9个小题,每小题只有一个正确选项,每小题3分,满分27分)1.-3的相反数等于 ( ) A.3- B.3 C.13-D.132. 下列计算正确的是 ( )A. x 2·x 4=x 8B. x 6÷x 3=x 2C. 2a 2+3a 3=5a 5D. (2x 3)2=4x 63..抛物线2)8(2+--=a y 的顶点坐标是 ( )A 、(2,8)B 、(8,2)C 、(—8,2)D 、(—8,—2)4. 若圆A 和圆B 相切, 它们的半径分别为cm 8和2 cm. 则圆心距AB 为( )A. 10cmB. 6cmC. 10cm 或6cmD. 以上答案均不对5.如右图,在ABC ∆中,=60A ∠,按图中虚线将A ∠剪去后,12=∠+∠( )A .120○B .240○C .300○D .360○6.使分式24xx -有意义的x 的取值范围是 ( ) A. 2x = B.2x ≠ C.2x =- D.2x ≠-7.下列说法正确的个数是①样本的方差越小,波动越小,说明样本越稳定;②一组数据的方差一定是正数;③抽样调查时样本应具有代表性;④样本中各组数的频率之和一定等于1.A .1个B .2个C .3个D .4个8.如图4,王华晚上由路灯A 下的B 处走到C处时,测得 影子CD 的长为1米,继续往前走3米到达E处时,测 得影子EF 的长为2米,已知王华的身高是1.5米,那么 路灯A 的高度AB 等于 ( ) A .4.5米 B .6米 C .7.2米 D .8米9.观察下列图形,并判断照此规律从左向右第2007个图形是( )A BC D E F二.填空题 (本大题共8个小题,每小题3分,满分24分)10. 三峡电站的总装机量是一千八百二十万千瓦,用科学记数法把它表示为 千瓦;11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:6,7,3,6,6,4;则这组数据的中位数为 件;12.如图,直线MA ∥NB ,∠A=70°,∠B=40°.则∠P=____________;13. 已知:圆锥的底面半径为9㎝,母线长为30㎝,则圆锥的侧面积为 ;14.方程042=-x x 的解为 ;15.如图,这是小亮制作的风筝,为了平衡做成轴对称图形,已知. OC 是对称轴,∠A=35°,∠ACO=30°,那么∠BOC= ;三. 解答题 (本大题共9个小题,满分69分)18. (本题6分)先化简, 化简值:22)242(2222=---⋅+a a a a a a a ,其中 19.(本题6分)已知二元一次方程:(1)4=+y x ;(2)22=-y x ;(3)12=-y x ;请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这方程组的解.20. (本题6分)有一根竹竿, 不知道它有多长. 把竹竿横放在一扇门前, 竹竿长比门宽多4尺; 把竹竿竖放在这扇门前, 竹竿长比门的高度多2尺; 把竹竿斜放, 竹竿长正好和门的对角线等长. 问竹竿长几尺? 21.(本题6分)如图,在△ABC 中,BC =4,以点 A 为圆心、2 为半径的⊙A 与 BC 相切于点 D ,交AB 于E ,交 AC 于F ,点 P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是多少?16.如右图所示,l 1 是反比例函数xky =在第一象限内的图象,且经过点A (2,1),l 2 与l 1 关于x 轴对称,那么图象l 2 的函数解析式为 ;17.计算2-的值为 ; AP22.(本题7分)如图,已知点M 是平行四边形ABCD 的AB 边上的中点,请你添加一个条件,并在此条件下,证明: ∠DAN=∠BCM .23.(本题7分)如图,点A 是一个半径为300米的圆形森林公园的中心,在森林公园附近有B 、C 两个村庄,现要在B 、C 两村庄之间修一条长为1000米的笔直公路将两村连通.经测得∠ABC =45°,∠ACB =30°,问此公路是否会穿过森林公园?请通过计算进行说明.24.(本题8分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加; (1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式作游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,这个游戏对双方公平吗?如何调整可使游戏公平?25.(本题11分)某服装销售商店到生产厂家选购A 、B 两种型号的服装,若购进A 种型号服装9件,B 种型号服装10件,需要1810元;若购进A 种型号服装12件,B 种型号服装8件,需要1880元. (1)求A 、B 两种型号的服装每件分别为多少元?(2)若销售1件A 型服装可获利18元,销售1件B 型服装可获利30元,根据市场需求,该商店决定购进A 型服装的数量要比购进B 型服装数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元.请问,有几种进货方案?如何进货?26.(本题12分) 如图,在等腰梯形ABCD 中,AB=DC=5,AD=4,BC=10. 点E 在下底边BC 上,点F 在腰AB 上. (1)若EF 平分等腰梯形ABCD 的周长,设BE 长为x ,试用含x 的代数式表示△BEF 的面积;(2)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由; (3)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分?若存在,求出此时BE 的长;若不存在,请说明理由._ D_ N_ C _ M_ A_B。

2008年河北省中考数学试题(含答案)

2008年河北省中考数学试题(含答案)

2008年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.8-的倒数是()A.8B.8-C.18D.18-2.计算223a a+的结果是()A.23a B.24a C.43a D.44a3.把某不等式组中两个不等式的解集表示在数轴上,如图1则这个不等式组可能是()页脚内容1页脚内容2A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为( ) A .80.155110⨯B .4155110⨯C .71.55110⨯D .615.5110⨯5.图2中的两个三角形是位似图形,它们的位似中心是( ) A .点PB .点OC .点MD .点N6.某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .23000(1)5000x +=B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++= 7.如图3,已知O e 的半径为5,点O 到弦AB 的距离为3,则O e 上 到弦AB 所在直线的距离为2的点有( ) A .1个B .2个C .3个D .4个8.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( ) A .两枚骰子朝上一面的点数和为6B .两枚骰子朝上一面的点数和不小于2页脚内容3C .两枚骰子朝上一面的点数均为偶数D .两枚骰子朝上一面的点数均为奇数9.如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x ≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )10.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90o ,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右2008年河北省初中毕业生升学文化课考试数学试卷页脚内容4卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 11.如图6,直线a b ∥,直线c 与a b , 相交.若170∠=o , 则2_____∠=o .12.当x =时,分式31x -无意义. 13.若m n ,互为相反数,则555m n +-= .14.如图7,AB 与O e 相切于点B ,AO 的延长线交O e 于点C 连结BC .若36A ∠=o ,则______C ∠=o .15.某班学生理化生实验操作测试成绩的统计结果如下表:则这些学生成绩的众数为 .16.图8所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是g.17.点(231)P m-,在反比例函数1yx=的图象上,则m=.18.图9-1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC=,5BC=,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是.三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分7分)已知2x=-,求21211x xx x-+⎛⎫-÷⎪⎝⎭的值.页脚内容520.(本小题满分8分)某种子培育基地用A,B,C,D四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图.(1)D型号种子的粒数是;(2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广;(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B型号发芽种子的概率.页脚内容6页脚内容721.(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得 ADP △与ADC △的面积相等,请直接..写出点P 的坐标.22.(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45o 方向的B 点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60o 方向继续移动.以O 为原点建立如图12所示的直角坐标系.(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为点A)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?23.(本小题满分10分)页脚内容8在一平直河岸l同侧有A B,两个村庄,A B,到l的距离分别是3km和2km,kmAB a=(1)a>.现计划在河岸l上建一抽水站P,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中管道长度为1d,且1(km)d PB BA=+(其中BP l⊥于点P);图13-2是方案二的示意图,设该方案中管道长度为2d,且2(km)d PA PB=+(其中点A'与点A关于l对称,A B'与l交于点P).观察计算(1)在方案一中,1d=km(用含a的式子表示);(2)在方案二中,组长小宇为了计算2d的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d=km(用含a的式子表示).探索归纳(1)①当4a=时,比较大小:12_______d d(填“>”、“=”或“<”);②当6a=时,比较大小:12_______d d(填“>”、“=”或“<”);(2就a(当1a>时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?24.(本小题满分10分)如图14-1,ABC△的边FP也在直线l上,边EF=;EFP⊥,且AC BC△的边BC在直线l上,AC BC与边AC重合,且EF FP=.(1)在图14-1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将EFP△沿直线l向左平移到图14-2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ 与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP△沿直线l向左平移到图14-3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.页脚内容10页脚内容1125.(本小题满分12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:页脚内容12年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.页脚内容1326.(本小题满分12分)如图15,在Rt ABC △中,90C ∠=o ,50AB =,30AC =,D E F ,,分别是AC AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.页脚内容14参考答案一、选择题二、选择题 11.70; 12,1; 13.5-; 14.27; 15.9分(或9);16.20;17.2;18.76.三、解答题19.解:原式21(1)x xx x -=⨯- 11x =-.页脚内容15当2x =-时,原式13=-.20.解:(1)500; (2)如图1;(3)A Q 型号发芽率为90%,B 型号发芽率为92.5%, D 型号发芽率为94%,C 型号发芽率为95%.∴应选C 型号的种子进行推广.(4)3701(B )6303703804705P ==+++取到型号发芽种子.21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,.(2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-.4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由333 6.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 3AD =Q ,193322ADC S ∴=⨯⨯-=△.(4)(63)P ,. 22.解:(1)B -,C -;页脚内容16(2)过点C 作CD OA ⊥于点D ,如图2,则CD =. 在Rt ACD △中,30ACD ∠=o,CD =,cos30CD CA ∴==o 200CA ∴=. 20020630-=Q,5611+=, ∴台风从生成到最初侵袭该城要经过11小时.23.观察计算 (1)2a +; (2探索归纳(1)①<;②>;(2)222212(2)420d d a a -=+-=-.①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>; ②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=; ③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<. 综上可知:当5a >时,选方案二;页脚内容17当5a =时,选方案一或方案二;当15a <<(缺1a >不扣分)时,选方案一. 24.解:(1)AB AP =;AB AP ⊥. (2)BQ AP =;BQ AP ⊥.证明:①由已知,得EF FP =,EF FP ⊥,45EPF ∴∠=o . 又AC BC ⊥Q ,45CQP CPQ ∴∠=∠=o .CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=o ,CQ CP =,Rt Rt BCQ ACP ∴△≌△,BQ AP ∴=.②如图3,延长BQ 交AP 于点M .Rt Rt BCQ ACP Q △≌△,12∴∠=∠.在Rt BCQ △中,1390∠+∠=o ,又34∠=∠,241390∴∠+∠=∠+∠=o . 90QMA ∴∠=o .BQ AP ∴⊥.(3)成立.1页脚内容18证明:①如图4,45EPF ∠=o Q ,45CPQ ∴∠=o . 又AC BC ⊥Q ,45CQP CPQ ∴∠=∠=o .CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=o ,CQ CP =,Rt Rt BCQ ACP ∴△≌△.BQ AP ∴=.②如图4,延长QB 交AP 于点N ,则PBN CBQ ∠=∠.Rt Rt BCQ ACP Q △≌△,BQC APC ∴∠=∠.在Rt BCQ △中,90BQC CBQ ∠+∠=o ,90APC PBN ∴∠+∠=o .90PNB ∴∠=o . QB AP ∴⊥.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元;2399020w x x =-+-甲. (2)在乙地区生产并销售时,年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙.页脚内容19由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=.(3)在乙地区生产并销售时,年利润2110905w x x =-+-乙,将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).w w >Q 乙甲,∴应选乙地. 26.解:(1)25. (2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明), 此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =.故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图6.页脚内容204QB t =,7DE EP t +=,由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7.已知4QB t =,从而5PB t =,由735PF t =-,20BF =,得573520t t =-+.解得172t =.(4)如图8,213t =;如图9,39743t =.6027t <≤时,点P(注:判断PG AB ∥可分为以下几种情形:当下行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在PG AB ∥;由于点P 比点G 先到达点C 并继续沿CD 下行,所以在6787t <<中存在PG AB ∥的时刻,如图9;当810t ≤≤时,点P G ,均在CD 上,不存在PG AB ∥)。

2008年武汉市中考数学试题及参考答案

2008年武汉市中考数学试题及参考答案

2008年武汉市中考数学试卷注意事项:1.用钢笔或圆珠笔直接答在试卷上.2.答卷前请将密封线内的项目填写清楚.第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑。

1.小怡家的冰箱冷藏室温度是5℃,冷冻室温度是-2℃,则她家冰箱冷藏室温度比冷冻室温度高(A)3℃.(B)-3℃.(C)7℃.(D)-7℃.2.不等式x<3的解集在数轴上表示为3.已知关于x的方程4x-3m=2的解是x=m,则m的值是(A)2. (B)-2. (C)2. 7. (D)-2。

74.计算上题的结果是(A)2. (B)±2. (C)-2. (D)4.5.函数y= x-5姨的自变量x的取值范围是(A)x>5.(B)x<5.(C)x≥5.(D)x≤5.6.如图,六边形ABCDEF是轴对称图形.CF所在的直线是它的对称轴,若∠AFC+ ∠BCF =150°,则∠AFE-∠BCD的大小是(A)150°(B)300°(C)210°(D)330°.7.如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是(A)内含(B)外切(C)相交(D)外离.8.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)伴于她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是(A)250m (B)250.3 m (C)500.33 m (D)250. 2 m9.一个无盖的正方体盒子的平面展开图可以是下列图形中的(A)只有图①(B)图①、图②(C)图②、图③(D)图①、图③10.“祝福北京”、“祝福奥运”是每个中国人良好的心愿.亮亮、兵兵和军军三个同学都有一套外形完全相同,背面分别写有“祝福”、“北京”、“奥运”字样的三张卡片.他们分别从自己的一套卡片中随机抽取一张,抽取的三张卡片中含有“祝福”“北京”“奥运”的概率是(A)1:27.(B)1:9.(C)2:9.(D)1: 3.11.2008年某市应届初中毕业生人数约10.8万.比去年减少约0.2万,其中报名参加高级中等学校招生考试(简称中考)的人数约10.5万,比去年增加约0.3万,下列结论:② 与2007年相比,2008年该市应届初中毕业生人数下降了0.210.8×100%;②与2007年相比,2008年该市应届初中毕业生报名参加中考人数增加了0.3 10.5×100%;③与2007年相比,2008年该市应届初中毕业生报名参加中考人数占应届初中毕业生人数的百分比提高了(10.5 10.8-10.211)×100%其中正确的个数是(A)0. (B)1. (C)2. (D)3.12.下列命题:①若a+b+c=0,则b2-4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2-4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的(A)只有①②③.(B)只有①③④.(C)只有①④.(D)只有②③④.第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分)13.在创建国家生态园林城市活动中,某市园林部门为了扩大城市绿化面积,进行了大量的树木移栽.下表记录的是在相同条件下移栽某种幼树的棵数与成活棵数:依此估计这种幼树移栽成活的概率是__________(结果用小数表示,精确到0.1).14.如图,直线y=kx+b经过A(-2,-1)和B(-3,0)两点,则不等式组12x<kx+b<0的解集为__________.(第14题)(第15题)15.如图,半径为5的⊙P与y轴交于点M(0,-4),N(0,-10),函数y=kx(x<0)的图象过点P,则k=__________.16.下列图案均是用长度相同的小木棒按一定规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,……,依此规律,拼搭第8个图案需要小木棒_______根.第1个第2个第3个第4个三、解答题(共9小题,共72分)17.(本题6分)解方程:x2-x-5=0.18.18.(本题6分)先化简,再求值:(2x-3 x-1)÷x2-9x,其中x=2.19.(本题6分)如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.20.(本题7分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,钭调查的数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答如下问题:(1)典典同学共调查了______名居民的年龄,扇形统计图中a=______,b=______;(2)补全条形统计图;(3)若该辖区年龄在0-14岁的居民约有3500人,请估计年龄在15-59岁的居民人数.21.(本题7分)(1)点(0,1)向下平移2个单位后的坐标是_________,直线y=2x+1向下平移2个单位后的解析式是__________________;(2)直线y=2x+1向右平移2个单位后的解析式是__________________;(3)如图,已知点C为直线y=x上在第一象限内的一点,直线y=2x+1交y轴于点A交x轴于点B,将直线AB沿射线OC方向平移3 2姨个单位,求平移后的直线解析式.22.(本题8分)如图,AB是⊙O的直线,AC是弦,∠BAC的平分线AD交⊙O 于点D,DE⊥AC,交AC的延长线于点E.OE交AD于点F.(1)求证:DE是⊙O的切线;(2)若ACAB=35,求AFDF的值.23.(本题10分)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少?24.(本题10分)正方形ABCD中,点O是对角线AC的中点,P为对角线AC上一动点,过点P作PF⊥DC于点F.如图1,当点P与点O重合时,显然有DF=CF.(1)如图2,若点P在线段AO上(不与点A,O重合),PE⊥PB且PE交CD点E.①求证:DF=EF,②写出线段PC、PA、CE之间的一个等量关系式,并证明你的结论:(2)若点P在线段OC上(不与点O,C重合),PE⊥PB且PE交直线CD于点E.请完成图3并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明).25.(本题12分)如图1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.2008年武汉市中考数学试题参考答案一、 选择题:CBAAC ,BDADC ,BB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年中考数学模拟试卷(1)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷10小题,共30分,第Ⅱ卷90分,共120分.考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)1、下列各式中正确的是 ( ) A 、242-=- B 、()33325= C 、1)1-21)(2(=+ D 、x x x 842÷=2、如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是 ( )A 、102cm B 、102πcm C 、202cm D 、202πcm3、10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( ) A 、284+x B 、542010+x C 、158410+x D 、1542010+ 4、为了判断甲、乙两个小组学生英语口语测验成绩哪一组比较整齐,通常需要知道两组成绩的( )A 、平均数B 、方差C 、众数D 、频率分布5、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。

游客爬山所用时间t 与山高h 间的函数关系用图形表示是 ( )A B C6、如图,已知四边形ABCD 是⊙O 的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题错误的是( ) A 、△AED ∽△BEC B 、∠AEB=90ºC 、∠BDA=45ºD 、图中全等的三角形共有2对7梯形的上底和下底为直径作圆,则这两个圆的位置关系是()A、相离B、相交C、外切D、内切8、已知一元二次方程2x2-3x-6=0有两个实数根x1、x2,直线l经过点A(x1+x2,0)、B(0,x1·x2),则直线l的解析式为()A、y=2x-3B、y= 2x+3C、y= -2x-3D、y= -2x+39、将图形(1)按顺时针方向旋转900后的图形是()图形(1)A C D10、在一列数1,2,3,4,…,1000中,数字“0”出现的次数一共是()A、182B、189C、192D、194第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2005年海外学习汉语的学生人数已达38 200 000人),用科学记数法表示为人(保留3个有效数字).12.从两副拿掉大、小王的扑克牌中,各抽取一张,两张牌都是红桃的概率是 .13.要在一个矩形纸片上画出半径分别是4cm和1cm的两个外切圆,该矩形纸片面积的最小值...是 .14.右图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形 的边长是a ,则六边形的周长是 .15.党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。

在本世纪的头二十年(2001年~2020年),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x ,那么x 满足的方程为 ;16.如图,沿倾斜角为30º的山坡植树,要求相邻两棵树间的水平 距离AC 为m 2,那么相邻两棵树的斜坡距离AB 约为_________m(结果精确到0.1m ,)(可能用到的数据:3≈1.732, 2≈1.414);三、解答题(72分) 17、(6分)计算20)31()14.3(31331----+⨯÷-π; 18、(7分)化简求值:a a a a a a a ÷--++--22121222,其中12+=a ; 19、(8分)解不等式组,并把其解集在数轴上表示出来:33213(1)8x x x x -⎧+≥⎪⎨⎪--<-⎩20、(8分)某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。

(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱? 21、(8分)如图,已知△ABC ,∠ACB=90º,AC=BC ,点E 、 F 在AB 上,∠ECF=45º,(1)求证:△ACF ∽△BEC (5分)(2)设△ABC 的面积为S ,求证:AF ·BE=2S (3)22、(8分)如图所示:一次函数b kx y +=的图象与反比例函数xmy =的图象交于A 、B 两点,⑴ 利用图中的条件,求一次函数与反比例函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围;23、(9分)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变。

有关数据如下表所示:(风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%。

问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?24、(9分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:x根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分. (l )请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)? (3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?25、(9分)在平面直角坐标系中,已知矩形ABCD 中,边2AB =,边1AD =,且AB 、AD 分别在x 轴、y 轴的正半轴上,点A 与坐标原点重合.将矩形折叠,使点A 落在边DC 上,设点A '是点A 落在边DC 上的对应点. (1)当矩形ABCD 沿直线12y x b =-+折叠时(如图1),求点A '的坐标和b 的值;(2)当矩形ABCD 沿直线y kx b =+折叠时,①求点A '的坐标(用k 表示);求出k 和b 之间的关系式;②如果我们把折痕所在的直线与矩形的位置分 为如图2、3、4所示的三种情形,请你分别写出每种情形时k 的取值范围.(将答案直接填在每种情形下的横线上)(图1)k 的取值范围是 ; k 的取值范围是 ;k 的取值范围是 ;参考答案一、 1、C ;提示:1)1-21)(2(=+正确 2、D ;提示:圆柱侧面展开图图是矩形,面积为2π×2×5=20π 3、B ;提示:(10名学生的总分+5与学生总分)÷5=542010+x 4、B ;提示:方差是刻划数据波动大小的特征的量 5、D ;提示:观察图象知D 正确 6、B ;提示:根据已知条件 无法推出∠AEB=90º 7、C ;提示:高等于上下底和的一半,等于两圆半径之和 8、A ;提示:x 1+x 2=3/2,x 1x 2=-3 9、D ;提示:注意到按顺时针旋转90010、C ;提示:根据计数法知194个 二、11、3.82×10712、提示:52135213+=11613、72cm 2;提示:矩形的长为9,宽为8,9×8=72 14、3oa ;提示:设比边长为a 的小三角形的边长为x,则2x=x+2a ,∴x=2a ,于是可依次求出各三角形的边长 15、4)1(2=+x 16、约为3.2;提示:AB =︒30cos 2三、17、原式271891271)3(131313121-=-+-=--+⨯⨯-=-- 6分 解答:18、原式4分当12+=a 时,原式7分19、解:解不等式33,2x x -+≥得x ≥3; 2分 解不等式 1-3 (x-1) < 8-x ,得x >-2. 4分 所以,原不等式组的解集是-2 < x ≤3. 5分 在数轴上表示为 20、解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元 根据题意,得48452x x -+=2分解这个方程,得 x =92484928360x -=⨯-= 3分答:该同学看中的随身听单价为360元,书包单价为92元。

4分解法二:设书包的单价为x 元,随身听的单价为y 元 根据题意,得x y y x +==-⎧⎨⎩45248……1分 ;解这个方程组,得x y ==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元。

(2)在超市A 购买随身听与书包各一件需花费现金: 45280%3616⨯=.(元6分 因为3616400.<,所以可以选择超市A 购买。

在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金: 3602362+=(元) 7分 因为362400<,所以也可以选择在超市B 购买。

因为3623616>.,所以在超市A 购买更省钱。

8分 21、证明:(1) ∵ AC=BC , ∴ ∠A = ∠B 1分 ∵ ∠ACB=90º, ∴ ∠A = ∠B = 45 0, ∵ ∠ECF= 45º, ∴ ∠ECF = ∠B = 45º, 2分 ∴ ∠ECF +∠1 = ∠B +∠1∵ ∠BCE = ∠ECF +∠1,∠2 = ∠B +∠1; ∴ ∠BCE = ∠2, 3分 ∵ ∠A = ∠B ,AC=BC ,∴ △ACF ∽△BEC 。

4分 (2)∵△ACF ∽△BEC∴ AC = BE ,BC = AF , 5分 ∴△ABC 的面积:S =21AC ·BC = 21BE ·AF 7分 ∴AF ·BE=2S. 8分 22、解:(1)∵反比例函数xmy =过A (2-,1)点,∴21-=m,∴2-=m 2分 ∵反比例函数xy 2-=过B(1,n )∴212-=-=n 3分∵一次函数b kx y +=过A (2-,1)、B (1,2-)x∴⎩⎨⎧+=-+-=b k b k 221 ⎩⎨⎧-=-=⇒11b k 5分∴所求一次函数与反比例函数的解析式为:1--=x y xy 2-= 6分 (2)2-<x 或10<<x . 8分 23、(1)风景区是这样计算的:调整前的平均价格:()元1652520151010=++++ 1分设整后的平均价格:()元16530251555=++++ 2分 ∵调整前后的平均价格不变,平均日人数不变∴平均日总收入持平 3分(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元) 4分现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元) 6分∴平均日总收入增加了:%.49160160175≈- 7分(3)游客的说法较能反映整体实际。

相关文档
最新文档