八年级数学期中模拟试卷2
八年级数学期中模拟卷(湖北省卷专用)(全解全析)
(考试时间:120分钟 试卷满分:1202024-2025学年八年级数学上学期期中模拟卷(湖北省卷专用)分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版第11章三角形+第12章全等三角形+第13章轴对称。
5.难度系数:0.65。
第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列长度的三条线段能首尾相接构成三角形的是( )A .1,2,3B .3,4,C .4,5,10D .6,9,2【解答】解:根据三角形的三边关系,得:A 、1+2=3,不能构成三角形,不符合题意;B 、3+4>5,能构成三角形,符合题意;C 、4+5<10,不能构成三角形,不符合题意;D 、2+6<9,不能构成三角形,不符合题意.故选:B .2.第33届夏季奥运会于2024年7月26日至8月11日在法国巴黎举行,中国取得金牌榜第一名的好成绩,如图所示巴黎奥运会项目图标中,是轴对称图形的是( )A .B.C.D.【解答】解:A.该图形不是轴对称图形,故此选项不合题意;B.该图形不是轴对称图形,故此选项不合题意;C.该图形是轴对称称图形,故此选项符合题意;D.该图形不是轴对称图形,故此选项不合题意.故选:C.3.如图,△ACE≌△DBF,若AD=11cm,BC=5cm,则AB长为( )A.6cm B.7cm C.4cm D.3cm【解答】解:∵△ACE≌△DBF,∴AC=BD,∴AC﹣BC=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB=(11﹣5)÷2=3(cm),故选:D.4.如图,将一副三角尺按图中所示位置摆放,点C在FD的延长线上,点C、F分别为直角顶点,且∠A=60°,∠E=45°,若AB∥CF,则∠CBD的度数是( )A.15°B.20°C.25°D.30°【解答】解:∵AB∥CF,∴∠BCD=∠ABC=30°.∵∠BDF是△BCD的外角,∴∠CBD=∠EDF﹣∠BCD=45°﹣30°=15°.故选:A.5.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,∠ACB=∠DFE,BF=EC,只添加一个条件,不能判定△ABC≌△DEF的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【解答】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,A、由SAS判定△ABC≌△DEF,故A不符合题意;B、∠ACB和∠DFE分别是AB和DE的对角,不能判定△ABC≌△DEF,故B符合题意;C、由AAS判定△ABC≌△DEF,故C不符合题意;D、由ASA判定△ABC≌△DEF,故D不符合题意.故选:B.6.如图,由一个正六边形和正五边形组成的图形中,∠1的度数应是( )A.72°B.84°C.82°D.94°【解答】解:如图,由题意得:∠3=360°÷6=60°,∠4=360°÷5=72°,则∠2=180°﹣60°﹣72°=48°,所以∠1=360°﹣48°﹣120°﹣108°=84°.故选:B.7.下列对△ABC的判断,不正确的是( )A.若AB=AC,∠C=60°,则△ABC是等边三角形B.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形C.若∠A=50°,∠B=80°,则△ABC是等腰三角形D.若AB=BC,∠C=40°,则∠B=40°【解答】解:A、若AB=AC,∠C=60°,则△ABC是等边三角形,说法正确,不符合题意;B、若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形,说法正确,不符合题意;C、若∠A=50°,∠B=80°,可得∠C=50°,则△ABC是等腰三角形,说法正确,不符合题意;D、若AB=BC,∠C=40°,则∠A=40°∠B= 100°,说法错误,符合题意;故选:D.8.如图,在△ABC中,PM、QN分别是线段AB、AC的垂直平分线,若∠BAC=110°,则∠PAQ的度数是( )A.40°B.50°C.60°D.70°【解答】解:∵∠BAC=110°,∴∠B+∠C=180°﹣∠BAC=70°,∵PM、QN分别是线段AB、AC的垂直平分线,∴AP=BP,CQ=AQ,∴∠BAP=∠B,∠CAQ=∠C,∴∠BAP+∠CAQ=∠B+∠C=70°,∵∠BAC=110°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=110°﹣70°=40°,故选:A.9.如图,在△ABC中,AB=21cm,AC=12cm,∠A=60°,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒,当△APQ 为直角三角形时,t 的值为( )A .2.5秒B .3秒C .3或214秒D .2.5或3秒【解答】解:根据题意得:AP =AB ﹣BP =21﹣3t ,AQ =2t ,∵△APQ 为直角三角形,∠A =60°,∴当∠AQP =90°,∠APQ =30°时,则AQ =12AP ,∴2t =12(21―3t),解得:t =3,当∠APQ =90°,∠AQP =30°时,则12AQ =AP ,∴12×2t =21―3t ,解得:t =214,综上,当t 的值为3秒或214秒时,△APQ 为直角三角形,故选:C .10.如图,△ABC 中,∠ABC 、∠FCA 的角平分线BP 、CP 交于点P ,延长BA 、BC ,PM ⊥BE 于M ,PN ⊥BF 于N ,则下列结论:①AP 平分∠EAC ;②∠ABC +2∠APC =180°;③∠BAC =2∠BPC ;④S △PAC =S △MAP +S △NCP .其中正确结论的个数是( )A .1个B .2个C .3个D .4个【解答】解:①过点P 作PD ⊥AC 于D ,∵PB 平分∠ABC ,PC 平分∠FCA ,PM ⊥BE ,PN ⊥BF ,PD ⊥AC ,∴PM =PN ,PN =PD ,∴PM =PD ,∵PM ⊥BE ,PD ⊥AC ,∴AP 平分∠EAC ,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,在Rt △PAM 和Rt △PAD 中,PM =PD PA =PA ,∴Rt △PAM ≌Rt △PAD (HL ),∴∠APM =∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD =∠CPN ,∴∠MPN =2∠APC ,∴∠ABC +2∠APC =180°,②正确;③∵BP 平分∠ABC ,CP 平分∠FCA ,∴∠ACF =∠ABC +∠BAC =2∠PCF ,∠PCF =12∠ABC +∠BPC ,∴∠BAC =2∠BPC ,③正确;④由②可知Rt △PAM ≌Rt △PAD (HL ),Rt △PCD ≌Rt △PCN (HL ),∴S △APD =S △MAP ,S △CPD =S △NCP ,∴S △PAC =S △MAP +S △NCP ,故④正确,故选:D .第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分)11.已知等腰三角形的周长为18,其中一边长为5,则该等腰三角形的底边长为 .【解答】解:当腰为5时,另一腰也为5,则底为18﹣2×5=8,∵5+5>8,符合题意,当底为5时,腰为(18﹣5)÷2=6.5,符合题意,∴该三角形的底边长为8或5.故答案为:8或5.12.如图,在△ABC中,AB=BE,AD=DE.若∠A=70°,∠C=50°,则∠EDC= °.【解答】解:在△ABD和△EBD中,AB=EB AD=DE BD=BD,∴△ABD≌△EBD(SSS)∴∠DEB=∠A=70°,∵∠C=50°,∠BED=∠C+∠EDC,∴∠EDC=70°﹣50°=20°故答案为:20°13.如图,BC、AE是锐角△ABF的高,相交于点D,若AD=BF,AF=7,CF=2,则BD的长为 .【解答】解:∵BC、AE是锐角△ABF的高,∴∠DCA=∠BCF=∠AEF=90°,∵∠DAC+∠ADC=90°,∠EAF+∠F=90°∴∠ADC=∠F,在△ADC和△BFC中,∠ACD=∠BCF ∠ADC=∠FAD=BF,∴△ADC≌△BFC(AAS),∴CD=CF=2,BC=AC=AF﹣CF=7﹣2=5∴BD=BC﹣CD=5﹣2=3,故答案为:3.14.将△ABC按如图所示翻折,DE为折痕,若∠A+∠B=130°,则∠1+∠2= °.【解答】解:在△ABC中,∠A+∠B+∠C=180°,在△CDE中,∠CDE+∠CED+∠C=180°,∴∠A+∠B=∠CDE+∠CED,∵∠A+∠B=130°,∴∠CDE+∠CED=130°,∴∠BED+∠ADE=360°﹣130°=230°,由折叠的性质得,∠BED=∠B'ED,∠ADE=∠A'DE,∴∠B'ED+∠A'DE=230°,即∠1+∠CDE+∠2+∠CED=230°,∴∠1+∠2=230°﹣130°=100°,故答案为:100.15.如图,等腰三角形ABC的面积为24,底边BC=6,腰AC的垂直平分线EF分别交边AC、AB于E、F 两点,点M为线段EF上一动点,点D为BC的中点,连接CM、DM.在点M的运动过程中,△CDM 的周长存在最小值为 .【解答】解:连接AD ,AM ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,CD =12BC =3,∴S △ABC =12BC ⋅AD =12×6AD =24,解得AD =8,∵EF 是线段AC 的垂直平分线,∴MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短为:CM +MD +CD =AD +CD =8+3=11,故答案为:11.三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(6分)如图,已知AE ∥CF ,AB =CD ,∠ADF =∠CBE .求证:△ABE ≌△CDA .【解答】证明:∵AE ∥CF ,∴∠BAE =∠C ,∵∠ADF =∠CBE ,∴180°﹣∠ADF =180°﹣∠CBE ,即∠ADC =∠EBA ,又∵AB =CD ,在△ABE 和△CDA 中,∠BAE =∠C AB =CD ∠ADC =∠EBA,∴△ABE ≌△CDA (ASA ).17.(7分)如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠C =70°.(1)求∠AOB 的度数;(2)若∠ABC =50°,求∠DAE 的度数.【解答】解:(1)∵AE 、BF 是∠BAC 、∠ABC 的角平分线,∴∠OAB +∠OBA =12(∠BAC +∠ABC),在△ABC 中,∠C =70°,∴∠BAC +∠ABC =180°﹣∠C =110°,∴∠AOB =180°―∠OAB ―∠OBA =180°―12(∠BAC +∠ABC)=125°;(2)∵在△ABC 中,AD 是高,∠C =70°,∠ABC =50°,∴∠DAC =90°﹣∠C =90°﹣70°=20°,∠BAC =180°﹣∠ABC ﹣∠C =60°∵AE是∠BAC的角平分线,∴∠CAE=12∠CAB=30°,∴∠DAE=∠CAE﹣∠CAD=30°﹣20°=10°,∴∠DAE=10°.18.(8分)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C1;(2)写出点A、B、C关于x轴的对称点的坐标;(3)求出△ABC的面积.【解答】解:(1)如图所示,△A1B1C1即为所求.……………………2分(2)如图所示,A2(﹣2,﹣3),B2(﹣3,﹣2),C2(﹣1,﹣1);……………………5分(3)△ABC的面积为2×2―12×1×2―12×1×2―12×1×1=32.……………………8分19.(8分)如图,在四边形ABCD中,AD∥BC,∠A=90°,BE=AD,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠EBC.∵CE⊥BD,∠A=90°,∴∠A=∠CEB,在△ABD和△ECB中,∠ADB=∠EBC BE=AD∠A=∠CEB∴△ABD≌△ECB(ASA);……………………4分(2)解:∵△ABD≌△ECB,∴BC=BD,∵∠DBC=50°,∴∠EDC=12(180°﹣50°)=65°,又∵CE⊥BD,∴∠CED=90°,∴∠DCE=90°﹣∠EDC=90°﹣65°=25°.……………………8分20.(8分)如图,在△ABC中,AB=AC,点D为BC的中点,连接AD,AB的垂直平分线EF交AB于点E,交AD于点O,交AC于点F,连接OB,OC.(1)求证:△AOC为等腰三角形;(2)若∠BAD=20°,求∠COF的度数.【解答】(1)证明:∵EF是AB的中垂线,∴OA=OB,∵AB=AC,D为BC中点,∴AD⊥BC,∴AD是BC的中垂线,∴OB=OC,∴OA=OC,∴△OAC是等腰三角形.……………………4分(2)解:∵AB=AC,D为BC中点,∴∠DAC=∠BAD=20°,∴∠BAC=40°,∵EF是AB的中垂线,∴EF⊥AB,∴∠AFE=50°,∵OA=OC,∴∠OCA=∠OAC=20°,∵∠AFE=∠OCA+∠COF,∴50°=20°+∠COF,∴∠COF=30°.……………………8分21.(8分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.【解答】(1)证明:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,∴DC=DE,在Rt△FCD和Rt△BED中,DC=DE DF=DB,∴Rt△FCD≌Rt△BED(HL),∴CF=EB;……………………4分(2)解:AB=AF+2BE,……………………5分理由如下:在Rt△ACD和Rt△AED中,DC=DE AD=AD,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∴AB=AE+BE=AF+FC+BE=AF+2BE.……………………8分22.(8分)在等边三角形ABC中,点E在AB边上,点D在CB的延长线上,且DE=EC.(1)如图1,当E为AB中点时,求证:CB=2BD;(2)如图2,若AB=12,AE=2,求CD的长.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠A=∠ACB=60°,∵EB=AE,∴CE⊥AB,CE是∠ACB的角平分线,∴∠BEC=90°,∠BCE=30°,∴2EB=BC,∵ED=EC,∴∠EDC=∠ECD=30°,∴∠DEB=60°﹣30°=30°,∴BD=BE,∴BC=2BD;……………………4分(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中,∠EBD=∠EFC ∠EDB=∠FEC ED=EC,∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,∴CD=BC+BD=12+2=14.……………………8分23.(10分)小明在学习过程中,对教材中的一个有趣问题做如图探究:(1)【习题回顾】已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=∠CEF;(2)【变式思考】如图2,在△ABC中,∠ACB=90°,CD是AB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,若∠B=40°,求∠CEF和∠CFE的度数;(3)【探究延伸】如图3,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD 于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M,若∠M=35°,求∠CFE 的度数.【解答】(1)证明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分线,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;……………………3分(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF为∠BAG的角平分线,∴∠GAF=∠DAF=12×130°=65°,∵CD为AB边上的高,∴∠ADF=∠ACE=90°,∴∠CFE=90°﹣∠GAF=90°﹣65°=25°,……………………5分又∵∠CAE=∠GAF=65°,∠ACB=90°,∴∠CEF=90°﹣∠CAE=90°﹣65°=25°;……………………7分(3)证明:∵C、A、G三点共线,AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF =∠CFE ,∴∠M +∠CFE =90°.∴∠CFE =90°﹣∠M =90°﹣35°=55°. ……………………10分24.(12分)如图,△ABC 是等腰直角三角形,AB =BC ,直角顶点B 在x 轴上,一锐角顶点C 在y 轴上.(1)如图1,若点B 的坐标是(﹣2,0),点A 的坐标是(3,2),求点C 的坐标.(2)如图2,若y 轴恰好平分∠ACB ,AB 与y 轴交于点D ,过点A 作AE ⊥y 轴于点E ,问CD 与AE 有怎样的数量关系?并说明理由.(3)如图3,直角边BC 的两个端点在两坐标轴上滑动,使点A 在第二象限内,过点A 作AF ⊥y 轴于点F ,在滑动的过程中,OB―AF OC为定值,求出这个定值.【解答】解:(1)如图1,过点A 作AN ⊥x 轴于点N ,则∠ANB =∠BOC =90°,∴∠ABN +∠BAN =90°,∵△ABC 是等腰直角三角形,AB =BC ,∴∠ABN +∠CBO =∠ABC =90°,∴∠BAN =∠CBO ,在△BAN 和△CBO 中,∠ANB =∠BOC ∠BAN =∠CBO AB =BC,∴△BAN ≌△CBO (AAS ),∴BN =CO ,∵点B 的坐标是(﹣2,0),点A 的坐标是(3,2),∴BN =2+3=5,∴CO =5,∴点C 的坐标为(0,﹣5),……………………4分(2)CD 与AE 的数量关系为:CD =2AE ,理由如下:……………………5分如图2,延长AE 交CB 的延长线于点G ,∵y 轴平分∠ACB ,AE ⊥y ,∴△ACG 是等腰三角形,∠AED =90°,∴AE =GE =12AG ,∠GAB +∠ADE =90°,∵△ABC 是等腰直角三角形,=BC ,∴∠CBD =∠ABG =90°,∴∠DCB +∠CDB =90°,∵∠ADE =∠CDB ,∴∠GAB =∠DCB ,在△GAB 和△DCB 中,∠ABG =∠CBD AB =BC ∠GAB =∠DCB,∴△GAB ≌△DCB (ASA ),∴AG =CD ,∴AE =12CD ,∴CD =2AE ; ……………………8分(3)如图3,过点A 作AH ⊥OB 于点H ,则∠AHB =∠AHO =90°,∵AF ⊥y 轴,∴四边形AHOF 是矩形,∴OH =AF ,∵∠ABH +∠CBO =90°,∠CBO +∠BCO =90°,∴∠ABH =∠BCO ,在△ABH 和△BCO 中,∠AHB =∠BOC =90°∠ABH =∠BCO AB =BC,∴△ABH ≌△BCO (AAS ),∴HB =OC ,∵HB =OB ﹣OH =OB ﹣AF ,∴OC =OB ﹣AF ,∴OB―AF OC =1. ……………………12分。
人教版2024-2025学年八年级数学上册期中试卷(原卷版)
2024-2025八年级上册期中模拟试卷一、填空题(本题满分30分,每小题3分)1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D. 2. 已知长为a ,b ,c 的三条线段首尾顺次相接组成一个三角形.若7a =,9b =,则c 的取值范围是( )A. 2>cB. 16c <C. 216c ≤≤D. 216c << 3. 如图,ACE △≌DBF ,若11cm AD =,5cm =BC ,则AB 长为( )A 6cm B. 7cm C. 4cm D. 3cm4. 下列命题:①经过一点有且只有一条直线;②线段垂直平分线上的点到这条线段两端的距离相等;③有两边及其一角对应相等的两个三角形全等;④等腰三角形底边上的高线和中线重合.其中是真命题的有( )A. 1个B. 2个C. 3个D. 4个5. 如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴, 1.6 cm AB =, 2.3 cm CD =,则四边形ABCD 的周长为( )A. 3.9cmB. 7.8cmC. 4cmD. 4.6cm 6. 如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是( ).A 2AB BF = B. 12ACE ACB ∠=∠ C. AE BE = D. CD BE ⊥7. 如图90B C ∠=∠=°,AD AE =,添加下列条件后不能..使ABD ECA △≌△的是( )A. 2AD BD =B. BD AC =C. =90DAE ∠°D. AB EC = 8. 一个正多边形的边长是3,从一个顶点可以引出4条对角线,则这个正多边形的周长是( )A. 12B. 15C. 18D. 21 9. 如图,在ABC 中,AB AC =,AB 的垂直平分线交AC 于点P ,若10cm AB =,6cm BC =,则PBC △的周长等于( )A. 16cmB. 12cmC. 8cmD. 20cm 10. 如图,在ABC 中,BD 为AC 边上的中线,已知8BC =,5AB =,BCD △的周长为20,则ABD △的周长为( )A. 17B. 23C. 25D. 28 11. 四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是()1,1−−,()1,1-,()2,1−,()3.2,1−,平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( ).A. 将B 向左平移4.2个单位B. 将C 向左平移4个单位C. 将D 向左平移5.2个单位D. 将C 向左平移4.2个单位12. 如图,在ABC ∆中,90A ∠=°,4AB =,3AC =,点O 为AB 的中点,点M 为ABC 内一动点且2OM =,点N 为OM 的中点,当BN CM +最小时,则ACM ∠的度数为( )A 15° B. 30° C. 45° D. 60°二.填空题(本题满分24分,每小题3分)13. 正五边形每个内角的度数为______.14. 若等腰三角形一个内角为36°,则这个等腰三角形顶角的度数为_____________. 15. 点P (1,-2)关于y 轴的对称点的坐标是_________.16. 过12边形的一个顶点可以画对角线的条数是____.17. 如图,点D 在BC 上,AB AC CD ==,AD BD =,则BAC ∠=_____.18. 如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN ,分别交边AB BC ,于点D 和E ,连接CD .若90BCA ∠=°,8AB =,则CD 的长为_______.三. 解答题(本大题满分62分).的19. 如图,B D BC DC ∠=∠=,.求证:AB AD =.20. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.21. 如图,ABC 中,16cm AC =,DE 为AB 的垂直平分线,交AC 于点E ,BCE 的周长为26cm ,求BC 的长.22. 如图所示,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=°,求ACE ∠的度数.23. 在 ABC 中,CD ⊥AB 于D ,CE 是∠ACB 的平分线,∠A =20°,∠B =60°.求∠BCD 和∠ECD 的度数.24. ABC 在平面直角坐标系中位置如图所示.(1)将ABC 先向下平移4个单位长度,再向右平移3个单位长度,画出平移后的111A B C △,并写出顶点1A ,1B ,1C 的坐标;(2)计算111A B C △的面积.25. 如图(1) ABC 和 DEC 都是等腰直角三角形,其中∠ACB =∠DCE =90°,BC =AC ,EC =DC ,点E 在 ABC 内部,直线AD 与BE 交于点F ,线段AF 、BF 、CF 之间存在怎么样的数量关系?(1)先将问题特殊化如图2,当点D 、F 重合时,直接写出线段AF 、BF 、CF 之间的数量关系式: ;(2)再探究一般情况如图1,当点D 、F 不重合时,证明(1)中的结论仍然成立. (3)如图3,若 ABC 和 DEC 都是含30°的直角三角形,若∠ACB =∠DCE =90°,∠BAC =∠EDC =30°,点E 在 ABC 内部,直线AD 、BE 交于点F ,直接写出一个等式,表示线段AF 、BF 、CF 之间的数量关系.的26. 在平面直角坐标系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,∠ABC =90°,且AB BC =.(1)如图(1),(5,0)A ,(0,2)B ,点C 在第三象限,请直接写出点C 的坐标; (2)如图(2),BC 与x 轴交于点D ,AC 与y 轴交于点E ,若点D 为BC 的中点,求证:ADB CDE ∠=∠;(3)如图(3),(,0)A a ,M 在AC 延长线上,过点(,)M m a −作MN x ⊥轴于点N ,探究线段BM ,AN ,OB 之间的关系,并证明你的结论.。
2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷+答案解析
2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷一、选择题:本题共7小题,每小题2分,共14分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列体育运动项目图标中,是轴对称图形的是()A. B. C. D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.如图,,,添加下列哪一个条件可以推证≌()A.B.C.D.4.一个等腰三角形的顶角等于,则这个等腰三角形的底角度数是()A. B. C. D.5.如图,,,则下列判断正确的是()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分6.如图,中,BF、CF分别平分和,过点F作交AB于点D,交AC于点E,那么下列结论:①;②为等腰三角形;③的周长等于的周长;④其中正确的是()A.①②B.①③C.①②④D.①②③④7.如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连接BF,CE,下列说法:①和的面积相等;②;③;④其中,正确的说法有()A.1个B.2个C.3个D.4个二、填空题:本题共9小题,每小题2分,共18分。
8.如图,是的一个外角,若,,则______.9.已知≌,的周长为24cm,若,,______10.如图,,,请你添加一个条件______只填一个即可,使≌11.如图,在中,CD是斜边AB上的中线,若,则______.12.已知等腰三角形的一个外角是,则它的底角度数为______度.13.如图,在中,,线段AB的垂直平分线交AC于点N,的周长是12cm,则BC的长为______14.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交边AC,AB于点M、N,再分别以M,N为圆心,大于长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若,,则的面积为______.15.已知如图等腰,,,于点D,点P是BA延长线上一点,点O是线段AD上一点,,下面的结论:①;②;③是等边三角形.其中正确的是______填序号16.如图,透明的圆柱形容器容器厚度忽略不计的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是______三、解答题:本题共10小题,共68分。
【沪科版】八年级数学上期中第一次模拟试题附答案(2)
(1)在图1中计算格点三角形 的面积是__________;(每个小正方形的边长为1)
(2) 是格点三角形.
①在图2中画出一个与 全等且有一条公共边 的格点三角形;
②在图3中画出一个与 全等且有一个公共点A的格点三角形.
∵三角形的内角和是180°,∴②正确;
∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;
∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;
∵连接两点的所有连线中,线段最短,∴⑤正确;
∴真命题为②③⑤,
故选B.
【点睛】
本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.
A.5边形B.6边形C.7边形D.8边形
11.下列命题是真命题的个数为()
①两条直线被第三条直线所截,内错角相等.
②三角形的内角和是180°.
③在同一平面内平行于同一条直线的两条直线平行.
④相等的角是对顶角.
⑤两点之间,线段最短.
A.2B.3C.4D.5
12.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()
15.在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=_____时,△ABC和△APQ全等.
16.已知等边三角形 .如图,
(1)分别以点A,B为圆心,大于 的长为半径作弧,两弧相交于M,N两点;
(2)作直线 交 于点D;
C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;
专题3.2期中全真模拟卷02-2020-2021学年八年级数学下学期期中考试高分直通车(原卷版)
2020-2021学年八年级数学下册期中考试高分直通车【人教版】专题3.2人教版八年级数学下册期中全真模拟卷02姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共25题,选择12道、填空6道、解答7道 .答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.若二次根式√5x−1有意义,则x的取值范围是()A.x>15B.x≥15C.x≤15D.x≤52.下列二次根式中,不能与√2合并的是()A.√12B.√8C.√12D.√183.小明想知道学校旗杆的高度,她发现旗杆上的绳子刚好垂到地面,当她把绳子的下端拉开5米后,发现绳子下端距离地面1米,则旗杆的高是()A.8米B.10米C.12米D.13米4.▱ABCD中,AC交BD于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是()A.AB=AD B.OA=OB C.AC=BD D.DC⊥BC5.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=()A.5B.4C.3.5D.36.如图,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()A.10°B.20°C.30°D.40°7.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.38.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面30cm.突然一阵大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,如果知道红莲移动的水平距离为60cm,则水深是()cmA.35B.40C.50D.459.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为()平方米.A.96B.204C.196D.30410.如图,直线L1、L2、L3分别过正方形ABCD的三个顶点A、D、C,且相互平行,若L1、L2的距离为2,L2、L3的距离为4,则正方形的边长是()A.2√3B.3√2C.2√5D.5√211.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°12.如图,点A,B为定点,定直线l∥AB,P是l上一动点.点M,N分别为P A,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△P AB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是()A.①②③B.①②⑤C.②③④D.②④⑤二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上13.已知a,b都是实数,b=√1−2a+√4a−2−2,则a b的值为.14.如图,为了检查平行四边形书架ABCD的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC,BD的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理.15.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是.16.如图,菱形ABCD的对角线AC,BD交于点O,E为DC的中点,若OE=3,则菱形的周长为.17.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=20,AH=12,那么FG=.18.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)(√24+√0.5)﹣2√1 8;(2)(√2+3)(√2−5).20.如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.21.如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)连接OE,若AB=4,BC=6,求OE的长.22.如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形;(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.23.著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c),也可以表示为4×12ab+(a﹣b)2,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)如图③,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,且CH⊥AB.测得CH=1.2千米,HB=0.9千米,求新路CH 比原路CA少多少千米?(3)在第(2)问中若AB≠AC时,CH⊥AB,AC=4,BC=5,AB=6,设AH=x,求x的值.24.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.25.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM =AD+MC.【探究展示】(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,试判断AM=AD+MC是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD两边AB=6,BC=9,求AM的长.2020-2021学年八年级数学下册期中考试高分直通车【人教版】专题3.2人教版八年级数学下册期中全真模拟卷02姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共25题,选择12道、填空6道、解答7道 .答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.若二次根式√5x−1有意义,则x的取值范围是()A.x>15B.x≥15C.x≤15D.x≤5【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解析】由题意得,5x﹣1≥0,解得,x≥1 5,故选:B.2.下列二次根式中,不能与√2合并的是()A.√12B.√8C.√12D.√18【分析】根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得答案.【解析】A、√12=√22,故A能与√2合并;B、√8=2√2,故B能与√2合并;C、√12=2√3,故C不能与√2合并;D、√18=3√2,故D能与√2合并;故选:C.3.小明想知道学校旗杆的高度,她发现旗杆上的绳子刚好垂到地面,当她把绳子的下端拉开5米后,发现绳子下端距离地面1米,则旗杆的高是()A.8米B.10米C.12米D.13米【分析】根据题意设旗杆的高AB为x米,则绳子AC的长为x米,在Rt△ACH利用勾股定理构建方程即可解决问题.【解析】如图,已知AB=AC,CD⊥BD,CH⊥AB,CD=1米,CH=5米,设AB=AC=x米.在Rt△ACH中,∵AC2=AH2+CH2,∴x2=52+(x﹣1)2,∴x=13,∴AB=13(米),故选:D.4.▱ABCD中,AC交BD于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是()A.AB=AD B.OA=OB C.AC=BD D.DC⊥BC【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.据此判断.【解析】根据矩形的判定定理(有一个角是直角的平行四边形是矩形)可得DC⊥BC可证四边形ABCD是矩形.故D不正确.矩形的对角线相等且相互平分,OA=OB,AC=BD可证四边形ABCD为矩形,故B不正确,C不正确.AB=AD时,可证四边形ABCD为菱形,不能证四边形ABCD为矩形.故A正确.故选:A.5.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=()A.5B.4C.3.5D.3【分析】由矩形的性质得出AC=BD,OA=OC,∠BAD=90°,由直角三角形的性质得出AC=BD=2AB=8,得出OC=12AC=4即可.【解析】∵四边形ABCD是矩形,∴AC=BD,OA=OC,∠BAD=90°,∵∠ADB=30°,∴AC=BD=2AB=8,∴OC=12AC=4;故选:B.6.如图,把一块含有30°角的直角三角板ABC 的直角顶点放在矩形桌面CDEF 的一个顶点C 处,桌面的另一个顶点F 与三角板斜边相交于点F ,如果∠1=50°,那么∠AFE 的度数为( )A .10°B .20°C .30°D .40°【分析】由四边形CDEF 为矩形,得到EF 与DC 平行,利用两直线平行同位角相等求出∠AGE 的度数,根据∠AGE 为三角形AGF 的外角,利用外角性质求出∠AFE 的度数即可.【解析】∵四边形CDEF 为矩形,∴EF ∥DC ,∴∠AGE =∠1=50°,∵∠AGE 为△AGF 的外角,且∠A =30°,∴∠AFE =∠AGE ﹣∠A =20°.故选:B .7.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3【分析】由题意可知:中间小正方形的边长为:a ﹣b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解析】由题意可知:中间小正方形的边长为:a ﹣b ,∵每一个直角三角形的面积为:12ab =12×8=4, ∴4×12ab +(a ﹣b )2=25,∴(a ﹣b )2=25﹣16=9,∴a ﹣b =3,故选:D .8.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面30cm.突然一阵大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,如果知道红莲移动的水平距离为60cm,则水深是()cmA.35B.40C.50D.45【分析】仔细分析该题,可画出草图,关键是水深、红莲移动的水平距离及红莲的高度构成一直角三角形,解此直角三角形即可.【解析】红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.设水深h尺,由题意得:Rt△ABC中,AB=h,AC=h+30,BC=60,由勾股定理得:AC2=AB2+BC2,即(h+30)2=h2+602,解得:h=45.故选:D.9.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为()平方米.A.96B.204C.196D.304【分析】连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ABC是直角三角形,那么△ABC的面积减去△ACD的面积就是所求的面积.【解析】如图,连接AC.在△ACD中,∵AD=12m,CD=9m,∠ADC=90°,∴AC=15m,又∵AC2+BC2=152+202=252=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=12×15×20−12×9×12=96(平方米).故选:A.10.如图,直线L1、L2、L3分别过正方形ABCD的三个顶点A、D、C,且相互平行,若L1、L2的距离为2,L2、L3的距离为4,则正方形的边长是()A.2√3B.3√2C.2√5D.5√2【分析】先作CF⊥L2,AE⊥L2,再利用全等三角形的判定和勾股定理求解.【解析】如图,作CF⊥L2,垂足为F,AE⊥L2,垂足为E,∴由同角的余角相等得,∠FCD=∠EDA,又∵AD=CD,∠AED=∠CFD=90°,∴△AED≌△DFC,∴ED=CF=4,AE=2,∴AD=√AE2+ED2=2√5.故选:C.11.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°【分析】根据折叠前后对应角相等可知.【解析】设∠ABE=x,根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,所以50°+x+x=90°,解得x=20°.故选:B.12.如图,点A,B为定点,定直线l∥AB,P是l上一动点.点M,N分别为P A,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△P AB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是()A .①②③B .①②⑤C .②③④D .②④⑤ 【分析】利用三角形中位线的性质得MN =12AB ,MN ∥AB ,则可判断①正确;利用平行线的距离得到l与AB 的距离为定值,则可判断⑤正确;利用三角形面积公式可得到△P AB 的面积为定值,所以△PMN 的面积为定值,于是可对②进行判断.【解析】∵点M ,N 分别为P A ,PB 的中点,∴MN 为△P AB 的中位线,∴MN =12AB ,MN ∥AB ,所以①正确;∵直线l ∥AB ,∴l 与AB 的距离为定值,所以⑤正确;∴△P AB 的面积为定值,∴△PMN 的面积为定值,所以②正确.故选:B .二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上13.已知a ,b 都是实数,b =√1−2a +√4a −2−2,则a b 的值为 4 .【分析】利用二次根式有意义的条件得到得{1−2a ≥04a −2≥0,解得a =12,则可得到对应b 的值,然后利用负整数指数幂的意义计算.【解析】根据题意得{1−2a ≥04a −2≥0,解得a =12, 当a =12时,b =﹣2,所以ab =(12)﹣2=4. 故答案为4.14.如图,为了检查平行四边形书架ABCD 的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC ,BD 的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理 对角线相等的平行四边形是矩形,矩形的四个角都是直角 .【分析】根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【解析】这种做法的依据是对角线相等的平行四边形为矩形,故答案为:对角线相等的平行四边形是矩形,矩形的四个角都是直角.(“矩形的四个角都是直角”没写不扣分)15.如图,矩形ABCD 中,E 在AD 上,且EF ⊥EC ,EF =EC ,DE =2,矩形的周长为16,则AE 的长是 3 .【分析】设CD =xcm ,根据矩形的性质得出AB =CD ,AD =BC ,∠A =∠D =90°,求出∠AFE =∠DEC ,证△AFE ≌△DCE ,推出AE =DC =x ,求出AD =BC =x +2,得出方程2(x +x +2)=16,求出即可.【解析】设CD =x ,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠A =∠D =90°,∵EF ⊥EC ,∴∠FEC =90°,∴∠AFE +∠AEF =90°,∠AEF +∠DEC =90°,∴∠AFE =∠DEC ,在△AFE 和△DCE 中,{∠AFE =∠DEC ∠A =∠D EF =EC ,∴△AFE ≌△DCE (AAS ),∴AE =DC =x ,∵DE =2,∴AD =BC =x +2,∵矩形ABCD 的周长为16,∴2(x +x +2)=16,x =3,即AE =3,故答案为:3.16.如图,菱形ABCD的对角线AC,BD交于点O,E为DC的中点,若OE=3,则菱形的周长为24.【分析】根据菱形的对角线互相平分可得BO=DO,然后求出OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,然后根据菱形的周长公式计算即可得解.【解析】∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是CD的中点,∴OE是△BCD的中位线,∴BC=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.17.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=20,AH=12,那么FG=4.【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解析】∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,在直角三角形AHB中,由勾股定理得到:BH=√AB2−AH2=√202−122=16.∴FG =GH =BH ﹣BG =16﹣12=4,故答案为:4.18.如图,在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DP ⊥AB 于P .若四边形ABCD 的面积是18,则DP 的长是 3√2 .【分析】过点D 作DE ⊥DP 交BC 的延长线于E ,先判断出四边形DPBE 是矩形,再根据等角的余角相等求出∠ADP =∠CDE ,再利用“角角边”证明△ADP 和△CDE 全等,根据全等三角形对应边相等可得DE =DP ,然后判断出四边形DPBE 是正方形,再根据正方形的面积公式解答即可.【解析】如图,过点D 作DE ⊥DP 交BC 的延长线于E ,∵∠ADC =∠ABC =90°,∴四边形DPBE 是矩形,∵∠CDE +∠CDP =90°,∠ADC =90°,∴∠ADP +∠CDP =90°,∴∠ADP =∠CDE ,∵DP ⊥AB ,∴∠APD =90°,∴∠APD =∠E =90°,在△ADP 和△CDE 中,{∠ADP =∠CDE ∠APD =∠E AD =CD ,∴△ADP ≌△CDE (AAS ),∴DE =DP ,四边形ABCD 的面积=四边形DPBE 的面积=18,∴矩形DPBE 是正方形,∴DP =√18=3√2.故答案为:3√2.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)(√24+√0.5)﹣2√1 8;(2)(√2+3)(√2−5).【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用多项式乘以多项式展开,然后合并即可.【解析】(1)原式=2√6+√22−√22=2√6;(2)原式=2﹣5√2+3√2−15=﹣13﹣2√2.20.如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.【分析】设OA=OB=x尺,用x表示出OE的长,在直角三角形OEB中,利用勾股定理列出关于x的方程,求出方程的解即可得到结果.【解析】设OA=OB=x尺,∵EC=BD=5尺,AC=1尺,∴EA=EC﹣AC=5﹣1=4(尺),OE=OA﹣AE=(x﹣4)尺,在Rt△OEB中,OE=(x﹣4)尺,OB=x尺,EB=10尺,根据勾股定理得:x2=(x﹣4)2+102,整理得:8x=116,即2x=29,解得:x=14.5,则秋千绳索的长度为14.5尺.21.如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)连接OE,若AB=4,BC=6,求OE的长.【分析】(1)根据矩形的对角线相等可得AC=BD,对边平行可得AB∥CD,再求出四边形ABEC是平行四边形,根据平行四边形的对边相等可得AC=BE,从而得证;(2)如图,过点O作OF⊥CD于点F,欲求OE,只需在直角△OEF中求得OF、FE的值即可.OF结合三角形中位线求得EF,结合矩形、平行四边形的性质以及勾股定理求得即可.【解析】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)如图,过点O作OF⊥CD于点F,∵四边形ABCD是矩形,∴点O是BD的中点,即OB=OD,∴OF为△BCD的中位线,∴OF=12BC=3,又∵四边形ABEC是平行四边形,∴∠BCD=90°,AB=CE=DC=4.∴CF =DF =12CD =2,∴EF =6.在直角△OEF 中,由勾股定理可得:OE =√OF 2+EF 2=√32+62=3√5.22.如图,在▱ABCD 中,对角线AC ,BD 交于点O ,E 是AD 上一点,连接EO 并延长,交BC 于点F .连接AF ,CE ,EF 平分∠AEC .(1)求证:四边形AFCE 是菱形;(2)若∠DAC =60°,AC =2,求四边形AFCE 的面积.【分析】(1)由“AAS ”证△AOE ≌△COF ,得OF =OE ,证出四边形AFCE 是平行四边形,再证CE =CF ,即可得出结论;(2)由含30°角的直角三角形的性质得出OE =√3AO =√3,则EF =2OE =2√3,由菱形面积公式即可得出答案.【解析】(1)证明:∵四边形ABCD 是平行四边形∴AD ∥BC ,AO =CO ,∴∠AEF =∠CFE ,在△AOE 和△COF 中,{∠AEF =∠CFE∠AOE =∠COF AO =CO,∴△AOE ≌△COF (AAS ),∴OF =OE ,∵AO =CO ,∴四边形AFCE 是平行四边形;∵EF 平分∠AEC ,∴∠AEF=∠CEF,∴∠CFE=∠CEF,∴CE=CF,∴四边形AFCE是菱形;(2)解:由(1)得:四边形AFCE是菱形,∴AC⊥EF,AO=CO=12AC=1,∴∠AOE=90°,∵∠DAC=60°,∴∠AEO=30°,∴OE=√3AO=√3,∴EF=2OE=2√3,∴四边形AFCE的面积=12AC×EF=12×2×2√3=2√3.23.著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c),也可以表示为4×12ab+(a﹣b)2,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)如图③,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,且CH⊥AB.测得CH=1.2千米,HB=0.9千米,求新路CH 比原路CA少多少千米?(3)在第(2)问中若AB≠AC时,CH⊥AB,AC=4,BC=5,AB=6,设AH=x,求x的值.【分析】(1)梯形的面积可以由梯形的面积公式求出,也可利用三个直角三角形面积求出,两次求出的面积相等列出关系式,化简即可得证;(2)设CA =x ,则AH =x ﹣0.9,根据勾股定理列方程,解得即可得到结果;(3)在Rt △ACH 和Rt △BCH 中,由勾股定理得求出CH 2=CA 2﹣AH 2=CB 2﹣BH 2,列出方程求解即可得到结果;【解析】(1)梯形ABCD 的面积为12(a +b )(a +b )=12a 2+ab +12b 2, 也可以表示为12ab +12ab +12c 2, ∴12ab +12ab +12c 2=12a 2+ab +12b 2, 即a 2+b 2=c 2;(2)∵CA =x ,∴AH =x ﹣0.9,在Rt △ACH 中,CA 2=CH 2+AH 2,即x 2=1.22+(x ﹣0.9)2,解得x =1.25,即CA =1.25,CA ﹣CH =1.25﹣1.2=0.05(千米),答:新路CH 比原路CA 少0.05千米;(3)设AH =x ,则BH =6﹣x ,在Rt △ACH 中,CH 2=CA 2﹣AH 2,在Rt △BCH 中,CH 2=CB 2﹣BH 2,∴CA 2﹣AH 2=CB 2﹣BH 2,即42﹣x 2=52﹣(6﹣x )2,解得:x =94.24.如图,在四边形ABCD 中,∠ABC =90°,AC =AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM =MN ;(2)∠BAD =60°,AC 平分∠BAD ,AC =2,求BN 的长.【分析】(1)根据三角形中位线定理得MN=12AD,根据直角三角形斜边中线定理得BM=12AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【解析】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=12AD,在Rt△ABC中,∵M是AC中点,∴BM=12AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=12AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=12AC=1,∴BN=√225.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM =AD+MC.【探究展示】(2)若四边形ABCD 是长与宽不相等的矩形,其他条件不变,如图2,试判断AM =AD +MC 是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD 两边AB =6,BC =9,求AM 的长.【分析】(1)先构造出△ADE ≌△NCE ,即可得出结论;(2)同(1)的方法即可得出结论;(3)设出MC =x ,利用(2)的结论得出AM =9+x ,再利用勾股定理建立方程求出CM 即可得出结论.【解析】(1)如图1,延长AE ,BC 相交于N ,∵四边形ABCD 是正方形,∴AD ∥BC ,∴∠DAE =∠ENC ,∵AE 平分∠DAE ,∴∠∠DAE =∠MAE ,∴∠ENC =∠MAE ,在△ADE 和△NCE 中,{∠DAE =∠CNE∠AED =∠NEC DE =CE,∴△ADE ≌△NCE ,∴AD =CN ,∴AM =MN =NC +MC =AD +MC ;(2)结论AM =AD +CM 仍然成立,理由:如图2,延长AE ,BC 相交于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DAE =∠ENC ,∵AE 平分∠DAE ,∴∠DAE =∠MAE ,∴∠ENC =∠MAE ,在△ADE 和△NCE 中,{∠DAE =∠CNE∠AED =∠NEC DE =CE,∴△ADE ≌△NCE ,∴AD =CN ,∴AM =MN =NC +MC =AD +MC ;(3)设MC =x ,则BM =BC ﹣CN =9﹣x , 由(2)知,AM =AD +MC =9+x , 在Rt △ABM 中,AM 2﹣BM 2=AB 2, (9+x )2﹣(9﹣x )2=36,∴x =1,∴AM =AD +MC =10.。
【易错题】八年级数学下期中模拟试卷含答案(2)
【易错题】八年级数学下期中模拟试卷含答案(2)一、选择题1. 如右图,点 A 的坐标为( 0, 1),点 B 是 x 轴正半轴上的一动点,以 AB 为边作等腰直角 △ABC ,使∠ BAC=90° ,假如点 B 的横坐标为 x ,点 C 的纵坐标为 y ,那么表示 y 与 x的函数关系的图像大概是( )A .B .C .D .2. 如图,由四个全等的直角三角形拼成的图形,设 CE a HG b ,则斜边 BD的长是= , = ( )A . a+bB . a ﹣bC . a 2 b 2D . a 2 b 2223. 以下条件中,不可以判断ABC△为直角三角形的是A . a 21 , b2 2 , c 23 a b :c=34 : 5B . : :C .∠ A+ ∠B= ∠ CD .∠ A :∠ B :∠ C=3: 4: 5. 实数 a ,b 在数轴上的地点以下图,则化简a 22)41b 2 的结果是(A . a b 3B . a b 1C . a b 1D . a b 15. 把式子 a1号外面的因式移到根号内,结果是()aA.a B.a C.a D.a6.如图,在矩形ABCD 中, E, F 分别是边 AB , CD 上的点, AE=CF ,连结 EF,BF , EF 与对角线 AC 交于点 O,且 BE=BF ,∠ BEF=2 ∠ BAC , FC=2 ,则 AB 的长为()A. 83B. 8C.4 3D. 67.有一个直角三角形的两边长分别为3和4),则第三边的长为(A. 5B.7C.5D.5或78.如图 1,∠ DEF =25°,将长方形纸片ABCD 沿直线 EF 折叠成图2,再沿折痕 GF 折叠成图3,则∠ CFE 的度数为()A. 105 °9.以下图B. 115 °□ABCD ,再增添以下某一个条件C. 130 ° ,不可以判断□ABCDD. 155 °是矩形的是()A.AC=BD B.AB ⊥BCC.1=2D.ABC=BCD10.对于次函数y 2x 1,以下结论错误的选项是()A.图象过点0,1B.图象与x轴的交点坐标为(1,0) 2C.图象沿y轴向上平移1个单位长度,获得直线y2x D.图象经过第一、二、三象限11.要使代数式2x 的取值范围是()存心义,则x 3A.x 3B.x 3C.x 3D.x 3 12.以下运算正确的选项是()A.532B.822C . 412122 5D .259 3二、填空题13. 如 ,已知在 Rt ABC 中, AB = AC = 3 ABC 内作第 1 个内接正方形 DEFG;△ ,在 △ 而后取 GF 的中点 P , 接 PD 、 PE ,在 △PDE 内作第 2 个内接正方形 HIKJ ;再取 段 KJ 的中点 Q ,在 △QHI 内作第 3 个内接正方形 ⋯ ,挨次 行下去, 第2019 个内接正方形的_____.14. 一 数据 1, 2, a 的均匀数 2,另一 数据 1, a ,1, 2, b 的独一众数 l ,数据 1, a , 1, 2,b 的中位数 _________.15. 若 m 3 (n 1)2 0 ,m+n 的.16. 若菱形的两条 角 分 是6 ㎝和 8 ㎝, 菱形的面 是㎝ 2.17. 如 ,矩形 ABCD 的 角 AC 和 BD 订交于点 O , 点 O 的直 分 交AD 和BC 于点 E 、 F , AB=2 , BC=4, 中暗影部分的面 _______.18. 如 , 接四 形ABCD 各 中点,获得四 形EFGH , 角 AC ,BD 足________,才能使四 形EFGH 是矩形.19. 如 , VABC 是以 AB 斜 的直角三角形, AC 4 , BC 3, P AB 上一点,且 PEAC 于 E , PF BC 于 F , 段 EF 度的最小 是________.20. 如 ,在平行四 形 ABCD 中, P 是 CD 上一点,且 AP 和 BP 分 均分∠ DAB 和∠CBA,若 AD=5,AP=8,则△APB 的周长是.三、解答题21.如图,正方形网格的每个小正方形的边长均为1, 每个小正方形的极点叫做格点,若C 在格点上,且知足AC13,BC 3 2.(1)在图中画出切合条件的 V ABC ;(2) 若BD AC 于点D,则 BD 的长为.22.如图,四边形 ABCD 为菱形, E 为对角线 AC 上的一个动点,连结DE 并延伸交射线AB 于点 F,连结 BE .(1)求证:∠ AFD= ∠ EBC ;(2)若∠ DAB=90°,当△BEF 为等腰三角形时,求∠EFB 的度数.23.计算:3 2 2 2 2 3.24.某市射击队为从甲、乙两名运动员中选拔一人参加省竞赛,对他们进行了六次测试,测试成绩以下表( 单位:环 ) :第1次第2次第3次第4次第5次第6次甲10988109乙101081079依据表格中的数据,可计算出甲、乙两人的均匀成绩都是9 环.(1)分别计算甲、乙六次测试成绩的方差;(2)依据数据剖析的知识,你以为选______ 名队员参赛.25.如图,菱形ABCD 的边长为 2,DAB 60 ,点E为BC边的中点,点P 为对角线AC 上一动点,则PB+PE 的最小值为_____.【参照答案】 *** 试卷办理标志,请不要删除一、选择题1.A分析: A【分析】【剖析】先做出适合的协助线,再证明△ADC 和△ AOB 的关系,即可成立y 与 x 的函数关系,从而确立函数图像.【详解】解:由题意可得:是 y,作 AD ∥ x 轴,作OB=x , OA=1 ,∠ AOB=90 °,∠ BAC=90 °, AB=AC ,点 C 的纵坐标CD ⊥ AD 于点 D ,以下图:∴∠ DAO+ ∠ AOD=180 °,∴∠ DAO=90 °,∴∠ OAB+ ∠ BAD= ∠ BAD+ ∠ DAC=90 °,∴∠ OAB= ∠ DAC ,在△ OAB 和△ DAC 中,∠AOB= ∠ ADC, ∠ OAB= ∠ DAC , AB=AC∴△ OAB ≌△ DAC ( AAS ),∴OB=CD ,∴C D=x ,∵点 C 到 x 轴的距离为y,点 D 到 x 轴的距离等于点 A 到 x 的距离 1,∴y=x+1 ( x> 0) .应选 A.【点睛】本题考察动点问题的函数图象,明确题意、成立相应的函数关系式是解答本题的重点.2.C分析: C【分析】【剖析】解:设 CD=x ,则 DE=a-x ,求得 AH=CD=AG-HG=DE-HG=a-x-b=x,求得 CD= a b,得2a b a b到 BC=DE= a,依据勾股定理即可获得结论.22【详解】设 CD= x,则 DE= a﹣ x,∵HG = b,∴AH = CD = AG ﹣ HG= DE﹣ HG = a﹣ x﹣ b= x,∴x=ab ,2∴BC = DE = a﹣ab = a b ,22∴BD 2= BC2+CD 2=(a b) 2+(ab )2= a2b2,222∴BD =a2b2,2应选: C.【点睛】本题考察了勾股定理,全等三角形的性质,正确的辨别图形 ,用含a,b的式子表示各个线段是解题的重点.3.D分析: D【分析】【剖析】【详解】试题剖析: A 、依据勾股定理的逆定理,可知a2b2c2,故能判断是直角三角形;B、设 a=3x, b=4x ,c=5x ,可知a2b2c2,故能判断是直角三角形;C、依据三角形的内角和为180 °,所以可知∠C=90°,故能判断是直角三角形;D、而由 3+4 ≠5,可知不可以判断三角形是直角三角形.应选 D考点:直角三角形的判断4.A分析: A【分析】【剖析】先依据数轴上两点的地点确立a 1 和 b 2 的正负,再依据a2的性质计算即可 .【详解】察看数轴可得,a 1 , b2,故 a10 ,b20 ,a2b2 12a1 b 2a 1 b2a b3应选: A.【点睛】本题联合数轴上点的地点考察了a2的计算性质,娴熟掌握该性质是解答的重点. 5.D分析: D【分析】【剖析】先依据二次根式存心义的条件求出 a 的范围,再把根号外的非负数平方后移入根号内即可.【详解】Q 要使1存心义a10 aa0a11a2aa a应选 D.【点睛】本题考察了二次根式的意义,解题的重点是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,而且移到根号内与本来根号内的式子是乘积的关系.假如根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.6.D分析: D【分析】【剖析】连结 OB,依据等腰三角形三线合一的性质可得BO ⊥EF,再依据矩形的性质可得OA=OB ,依据等边平等角的性质可得∠ BAC= ∠ ABO ,再依据三角形的内角和定理列式求出∠ ABO=30°,即∠ BAC=30°,依据直角三角形 30°角所对的直角边等于斜边的一半求出AC ,再利用勾股定理列式计算即可求出AB .【详解】解:如图,连结OB,∵B E=BF ,OE=OF ,∴BO ⊥ EF,∴在 Rt△BEO 中,∠ BEF+ ∠ ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠ BAC= ∠ ABO ,又∵∠ BEF=2 ∠ BAC ,即 2∠ BAC+ ∠ BAC=90°,解得∠ BAC=30°,∴∠FCA=30°,∴∠ FBC=30°,∵FC=2 ,∴BC=2 3,∴AC=2BC=4 3 ,∴AB= AC 2BC 2=(4 3)2(2 3)2=6,应选 D . 【点睛】本题考察了矩形的性质,全等三角形的判断与性质,等腰三角形三线合一的性质,直角三 角形 30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作协助线并求出∠BAC=30°是解题的重点.7.D分析: D【分析】【剖析】分 4 是直角边、 4 是斜边,依据勾股定理计算即可.【详解】当 4是直角边时,斜边 = 3242 =5,当 4 是斜边时,另一条直角边=42 327,应选: D .【点睛】本题考察的是勾股定理,假如直角三角形的两条直角边长分别是 a , b ,斜边长为 c ,那么a 2+b 2=c 2.8.A分析: A【分析】【剖析】由矩形的性质可知 AD ∥ BC ,由此可得出∠ BFE= ∠ DEF=25°,再依据翻折的性质可知每翻折一次减少一个∠ BFE 的度数,由此即可算出∠ CFE 度数.【详解】解:∵四边形 ABCD 为长方形,∴AD ∥BC ,∴∠ BFE= ∠ DEF=25°.由翻折的性质可知:图 2 中,∠ EFC=180°-∠ BFE=155° ,∠ BFC= ∠ EFC-∠BFE=130° ,图 3 中,∠ CFE=∠ BFC- ∠ BFE=105° . 应选: A . 【点睛】本题考察翻折变换以及矩形的性质,解题的重点是找出∠CFE=180°-3∠ BFE .解决该题型题目时,依据翻折变换找出相等的边角关系是重点.9.C分析: C【分析】【剖析】依据矩形的判断定理逐项清除即可解答.【详解】解:由对角线相等的平行四边形是矩形,可适当由有一个角是直角的平行四边形是矩形,可适当由平行四边形四边形对边平行,可得AD//BCAC=BD 时,能判断口ABCD 是矩形;AB ⊥ BC 时,能判断口ABCD 是矩形;,即可得∠ 1=∠ 2,所以当∠ 1=∠ 2 时,不可以判断口ABCD是矩形;由有一个角是直角的平行四边形是矩形,可适当∠ABC=∠BCD时,能判断口ABCD是矩形.应选答案为C.【点睛】本题考察了平行四边形是矩形的判断方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相互均分且相等的四边形是矩形.10.D分析: D【分析】【剖析】依据一次函数的性质对 D 进行判断;依据一次函数图象上点的坐标特点对断;依据一次函数的几何变换对 C 进行判断.【详解】A 、B 进行判A 、图象过点0, 1 ,不切合题意;B、函数的图象与x 轴的交点坐标是(1,0),不切合题意;2C、图象沿y 轴向上平移1个单位长度,获得直线y 2x,不切合题意;D、图象经过第一、三、四象限,切合题意;应选: D.【点睛】本题考察了一次函数的性质、一次函数图象上点的坐标特点和一次函数图象的几何变换,属于基础题.11.B分析: B【分析】【剖析】依据被开方数大于等于0,分母不等于0 列式计算即可得解.【详解】由题意得, x-3 > 0,解得 x> 3.应选: B.【点睛】本题考察了二次根式存心义的条件,二次根式中的被开方数一定是非负数,不然二次根式无心义.12.B分析: B【分析】【剖析】依据二次根式的性质,联合算术平方根的观点对每个选项进行剖析,而后做出选择.【详解】A .532,故A错误;B.82 2 2- 2= 2 ,故B正确;C.4137 =37993,故 C 错误;2D.2525= 5-2,故D错误.应选: B.【点睛】本题主要考察了二次根式的性质和二次根式的化简,娴熟掌握运算和性质是解题的重点.二、填空题13.3×122018【分析】【剖析】第一依据勾股定理得出 BC的进步而利用等腰直角三角形的性质得出 DE的长再利用锐角三角函数的关系得出 EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【分析:【分析】【剖析】第一依据勾股定理得出BC 的长,从而利用等腰直角三角形的性质得出DE 的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.【详解】∵在 Rt△ABC 中, AB= AC= 3,∴∠ B=∠ C= 45°, BC =AB = 6,∵在△ABC 内作第一个内接正方形DEFG ;∴EF =EC= DG= BD ,∴DE =BC= 2,∵取GF的中点P,接PD、 PE,在△PDE内作第二个内接正方形HIKJ ;再取段KJ 的中点Q,在△QHI内作第三个内接正方形⋯挨次行下去,∴,∴EI =KI=HI ,∵DH =EI,∴HI = DE =()2﹣1×3,第 n 个内接正方形的:3×()n﹣1.故第 2019 个内接正方形的:3×()2018.故答案是: 3×()2018.【点睛】考了正方形的性以及数字化律和勾股定理等知,依据已知得出正方形的化律是解关.14.1【分析】【剖析】依据均匀数求得 a 的值而后依据众数求得 b 的值后再确立新数据的中位数【详解】试题剖析:∵一组数据 12a 的均匀数为2∴1+2+a=3×2解得 a=3∴数据﹣ la12b 的独一众数为﹣ l ∴b=分析: 1【分析】【剖析】依据均匀数求得 a 的,而后依据众数求得b 的后再确立新数据的中位数.2,【解】剖析:∵一数据1, 2,a 的均匀数∴1+2+a=3×2a=3∴数据 l, a, 1, 2, b 的独一众数l ,∴b= 1,∴数据 1, 3, 1, 2, b 的中位数1.故答案1.本题考察了均匀数、众数及中位数的定义,解题的重点是正确的利用其定义求得未知数的值.15.2【分析】试题剖析:几个非负数之和为零则每个非负数都为零依据非负数的性质可得: m -3=0 且 n+1=0 解得: m=3n=-1 则 m+n=3+(- 1)=2 考点:非负数的性质分析: 2 【分析】试题剖析:几个非负数之和为零,则每个非负数都为零 .依据非负数的性质可得:m - 3=0且 n+1=0,解得: m=3, n=- 1,则 m+n=3+(- 1)=2.考点:非负数的性质16.24【分析】已知对角线的长度依据菱形的面积计算公式即可计算菱形的面积解:依据对角线的长能够求得菱形的面积依据S=ab=×6×8=24cm2故答案为 24分析: 24【分析】已知对角线的长度,依据菱形的面积计算公式即可计算菱形的面积.解:依据对角线的长能够求得菱形的面积, 依据 S=11 2,2ab= × 6× 8=24cm2故答案为 24.17.4【分析】【剖析】依据矩形的性质可得暗影部分的面积等于矩形面积的一 半即可求得结果【详解】由图可知暗影部分的面积故答案为: 4 考点:本题考查的是矩形的性质评论:解答本题的重点是依据矩形的性质获得△DOE分析: 4【分析】【剖析】依据矩形的性质可得暗影部分的面积等于矩形面积的一半,即可求得结果 .【详解】由图可知,暗影部分的面积14 2 42故答案为: 4考点:本题考察的是矩形的性质评论:解答本题的重点是依据矩形的性质获得△DOE 的面积等于 △BOF 的面积,从而能够判断暗影部分的面积等于矩形面积的一半.18.AC ⊥ BD 【分析】【剖析】本题第一依据三角形中位线的性质得出四边形为平行四边形而后依据矩形的性质得出 AC ⊥BD 【详解】解:∵ GHE 分别是 BCCDAD 的中点∴ HG ∥BDEH ∥ AC ∴∠EHG=∠1∠1=分析: AC ⊥BD【剖析】本题第一依据三角形中位线的性质得出四边形为平行四边形,而后依据矩形的性质得出AC⊥BD .【详解】解:∵ G、H、E 分别是 BC 、CD 、AD 的中点,∴ HG∥ BD ,EH ∥AC ,∴∠ EHG= ∠ 1,∠ 1=∠ 2,∴∠ 2= ∠ EHG,∵四边形 EFGH 是矩形,∴∠ EHG=90° ,∴∠ 2=90°,∴ AC⊥ BD.故还要增添AC ⊥ BD ,才能保证四边形EFGH 是矩形.【点睛】本题主要综合考察了三角形中位线定理及矩形的判断定理,属于中等难度题型.解答这个问题的重点就是要明确矩形的性质以及中位线的性质.19.【分析】【剖析】先由矩形的判断定理推知四边形PECF是矩形;连结 PC 则 PC= EF所以要使 EF即 PC最短只要 PC⊥AB 即可;而后依据三角形的等积变换即可求得 PC的值【详解】连结 PC∵PE⊥ACPF⊥B12分析:5【分析】【剖析】先由矩形的判断定理推知四边形PECF 是矩形;连结PC,则PC=EF,所以要使EF,即PC 最短,只要PC⊥ AB即可;而后依据三角形的等积变换即可求得PC 的值.【详解】连结PC,∵PE⊥AC , PF⊥ BC ,∴∠ PEC=∠ PFC=∠ C=90°;又∵∠ ACB = 90°,∴四边形 ECFP 是矩形,∴E F=PC,∴当 PC 最小时, EF 也最小,即当 CP⊥ AB 时, PC 最小,∵AC = 4, BC= 3,∴AB = 5,∴1AC?BC =1AB?PC,22∴PC=12.5∴线段 EF 长的最小值为12;5故答案是:12.5【点睛】本题考察了勾股定理、矩形的判断与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥ AB 时, PC 取最小值是解答本题的重点.20.【分析】试题剖析:∵四边形ABCD是平行四边形∴AD∥CBAB∥CD∴∠ DAB+∠CBA=180°又∵ AP 和 BP分别均分∠ DAB和∠CBA∴∠ PAB=∠DAB∠PBA=∠ABC∴∠ PAB+∠PBA=分析:【分析】试题剖析:∵四边形ABCD是平行四边形,∴AD∥CB, AB∥ CD,∴∠ DAB+∠ CBA=180°,又∵ AP 和 BP 分别均分∠ DAB 和∠ CBA,∴∠ PAB= ∠ DAB,∠ PBA= ∠ ABC,∴∠ PAB+∠PBA= (∠ DAB+∠ CBA) =90 °,∴∠ APB=180°﹣(∠ PAB+∠ PBA) =90 °;∵ AB∥ CD,∴∠PAB=∠ DPA,∴∠ DAP=∠ DPA,∴ AD=DP=5,同理:PC=CB=5,即 AB=DC=DP+PC=10,在 Rt△APB 中, AB=10, AP=8,∴ BP==6,∴△APB 的周长 =6+8+10=24.考点:1 平行四边形; 2 角均分线性质; 3 勾股定理; 4 等腰三角形.三、解答题21. (1) 看法析;(2)51313【分析】【剖析】(1)联合网格牟利用勾股定理确立点 C 的地点即可得解;(2)依据三角形的面积列出对于BD 方程,求解即可获得答案.【详解】解:( 1)如图:∵小正方形的边长均为 1 ∴ AE 3, CE 2; BFCF 3∴AC AE 2 CE 2 13 ;BCBF 2CF 23 2∴ V ABC 即为所求.(2)如图:∵由网格图可知 AB 5, CH 3, AC13;BC 3 2SV ABCAB CHAC BD22∴13BD 5322∴ BD15 13.13【点睛】本题考察了勾股定理在网格图中的的运用,本题需认真剖析题意,联合图形,利用勾股定理即可解决问题.22. (1) 看法析 ;(2)∠EFB=30°或120°.【分析】【剖析】(1)直接利用全等三角形的判断方法得出△DCE≌△ BCE( SAS),即可得出答案;(2)利用正方形的性质联合等腰三角形的性质得出:①当 F 在 AB 延伸线上时;②当 F 在线段 AB 上时;分别求出即可.【详解】(1)证明:∵四边形ABCD 是菱形,∴CD=AB ,∠ ACD= ∠ACB ,在△ DCE 和△ BCE 中,∴△ DCE ≌△ BCE ( SAS),∴∠ CDE= ∠CBE ,∵CD∥AB ,∴∠ CDE= ∠AFD ,∴∠ EBC= ∠ AFD.(2)分两种状况,①如图 1,当 F 在 AB 延伸线上时,∵∠ EBF 为钝角,∴只好是 BE=BF ,设∠ BEF= ∠BFE=x°,可经过三角形内角形为180°得: 90+x+x+x=180 ,解得: x=30,∴∠ EFB=30°.②如图 2,当 F 在线段 AB 上时,∵∠ EFB 为钝角,∴只好是 FE=FB ,设∠ BEF= ∠ EBF=x°,则有∠ AFD=2x°,可证得:∠ AFD= ∠ FDC= ∠ CBE,得 x+2x=90 ,解得: x=30,∴∠ EFB=120° .综上:∠ EFB=30°或120°.【点睛】本题主要考察了菱形的性质以及正方形的性质以及全等三角形的判断与性质等知识,利用分类议论得出是解题重点.23. 1【分析】【剖析】直接利用二次根式的乘法运算法例计算得出答案.【详解】原式3112 221 23【点睛】本题主要考察了实数运算,正确掌握有关运算法例是解题重点.24.( 1)甲、乙六次测试成绩的方差分别是S甲22,S乙24;( 2)甲33【分析】【剖析】(1)依据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)依据均匀数同样,利用( 1)所求方差比较,方差小的成绩稳固,即可得答案.【详解】(1)甲、乙六次测试成绩的方差分别是:S甲21[(109) 2(99)2(89)2(8 9)2(109) 299) 2 2 ,63S乙21[(109) 2(109) 2(89) 2(10 9)2(79)299) 2 4 ,63(2)介绍甲参加全国竞赛更适合,原因以下:∵两人的均匀成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳固,∴介绍甲参加竞赛更适合.故答案为:甲【点睛】本题考察方差的求法及利用方差做决议,方差反应了一组数据的颠簸大小,方差越大,波动性越大,反之也成立;娴熟掌握方差公式是解题重点.25.3【分析】【剖析】依据 ABCD 是菱形,找出 B 点对于 AC 的对称点 D ,连结 DE 交 AC 于 P,则 DE 就是PB+PE 的最小值,依据勾股定理求出即可 .【详解】解:如图,连结DE 交 AC 于点 P,连结 DB ,∵四边形 ABCD 是菱形,∴点 B 、D 对于 AC 对称(菱形的对角线相互垂直均分),∴D P=BP ,∴P B+PE 的最小值即是 DP+PE 的最小值(等量替代),又∵ 两点之间线段最短,∴D P+PE 的最小值的最小值是 DE,又∵DAB 60 ,CD=CB,∴△ CDB 是等边三角形,又∵点 E 为 BC 边的中点,∴DE ⊥ BC (等腰三角形三线合一性质),菱形 ABCD 的边长为2,∴C D=2 , CE=1,,由勾股定理得(1) DE= 2212 3故答案为 3 .【点睛】本题主要考察轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确立P 点的地点是解题的重点.。
八年级上期中数学试卷(2)含答案解析A卷
八年级(上)期中数学试卷一、选择题1.下列等式正确的是()A.=﹣3 B.=±12 C.=﹣7 D.=2 2.下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.顶角相等的两个等腰三角形全等C.面积相等的两个三角形全等D.等腰三角形的两个底角相等3.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9 cm B.12 cm C.15 cm或12 cm D.15 cm4.如图,∠ACD=90°,∠D=15°,B点在AD的垂直平分线上,若AC=4,则BD=()A.4 B.6 C.8 D.105.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD7.如图,BI,CI分别是∠ABC和∠ACB的平分线,DE过I点且DE∥BC,则下列结论错误的是()A.AI平分∠BAC B.I到三边的距离相等C.AI=ID D.DE=BD+CE8.△ABC是等边三角形,M是AC上一点,N是BC上的一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON的度数为()A.110°B.105°C.90°D.85°9.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是()A.B.C.1 D.2+10.若x、y为实数,,则4y﹣3x是.二、填空题11.16的平方根是,=.12.等腰三角形一个角为50°,则此等腰三角形顶角为.13.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为.14.若一个正数的两个平方根是2a﹣1和﹣a+2,则a=,这个正数是.15.若|x﹣1|+(y﹣2)2+=0,则x+y+z=.16.如图,在Rt△ABC中,BE平分∠ABC,ED⊥AB于D,AC=3cm,则AE+DE=cm.17.若△ABC中,∠A:∠B:∠C=1:2:3,且最长边为10cm,则最短边长为cm.18.若,且ab<0,则a+b=.19.一长方形的一边长为3cm,面积为12cm2,那么它的一条对角线长是cm.20.若,则b c+a的值为.三、解答与证明21.解方程:(1)x2﹣25=0(2)(x﹣1)2=16.22.如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD,过点D 作DF⊥BE,垂足为F.试说明:BF=EF.23.如图,A、D、E三点在同一直线上,∠BAE=∠CAE,∠BDE=∠CDE,(1)求证:AB=AC;(2)求证:AE⊥BC.24.已知,如图:A、E、F、B在一条直线上,AE=BF,∠C=∠B,CF∥DE,求证:AC∥BD.25.已知等腰三角形的三边长a=5x﹣1,b=6﹣x,c=4,求x的值.26.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?27.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,求出AE的长度.28.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.29.如图①,长方形ABCD中,AB=6cm,BC=4cm,E为CD的中点.点P从A点出发,沿A﹣B﹣C的方向在长方形边上匀速运动,速度为1cm/s,运动到C点停止.设点P运动的时间为ts.(图②③为备用图)(1)当P在AB上,t为何值时,△APE的面积为长方形面积的?(2)整个运动过程中,t为何值时,△APE为直角三角形?(3)整个运动过程中,t为何值时,△APE为等腰三角形?2015-2016学年江苏省无锡市宜兴市XX中学八年级(上)期中数学试卷参考答案与试题解析一、选择题1.下列等式正确的是()A.=﹣3 B.=±12 C.=﹣7 D.=2 【考点】二次根式的性质与化简.【分析】直接利用二次根式的定义以及二次根式的性质分别化简求出答案.【解答】解:A、,无意义,故此选项错误;B、=12,故此选项错误;C、=7,故此选项错误;D、(﹣)2=2,正确.故选:D.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.2.下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.顶角相等的两个等腰三角形全等C.面积相等的两个三角形全等D.等腰三角形的两个底角相等【考点】等腰三角形的性质;全等三角形的判定.【分析】由等腰三角形的性质得出A不正确、D正确;由全等三角形的判定方法得出B、C 不正确;即可得出结果.【解答】解:∵等腰三角形的底边上的高、底边上的中线、顶角平分线互相重合,∴A不正确;∵顶角相等的两个等腰三角形相似,不一定全等,∴B不正确;∵面积相等的两个三角形不一定全等,∴C不正确;∵等腰三角形的两个底角相等,∴D正确;故选D.【点评】本题考查了等腰三角形的性质、全等三角形的判定方法;熟练掌握等腰三角形的性质和全等三角形的判定方法是解决问题的关键.3.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9 cm B.12 cm C.15 cm或12 cm D.15 cm【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选D.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.如图,∠ACD=90°,∠D=15°,B点在AD的垂直平分线上,若AC=4,则BD=()A.4 B.6 C.8 D.10【考点】线段垂直平分线的性质.【分析】先根据线段垂直平分线的性质得到AB=BD,∠D=∠DAB,由三角形内角与外角的关系得到∠ABC的度数,再根据直角三角形的性质求解即可.【解答】解:∵B点在AD的垂直平分线上,∠D=15°,∴AB=BD,∠D=∠DAB=15°,∴∠ABC=∠D+∠DAB=30°,∴AB=2AC,∵AC=4,∴AB=8,∵AB=BD,∴BD=8.故选C.【点评】本题考查的是线段垂直平分线的性质及三角形内角与外角的关系,熟知线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.5.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°【考点】线段垂直平分线的性质.【分析】利用线段的垂直平分线的性质计算.通过已知条件由∠B=90°,∠BAE=10°⇒∠AEB,∠AEB=∠EAC+∠C=2∠C.【解答】解:∵ED是AC的垂直平分线,∴AE=CE∴∠EAC=∠C,又∵∠B=90°,∠BAE=10°,∴∠AEB=80°,又∵∠AEB=∠EAC+∠C=2∠C,∴∠C=40°.故选:B.【点评】此题主要考查线段的垂直平分线的性质、直角三角形的两锐角互余、三角形的一个外角等于它不相邻的两个内角和.6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【考点】等腰三角形的性质.【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.【点评】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质7.如图,BI,CI分别是∠ABC和∠ACB的平分线,DE过I点且DE∥BC,则下列结论错误的是()A.AI平分∠BAC B.I到三边的距离相等C.AI=ID D.DE=BD+CE【考点】角平分线的性质;平行线的性质;等腰三角形的判定与性质.【分析】根据三角形的角平分线相交于一点,根据角平分线上的点到角的两边的距离相等,角平分线的定义,平行线的性质对各选项分析判断后利用排除法求解.【解答】解:A、∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC正确,故本选项错误;B、I为△ABC角平分线的交点,I到三边的距离相等正确,故本选项错误;C、AI与DI的大小无法判断,故本选项正确;D、∵BI,CI分别是∠ABC和∠ACB的平分线,∴∠DBI=∠CBI,∠ECI=∠BCI,∵DE∥BC,∴∠DIB=∠CBI,∠EIC=∠BCI,∴∠DBI=∠DIB,∠ECI=∠EIC,∴BD=DI,CE=EI,∴DE=DI+EI=BD+CE,即DE=BD+CE正确,故本选项错误.故选C.【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定,熟记三角形的角平分线相交于一点,角平分线上的点到角的两边的距离相等的解题的关键.8.△ABC是等边三角形,M是AC上一点,N是BC上的一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON的度数为()A.110°B.105°C.90°D.85°【考点】等边三角形的性质.【分析】根据等边三角形的性质可得∠A=∠B=60°,又因为AM=BN,AB=AB,所以△AMB ≌△BNA,从而得到∠NAB=∠MBA=60°﹣∠MBC=35°,则∠MON=∠AOB=180°﹣2×35°=110°.【解答】解:∵△ABC是等边三角形∴∠A=∠B=60°∵AM=BN,AB=AB∴△AMB≌△BNA∴∠NAB=∠MBA=60°﹣∠MBC=35°∴∠AOB=180°﹣2×35°=110°∵∠MON=∠AOB∴∠MON=110°故选A.【点评】考查了等腰三角形的性质,根据等边三角形的性质,结合全等三角形求解.9.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是()A.B.C.1 D.2+【考点】平面展开-最短路径问题.【分析】根据已知得出蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是如图BM的长度,进而利用勾股定理求出即可.【解答】解:∵蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,∴蚂蚁爬行的最短距离是如图BM的长度,∵无盖的正方体盒子的棱长为2,BC的中点为M,∴A1B=2+2=4,A1M=1,∴BM==.故选B.【点评】此题主要考查了平面展开﹣最短路径问题,利用图形得出最短路径为BM是解题关键.10.若x、y为实数,,则4y﹣3x是6.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得x2﹣4≥0且4﹣x2≥0,根据分式有意义的条件可得x﹣2≠0,再解不等式即可.【解答】解:由题意得:x2﹣4≥0且4﹣x2≥0,x﹣2≠0,解得:x=﹣2,则y=0,4y﹣3x=6,故答案为:6.【点评】此题主要考查了二次根式有意义和分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.二次根式中的被开方数是非负数.二、填空题11.16的平方根是±4,= 1.2.【考点】算术平方根;平方根.【分析】一个正数的平方根有两个,它们互为相反数;算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵(±4)2=16,∴16的平方根是±4;=1.2.【点评】此题主要考查了平方根与算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.等腰三角形一个角为50°,则此等腰三角形顶角为50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.【解答】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°﹣50°×2=80°故填50°或80°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.13.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为90.【考点】勾股定理.【分析】连续自然数,两数的差是1,较大的是斜边,根据勾股定理就可解得.【解答】解:设另一直角边为a,斜边为a+1.根据勾股定理可得,(a+1)2﹣a2=92.解之得a=40.则a+1=41,则直角三角形的周长为9+40+41=90.故答案为:90.【点评】本题综合考查了勾股定理,解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.14.若一个正数的两个平方根是2a﹣1和﹣a+2,则a=﹣1,这个正数是9.【考点】平方根.【分析】由于一个正数的平方根有两个,且它们互为相反数,由此即可列出方程求解.【解答】解:依题意得,2a﹣1+(﹣a+2)=0,解得:a=﹣1.则这个数是(2a﹣1)2=(﹣3)2=9.故答案为:﹣1,9【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.15.若|x﹣1|+(y﹣2)2+=0,则x+y+z=6.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y、z的值,代入所求代数式计算即可.【解答】解:∵|x﹣1|+(y﹣2)2+=0,∴x﹣1=0,y﹣2=0,z﹣3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,在Rt△ABC中,BE平分∠ABC,ED⊥AB于D,AC=3cm,则AE+DE=3cm.【考点】角平分线的性质.【分析】要求AE+DE,现知道AC=3cm,即AE+CE=3cm,只要CE=DE则问题可以解决,而应用其它条件利用角平分线的性质正好可求出CE=DE.【解答】解:∵∠ACB=90°,∴EC⊥CB,又BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC=3cm故答案为:3【点评】此题主要考查角平分线性质:角平分线上的任意一点到角的两边距离相等;做题时要认真观察各已知条件在图形上的位置,根据位置结合相应的知识进行思考是一种很好的方法.17.若△ABC中,∠A:∠B:∠C=1:2:3,且最长边为10cm,则最短边长为5cm.【考点】含30度角的直角三角形.【分析】根据比例设∠A、∠B、∠C分别为k、2k、3k,然后根据三角形的内角和等于180°列式求出各角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵∠A:∠B:∠C=1:2:3,∴设∠A、∠B、∠C分别为k、2k、3k,k+2k+3k=180°,解得k=30°,∴∠A=30°,∠B=60°,∠C=90°,∵最长边为10cm,∴最短边长=×10=5cm.故答案为:5.【点评】本题考查了含30°角的直角三角形,主要利用了30°角所对的直角边等于斜边的一半的性质,根据比例求出各角的度数是解题的关键.18.若,且ab<0,则a+b=﹣1.【考点】算术平方根.【分析】直接利用绝对值的性质以及二次根式的性质进而得出a,b的值,即可得出答案.【解答】解:∵|a|=5,=2,∴a=±5,b=4,∵ab<0,∴a=﹣5,b=4,∴a+b=﹣1.故答案为:﹣1.【点评】此题主要考查了绝对值的性质以及二次根式的性质,正确把握相关性质是解题关键.19.一长方形的一边长为3cm,面积为12cm2,那么它的一条对角线长是5cm.【考点】勾股定理.【分析】先根据面积求出三角形另一边的长,再根据勾股定理求出直角三角形斜边长即可.【解答】解:∵该长方形的一边长为3cm,面积为12cm2,∴另一边长为4cm,∴对角线长==5cm.【点评】此题主要涉及的知识点:长方形的面积公式和勾股定理的应用.20.若,则b c+a的值为﹣3.【考点】二次根式有意义的条件;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据二次根式的意义,被开方数是非负数.则a﹣5≥0,5﹣a≥0,求得a的值,再根据非负数的性质,求得b,c的值,代入计算即可.【解答】解:∵a﹣5≥0,5﹣a≥0,∴a=5,∴+|2c﹣6|=0,∴b+2=0,2c﹣6=0,解得b=﹣2,c=3,∴b c+a=(﹣2)3+5=﹣8+5=﹣3,故答案为﹣3.【点评】本题考查了二次根式有意义的条件和非负数的性质,同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0三、解答与证明21.解方程:(1)x2﹣25=0(2)(x﹣1)2=16.【考点】解一元二次方程-直接开平方法.【分析】(1)先移项,然后开平方即可;(2)将(x﹣1)看作一个整体,然后开平方求出(x﹣1),继而再求x的值.【解答】解:(1)x2﹣25=0,x2=25,x1=﹣5,x2=﹣﹣5;(2)(x﹣1)2=16,x﹣1=±4,x1=﹣3,x2=5.【点评】本题考查了解一元二次方程﹣﹣直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c (a,c同号且a≠0).22.如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD,过点D 作DF⊥BE,垂足为F.试说明:BF=EF.【考点】等边三角形的性质.【分析】【分析】因为△ABC是等边三角形,所以∠ABC=∠ACB=60°,点D是AC的中点,则∠DBC=30°,再由题中条件求出∠E=30°,易得△DBE为等腰三角形,由等腰三角形的性质可证得结论.【解答】证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵点D是AC的中点,∴∠DBC=∠ABC=30°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBE=∠E,∴△DBE为等腰三角形,∵DF⊥BE,∴BF=EF.【点评】本题考查了等边三角形的性质,掌握等腰三角形“三线合一”是解答此题的关键.23.如图,A、D、E三点在同一直线上,∠BAE=∠CAE,∠BDE=∠CDE,(1)求证:AB=AC;(2)求证:AE⊥BC.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由题中条件两角夹一边判定△ADC≌△ADB,得出AB=AC,进而亦可得出第二问的结论.【解答】证明:(1)∵∠BDE=∠CDE,∠BAE=∠CAE,∴∠ADB=∠ADC,又AD=AD,∴△ADC≌△ADB,∴AB=AC,(2)在△ABC中,AB=AC,∠BAE=∠CAE,∴AE⊥BC.【点评】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定及性质问题,能够熟练掌握.24.已知,如图:A、E、F、B在一条直线上,AE=BF,∠C=∠B,CF∥DE,求证:AC∥BD.【考点】全等三角形的判定与性质;平行线的判定与性质.【分析】求出AF=BE,根据平行线性质求出∠CFE=∠BED,根据AAS推出△ACF≌△BDE 即可.【解答】证明:∵CF∥DE,∴∠CFE=∠BED,∵AE=BF,∴AF=BE,∵∠C=∠B,在△ACF和△BDE中,∴△ACF≌△BDE(AAS),∴∠A=∠B,∴AC∥BD【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,解此题的关键是推出△ACF≌△BDE,注意:全等三角形的对应边相等,对应角相等.25.已知等腰三角形的三边长a=5x﹣1,b=6﹣x,c=4,求x的值.【考点】等腰三角形的性质;三角形三边关系.【分析】分三种情况求解后利用三角形的三边关系验证.【解答】解:若a=b,则5x﹣1=6﹣x,得x=,三边长分别为,,5,符合三角形三边关系;若a=c,则5x﹣1=4,得x=1,三角形的三边长为4,5,4,符合三角形三边关系;若b=c,则6﹣x=4,得x=2,三角形的三边长为9,4,4,不构成三角形;综上所述,符合要求的x值为或1;【点评】本题考查了等腰三角形的性质及三角形的三边关系,解题的关键是分类讨论.26.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?【考点】勾股定理的应用.【分析】本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.【解答】解:如图所示:根据题意,得AC=AD﹣BE=13﹣8=5m,BC=12m.根据勾股定理,得AB==13m.则小鸟所用的时间是13÷2=6.5(s).答:这只小鸟至少6.5秒才可能到达小树和伙伴在一起.【点评】此题主要考查勾股定理的运用.关键是构造直角三角形,同时注意:时间=路程÷速度.27.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,求出AE的长度.【考点】翻折变换(折叠问题).【分析】利用等腰直角三角形的性质得出BC的长,进而得出BH,DH的长,再利用勾股定理得出AE的长.【解答】解:作DH⊥AB于H,可得等腰Rt△DBH,由AB=4,可知BC=sin45°×AB=×4=2,于是BD=,BH=DH=×=1,设AE=DE=x,则EH=4﹣1﹣AE=3﹣x,在Rt△DEH中,(3﹣x)2+12=x2,解得:x=,故AE的长度为.【点评】此题主要考查了翻折变换以及勾股定理等知识,根据已知得出BH=DH的长是解题关键.28.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为14cm;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为35°;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.【考点】翻折变换(折叠问题).【分析】操作一利用对称找准相等的量:BD=AD,∠BAD=∠B,然后分别利用周长及三角形的内角和可求得答案;操作二利用折叠找着AC=AE,利用勾股定理列式求出AB,设CD=x,表示出BD,AE,在Rt△BDE中,利用勾股定理可得答案;【解答】解:操作一:(1)由折叠的性质可得AD=BD,∵△ACD的周长=AC+CD+AD,∴△ACD的周长=AC+CD+BD=AC+BC=8+6=14(cm);故填:14cm;(2)设∠CAD=4x,∠BAD=7x由题意得方程:7x+7x+4x=90,解之得x=5,所以∠B=35°;故填:35°;操作二:∵AC=9cm,BC=12cm,∴AB===15(cm),根据折叠性质可得AC=AE=9cm,∴BE=AB﹣AE=6cm,设CD=x,则BD=12﹣x,DE=x,在Rt△BDE中,由题意可得方程x2+62=(12﹣x)2,解之得x=4.5,∴CD=4.5cm.【点评】本题考查了直角三角形中的勾股定理的应用及图形的翻折问题;解决翻折问题时一般要找着相等的量,然后结合有关的知识列出方程进行解答.29.如图①,长方形ABCD中,AB=6cm,BC=4cm,E为CD的中点.点P从A点出发,沿A﹣B﹣C的方向在长方形边上匀速运动,速度为1cm/s,运动到C点停止.设点P运动的时间为ts.(图②③为备用图)(1)当P在AB上,t为何值时,△APE的面积为长方形面积的?(2)整个运动过程中,t为何值时,△APE为直角三角形?(3)整个运动过程中,t为何值时,△APE为等腰三角形?【考点】四边形综合题.【分析】(1)设t秒后,△APE的面积为长方形面积的,根据题意得:△APE的面积= APAD=t×4=,从而求得t值;(2)当P运动到AB中点时AEP为直角三角形,此时角APE为直角,t=3;还有一种情况,当P运动到BC上时,角AEP为直角时利用相似三角形求得AP的长即可求得t值;(3))第一种情况,当P在AE垂直平分线上时,AP=EP;第二种情况,P运动到点B上时APE为等腰三角形,此时AE=EP,t=6;第三种情况,P在AB上,AP=PE;【解答】解:(1)设t秒后,△APE的面积为长方形面积的,根据题意得:AP=t,∴△APE的面积=APAD=t×4=,解得:t=4,∴4秒后,△APE的面积为长方形面积的;(2)显然当t=3时,PE⊥AB,∴△APE是直角三角形,当P在BC上时,△ADE∽△ECP,此时,解得:CP=,∴PB=BC﹣PC=4﹣=,∴t=6+=;(3)①当P在AE垂直平分线上时,AP=EP,过P作PQ⊥AE于Q,∵AD=4,DE=3,∴AE=5,∴AQ=2.5,由△AQP∽△EDA,得:,即:,解得:AP=,∴t=;.②当EA=EB时,AP=6,∴t=6,③当AE=AP时,∴t=5.∴当t=、5、6时,△APE是等腰三角形.【点评】本题考查了四边形的综合知识和动点问题,动点问题更是中考中的热点考题,有一定的难度,解题的关键是能够化动为静,利用等腰三角形的性质求解.。
人教版八年级(下)数学期中试卷(二)
人教版八年级(下)数学期中试卷(二)一、选择题(本大题共10小题,共30分)1.(3分)下列几组数中,为勾股数的是()A.,,1B.3,4,6C.5,12,13D.0.9,1.2,1.52.(3分)若最简二次根式和能合并,则x的值为()A.x=﹣B.x=C.x=2D.x=53.(3分)下列所给的二次根式中,是最简二次根式的是()A.B.C.D.4.(3分)如果△ABC的三边满足关系:AB2=AC2﹣BC2,那么()A.△ABC不是直角三角形B.△ABC是直角三角形,∠A是直角C.△ABC是直角三角形,∠B是直角D.△ABC是直角三角形,∠C是直角5.(3分)下列性质中正方形具有而菱形没有的是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.一条对角线平分一组对角6.(3分)已知:如图,过四边形ABCD的顶点A、C、B、D分别作BD、AC的平行线围成四边形EFGH,如果EFGH成菱形,那么四边形ABCD必定是()A.菱形B.平行四边形C.矩形D.对角线相等的四边形7.(3分)已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.B.16C.D.88.(3分)下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC9.(3分)如图,四边形ABCD是边长为9的正方形纸片,B′为CD边上的点,B′C=3.将纸片沿某条直线折叠,使点B落在点B′处,点A的对应点为A′,折痕分别与AD,BC 边交于点M、N,则AM的长是()A.1.5B.2C.2.25D.2.510.(3分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延长线上一点,AF ⊥CF,垂足为F.下列结论:①∠ACF=45°;②四边形ABCD的面积等于AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正确的是()A.①②B.②③C.①②③D.①②③④二、填空题(每小题3分,共18分)11.(3分)二次根式在实数范围内有意义,则x的取值范围是.12.(3分)如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm.13.(3分)如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点上,则DF的长为.14.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.15.(3分)如图,在平行四边形ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC,能说明平行四边形ABCD是矩形的有(填写序号).16.(3分)如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC 于E,MF⊥CD于F,则EF的最小值为.三、解答题(共72分)17.(10分)计算(1)(2)18.(8分)已知x=,y=,求下列各式的值.(1)x2﹣2xy+y2;(2)x2﹣y2.19.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,;(3)如图3中∠BCD是不是直角?请说明理由(可以适当添加字母)20.(7分)如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=16km,CB=11km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?21.(7分)定义:若两个二次根式a,b满足a•b=c,且c是有理数,则称a与b是关于c 的共轭二次根式.(1)若a与是关于4的共轭二次根式,则a=;(2)若与是关于12的共轭二次根式,求m的值.22.(8分)如图,在平行四边形ABCD中,点O是边BC的中点,连接AO并延长,交DC 延长线于点E,连接AC,BE.(1)求证:四边形ABEC是平行四边形;(2)当∠D=50°,∠AOC=100°时,判断四边形ABEC的形状,并说明理由.23.(11分)如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)发现当正方形AEFG绕点A旋转,如图2,①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是.(2)探究如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,证明:直线DG⊥BE.(3)应用在(2)情况下,连接GE(点E在AB上方),若GE∥AB,且AB=,AE=1,则线段DG是多少?(直接写出结论)24.(13分)如图,在四边形ABCD中,AD∥BC,AB=CD,DE⊥BC于点E,且DE=4,AD=18,∠C=60°;(1)BC=(2)若动点P从点D出发,速度为2个单位/秒,沿DA向点A运动,同时,动点Q从点B出发,速度为3个单位/秒,沿BC向点C运动,当一个动点到达端点时,另一个动点同时停止运动,设运动的时间为t秒.①t=秒时,四边形PQED是矩形;②t为何值时,线段PQ与四边形ABCD的边构成平行四边形;③是否存在t值,使②中的平行四边形是菱形?若存在,请求出t值;若不存在,请说明理由.。
2023-2024学年北京理工大学附属中学八年级上学期期中考试数学试卷含详解
2023—2024学年度第一学期八年级数学学科期中练习一、选择题(每题3分,共30分)第1-10题均有四个选项,符合题意的选项只有一个.1.下列冰雪运动项目的图标中,是轴对称图形的是()A. B. C. D.2.下列三条线段的长度,可以构成三角形的是()A.2,4,6 B.3,5,7 C.4,5,10 D.3,3,83.如图,ABC DCB △≌△,若73,38D DBC ∠=︒∠=︒,则ABC ∠的度数是()A.63︒B.69︒C.73︒D.82︒4.画ABC 边BC 上的高,下列画法正确的是()A . B.C. D.5.如图,已知90BCA BDA ∠=∠=︒,BC BD =.则证明BAC BAD ≌的理由是()A.SASB.ASAC.AASD.HL6.如图,五边形ABCDE 的一个内角120BAE ∠=︒,则1234∠+∠+∠+∠等于()A.100︒B.180︒C.280︒D.300︒7.如图,点A ,B 在直线l 同侧,在直线l 上取一点P ,使得PA PB +最小,对点P 的位置叙述正确的是()A.作线段AB 的垂直平分线与直线l 的交点,即为点PB.过点A 作直线l 的垂线,垂足即为点PC.作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点PD.延长BA 与直线l 的交点,即为点P8.如图,在ABC 中,70AB AC C =∠=︒,,线段AB 的垂直平分线EF 交AC 于点D ,交AB 于点E ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.25︒9.如图,在ABC 中,AD 是BAC ∠的平分线,2,5,3C B AC CD ∠=∠==,则AB 的长为()A.6B.7C.8D.910.如图,将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,折痕为BD ,连接CE DE ,,现有以下结论:①DE AB ⊥;②BD 垂直平分CE ;③DE 平分ADB ∠;④若60ADE ∠=︒,则BCE 是等边三角形;其中正确的有()A.①②③B.①②④C.①③④D.②③④二、填空题(每题2分,共12分)11.如图,已知12∠=∠,要证明ABC CDA △△≌,还需添加的一个条件是______.12.如图,BD 是ABC 的角平分线,过点D 作DE BC ∥交AB 于点E .若36A ∠=︒,76BDC ∠=︒,则BDE ∠=______°.13.如图,在平面直角坐标系xOy 中,ABC 为等腰三角形,,AB AC =BC x ∥轴,若()()2,4,5,1A C ,则点B 的坐标为______.14.如图,在ABC 中,AD 平分,BAC DE AC ∠⊥于点E ,若3,2AB DE ==,则ABD △的面积是______.15.如图,ABC 为等腰直角三角形,,AD BD CE BD ⊥⊥于点,E AC 与BD 交于点F ,若70BAD ∠=︒,则AFB ∠=______︒;若2,7BE CE ==,则DE =______.16.已知平面直角坐标xOy 中的等腰直角三角形ABC ,点()5,5A ,点(),0B m ,点()0,C n ,m 与n 均是正整数.(1)找出一个符合条件的ABC ,写出它对应的m 与n 的值:m =______,n =______;(2)满足上述条件的ABC 共有______个.三、解答题(共58分,第17,19,21题每题5分,第18题每问5分,第20,22,23题每题6分,第24题7分,第25题8分)解答应写出文字说明、演算步骤或证明过程.17.解方程组:32341x y x y -=⎧⎨+=⎩.18.(1)解不等式:4113x x -≥-,并把解集在数轴上表示出来.(2)求不等式组()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩的整数解.19.知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.20.如图,AD 是ABC 中BC 边上的高,AE 平分BAC ∠,若32,60B C ∠=∠=︒︒.求AEC ∠和DAE ∠的度数.21.下面是“作钝角三角形一边上的高”的尺规作图过程.已知:ABC .求作:ABC 的边AB 上的高CD .作法:①作直线AB ;②以点C 为圆心,适当长为半径画弧,交直线AB 于点,M N ;③分别以点,M N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ;④作直线CP 交AB 于点D ,则线段CD 即为所求.根据以上的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:,CM CN MP == ______,∴点,C P 在线段MN 的垂直平分线上(______).(填推理的依据)CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.22.如图,在等腰直角三角形ABC 和等腰直角三角形ADE 中,90BAC DAE ∠=∠=︒,连接BD CE ,.(1)求证:BD CE =;(2)求证:CE BD ⊥.23.(1)下图三角形网格由若干个边长为1的小等边三角形组成,每个小等边三角形的顶点叫做格点.若一个三角形的三个顶点都落在格点上,则这个三角形叫做格点三角形.已知ABC 是格点三角形,线段,BC BR 如图1所示.在三角形网格中分别画出符合条件的三角形.①点A 在线段BR 上,90ACB ∠=︒,画出ABC ;②在第①问的基础上,格点,150,DEA ABC CAE AE BC ∠=︒=≌△△,画出ADE V .(2)尺规作图:如图2,DEF 为等边三角形,作等边三角形PQR ,其顶点分别在等边三角形DEF 的三条边上,且不与这三边的中点重合.(请保留作图痕迹)24.如图,AH 平分PAQ M ∠,为射线AH 上任意一点(不与点A 重合),过点M 作AH 的垂线分别交AP AQ ,于点B C ,.(1)求证:BM CM =;(2)作点M 关于射线AP 的对称点N ,连接BN ,在线段BN 上取一点D (不与点B ,点N 重合),作12DAE PAQ ∠=∠,交线段BM 于点E ,连接DE .①依题意补全图形;②用等式表示线段EC BD DE ,,之间的数量关系,并证明.25.在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,则称点P 为线段AB 的垂直对称点.(1)已知点()0,3A ,()0,0B .①在点()13,3P ,()21,1P ,点()33,0P中,线段AB 的垂直对称点是______;②若P 是线段AB 的垂直对称点,直接写出点P 的纵坐标P y 的取值范围______;(2)已知()0,A a ,(),0B b ,P 是线段AB 的垂直对称点,AB BP ⊥.①当3a =,14b ≤≤时,直接写出点P 的横坐标P x 的取值范围______;②若A ,B 为坐标轴上两个动点,a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,动点P 形成的轨迹组成的图形面积为10,直接写出m 与n 的数量关系表达式______.2023—2024学年度第一学期八年级数学学科期中练习一、选择题(每题3分,共30分)第1-10题均有四个选项,符合题意的选项只有一个.1.下列冰雪运动项目的图标中,是轴对称图形的是()A. B. C. D.【答案】D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【详解】解:A .不是轴对称图形,故本选项不合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .是轴对称图形,故本选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.2.下列三条线段的长度,可以构成三角形的是()A.2,4,6B.3,5,7C.4,5,10D.3,3,8【答案】B【分析】根据三角形的三边关系,进行判断即可.【详解】解:A 、246+=,不能构成三角形;B 、357+>,能构成三角形;C 、4510+<,不能构成三角形;D 、338+<,不能构成三角形;故选B .【点睛】本题考查构成三角形的条件.解题的关键是掌握两条短的线段之和大于第三条线段的长时,三条线段能构成三角形.3.如图,ABC DCB △≌△,若73,38D DBC ∠=︒∠=︒,则ABC ∠的度数是()A.63︒B.69︒C.73︒D.82︒【答案】B 【分析】三角形内角和定理,求出BCD ∠,再根据全等三角形对应角相等,即可得出结果.【详解】解:∵73,38D DBC ∠=︒∠=︒,∴10689D D CD BC B ∠︒-∠-=∠=︒;∵ABC DCB △≌△,∴69B ABC CD ∠∠==︒;故选B .【点睛】本题考查全等三角形的性质,熟练掌握全等三角形的对应角相等,是解题的关键.4.画ABC 边BC 上的高,下列画法正确的是()A. B.C. D.【答案】D【分析】根据三角形的高的定义:从三角形的一个顶点出发,向对边引垂线,顶点与垂足形成的线段即为三角形的高,进行判断即可.【详解】解:画ABC 边BC 上的高,如图所示:故选D .【点睛】本题考查画三角形的高.熟练掌握三角形的高的定义,是解题的关键.5.如图,已知90BCA BDA ∠=∠=︒,BC BD =.则证明BAC BAD ≌的理由是()A.SASB.ASAC.AASD.HL【答案】D 【分析】根据题意得到两个三角形是直角三角形,结合给出的条件:直角边和斜边分别相等,从而得出结论.【详解】∵90BCA BDA ∠=∠=︒,∴BAC 和BAD 是直角三角形,∵BC BD =,AB AB =,∴()BAC BAD HL ≌,故选:D .【点睛】此题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法及其应用.6.如图,五边形ABCDE 的一个内角120BAE ∠=︒,则1234∠+∠+∠+∠等于()A.100︒B.180︒C.280︒D.300︒【答案】D 【分析】先根据邻补角的定义计算出5∠的度数,再根据多边形的外角和为360︒,计算即可得到答案.【详解】解:如图,120BAE ∠=︒ ,518018012060BAE ∴∠=︒-∠=︒-︒=︒,12345∠∠∠∠∠ 、、、、是五边形ABCDE 的五个外角,12345360∴∠+∠+∠+∠+∠=︒,1234360536060300∴∠+∠+∠+∠=︒-∠=︒-︒=︒,故选:D .【点睛】本题考查了利用邻补角求角的度数、多边形的外角和,熟练掌握多边形的外角和为360︒是解此题的关键.7.如图,点A ,B 在直线l 同侧,在直线l 上取一点P ,使得PA PB +最小,对点P 的位置叙述正确的是()A.作线段AB 的垂直平分线与直线l 的交点,即为点PB.过点A 作直线l 的垂线,垂足即为点PC.作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点PD.延长BA 与直线l 的交点,即为点P【答案】C【分析】本题考查了两点之间线段最短、轴对称的性质,熟练掌握轴对称的性质是解此题的关键.先找出点B 对称点B ',连接AB ',再根据两点之间线段最短即可得到答案.【详解】解:正确作法如下:如图,作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点P ,,理由如下:在l 上异于点P 的位置任取一点H ,连接AH ,BH ,B H ',,B 、B '关于直线l 对称,BH B H '∴=,AH BH AH B H AB AP B P AP BP '''∴+=+>=+=+,PA PB ∴+最短,故选:C .8.如图,在ABC 中,70AB AC C =∠=︒,,线段AB 的垂直平分线EF 交AC 于点D ,交AB 于点E ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.25︒【答案】B 【分析】根据等腰三角形的性质可得70ABC C ∠=∠=︒,根据三角形内角和定理可得40A ∠=︒,根据线段垂直平分线的性质可得AD BD =,从而得到40ABD A ==︒∠∠,最后由DBC ABC ABD ∠=∠-∠进行计算即可得到答案.【详解】解: 70AB AC C =∠=︒,,70ABC C ∴∠=∠=︒,180ABC C A ∠+∠+∠=︒ ,18040A ABC C ∴∠=︒-∠-∠=︒,DE 是AB 的垂直平分线,AD BD ∴=,40ABD A ∴∠=∠=︒,704030DBC ABC ABD ∴∠=∠-∠=︒-︒=︒,故选:B .【点睛】本题考查了等腰三角形的性质、线段垂直平分线的性质、三角形内角和定理,熟练掌握以上知识点是解此题的关键.9.如图,在ABC 中,AD 是BAC ∠的平分线,2,5,3C B AC CD ∠=∠==,则AB 的长为()A .6 B.7 C.8 D.9【答案】C【分析】在AB 上截取AE AC =,证明ADE ADC △△≌,得到3DE CD ==,2AED C B ∠=∠=∠,推出EDB B ∠=∠,得到3BE DE ==,再利用AB AE BE =+,求解即可.【详解】解:在AB 上截取AE AC =,∵AD 平分CAE ∠,∴DAE DAC ∠=∠,∵AD AD =,∴ADE ADC △△≌,∴3DE CD ==,2AED C B ∠=∠=∠,∵AED B EDB ∠=∠+∠,∴EDB B ∠=∠,∴3BE DE ==,∴8AB AE BE =+=;故选C .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是添加辅助线,构造全等三角形和特殊三角形.10.如图,将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,折痕为BD ,连接CE DE ,,现有以下结论:①DE AB ⊥;②BD 垂直平分CE ;③DE 平分ADB ∠;④若60ADE ∠=︒,则BCE 是等边三角形;其中正确的有()A.①②③B.①②④C.①③④D.②③④【答案】B 【分析】由折叠的性质可得90BCD BED ∠=∠=︒,BC BE =,CBD EBD ∠=∠,DE DC =,CDB EDB ∠=∠,即可判断①②,由BD 不一定等于AD ,可得BDE ∠不一定等于ADE ∠,即可判断③;根据等边三角形的判定即可判断④.【详解】解: 将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,BCD BED ∴ ≌,90BCD BED ∴∠=∠=︒,BC BE =,CBD EBD ∠=∠,DE DC =,CDB EDB ∠=∠,DE AB ⊥∴,BD 垂直平分CE ,故①②正确,符合题意;BD Q 不一定等于AD ,∴BDE ∠不一定等于ADE ∠,∴DE 不一定平分ADB ∠,故③错误,不符合题意;60ADE ∠=︒ ,180120CDE ADE ∴∠=︒-∠=︒,CDB EDB ∠=∠ ,1602CDB EDB CDE ∴∠=∠=∠=︒,9030CBD BDE ∠=︒-∠=∴︒,30EBD CBD ∠∴∠==︒,即60CBE ∠=︒,BC BE = ,BCE ∴△是等边三角形,故④正确,符合题意;综上所述,正确的有①②④,故选:B .【点睛】本题考查了折叠的性质、线段垂直平分线的判定与性质、等边三角形的判定等知识点,熟练掌握以上知识点是解此题的关键.二、填空题(每题2分,共12分)11.如图,已知12∠=∠,要证明ABC CDA △△≌,还需添加的一个条件是______.【答案】BC AD =(答案不唯一)【分析】当BC AD =时,可证()SAS ABC CDA ≌,然后作答即可.【详解】解:当BC AD =时,∵BC AD =,21∠=∠,AC CA =,∴()SAS ABC CDA ≌,故答案为:BC AD =.【点睛】本题考查了全等三角形的判定定理.解题的关键在于熟练掌握根据ASA SAS AAS 、、证明三角形全等.12.如图,BD 是ABC 的角平分线,过点D 作DE BC ∥交AB 于点E .若36A ∠=︒,76BDC ∠=︒,则BDE ∠=______°.【答案】40【分析】此题主要考查了三角形的外角性质,平行线的性质,角平分线的定义,首先根据三角形的外角定理求出40ABD ∠=︒,再根据角平分线的定义得40CBD ABD ∠=∠=︒,然后根据平行线的性质即可得BDE ∠的度数.【详解】解:∵36A ∠=︒,76BDC ∠=︒,∴BDC A ABD ∠=∠+∠,即7636ABD ︒=︒+∠,∴763640ABD ∠=︒-︒=︒,∵BD 是ABC 的角平分线,∴40CBD ABD ∠=∠=︒,∵DE BC ∥,∴40BDE CBD ∠=∠=︒.故答案为:40.13.如图,在平面直角坐标系xOy 中,ABC 为等腰三角形,,AB AC =BC x ∥轴,若()()2,4,5,1A C ,则点B 的坐标为______.【答案】()1,1-【分析】根据平行于x 轴的直线上的点的纵坐标相同,得到点B 的纵坐标,过点A 作AD BC ⊥,利用等腰三角形的三线合一,求出点B 的横坐标即可.【详解】解:∵BC x ∥轴,()5,1C ,∴点B 的纵坐标为1,过点A 作AE x ⊥,交x 轴于点E ,交BC 于点D ,则:()2,1D ,∵,AB AC =∴BD CD =,∴点B 的横坐标为2251⨯-=-,∴()1,1B -.故答案为:()1,1-.【点睛】本题考查坐标与图形,等腰三角形的性质.熟练掌握平行于x 轴的直线上的点的纵坐标相同,等腰三角形三线合一,是解题的关键.14.如图,在ABC 中,AD 平分,BAC DE AC ∠⊥于点E ,若3,2AB DE ==,则ABD △的面积是______.【答案】3【分析】过点D 作DF AB ⊥于点F ,角平分线的性质得到DF DE =,再利用三角形的面积公式进行计算即可.【详解】解:过点D 作DF AB ⊥于点F ,∵AD 平分,BAC DE AC∠⊥∴2DF DE ==,∴ABD △的面积是1132322AB DF ⋅=⨯⨯=;故答案为:3.【点睛】本题考查角平分线的性质.熟练掌握到角平分线上的点到角两边的距离相等,是解题的关键.15.如图,ABC 为等腰直角三角形,,AD BD CE BD ⊥⊥于点,E AC 与BD 交于点F ,若70BAD ∠=︒,则AFB ∠=______︒;若2,7BE CE ==,则DE =______.【答案】①.115②.5【分析】先证明ABD BCE ≌,得到BD CE =,BAD CBE ∠=∠,利用三角形外角的性质,求出AFB ∠,利用BD BE -即可得到DE 的长.【详解】解:∵ABC 为等腰直角三角形,∴90,,45ABC AB BC ACB ∠=︒=∠=︒,∵,AD BD CE BD ⊥⊥,∴90ADB CEB ∠=∠=︒,∴90ABD BCE CBE ∠=∠=︒-∠,∴ABD BCE ≌,∴70BAD CBE ∠=∠=︒,7BD CE ==,∴115AFB DBC BCD ∠=∠+∠=︒,5DE BD BE =-=;故答案为:115,5.【点睛】本题考查等腰三角形的性质,全等三角形的判定和性质,三角形的外角.解题的关键是证明ABD BCE ≌.16.已知平面直角坐标xOy 中的等腰直角三角形ABC ,点()5,5A ,点(),0B m ,点()0,C n ,m 与n 均是正整数.(1)找出一个符合条件的ABC ,写出它对应的m 与n 的值:m =______,n =______;(2)满足上述条件的ABC 共有______个.【答案】①.5(答案不唯一)②.5(答案不唯一)③.9【分析】(1)根据题意,画出图形,进行求解即可.(2)根据题意,分,,A B C ∠∠∠分别为直角,进行讨论求解即可.【详解】解:(1)如图,当5,5m n ==时,此时:()5,5A ,()5,0B ,()0,5C ,由图可知,三角形ABC 为等腰直角三角形,满足题意,故答案为:5,5(答案不唯一);(2)∵点(),0B m ,点()0,C n ,m 与n 均是正整数,∴点,B C 分别在,x y 轴的正半轴上,∵()5,5A ,∴()()2222222225555AB m AC n BC m n =+-=+-=+,,,当A ∠为直角时,222AB AC BC +=,即:()()2222225555m n m n +-++-=+,整理得:10m n +=,∴10m n =-,∴()()222222551055AB n n AC =+-+=+-=,满足ABC 为等腰直角三角形,∴1,2,3,4,5,6,7,8,9m =,9,8,7,6,5,4,3,2,1n =,满足上述条件的ABC 共有9个;当B ∠为直角或C ∠为直角,不存在点,B C 分别在,x y 轴的正半轴上,m 与n 均是正整数时,ABC 为等腰直角三角形;故答案为:9.【点睛】本题考查坐标与图形.熟练掌握等腰直角三角形的性质,利用数形结合和分类图讨论的思想进行求解,是解题的关键.三、解答题(共58分,第17,19,21题每题5分,第18题每问5分,第20,22,23题每题6分,第24题7分,第25题8分)解答应写出文字说明、演算步骤或证明过程.17.解方程组:32341x y x y -=⎧⎨+=⎩.【答案】1x y =⎧⎨=⎩【分析】利用加减消元法求解即可.【详解】解:32341x y x y -=⎧⎨+=⎩①②,2⨯+①②得,77x =,解得,1x =,将1x =代入②得,141y +=,解得,0y =,∴10x y =⎧⎨=⎩.【点睛】本题考查了加减消元法解二元一次方程组.解题的关键在于正确选取合适的方法解方程组.18.(1)解不等式:4113x x -≥-,并把解集在数轴上表示出来.(2)求不等式组()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩的整数解.【答案】(1)2x ≥-,图见解析(2)3,4【分析】(1)根据解不等式的步骤,进行求解,再在数轴上表示出解集,即可;(2)分别求出每一个不等式的解集,找到它们的公共部分,即可.【详解】解:(1)4113x x -≥-,去分母,得:4133x x -≥-,移项,合并,得:2x ≥-;数轴表示解集,如图:(2)()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩①②,由①,得:52x ≥;由②,得:4x ≤;∴不等式的解集为:542x ≤≤.∴整数解为:3,4.【点睛】本题考查解一元一次不等式和一元一次不等式组.熟练掌握解一元一次不等式的步骤,正确的计算,是解题的关键.19.知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.【答案】见解析【分析】利用SAS 证明CAB DAB ∆∆≌,即可证明C D ∠=∠.【详解】解:AB 平分CAD ∠,CAB DAB ∴∠=∠,在CAB ∆和DAB ∆中,AC AD CAB DAB AB AB =⎧⎪∠=∠⎨⎪=⎩,()SAS CAB DAB ∴∆∆≌,C D ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质,熟练掌握SAS 、AAS 、ASA 、SSS 等全等三角形的判定方法是解题的关键.20.如图,AD 是ABC 中BC 边上的高,AE 平分BAC ∠,若32,60B C ∠=∠=︒︒.求AEC ∠和DAE ∠的度数.【答案】76AEC ∠=︒,14DAE ∠=︒【分析】三角形的内角和定理,求出,CAD BAC ∠∠的度数,角平分线求出,CAE BAE ∠∠的度数,利用CAE CAD ∠-∠求出DAE ∠,三角形的外角求出AEC ∠即可.【详解】解:∵AD 是ABC 中BC 边上的高,∴90ADC ∠=︒,∵32,60B C ∠=∠=︒︒,∴18088BAC B C ∠=︒-∠-∠=︒,18030CAD ADC C ∠=︒-∠-∠=︒,∵AE 平分BAC ∠,∴1442CAE BAE BAC ∠=∠=∠=︒,∴76AEC B BAE ∠=∠+∠=︒,14DAE CAE CAD ∠=∠-∠=︒.【点睛】本题考查与角平分线有关的三角形的内角和定理,三角形的外角.熟练掌握相关知识点,是解题的关键.21.下面是“作钝角三角形一边上的高”的尺规作图过程.已知:ABC .求作:ABC 的边AB 上的高CD .作法:①作直线AB ;②以点C 为圆心,适当长为半径画弧,交直线AB 于点,M N ;③分别以点,M N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ;④作直线CP 交AB 于点D ,则线段CD 即为所求.根据以上的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:,CM CN MP == ______,∴点,C P 在线段MN 的垂直平分线上(______).(填推理的依据)CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.【答案】(1)图见解析(2)NP ,到线段两端距离相等的点在线段的垂直平分线上【分析】(1)根据作图步骤,作图即可;(2)根据中垂线的判定,进行作答即可.【小问1详解】解:如图,线段CD 即为所求【小问2详解】证明:,CM CN MP NP == ,∴点,C P 在线段MN 的垂直平分线上(到线段两端距离相等的点在线段的垂直平分线上).CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.故答案为:NP ,到线段两端距离相等的点在线段的垂直平分线上【点睛】本题考查基本作图——作垂线.熟练掌握垂线的尺规作图方法,中垂线的判定方法,是解题的关键.22.如图,在等腰直角三角形ABC 和等腰直角三角形ADE 中,90BAC DAE ∠=∠=︒,连接BD CE ,.(1)求证:BD CE =;(2)求证:CE BD ⊥.【答案】(1)见解析(2)见解析【分析】(1)由题意得,AB AC =,AD AE =,90DAB BAE BAE EAC ∠+∠=︒=∠+∠,即DAB EAC ∠=∠,证明()SAS ABD ACE △≌△,进而可证BD CE =;(2)如图,延长CE 交BD 于F ,交AB 于G ,由()SAS ABD ACE △≌△,可得ABD ACE ∠=∠,由180BFC ABD BGF CAB ACE CGA ∠+∠+∠=︒=∠+∠+∠,BGF CGA ∠=∠,可得90BFC CAB ∠=∠=︒,进而结论得证.【小问1详解】证明:∵等腰直角三角形ABC 和等腰直角三角形ADE ,90BAC DAE ∠=∠=︒,∴AB AC =,AD AE =,90DAB BAE BAE EAC ∠+∠=︒=∠+∠,即DAB EAC ∠=∠,∵AB AC =,DAB EAC ∠=∠,AD AE =,∴()SAS ABD ACE △≌△,∴BD CE =;【小问2详解】证明:如图,延长CE 交BD 于F ,交AB 于G ,∵()SAS ABD ACE △≌△,∴ABD ACE ∠=∠,∵180BFC ABD BGF CAB ACE CGA ∠+∠+∠=︒=∠+∠+∠,BGF CGA ∠=∠,∴90BFC CAB ∠=∠=︒,∴CE BD ⊥.【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,三角形内角和定理,对顶角相等.解题的关键在于明确全等的判定条件.23.(1)下图三角形网格由若干个边长为1的小等边三角形组成,每个小等边三角形的顶点叫做格点.若一个三角形的三个顶点都落在格点上,则这个三角形叫做格点三角形.已知ABC 是格点三角形,线段,BC BR 如图1所示.在三角形网格中分别画出符合条件的三角形.①点A 在线段BR 上,90ACB ∠=︒,画出ABC ;②在第①问的基础上,格点,150,DEA ABC CAE AE BC ∠=︒=≌△△,画出ADE V .(2)尺规作图:如图2,DEF 为等边三角形,作等边三角形PQR ,其顶点分别在等边三角形DEF 的三条边上,且不与这三边的中点重合.(请保留作图痕迹)【答案】(1)①图见解析②图见解析(2)图见解析【分析】(1)作以点C 为顶点的等边三角形的中线与BR 的交点即为点A ,利用三线合一以及等边三角形的角为60︒,即可得到ABC 是以90ACB ∠=︒的直角三角形;②根据150,CAE AE BC ∠=︒=,得到点E 在线段BR 上,点A 的下方3个单位长度的位置,再根据DE AB =确定点D 的位置,即可;(2)分别以点,,A B C 为原心,以小于AB 长度的一半为半径画弧,与三边的交点为,,P Q R ,连接即可得到等边三角形PQR .【详解】解:(1)①如图所示:ABC 即为所求,②如图所示,ADE V 即为所求;(2)如图,PQR 即为所求;【点睛】本题考查作图—复杂作图.熟练掌握等边三角形的性质,全等三角形的判定,是解题的关键.24.如图,AH 平分PAQ M ∠,为射线AH 上任意一点(不与点A 重合),过点M 作AH 的垂线分别交AP AQ ,于点B C ,.(1)求证:BM CM =;(2)作点M 关于射线AP 的对称点N ,连接BN ,在线段BN 上取一点D (不与点B ,点N 重合),作12DAE PAQ ∠=∠,交线段BM 于点E ,连接DE .①依题意补全图形;②用等式表示线段EC BD DE ,,之间的数量关系,并证明.【答案】(1)证明见解析(2)①补图见解析;②EC BD DE =+,证明见解析【分析】(1)由AH 平分PAQ ∠,可得BAM CAM ∠=∠,由BC AH ⊥,可得90AMB AMC ∠=∠=︒,证明()ASA ABM ACM ≌,进而可证BM CM =;(2)①如图1,即为所求;②如图2,连接AN ,则CE 截取CF ,使得CF DB =,连接AF ,由轴对称的性质可知,AN AM =,BAN BAM ∠=∠,ABN ABM ∠=∠,则ABN ACM ∠=∠,证明()SAS ABD ACF △≌△,则AD AF =,BAD CAF ∠=∠,由12DAE PAQ BAM CAM ∠=∠=∠=∠,可得BAD BAE BAE EAM CAF FAM ∠+∠=∠+∠=∠+∠,则BAD EAM ∠=∠,BAE FAM ∠=∠,由BAD BAE EAM FAM ∠+∠=∠+∠,可得DAE FAE ∠=∠,证明()SAS ADE AFE △≌△,则DE EF =,根据EC CF EF =+,等量代换可得EC BD DE =+.【小问1详解】证明:∵AH 平分PAQ ∠,∴BAM CAM ∠=∠,∵BC AH ⊥,∴90AMB AMC ∠=∠=︒,∵BAM CAM ∠=∠,AM AM =,90AMB AMC ∠=∠=︒,∴()ASA ABM ACM ≌,∴BM CM =;【小问2详解】①解:如图1,②解:EC BD DE =+,证明如下:如图2,连接AN ,则CE 截取CF ,使得CF DB =,连接AF ,由轴对称的性质可知,AN AM =,BAN BAM ∠=∠,ABN ABM ∠=∠,∴ABN ACM ∠=∠,∵AB AC =,ABD ACF ∠=∠,DB CF =,∴()SAS ABD ACF △≌△,∴AD AF =,BAD CAF ∠=∠,∵12DAE PAQ BAM CAM ∠=∠=∠=∠,∴BAD BAE BAE EAM CAF FAM ∠+∠=∠+∠=∠+∠,∴BAD EAM ∠=∠,BAE FAM ∠=∠,∴BAD BAE EAM FAM ∠+∠=∠+∠,即DAE FAE ∠=∠,∵AD AF =,DAE FAE ∠=∠,AE AE =,∴()SAS ADE AFE △≌△,∴DE EF =,∵EC CF EF =+,∴EC BD DE =+.【点睛】本题考查了角平分线的定义,全等三角形的判定与性质,轴对称的性质.解题的关键在于确定全等三角形的判定条件.25.在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,则称点P 为线段AB 的垂直对称点.(1)已知点()0,3A ,()0,0B .①在点()13,3P ,()21,1P ,点()33,0P中,线段AB 的垂直对称点是______;②若P 是线段AB 的垂直对称点,直接写出点P 的纵坐标P y 的取值范围______;(2)已知()0,A a ,(),0B b ,P 是线段AB 的垂直对称点,AB BP ⊥.①当3a =,14b ≤≤时,直接写出点P 的横坐标P x 的取值范围______;②若A ,B 为坐标轴上两个动点,a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,动点P 形成的轨迹组成的图形面积为10,直接写出m 与n 的数量关系表达式______.【答案】(1)①1P ,3P ,②36P y -≤≤,且0P y ≠,3P y ≠(2)①47P x ≤≤,②()()1110m n --=【分析】(1)①画出图形,再根据垂直对称点的定义判断即可;②先判断ABP 是等腰三角形,分别以点A 和点B 为圆心,以AB 为半径画圆,所得图形即为点P 的轨迹,再根据垂直对称点的定义判断即可;(2)①根据垂直对称点的定义,结合AB BP ⊥可得线段PA 垂直平分线过点B ,即有AB BP =,过P 点作PT x ⊥轴于点T ,证明AOB BTP ≌V V ,问题随之得解;②当1a =,或者a m =时,b 的取值由1变化至n 时,点P 的轨迹为两条线段;同理当1b =,或者b n =时,a 的取值由1变化至m 时,点P 的轨迹为两条线段,即可判断出动点P 形成的轨迹组成的图形为平行四边形,问题随之得解.【小问1详解】①如图,∵()0,3A ,()0,0B ,()13,3P ,()21,1P ,()33,0P,∴133AB AP BP ===,3AB BP ⊥,1AP AB ⊥,22P B =,25AP =,∴点B 在3AP 的垂直平分线上,点A 在1BP 的垂直平分线上,∴线段AB 的垂直对称点是1P ,3P ;②∵对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,∴AB PB =或者AB PA =,∴ABP 是等腰三角形,分别以点A 和点B 为圆心,以AB 为半径画圆,如图,当AB PA =时,点P 位于点P '处,∴根据等腰三角形的性质可得顶点A 在BP '的垂直平分线上,当AB PB =时,点P 位于点P ''处,∴根据等腰三角形的性质可得顶点B 在AP ''的垂直平分线上,当点P 位于点A 或者点B 时,点P 不是线段AB 的垂直对称点,∵()0,3A ,()0,0B ,3AB =,∴()0,6M ,()0,3N -,∴点P 的纵坐标P y 的取值范围:36P y -≤≤,且0P y ≠,3P y ≠;【小问2详解】①过P 点作PT x ⊥轴于点T ,如图,∵P 是线段AB 的垂直对称点,AB BP ⊥,∴点B 在AP 的垂直平分线上,90ABP ∠=︒,∴AB BP =,即ABP 是等腰直角三角形,∵90ABP AOB ∠=︒=∠,∴OAB OBA OBA PBT ∠+∠=∠+∠,∴OAB PBT ∠=∠,∵PT x ⊥轴,∴90BTP AOB ∠=︒=∠,∴BTP AOB ≌,∴AO BT =,∵()0,A a ,(),0B b ,3a =,14b ≤≤,∴3AO a ==,BO b =,∴3AO BT ==,∴3OT OB BT b =+=+,∵14b ≤≤,∴437b ≤+≤,∴47OT ≤≤,∴点P 的横坐标P x 的取值范围:47P x ≤≤;②当1a =,或者a m =时,b 的取值由1变化至n 时,点P 的轨迹为两条线段,且两条线段相等;当1b =,或者b n =时,a 的取值由1变化至m 时,点P 的轨迹为两条线段,且两条线段相等;∵两组对边分别相等的四边形是平行四边形,∴动点P 形成的轨迹组成的图形为平行四边形,如图,∵a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,∴点A 垂直移动的距离为()1m -,点B 水平移动的距离为()1n -,∴动点P 形成的轨迹组成的图形为平行四边形的底为()1n -,高为()1m -,∵动点P 形成的轨迹组成的图形面积为10,∴()()1110n m --=.【点睛】本题主要考查了坐标与图形,平行四边形的判定与性质,等腰三角形的判定与性质,全等三角形的判定与性质,垂直平分线的性质等知识,正确理解线段垂直对称点的含义是解答本题的关键.。
2021-2022学年北师大版八年级数学第一学期期中模拟测试题2(附答案)
2021-2022学年北师大版八年级数学第一学期期中模拟测试题一.选择题(共10小题,满分30分)1.若直角三角形的斜边长为V6, 一条直角边长为1,则另一条直角边长为()A. 5 B .匚 C. . ♦ D. 72.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A. 10 B . 12 C. 13 D. 143.如图,圆柱形玻璃杯高为11cm,底面周长为30cm,在杯内壁离杯底5cm的点B处有-滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的爬行最短路线长为(杯壁厚度不计)(2 (附答案)A . 12cmB . 17cm C. 20cm4. J!看的平方根是( )A. ±4 B . 4 C. ±25. 一个正数的两个平方根分别是2a-1与-a+2,则这个正数是A. 1B. - 1C. 96.已知Q-3 ) 2 =Q ,则x-y=( )A. 2B. - 2C. 47.在平面直角坐标系中,点P ( - 3, 4)位于( ) D. 25cmD. 2)D. - 3 D. - 4A.第一象限B.第二象限C.第三象限D.第四象限伸长0.5cm,则挂上物体后弹簧的长度 y (cm)与所挂物体的质量 x (kg) (0WxW5)之间的关系式为()A. y=0.5 (x+8)B. y=0.5x- 8C. y=0.5(x —8)D. y=0.5x+810 .早上,小明从家里步行去学校, 出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前 往学校,两人同时到达.设小明在途中的时间为x,两人之间的距离为 y,则下列选项中11 . 一组勾股数,若其中两个为 15, 8,则第三个数为 12 .在正方形网格中, A 、B 、C 、D 均为格点,则/ BAC-/DAE=8 .象棋在中国有着三千多年的历史, 如图是一方的棋盘,如果“帅”的坐标是(0, 1), “卒”的坐标是(2, 2),那么“马”的坐标是()C. (—2, 2)D. (2, 2)9 . 一根弹簧长8cm,它所挂物体的质量不能超过 5kg,并且所挂的物体每增加1kg,弹簧就A. (― 2, 1)B. (2, — 2).填空题(共10小题,满分30分)13.在RtAABC 中,/A=90° , BC=10, AB=6,如果点P 在AC 边上,且点P 至U Rt4ABC的两个顶点的距离相等,那么AP的长为 .14.若a-1和-5是实数m的两个不同的平方根,则a的值为 .15,右(茂-4 Iz r/bM]。
2024-2025学年八年级数学上学期期中模拟卷(沪教版八上第16章~18.2)(全解全析)
2024-2025学年八年级数学上学期期中模拟卷(沪教版)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪教版第16章二次根式+第17章一元二次方程+18.2正比例函数。
5.难度系数:0.7。
第一部分(选择题共12分)一、选择题(本大题共6小题,每小题2分,满分12分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列各式中属于最简二次根式的是().A B C D【答案】A属于最简二次根式,故正确;==故选:A.2x的值可以是()A.3-B.2C.1D.0.5【答案】A【详解】解:由题意得02xx -≥,∴020x x ³ìí->î或020x x £ìí-<î,∴2x >或0x £,故选A .3.如果2a b ==,那么a 与b 的关系是( )A .a >b 且互为倒数 B .a >b 且互为相反数C .ab =-1D .ab =1【答案】B【详解】解:∵b ==(2-0<,20a =>,a b =-,∴a >b 且互为相反数.故选B .4.下列方程中是关于x 的一元二次方程的是( )A .()()130x x -+=B .20ax bx c ++=(其中a 、b 、c 是常数)C .2211x x-=D .()()2321x x x --=-【答案】A【详解】解:A .()()130x x -+=,整理,得2230x x +-=,是一元二次方程,故符合题意;B .当a=0时,20ax bx c ++=(其中a 、b 、c 是常数)不是一元二次方程,故不符合题意;C .2211x x-=不是整式方程,所以不是一元二次方程,故不符合题意;D .()()2321x x x --=-,整理,得570x -=,不是一元二次方程,故不符合题意.故选A .5.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .100×80﹣100x ﹣80x =7644B .(100﹣x )(80﹣x )+x 2=7644C .(100﹣x )(80﹣x )=7644D .100x +80x =356【答案】C【详解】设道路的宽应为x 米,由题意有(100-x )(80-x )=7644,故选:C .6.如图,在同一直角坐标系中,正比例函数1y k x =,2y k x =,3y k x =,4y k x =的图象分别为1l ,2l ,3l ,4l ,则下列关系中正确的是( )A .1234k k k k <<<B .2143k k k k <<<C .1243k k k k <<<D .2134k k k k <<<【答案】B【详解】解:根据直线经过的象限,知20k <,10k <,40k >,30k >,根据直线越陡k 越大,知21k k >,43k k <,所以2143k k k k <<<.故选B .第二部分(非选择题 共88分)二、填空题(本大题共12小题,每小题3分,满分36分)7-= .【详解】解:原式﹣.8m = .【答案】3【详解】解:=又∵可以合并,∴215m -=解得:3m =.故答案为:3.9.函数 ()36f x x =-,则 14f æö=ç÷èø【答案】32【详解】解:∵()36f x x =-,∴11333634422f æö=-´=-=ç÷èø;故答案为:32.10.解不等式:x <的解集是 .【答案】x >【详解】x <,移项,得:x <合并同类项,得:(1x <系数化为1,得:x >即x >.11.当x =3420252022x x --的值为 【答案】1-【详解】解:∵x =∴()2212022x -=,∴24420210x x --=,∴()()3224202520224420214412023x x x x x x x --=--+-+-()2212023x =--20222023=-1=-.故答案为:1-.12.若()22230m m x ---=是关于x 的一元二次方程,则m 的值是.【答案】2-【详解】解:∵()22230m m x ---=是关于x 的一元二次方程,∴222m -=且20m -¹,解得:2m =-.故答案为:2-13.方程 ()22x x x +=+ 的解是 .【答案】11x =,22x =-【详解】解:()22x x x +=+,∴()()220x x x +-+=,∴()()120x x -+=,∴10x -=,20x +=,解得:11x =,22x =-;故答案为:11x =,22x =-14.方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,则正整数a 的值为 .【答案】2或3【详解】解:方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,所以:a -1≠0,故当a ≠1时,原方程为一元二次方程,∵(a -1)x 2+2(a +1)x +a +5=0有两个实根,∴△=[2(a +1)]2-4(a -1) (a +5)≥0,解得:a ≤3∴此时a ≤3且a ≠1故正整数a 的值为:a =2或者3故答案为:2或3.15.一元二次方程29200x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为 【答案】13或14【详解】解:29200x x -+=,(4)(5)0x x --=,所以4x =或5x =,当4为腰,5为底时,周长=4+4+5=13,当5为腰,4为底时,周长=5+5+4=14,故答案为13或14.16.在实数范围内因式分解:222x x --= .【答案】(11x x --【详解】解:对于方程2220x x --=,24212´-△()=,1x ==所以,222x x --=(11x x =--+.故答案为:(11x x --+ .17.已知函数23(1)m y m x -=+是正比例函数,且y 随x 的增大而减小,则m = .【答案】-2【详解】解:由题意得:m 2-3=1,且m +1<0,解得:m =-2,故答案为:-2.18.如图,已知直线:a y x =,直线1:2b y x =-和点(1,0)P ,过点P 作y 轴的平行线交直线a 于点1P ,过点1P 作x 轴的平行线交直线b 于点2P ,过点2P 作y 轴的平行线交直线a 于点3P ,过点3P 作x 轴的平行线交直线b 于点4,P L ,按此作法进行下去,则点2024P 的横坐标为.【答案】10122【详解】解:Q 点(1,0)P ,1P 在直线y x =上,1(1,1)P \,12PP x Q P 轴,2P \的纵坐标1P =的纵坐标1=,2Q P 在直线12y x =-上,112x \=-,2x \=-,2(2,1)P \-,即2P 的横坐标为122-=-,同理,3P 的横坐标为122-=-,4P 的横坐标为242=,252P =,362P =-,372P =-,482P =¼,242n n P \=,2020P \的横坐标为2505101022´=,2021P \的横坐标为10102,2022P \的横坐标为10112-,2023P \的横坐标为10112-,∴点2024P 的横坐标为2506101222´=故答案为:10122三、解答题(本大题共9小题,满分52分.解答应写出文字说明,证明过程或演算步骤)19.(5分)【详解】解:原式=+..................................2分=..................................5分20.(5分)计算:æ÷çè【详解】æ÷çè(=................................2分(=÷=-................................5分21.(5分)解方程:()2326x x +=+.【详解】解:∵()2326x x +=+,∴()()2323x x +=+,∴()()23230x x +-+=,∴()()3230x x +-+=,................................2分∴320x +-=或30x +=,解得1231x ,x =-=-.................................5分22.(5分)用配方法解方程24720-+=x x ;【详解】解:∵24720-+=x x ,∴2472x x -=-∴27424x x æö-=-ç÷èø,................................1分∴22277742488x x ⎡⎤æöæö-+-=-⎢⎥ç÷ç÷èøèø⎢⎥⎣⎦,∴274942816x æö--=-ç÷èø∴2717864x æö-=ç÷èø................................3分∴78x -=,∴127788x x =+=................................5分23.(5分)先化简,再求值:222444+2x x x x x x x æö-+÷ç÷-èø,其中11=12x -æö---ç÷èø.【详解】解:222444+2x x x x x x x æö-+÷ç÷-èø()()()222442x x x x x x x +-æö++=÷ç÷-èø()222x x x x +=×+12x =+, ................................2分当)11=1212112x -æö---=--+=-+=ç÷èø时,原式12x =+1====.................................5分24.(5分)已知3y -与2x -成正比例,且当1x =时,6y =,求y 与x 之间的函数解析式.【详解】解:Q 3y -与2x -成正比例,\设()32y k x -=-,................................1分Q 当1x =时,6y =,()6321k \-=-,解得:3k =, ................................2分()332y x -=-\,整理得:39y x =-+,\y 与x 之间的函数关系式为:39y x =-+.................................5分25.(7分)甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为s (km )与甲行驶的时间为t (h )之间的关系如图所示.(1)结合图象,在点M、N、P三个点中,点_____代表的实际意义是乙到达终点.(2)求甲、乙各自的速度;(3)当乙到达终点时,求甲、乙两人的距离;(4)甲出发多少小时后,甲、乙两人相距180千米.【详解】(1)解:由图象可得,在点M时,0s=,此时两人相遇,点N之后,两人的距离增加速度减少,此时乙先到达终点,点P表示两人距离为240s=,此时甲到达终点;故答案为:N;................................1分(2)解:由图象可得,A、B两地相距240千米,甲走完全程需要6小时,∴甲的速度为240640÷=(千米/时)................................2分∵当2t=时,两人相遇,∴两人的速度之和为2402120÷=/时)∴乙的速度为1204080-=(千米/时)................................3分(3)解:当乙到达终点A地时,甲离开出发地A地有403120´=(千米),∴当乙到达终点时,求甲乙两人的距离是120千米;................................5分(4)解:相遇前,甲乙两人相距180千米,则()12401801202-÷=(小时),相遇后,甲乙两人相距180千米,则∵当乙到达终点时,求甲乙两人的距离是120千米,之后两人距离逐渐增大,∴()93180120402+-÷=(小时),综上所述,甲出发12小时或92小时时,甲、乙两人相距180千米.................................7分26.(7分)商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由.【详解】(1)解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套,每套拖把盈利()1208040x x --=-元.故答案为:()40x -,()202x +;................................2分(2)解:设每套拖把降价x 元,则每套的销售利润为()40x -元,平均每天的销售量为()202x +套,依题意得:()()402021242x x -+=,整理得:2302210x x -+=,解得:121317x x ==,.又∵需要尽快减少库存,∴17x =.................................5分答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元;(3)解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y --元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y --+=,整理得:2303000y y -+=.∵()22Δ43041300300<0b ac =-=--´´=-,∴此方程无实数解,即不可能每天盈利1400元.................................7分27.(8分)已知正比例函数y kx =经过点A ,点A 在第四象限,过点A 作AH x ^轴,垂足为点H ,点A 的横坐标为3,且AOH △的面积为3.(1)求正比例函数的解析式;(2)在x 轴上能否找到一点P ,使AOP V 的面积为5.若存在,求点P 的坐标;若不存在,请说明理由(3)在(2)的条件下,是否在正比例函数y kx =上存在一点M ,且M 在第四象限,使得2.3APM OPM S S D D =若存在,请求出点M 的坐标;若不存在,请说明理由【详解】(1)解:∵点A 的横坐标为3,且AOH △的面积为3∴1332AH ´´=,解得,2AH =,∴点A 的坐标为()3,2-,∵正比例函数y kx =经过点A ,∴32k =-,解得23k =-,∴正比例函数的解析式是23y x =-;................................2分(2)解:存在.设(),0P t ,∵AOP V 的面积为5,点A 的坐标为()3,2-,∴1252t ´´=,∴5t =或5t =-,∴P 点坐标为()5,0或()5,0-.................................4分(3)解:设2,3M x x æö-ç÷èø,如图,①点M 在OA 上时,当()5,0P 时,5OP =,又()3,2A -,若23APM OPM S S D D =时,11212232A M M OP y OP y OP y ´´-´´=´´´,∴1122125255223323x x ´´-´´=´´´,解得,95x =,∴296355y =-´=-,∴M 点的坐标为96,55æö-ç÷èø;同理,当点()5,0P -时,也可求出M 点的坐标也为96,55æö-ç÷èø;................................6分②点M 在OA 的延长线上时,当()5,0P 时,5OP =,若23APM OPM S S D D =时,11212232M A M OP y OP y OP y ´´-´´=´´´,∴1212125525232323x x ´´-´´=´´´,解得,9x =,∴2963y =-´=-,∴M 点的坐标为()9,6-;当点()5,0P -时,5OP =,若23APM OPM S S D D =时,同理可得,M 点的坐标为()9,6-;综上,点M 的坐标为96,55æö-ç÷èø或()9,6-.................................8分。
2024—2025学年人教版八年级上册数学期中考试模拟试卷
2024—2025学年人教版八年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、运动会中有各种比赛项目,如图可以看作是轴对称图形的是()A.B.C.D.2、若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.83、下列条件中,不能得到等边三角形的是()A.有两个内角是60°的三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个外角相等的等腰三角形4、下列命题中,不正确的是()A.关于直线对称的两个三角形一定全等B.角是轴对称图形C.等边三角形有3条对称轴D.等腰三角形一边上的高、中线及这边所对角的角平分线重合5、等腰三角形的两边分别为3cm,4cm,则它的周长是()A.10cm B.11cmC.16cm或9cm D.10cm或11cm6、如图,已知∠A=60°,则∠D+∠E+∠F+∠G的度数为()A.180°B.240°C.300°D.360°7、在△ABC和△DEF中,已知∠A=∠D,AB=DE,下列添加的条件中,不能判定△ABC≌△DEF的是()A.BC=EF B.∠C=∠F C.AC=DF D.∠B=∠E8、如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A=()A.40°B.60°C.80°D.120°9、如图,∠AOB=30°,P是∠AOB的角平分线上的一点,PM⊥OB于点M,PN∥OB交OA于点N,若PM=1,则PN的长为()A.1B.1.5C.3D.210、如图,△ABC的面积为6cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.2cm2B.2.5cm2C.3cm2D.3.5cm2第8题第9题第10题二、填空题(每小题3分,满分18分)11、点P(2,3)关于x轴的对称点的坐标为.12、为了使矩形相框不变形,通常可以在相框背后加根木条固定.这种做法体现的数学原理是.13、将一副三角尺按如图所示的方式叠放在一起,则图中∠α的度数是.14、等腰三角形的一个角是70°,则它的底角是.15、如图,已知AB=AC,AD平分∠BAC,∠DEB=∠EBC=60°,若BE=7,DE=3,则BC=.16、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.2024—2025学年人教版八年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.18、如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.19、如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.20、如图,P为∠MON平分线上一点,P A⊥OM于A,PB⊥ON于B.(1)求证:OA=OB;(2)求证:OP垂直平分AB.21、如图,已知AC平分∠BAD,CE⊥AB于E点,∠ADC+∠B=180°.(1)求证:BC=CD;(2)2AE=AB+AD.22、如图,点E在△ABC外部,点D在边BC上,DE交AC于点F,若∠1=∠2=∠3,AB=AD,(1)求证:△ABC≌△ADE.(2)若AF=FC,EF=3DF,且S=1,则△ABC的面积是多少?△DFC23、如图,在8×8的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)若x轴有一点P使得△P AC为等腰三角形,则x轴上满足条件的点P共有个;(3)在y轴上找一点Q,使QB+QC的值最小,请在图中标出点Q;(4)求△ABC的面积.24、如图1,在平面直角坐标系中,点A、点M在y轴的正半轴上(点M在点A的上方),点B在x轴的正半轴上,AC平分∠MAB,AC的反向延长线交∠ABO 的平分线于点D,BD交y轴于点E.(1)∠ABO=52°时,求∠ABD和∠D的度数;(2)如图2,当点A、点B分别在y轴、x轴的正半轴上任意运动时,∠D的大小是否变化?若不变化,请求出∠D的度数,若变化,请说明理由;(3)当∠ABO等于多少度时,∠DAE=∠DEA.25、如图,在平面直角坐标系中,已知A(a,0)、B(0,b)分别为x轴和y轴上一点,且a,b满足(a﹣b)2+|b+8|=0,过点B作BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD.(1)A点的坐标为,∠OAB的度数为;(2)如图1,若点C在第一象限,试判断OC与OD的数量关系与位置关系,并说明理由;(3)如图2,若点C的坐标为(3,﹣2),连接CD,DE平分∠ODC,BD与OC交于点F.①求D点的坐标;②试判断DF与CE的数量关系,并说明理由.。
北师版八年级数学上册 期中模拟考试卷02
2024-2025学年八年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版八上册第一至四章(勾股定理+实数+位置与坐标+一次函数)。
5.难度系数:0.65第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.(2024·云南昆明·三模)在函数y =中,自变量x 的取值范围是()A .2024x ≥B .2024x ≥-C .2024x >D .2024x >-2.下列计算正确的是()A=B =6´C =D 4=3.(23-24八年级上·江苏无锡·期中)在22703π,中,无理数有()A .0个B .1个C .2个D .3个4.(22-23八年级上·山东青岛·期中)若点A 的坐标(),x y 满足条件()2320x y -++=,则点A 在()A .第一象限B .第二象限C .第三象限D .第四象限5.(22-23八年级·宁夏石嘴山·期中)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A .1B C .6,7,8D .2,3,46.(23-24八年级上·四川成都·期中)已知一次函数24y x =-+,那么下列结论正确的是()A .y 的值随x 的值增大而增大B .图象经过第一、二、三象限C .图象必经过点(1,2)D .与y 轴交于(0,4)-7.(23-24八年级上·陕西宝鸡·期中)已知在平面直角坐标系中,点()3,5A a --与点()1,7B b +关于x 轴对的值为(精确到0.1)()A .3.4B .3.5C .3.6D .3.78.(23-24八年级上·重庆·期中)已知点(),P k b -在第二象限,则直线y kx b =+的图象大致是()A .B .C .D .9.(22-23八年级上·江苏连云港·期中)有一个边长为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2022次后形成的图形中所有的正方形的面积和是()A .2023B .2022C .2021D .110.(22-23八年级·重庆璧山·期中)甲,乙两车从A 地开往B 地,并以各自的速度匀速行驶,甲车比乙车早出发2h ,并且甲车途中休息了0.5h ,甲、乙两车行驶的路程(km)y 与甲车的行驶时间(h)x 的函数关系如图所示.当甲、乙两车相距50km 时,乙车的行驶时间为()A .9h 4或19h 4B .1h 4或11h 4C .1h4D .19h 4第二部分(非选择题共90分)二、填空题(本大题共3小题,每小题3分,满分18分)11.(23-24八年级上·甘肃酒泉·期中)已知x 的平方根是8±,则x 的立方根是.12.(22-23八年级上·浙江金华·期中)已知()()()1231,,1.8,,2,y y y -是直线3y x m =-+(m 为常数)上的三个点,则123,,y y y 的大小关系.13.(22-23八年级上·江苏泰州·期中)点P 到x 轴的距离为3,到y 轴的距离为2,则第二象限内的点P 的坐标为.14.(22-23七年级上·黑龙江绥化·a ,b ,则a b +=.15.(23-24八年级上·重庆·期中)一个圆柱底面周长为16cm ,高为6cm ,则蚂蚁从A 点爬到B 点的最短距离为cm .16.(22-23八年级上·辽宁阜新·期中)如图,在平面直角坐标系中,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点.点C 在第二象限.若C 点坐标(),1.2m 则四边形OABC 的面积(用含m 的代数式表示).三、解答题(本大题共8小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(8分)(22-23八年级·河南漯河·期中)计算:⎛⎫ ⎪ ⎪⎝⎭;(2)22)+-.18.(8分)(23-24八年级·江苏南通·期中)已知3y -与42x -成正比例,且当1x =时,5y =.(1)求y 与x 的函数关系式;(2)设点(),2a -在(1)中函数的图象上,求a 的值.19.(8分)(23-24八年级上·河南商丘·期末)如图,在直角坐标系中,()()()153043A B C ---,,,,,.(1)在图中作出ABC V 关于y 轴对称的图形111A B C △;(2)写出点1C 的坐标;(3)求ABC V 的面积.20.(8分)(23-24八年级下·山东济南·期末)小明和小亮学习了“勾股定理”之后,为了测量风筝的垂直高度CE ,他们进行了如下操作:①测得水平距离BD 的长为15米;②根据手中剩余线的长度计算出风筝线BC 的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE ;(2)如果小明想风筝沿CD 方向下降12米,则他应该往回收线多少米?21.(8分)(23-24八年级上·全国·课后作业)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)(23-24八年级上·陕西西安·期中)观察下列各式,并解答下列问题:第122112=+第2233223=+.第3344334=+.……(1)写出第4个等式:______.(2)猜想第n 个等式:______.(3)22123329910010099++++ 23.(10分)(23-24八年级上·陕西西安·期中)联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种,设A 套餐每月话费为1y (元),B 套餐每月话费为2y (元),月通话时间为x 分钟.(1)分别表示出1y 与x ,2y 与x 的函数关系式;(2)如果该手机用户使用A 套餐且本月缴费50元,求他本月的通话时间?(3)若该用户这个月的通话时间为160分钟,请分别计算使用套餐A 和套餐B 应缴费多少元?24.(14分)(23-24八年级·海南·期中)如图①,在长方形ABCD 中,10cm AB =,8cm BC =、点P 从A出发,沿A B C D →→→路线运动,到D 停止;点P 的速度为每秒1cm ,a 秒时点P 改变速度,变为每秒cm b ,图②是点P 出发x 秒后,APD △的面积()2cm S 与(x 秒)的关系图象;(1)当点P 在AB 上运动时,APD △的面积会_______,点P 在BC 上运动时,APD △的面积会______,点P 在CD 上运动时,APD △的面积会________;(填“增大”或“减小”或“不变”)(2)根据图②提供的信息,求出a 、b 及图②中c 的值;(3)设点P 离开点A 的路程为()cm y ,请写出动点P 改变速度后y 与出发后的运动时间(x 秒)的关系式.(4)当点P 出发后几秒时,APD △的面积S 是长方形ABCD 面积的142024-2025学年八年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
八年级数学下册期中模拟卷2同步单元湘教版
期中模拟测试卷(2)考试时间:120分钟;满分:150分一、单选题(共40分)1.下列图形中既是轴对称图形,又是中心对称图形的( )A .B .C .D .2.如图,在Rt ABC 中,∠ACB =90°,D 是边AB 的中点,若AB =12,则CD 的长是( )A .12B .6C .4D .33.若一个正多边形的一个内角与它相邻的外角的比是5:1,则这个正多边形的边数为( ) A .14 B .12 C .10 D .84.如图,数轴上点A 表示的数是0,点B 表示的数是1,BC AB ⊥,垂足为B ,且1BC =,以A 为圆心,AC 长为半径画弧,与数轴交于点D ,则点D 表示的数为( )A .1.4B .2C .3D .25.两个直角三角板如图摆放,其中∠BAC =∠EDF =90°,∠F =45°,∠B =60°,AC 与DE 交于点M .若BC ∥EF ,则∠DMC 的大小为( )A .100°B .105°C .16.如图,在□ABCD 中,BE 平分∠ABC 交AD 于点E ,CF 平分∠BCD 交AD 于点F ,AB =3,AD =5,则EF 的长为( )A .1B .1.5C .2D .2.57.如图,在等腰梯形ABCD 中,AD ∥BC ,60C ∠=°,6AD =,8AB =,则BC=( ) A .10 B .12 C .14 D .16 8.如图,在△ABC 中,延长CA 至点F ,使得AF =CA ,延长AB 至点D ,使得BD =2AB ,延长BC 至点E ,使得CE =3CB ,连接EF 、FD 、DE ,若S △DEF =36,则S △ABC 为( )A .2B .3C .4D .59.如图,小正方形的边长为1,连接小正方形的三个顶点可得△ABC ,则AB 边上的高是( )A .322B .3510 C .355 D .45510.如图,EF 过ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F .则①OE OF =;②若4AB =,6AC =,则214BD <<;③14AOB ABCD SS =;④图中共有4对全等三角形;⑤ABC ABFE S S =△四边形.其中正确结论的有( )个.A .2个B .3个C .4个D .5个二、填空题(共32分)11.如图,在ABC 中,∠ACB =90°,∠B =15°,点D 为AB 中点,DE ⊥AB 交BC 于点E ,BE =8cm ,则AC =________cm .12.如图,∠BAC =30°,AD 平分∠BAC ,DE ∥AB 交AC 于E ,DF ⊥AB 于点F ,若AE =23,则DF 的长为______.13.菱形ABCD 的边长为5cm ,其中一条对角线长为6cm ,则另一条对角线的长为___cm ,菱形的面积为___cm 214.如图是由九个边长为1的小正方形拼成的大正方形,图中∠1+∠2+∠3+∠4+∠5的度数为______. 15.如图,在菱形ABCD 中,对角线AC ,BD 的长分别为6,8,图中阴影部分的面积为____________. 16.如图,90C CAM ∠=∠=︒,8AC =cm ,4BC =cm ,点P 在线段AC 上,以每秒2cm 的速度从点A 出发向C 运动,到点C 停止运动,点Q 在射线AM 上运动,且PQ AB =,当点P 的运动时间为_________秒时,△ABC 才能和△PQA 全等.17.如图,在△ABC 中,∠C =90°,AC =6,BC =8,点D 在AB 边上,DE ⊥AC ,DF ⊥BC ,垂足分别为点E 、F ,连接EF ,则线段EF 的最小值等于_ _.18.如图,△ABC 是边长为1的等边三角形,分别取AC ,BC 边的中点D ,E ,连接DE ,作//EF AC 得到四边形EDAF ,它的周长记作1C ;分别取EF ,BE 的中点1D ,1E ,连接11D E ,作11//E F EF ,得到四边形111E D FF ,它的周长记作2C ,照此规律作下去,则2021C 等于________.三、解答题(共78分)19.(本题8分)如图,根据图上标注的信息,求出x 的大小.20.(本题8分)为了落实“7+2爱国卫生运动”,某市计划在张村、李村之间建一个洗手台P ,张、李两村座落在两相交的笔直公路内(如图所示).洗手台P 点必须满足下列条件:①P 点到两公路距离相等,②P 点到张、李两村的距离也相等,请你通过作图确定P 点的位置.(保留作图痕迹,不写做法)21.(本题8分)如图,已知AD ⊥BE ,垂足为C ,且是BE 的中点,AB =DE .求证:∠B =∠E .22.(本题10分)如图,某中学有一块四边形的空地ABCD ,学校计划在空地上种植草皮,经测量90B ∠=︒,3AB =米,4BC =米,12CD =米,13AD =米,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?23.(本题10分)如图,正方形ABCD 中,点E ,F 分别在AD ,CD 上,且AF ⊥BE 于G ,连接BE ,AF .求证:BE =AF .24.如图,BD 为ABC 的角平分线,E 为AB 上一点,BE BC =,连结DE .(1)求证:BDC BDE ≌△△;(2)若7AB =,2CD =,90C ∠=︒,求ABD △的面积.25.(本题12分)如图,在四边形 ABCD 中,AD ∥BC ,对角线 BD 的垂直平分线与边 AD 、BC 分别相交于点 M 、N .(1)求证:四边形 BNDM 是菱形;(2)若 BD =12,MN =4,求菱形 BNDM 的周长.26.在平行四边形ABCD 中,∠ADC 的平分线交BC 于点E ,交AB 的延长线于点F ,连接AC .(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF;②请判断△AGC的形状,并说明理由.(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG,请判断△AGC的形状,并说明理由.(3)如图3,∠ADC=90°,作∠BED的角平分线EH交AB于点H,已知AB=9,BH=2AH,求BC的长。
浙江宁波2024年上学期八年级数学期中模拟练习卷+答案
2024-2025学年第一学期浙江省宁波市八年级数学期中模拟练习卷考试范围:八上第1-4章 考试时间:120分钟 试卷满分:120分一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求. 1.下列图形中对称轴条数最多的是( )A .B .C .D .2. 若a b <,则下列结论错误是( )A. 11a b +<+B. 22a b −<−C. 33a b <D.4a <4b 3. 如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为( )A .2mB .3mC .3.5mD .4m4.下列条件中,可以判定ABC 是等腰三角形的是( )A .40B ∠=°,80C ∠=° B .123A B C ∠∠∠=:::: C .2A B C ∠=∠+∠D .三个角的度数之比是2:2:15.某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打( ) A .六折B .七折C .八折D .九折6. 如图,在ABC 中,AB AC =,120A ∠=°,分别以点A 和C 为圆心,以大于12AC 的长度为半径作弧,两弧相交于点P 和点Q ,作直线PQ 分别交BC ,AC 于点D 和点E .若3CD =,则AB 的长为( )的A .5B .C .6D .87. 在Rt △ABC 中,∠C =90°,AB =15,AC =12,以A 为圆心,适当长为半径画弧,交AC ,AB 于D ,E 两点,再分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧交于点M ,作射线AM 交BC 于点F , 则线段BF 的长为( )A. 5B. 4C. 3D. 2.88. 如图,ABC 是等边三角形,AD 是BC 边上的高,点E 是AC 边的中点,点P 是AD 上的一个动点,当PC PE +最小时,CPE ∠的度数是( )A .30°B .45°C .60°D .90°9. 如图,在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.点P 从点A 出发,沿长方形的边顺时针运动,速度为每秒2个单位长度; 点Q 从点A 出发,沿长方形的边逆时针运动,速度为每秒3个单位长度.记P Q ,在长方形边上第一次相遇时的点为1M ,第二次相遇时的点为2M ,……, 则2024M 的坐标为是( )A .(1,0)B .()0,1−C .()1,0−D .()1,2−10.如图,C 为线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边ABC 和等边ECD ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,则有以下五个结论:①AD BE =;②PQ AE ∥;③AP BQ =;④DE DP =;⑤60AOB ∠=°. 其中正确的有( )A .①③⑤B .①③④⑤C .①②③⑤D .①②③④⑤二、填空题:本大题共6个小题.每小题4分,共24分.把答案填在题中横线上. 11.若不等式()11m x m −+<的解是1x >,则m 的取值范围是 . 12.若等腰三角形的两边长分别4和6,则它的周长是_______13.如图,Rt △ABC 中,∠ABC =90°,AB =BC ,直线l 1、l 2、l 3分别通过A 、B 、C 三点,且l 1∥l 2∥l 3.若l 1与l 2的距离为4,l 2与l 3的距离为6,则Rt △ABC 的面积为 .14.在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC ,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为________.15.如图,在△ABC中,∠ACB=90°,边BC的垂直平分线EF交AB于点D,连接CD,如果CD=6,那么AB的长为.16.如图,Rt△BDE中,∠BDE=90°,DB=DE=2,A是DE的中点,连结AB,以AB为直角边做等腰Rt△ABC,其中∠ABC=90°.①AC的长为;②连结CE,则CE的长为.17. 解一元一次不等式组,并把解集表示在数轴上. (1)()2112x x −−−<; (2)4261139x x x x >−−+ ≤18. 如图,在ABC 中,点D 在BC 上,点E 在AD 上,已知ABE ACE =∠∠,BED CED ∠=∠.试说明BE CE =的理由.19ABCD ,4m AD =,3m CD =,90ADC ∠=°,13m AB =,12m BC =,求这块绿地ABCD 的面积.20. 如图,网格中每个小正方格的边长都为1,点A 、B 、C 在小正方形的格点上.(1)画出与ABC 关于直线l 成轴对称的A B C ′′△; (2)求ABC 的面积; (3)求BC 边上的高.21.如图,在四边形ABED 中,90B E ∠=∠=°,点C 是BE 边上一点,AC CD ⊥,CB DE =.(1)求证:ABC CED △≌△.(2)若5AB =,2CB =,求AD 的长.22.根据以下素材,探索完成任务.荡秋千问题素材1如图1,小丽与爸妈在公园里荡秋千,开始时小丽坐在秋千的起始位置,且起始位置与地面垂直.素材2如图2,小丽从秋千的起始位置A 处,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m 和1.8m ,90BOC ∠=°.问题解决任务1 OBD 与COE 全等吗?请说明理由;任务2 当爸爸在C 处接住小丽时,小丽距离地面有多高?23.某电器超市销售A 、B 两种型号的电风扇,A 型号每台进价为200元,B 型号每台进价为150元,下表是近两天的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润不少于1060元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.等腰Rt ABC △中,=AB AC ,=90BAC °∠.(1) 如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且=45DAE ∠°,将ABE 绕点A 逆时针旋转90°后,得到AFC ,连接DF . ①求证:AED AFD ≌ .②当3BE =,7CE =时,求DE 的长;(2) 如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE ,当=3BD ,=9BC 时,则DE 的长 ______.(直接给出答案).参考解答一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求. 1.A . 2. B . 3.D . 4.D 5. B . 6.B . 7.A . 8.C . 9.B . 10.C . 二、填空题:本大题共6个小题.每小题4分,共24分.把答案填在题中横线上. 11.1m < 12. 14或16 13.26. 14.9 15.12 16..三、解答题:本大题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤 17. 解:(1)去分母得,()()2212x x −−−<,移项得,2222x x −<+−, 合并同类项得,2x −<, 系数化为1得,2x >−, 在数轴上表示为:;(2)解:4261139x x x x >−−+≤①②,由①得,3x >−,由②去分母,得331x x −≤+ 解得,2x ≤.故不等式组得解集为:32x −<≤. 在数轴上表示为:18.证明:∵180AEB BED ∠=°−∠,180AEC CED ∠=°−∠,BED CED ∠=∠ ∴AEB AEC ∠=∠, 在AEB △和AEC △中,ABE ACE AEB AEC AE AE ∠=∠∠=∠ =, ∴()AAS AEB AEC ≌, ∴BE CE =.19.解:连接AC ,∵90ADC ∠=°,4m AD =,3m CD =,∴()5m AC ,∵13m AB =,12m BC =,∴22222251213CB AC AB +=+==, ∴90ACB ∠=°, ∴四边形ABCD 面积为:1122ABC ACD S S BC AC DC AD −=⋅−⋅ ()2115123424m 22=××−××=. 答:这块空地的面积是224m .20. 解:(1)如图,A B C ′′△为所作;(2)解:ABC 的面积11134121433 4.5222=×−××−××−××=; (3)解:设BC 边上的高为h ,∵BC ,∴1 4.52h ×=,解得h =, 即BC21.(1)证明:∵90B E ∠=∠=°, ∴190BAC ∠+∠=°.∵AC CD ⊥,∴1290∠+∠=°, ∴2BAC ∠=∠. 在ABC 和CED △中,2,,,BAC B E CB DE ∠=∠ ∠=∠ =()ABC CED AAS △≌△.(2)解:∵ABC CED △≌△,∴5ABCE ==,AC CD =. ∵2BC =,∴在Rt ABC △中,AC∵CD = ∴在Rt ACD △中,AD ==∴90EOC OCE ∠+∠=°,又90BOC BOD COE ∠=∠+∠=°, ∴BOD OCE ∠=∠, 在OBD 与COE 中BOD OCE BDO CEO OB OC ∠=∠ ∠=∠ =, ∴()AAS OBD COE ≌ ;任务2:∵OBD COE ≌ ,∴ 1.4m BDOE ==, 1.8m OD CE == ∴1 1.8 1.4 1.4m AE AO OE AD OD OE =−=+−=+−=,即小丽距离地面有1.4m 高.23.解:(1)设A 种型号电风扇的销售单价为x 元,B 种型号电风扇的销售单价为y 元, 依题意,得:,解得:.答:A 种型号电风扇的销售单价为240元,B 种型号电风扇的销售单价为180元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台, 依题意,得:200a +150(30﹣a )≤5400,解得:a ≤18.答:A 种型号的电风扇最多能采购18台.(3)依题意,得:(240﹣200)a +(180﹣150)(30﹣a )≥1060,解得:a ≥16.∵a ≤18,∴16≤a ≤18.∵a 为整数,∴a =16,17,18.∴共有三种采购方案,方案1:采购A 种型号电风扇16台,B 种型号电风扇14台;方案2:采购A 种型号电风扇17台,B 种型号电风扇13台;方案3:采购A 种型号电风扇18台,B 种型号电风扇12台.24.解:(1)①证明:如图1中,BAE CAF ≅ ,AE AF ∴=,BAE CAF ∠=∠, =90BAC ∠° ,=45EAD ∠°,+=+=45CAD BAE CAD CAF ∴∠∠∠∠°,DAE DAF ∴∠=∠,在AED △和AFD △中,===AE AF EAD FAD AD AD ∠∠,(SAS)AED AFD ∴≅ .AB AC = ,=90BAC °∠,==45B ACB ∴∠∠°,==45ABE ACF ∠∠° ,=90DCF ∴∠°,(SAS)AED AFD ≅ ,DE DF x ∴==,在Rt DCF △中,∵222DF CD CF =+,3CF BE ==, ∴()22273x x =−+,解得297x, ∴297DE =. (2)解:①当点E 在线段BC 上时,如图2中所示,连接BE :90BAC EAD ∠=∠=° EAB DAC ∴∠=∠,AE AD AB AC ==()EAB ADC SAS ∴ ≌45,6ABE C ABC EB CD ∴∠=∠=∠=°== 90EBD ∴∠°=222226345DE BE BD ∴=+=+=∴DE②当点D在线段CB的延长线上,如图3中所示,连接BE:同法可证DBE是直角三角形===EB CD DB12,3222222∴=+=+=DE BE BD123153∴DE。
八年级(上)期中数学试卷(含解析) (2)
八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 2.(3分)一个凸多边形的内角和等于540°,则这个多边形的边数是()A.5 B.6 C.7 D.83.(3分)等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17 B.22 C.17或22 D.134.(3分)在平面直角坐标系中,点P(3,4)关于x轴对称的点的坐标是()A.(﹣3,4)B.(4,3)C.(﹣3,﹣4)D.(3,﹣4)5.(3分)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得AB=5cm,AC=4cm,BC=7cm,则EF长为()A.4cm B.5cm C.6cm D.7cm6.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长是()A.3 B.4 C.5 D.67.(3分)已知△ABC中,AB=5,AC=7,BC=a,则a的取值范围是()A.1<a<6 B.5<a<7 C.2<a<12 D.10<a<148.(3分)如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等三角形共有()A.四对B.三对C.二对D.一对9.(3分)如图,AC=DB,CE=BF,则添加一个条件能使△ACF≌△DBE,则这个条件不能是()A.AF=DE B.∠A=∠D C.∠C=∠B D.AC∥BD10.(3分)如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°二、填空题(每题4分,共24分)11.(4分)如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带去.12.(4分)在△ABC中,∠A=∠B=∠C,则△ABC是三角形.13.(4分)如图,五角星的顶点分别是A,B,C,D,E,那么∠A+∠B+∠C+∠D+∠E=.14.(4分)如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是.15.(4分)轴对称图形对应点所连线段被对称轴.16.(4分)如图所示,在△ABC中,BD,CE分别是AC、AB边上的高,且BD与CE相交于点O,如果∠BOC=135°,那么∠A的度数为°.三、解答题(每题6分,共18分)17.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.18.(6分)如图,A、B两村庄在公路m的同侧,现需要在公路旁建立公交站,方便村民出行,使公交站到两村的距离相同,试在图中找出公交站的位置(尺规作图,不写作法,但要保留作图痕迹).19.(6分)如图,B处在A处的南偏西45°方向,C处在A处的南偏东30°方向,C处在B 处的北偏东80°方向,求∠ACB的度数.四、解答题(每题7分,共21分)20.(7分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.21.(7分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.22.(7分)如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60cm和40cm两部分,求边AC和AB的长.(提示:设CD=x cm)五、解答题(每题9分,共27分)23.(9分)如图,△ABC中,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD、BE相交于点F,DF=D C.(1)求证:△BDF≌△ADC;(2)求∠C的度数.24.(9分)如图,AB⊥BD于B,ED⊥BD于D,AC=CE,AB=CD=6,DE=4.(1)求证:AC⊥CE;(2)求△ACE的面积.25.(9分)如图,∠BAE=∠CAF=90°,EC、BF相交于点M,AE=AB,AC=AF,(1.求证:(1)EC=BF(2)EC⊥BF(3)若条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则(1)、(2)两个结论还成立吗?结论(1),结论(2)(只回答不写过程).2017-2018学年广东省惠阳市惠城区八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 【解答】解:A、4+3>5,能组成三角形;B、6+4=10,不能组成三角形;C、1+1=2<3,不能组成三角形;D、3+4=7<9,不能组成三角形;故选:A.2.(3分)一个凸多边形的内角和等于540°,则这个多边形的边数是()A.5 B.6 C.7 D.8【解答】解:设这个多边形的边数为n,则(n﹣2)180°=540°,解得n=5,故选:A.3.(3分)等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17 B.22 C.17或22 D.13【解答】解:∵4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22,故选:B.4.(3分)在平面直角坐标系中,点P(3,4)关于x轴对称的点的坐标是()A.(﹣3,4)B.(4,3)C.(﹣3,﹣4)D.(3,﹣4)【解答】解:点P(3,4)关于x轴对称的点的坐标是(3,﹣4),故选:D.5.(3分)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得AB=5cm,AC=4cm,BC=7cm,则EF长为()A.4cm B.5cm C.6cm D.7cm【解答】解:∵△ABC≌△DEF,∴EF=BC=7cm,故选:D.6.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长是()A.3 B.4 C.5 D.6【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9﹣5=4,∴DE=4,故选:B.7.(3分)已知△ABC中,AB=5,AC=7,BC=a,则a的取值范围是()A.1<a<6 B.5<a<7 C.2<a<12 D.10<a<14【解答】解:∵△ABC中,AB=5,AC=7,BC=a,∴7﹣5<a<7+5,即2<a<12.故选:C.8.(3分)如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等三角形共有()A.四对 B.三对 C.二对 D.一对【解答】解:如图,全等的三角形有:△ABE≌△ACD,△BDO≌△CEO,△BCD≌△CBE,共三对.故选:B.9.(3分)如图,AC=DB,CE=BF,则添加一个条件能使△ACF≌△DBE,则这个条件不能是()A.AF=DE B.∠A=∠D C.∠C=∠B D.AC∥BD【解答】解:这个条件不能是B;理由如下:在△ACF与△DBE中,已经有条件:AC=DB,CE=BF,进而得出CF=BE,∵有两边且其中一边的对角对应相等的两个三角形不一定全等,∴这个条件不能是B,故选:B.10.(3分)如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°【解答】解:∵AB=DC,AD=BC,∴四边形ABCD为平行四边形,∴∠ADE=∠CBF,∵BF=DE,∴△ADE≌△CBF,∴∠BCF=∠DAE,∵∠DAE=180°﹣∠ADB﹣∠AED,∵∠AED=180°﹣∠AEB=60°,∠ADB=30°,∴∠BCF=90°.故选:D.二、填空题(每题4分,共24分)11.(4分)如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带③去.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合全等三角形的判定方法;第二块,仅保留了原三角形的一部分边,所以此块玻璃也不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故答案为:③.12.(4分)在△ABC中,∠A=∠B=∠C,则△ABC是直角三角形.【解答】解:在△ABC中,∠A+∠B+∠C=180°,∵∠A=∠B=∠C,∴∠C+∠C+∠C=180°,解得∠C=90°,所以,△ABC是直角三角形.故答案为:直角.13.(4分)如图,五角星的顶点分别是A,B,C,D,E,那么∠A+∠B+∠C+∠D+∠E=180°.【解答】解:如图,∠A+∠D=∠1,∠B+∠E=∠2,∵∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案为:180°.14.(4分)如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.【解答】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.故应填:三角形的稳定性.15.(4分)轴对称图形对应点所连线段被对称轴垂直平分.【解答】解:轴对称图形对应点所连线段被对称轴垂直平分.故答案为:垂直平分.16.(4分)如图所示,在△ABC中,BD,CE分别是AC、AB边上的高,且BD与CE相交于点O,如果∠BOC=135°,那么∠A的度数为45°.【解答】解:在四边形AODE中,其内角和为360°,∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,又∠DOE=∠BOC=135°,∴∠A=45°.故应填45°.三、解答题(每题6分,共18分)17.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).18.(6分)如图,A、B两村庄在公路m的同侧,现需要在公路旁建立公交站,方便村民出行,使公交站到两村的距离相同,试在图中找出公交站的位置(尺规作图,不写作法,但要保留作图痕迹).【解答】解:如图所示,点C即为公交车的位置.19.(6分)如图,B处在A处的南偏西45°方向,C处在A处的南偏东30°方向,C处在B 处的北偏东80°方向,求∠ACB的度数.【解答】解:如图,∵AD,BE是正南正北方向,∴BE∥AD,∵∠BAD=45°,∴∠ABE=∠BAD=45°,∵∠EBC=80°,∴∠ABC=80°﹣45°=35°,∵∠BAC=∠BAD+∠DAC=45°+30°=75°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣75°﹣35°=70°.四、解答题(每题7分,共21分)20.(7分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.【解答】解:(1)如图所示:△ABC的面积:×3×5=7.5;(2)如图所示:(3)A1(1,5),B1(1,0),C1(4,3).21.(7分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.【解答】解:∵在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,∴∠DAE=∠CAB=(90°﹣∠B),∵DE垂直平分AB,∴AD=BD,∴∠DAE=∠B,∴∠DAE=∠CAB=(90°﹣∠B)=∠B,∴3∠B=90°,∴∠B=30°.答:若DE垂直平分AB,∠B的度数为30°.22.(7分)如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60cm和40cm两部分,求边AC和AB的长.(提示:设CD=x cm)【解答】解:∵AD是BC边上的中线,AC=2BC,∴BD=CD,设BD=CD=x,AB=y,则AC=4x,分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得:x=12,y=28,即AC=4x=48,AB=28;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理;综合上述:AC=48cm,AB=28cm.五、解答题(每题9分,共27分)23.(9分)如图,△ABC中,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD、BE相交于点F,DF=D C.(1)求证:△BDF≌△ADC;(2)求∠C的度数.【解答】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=90°,∠AEF=90°,∵∠AFE+∠CAD+∠AEF=180°,∠FBD+∠BFD+∠BDA=180°,∠AFE=∠BFD,∴∠FBD=∠CAD,在△BDF和△ADC中,∴△BDF≌△ADC(AAS),∴BF=A C.(2)∵△BDF≌△ADC,∴DA=DB,∵∠ADB=∠ADC=90°,∴∠BAD=45°,∵∠BAC=75°,∴∠DAC=75°﹣45°=30°,∴∠C=90°﹣30°=60°.24.(9分)如图,AB⊥BD于B,ED⊥BD于D,AC=CE,AB=CD=6,DE=4.(1)求证:AC⊥CE;(2)求△ACE的面积.【解答】解:∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°.在Rt△ABC和Rt△CDE中,,∴Rt△ABC≌Rt△CDE(HL).∴∠A=∠DCE.∵∠A+∠ACB=90°,∴∠DCE+∠ACB=90°.∵∠ACB+∠ACE+∠DCE=180°∴∠ACE=90°,∴AC⊥CE,(2)在Rt△CDE中,CE===2,∴S△ACE=××2=26.25.(9分)如图,∠BAE=∠CAF=90°,EC、BF相交于点M,AE=AB,AC=AF,(1.求证:(1)EC=BF(2)EC⊥BF(3)若条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则(1)、(2)两个结论还成立吗?结论(1)成立,结论(2)不成立(只回答不写过程).【解答】证明:(1)∵AE⊥AB,AC⊥AF,∴∠BAE=∠CAF=90°,∴∠CAE=∠BAF,在△CAE与△BAF中,,∴△CAE≌△BAF,∴CE=BF;(2)如图,设AC交BF于O.∵△CAE≌△BAF,∴∠AFO=∠OCM,∵∠AOF=∠COM,∴∠OMC=∠OAF=90°,∴CE⊥BF.(3)条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则结论(1)成立,结论(2)不成立.理由:同法可证△CAE≌△BAF,可得CE=BF,∠CMO=∠F AO=m°,∴结论(1)成立,结论(2)不成立.故答案为成立,不成立.。
八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季
八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列图形中是轴对称图形的是()A.B.C.D.2.已知三角形的三边长分别为3,x,7,则x的值可能是()A.3B.5C.10D.113.下列判断错误的是()A.等腰三角形是轴对称图形B.有两条边相等的三角形是等腰三角形C.等腰三角形的两个底角相等D.等腰三角形的角平分线、中线、高互相重合4.下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()A.B.C.D.5.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点确定一点直线B.两点之间线段最短C.同角的余角相等D.三角形具有稳定性6.如图,已知∠C=∠C1=90°,能直接用“HL”判定Rt△ABC≌Rt△A1B1C1的条件是()A.∠C=∠C1,AB=A1B1 B.AB=A1B1,AC=A1C1C.AC=A1C1,BC=B1C1 D.∠B=∠B1,BC=B1C17.如图,△ABC≌△DCB,∠DBC=40°,则∠BOC的度数为()A.100°B.80°C.40°D.140°8.A、B、C为三个小区,A、B、C三个小区的学生人数比为3:7:4,现在要在△ABC所在的平面上建造一个学校P,使得所有学生走的路程和最短,则学校P应该选在()A.点C处B.△ABC三条中线的交点处C.点B处D.∠A和∠B的角平分线的交点处9.如图,△ABC的外角∠DAC和∠FCA的平分线交于点E,∠EAC和∠ECA 的平分线交于点M,若∠B=48°,则∠M的度数为()A.114°B.122°C.123°D.124°10.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5B.6C.7D.8二、填空题(每小题3分,满分18分)11.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于.12.点A(a,b)与点B(3,﹣4)关于y轴对称,则a+b的值为.13.某多边形的内角和与外角和相等,这个多边形的边数是.14.等腰三角形的一个角是70°,则等腰三角形的顶角的度数是.15.已知a,b,c为△ABC的三边,化简:3|a+b﹣c|+2|a﹣b﹣c|=.16.如图,点B、C、E三点在同一直线上,且AB=AD,AC=AE,BC=DE,若∠1+∠2+∠3=96°,则∠3的度数为.八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.若学校有一块三角形的绿地,AB=BC=20m,∠A=15°,求绿地△ABC的面积?18.如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,则∠NMA的度数是;(2)连接MB,若BC=6,△MBC的周长是14.①求△ABC的周长;②若P是直线MN上一个动点,则PB+PC的最小值是.20.已知点C在线段BE上,且△ABC和△DCE都是等边三角形,连接BD,AE,分别交AC,DC于点M,N.(1)求证:△AEC≌△BDC;(2)求证:CM=CN.21.如图,在△ABC中,AB=AC,D是BC上任意一点,过点D分别向AB、AC引垂线,垂足分别为E、F,CG是AB边上的高.(1)当D点在BC什么位置时,DE=DF?并证明;(2)线段DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.22.如图1,在四边形ABCD中,∠A=∠C=90°,AB=CD,将四边形ABCD沿对角线BD翻折,点C落到点F处,BF交AD于点E.(1)求证:EB=ED;(2)如图2,延长BA,DF交于点G,连接GE并延长交BD于点H.求证:∠ADB=∠BGH.23.如图,在△ABC中,AB=AC=3,∠B=50°,点D在线段BC上运动(不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)当∠BDA=105°时,∠BAD=°,∠DEC=°;(2)若DC=AB,求证:△ABD≌△DCE;(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知三点A(0,a)(a>0),B(0,b)(b≤0),C(c,0)(c<0),且(a﹣b)2=c2.(1)试判断线段AB与OC的数量关系,并证明;(2)如图1,当b=0时,连接AC,点P是线段AC上一点,CQ⊥OP于Q,连接AQ.若∠AQP=45°,试探究CQ和OQ之间数量关系;(3)如图2,当b<0时,点D在x轴负半轴上,位于点C的左侧,且CD=OB,连接AD,射线BC交AD于点E.当点B在y轴负半轴上运动时,∠CED的度数是否为定值?如果是,请求出∠CED的度数;如果不是,请说明理由.25.如图,平面直角坐标系中,A(0,a),B(b,0)且a、b满足|a+2b﹣6|+|a﹣2b+2|=0.E为线段上一动点,∠BED=∠OAB,BD⊥EC,垂足在EC的延长线上,试求:(1)判断△OAB的形状,并说明理由;(2)如图1,当点E与点A重合时,探究线段AC与BD的数量关系,并证明你的结论;(3)如图2,当点E在线段AB(不与A、B重合)上运动时,试探究线段EC与BD的数量关系,证明你的结论.。
重庆八中2024年八年级下学期期中数学试题+答案
重庆市第八中学2023-2024学年八年级下学期数学期中模拟试卷A 卷一、选择题1.(4分)下列设计的图案中既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.(4分)把多项式322ax ax ax −+分解因式,结果正确的是( )A .()22ax x x −B .()22ax x −C .()()11ax x x +−D .()21ax x − 3.(4分)下列式子的变形正确的是( )A .22b b a a = B .22a b a b a b +=++ C .2422x y x y x x−−= D .22m n n m −=− 4.(4分)下列说法中,错误的是( )A .有一组邻边相等的平行四边形是菱形B .两条对角线互相垂直且平分的四边形是菱形C .对角线相等的平行四边形是矩形D .有一组邻边相等的菱形是正方形5.(4分)如图,正方形ABCD 中,E 为对角线BD 上一点,70BEC ∠=°,那么DAE ∠=( )A .10°B .15°C .25°D .30°6.(4分)估计的值应在( ) A .1和2之间 B .2和3之间C .3和4之间D .4和5之间 7.(4分)2024年中国青少年足球联赛预选赛第一阶段比赛近日在贵州全部结束,重庆一中足球队获得该阶段比赛冠军,以南区第一名的优秀赛绩成为首批晋级全国总决赛的队伍.联赛主办方原计划为参赛队伍准备40箱足球,平均分配给各支队伍作为训练用球,但为了保证比赛期间各支队伍训练不受影响,临时又增加了16箱足球,使得每支队伍比原计划多领取2箱足球,设共有x 支队伍参加本次南区预选赛,根据题意可列方程为( )A .4040162x x +=+B .4040162x x+=− C .4040162x x +=− D .4040162x x +=+ 8.(4分)如图.在ABC △中,60ACB ∠=°,1AC =,D 是边AB 的中点,E 是边BC 上一点.若DE 平分ABC △的周长,则DE 的长为( )A .1BCD .539.(4分)如图,在正方形ABCD 中,E 为BC 边上靠近点B 的三等分点,将线段AB 绕点A 逆时针旋转得到线段AF ,使得BAE FAE ∠=∠,连接EF 和CF ,令BAE α∠=,则FCD ∠为( )A .1203α°−B .3902α°− C .230α+° D .45α+°10.(4分)如图,把矩形ABCD 纸对折,设折痕为MN ,再把B 点叠在折痕上,得到Rt ABE △,EB 延长线交AD 或AD 的延长线于F ,则EAF △是( )A .底边与腰不相等的等腰三角形B .各边均不相等的三角形C .或是各边不相等的三角形,或是底边与腰不相等的等腰三角形D .等边三角形二、填空题11.(4分)如图,已知AC 为正六边形ABCDEF 的一条对角线,则ACB ∠=______.12.(4分)若方程2288x m x x =+−−有增根,则m =______.13.(4分)直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式()120k k x b −+>的解集为______.14.(4分)如图,在ABC △中,AC =2BC =,点D 是AB 边的中点,连接CD ,点E 为BC 延长线上一点且2BC CE =,连接DE 交AC 于点F ,连接AE ,且AE BC =,则CEF △的周长为______.三、解答题15.(8分)计算:(1)201(2024π)33− −−−−; (2)2925222a a a a a −− ÷−− −−. 16.(8分)解方程: (1)15121x x =−+; (2)2162142x x x ++=−−. 17.(8分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,AM BD ⊥于M .(1)尺规作图:过点C 作BD 的垂线,垂足为N ,连接AN 、CM (保留作图痕迹,不写作法,不写结论).(2)补全推理过程:在矩形ABCD 中AD BC ∥ ,AD BC =,∴______,AM BD ⊥ ,CN BD ⊥,90AMD ∴∠=°,90CNB ∠=°,即:______,∴______;在ADM △和CBN △中,AMD CNB ADB CBD AD CB ∠=∠ ∠=∠ =ADM CBN ∴≌△△,∴______,∴四边形AMCN 为平行四边形(______). 18.(10分)如图(1),在矩形ABCD 中,4AB =,3BC =,动点P 以每秒1个单位的速度,从点D出发.按D A B C →→→的顺序在边上运动.与点P 同时出发的动点Q 以每秒12个单位的速度,从点D 出发,在射线DC 上运动.当动点P 运动到点C 时,动点P 、Q 都停止运动.连接PC ,设点P 的运动时间为t 秒,在运动过程中,PDC △的面积记为1S ,三角形ADQ 的面积记为2S .(1)直接写出1S 、2S 与t 之间的函数关系式,并写出自变量t 的取值范围;(2)在如图2的平面直角坐标系中,画出为1S 、2S 的函数图象,并根据图象写出函数1S 的一条性质;(3)根据图象直接写出当21S S ≥时t 的取值范围.19.(10分)如图,在直角AEC △中,90AEC ∠=°,B 是边AE 上一点,连接BC ,O 为AC 的中点,过C 作CD AB ∥交BO 延长线于D ,且AC 平分BCD ∠,连接AD .(1)求证:四边形ABCD 是菱形.(2)连接OE 交BC 于F ,27ACD ∠=°,求CFO ∠的度数.B 卷四、选择填空题20.(4分)若实数a 使关于x 的不等式组3132122x x a x x + +≤ +≤+ 至少有4个整数解,且使关于y 的分式方程32111ay y y −−=−−有整数解,则符合条件的所有整数a 的积为( ) A .5 B .6 C .10 D .2521.(4分)有依次排列的3个整式:x ,6x +,2x −,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:x ,6,6x +,8−,2x −,则称它为整式串1;将整式串12;以此类推.通过实际操作,得出以下结论:①整式串2为:x ,6x −,6,x ,6x +,14x −−,8−,6x +,2x −;②整式串3共17个整式;③整式串3的所有整式的和比整式串2的所有整式的和小2;④整式串2024的所有整式的和为34046x −;上述四个结论中正确的个数是( )A .1B .2C .3D .422.(4分)如图,正方形ABCD 中,E 为AB 边上一点,过点E 作EF AB ⊥交对角线BD 于点F .连接EC 交BD 于点G ,取DF 的中点H ,并连接AH.若AH =47EG =,则四边形AEFH 的面积为______.23.(4分)如图,矩形ABCD 的边BC 、AD 上有两点E 、F ,沿着直线EF 折叠使得点D 、C 分别落在D ′、C ′,D C ′′交线段AD 于点G ,射线D C ′′恰好经过点B ,作BH 平分ABG ∠交AD 于H ,HG GF =,且H 恰好落在线段EC ′的延长线上,若AB =F 到直线D H ′的距离是______.24.(4分)若一个四位自然数M ,满足个位数字与十位数字之和的平方正好等于M 的千位数字与百位数字组成的两位数,则这个四位数称为“和数”,比如:4952,满足()25249+=;若一个四位自然数N ,满足个位数字与十位数字的平方差正好等于N 的千位数字与百位数字组成的两位数,则这个四位数称为“差数”,比如:7239,满足229372−=;那么最大的“和数”与最小的“差数”之和是______.如果一个“和数”M 与一个“差数”N 的个位数字均为a 、十位数字均为b ,且18228(,)11M N a F M N ++−=,若(),F M N 为整数时,记(,)ab G M N a b=+,则(),G M N 的最大值是______. 五、解答题25.(10分)走洛克之路,赏人间仙境.洛克之路是甘南旅游网红自驾线路,起点为迭部县扎尕那,终点为卓尼县扎古录,全程共105千米.甲、乙两人分别驾车从迭部县扎尕那和卓尼县扎古录出发,沿洛克之路自驾旅游,3小时后两人相遇,相遇后甲、乙继续往目的地行驶并走完全程,乙走完全程所用时间是甲走完全程所用时间的1.5倍.(1)甲、乙两人单独走完全程各需多少小时?(2)风干牦牛肉是甘南特色小吃.甲购买了A 种牦牛肉,乙购买了B 种牦牛肉,甲购买的袋数比乙的2倍少5袋,已知A 种牦牛肉价格为每袋35元,B 种牦牛肉价格为每袋50元,计算发现乙购买牦牛肉花费更多.问乙最多购买了多少袋牦牛肉?26.(10分)如图1,在平面直角坐标系中,直线2:6l y x =−+与1l 交于点()e,4E ,2l 与x 轴,y 轴分别交于C ,D 两点,1l 与x 轴,y 轴分别交于A ,B 两点,且12OB OC =.(1)求直线1l 的解析式;(2)如图2,在射线EC 上有一动点F ,连接AF 、BF ,M 为x 轴上一动点,连接FM 、BM ,当98ABF AEC S S =△△时,求BM FM −的最大值; (3)如图3,在(2)的条件下,将CFM △沿直线2l 平移得到C F M ′′′△,若在平移过程中BC F ′′△是以BF ′为一腰的等腰三角形,请直接写出点C ′的坐标.27.(10分)已知ABC △是等腰直角三角形,AB AC =,D 为平面内一点.(1)如图1,当D 点在AB 的中点时,连接CD ,将CD 绕点D 逆时针旋转90°,得到ED ,若4AB =,求ADE △的周长;(2)如图2,当D 点在ABC △外部时,E 、F 分别是AB 、BC 的中点,连接EF 、DE 、DF ,将DE 绕E 点逆时针旋转90°得到EG ,连接CG 、DG 、FG ,若FDG FGE ∠=∠,请探究FD 、FG 、CG 之间的数量关系并给出证明;(3)如图3,当D 在ABC △内部时,连接AD ,将AD 绕点D 逆时针旋转90°,得到ED ,若ED 经过BC 中点F ,连接AE 、CE ,G 为CE 的中点,连接GF 并延长交AB 于点H ,当AG 最大时,请直接写出的值.重庆市第八中学2023-2024学年八年级下学期数学期中模拟试卷A 卷1-5 BDCDC6-10 BBBDD11.30°12.4 13.1x <− 1415.(1)11−+;(2)33a a +−. 16.(1)2x =;(2)无解.17.(1)见解答;(2)ADB CBD ∠=∠,AMD CNB ∠=∠,AM CN ∥,AM CN =;一组对边平行且相等的四边形为平行四边形. 18.(1)()()()1203637202710t t S t t t <≤ =<≤ −<< ,2()0.75010S t t =<≤;(2)图见解析;当03t <<时,1S 随t 的增大而增大;当37t <<时1S 不变;当710t <<时,1S 随t 增大而减小(答案不唯一,合理即可).(3)801011t ≤<. 19.(1)证明见解析;(2)99°.B 卷20.B21.C 22.2729 2324.9355,78. 25.(1)甲走完全程所需时间为5小时,乙走完全程所需时间为7.5小时;(2)乙最多购买了8袋牦牛肉.26.(1)直线1l 的解析式为:132yx =+; (2(3)点C ′的坐标为或或111,22. 27.(1)ADE △的周长为2+;(2)FD CG =+;(3)ACG AHG S S △△.。
北京师范大学附属实验中学2024—-2025学年八年级上学期期中考试模拟数学试卷-
北京师范大学附属实验中学2024—-2025学年八年级上学期期中考试模拟数学试卷-一、单选题1.下列图案是从4个班的班徽中截取出来的,其中属于轴对称图形的是()A .B .C .D .2.下列运算正确的是()A .233+=m m mB .326326⋅=m m mC .()2239m m =D .66÷=m m m 3.如图,对正方形进行分割,利用面积恒等能验证的等式是()A .()22244x x x -=-+B .()22244x x x +=++C .()()2224x x x +-=-D .()222x x x x-=-4.如图,已知12∠=∠,则不能判定ABD ACD △≌△的条件是()A .AB AC =B .BD CD =C .B C ∠=∠D .AD 平分BDC∠5.图中的两个三角形全等,则∠1等于()A .45°B .62°C .73°D .135°6.如图,AOB ∠是一个任意角,在边OA OB 、上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M 、N 重合,则过角尺顶点C 的射线OC 就是AOB ∠的平分线,其依据是()A .角平分线上的点到角两边距离相等B .角的内部到角两边距离相等的点在这个角的平分线上C .三边分别相等的两个三角形全等,全等三角形的对应角相等D .两边及其夹角分别相等的两个三角形全等,全等三角形的对应角相等7.平面内,下列关于轴对称的说法中,正确的是()A .两个全等三角形一定关于某条直线成轴对称B .对称点连线是对称轴的垂直平分线C .等腰三角形的对称轴是它底边上的中线D .成轴对称的两个图形一定全等8.如图,先将正方形ABCD 沿MN 对折,再把点B 折叠到MN 上,折痕为AE ,点B 在MN 上的对称点为H ,沿AH 和DH 剪下ADH ,则下列选项正确的是()A .==AH DH ADB .=≠AH DH ADC .=≠AH AD DH D .DH AD AH=≠9.如图,在ABC V 中,1AB =,6AC =,点D 是BC 的中点,连接AD ,那么线段AD 的长度有可能是()A .1B .2C .3D .410.若a 、b 、c 是ABC 的三条边,且()22a b c a b -=-,则ABC 一定是()A .直角三角形B .三条边都不相等的三角形C .等腰三角形D .等边三角形二、填空题11.平面直角坐标系中,点A 的坐标是()2,3-,则点A 关于x 轴对称得到的点的坐标是,点A 关于y 轴对称得到的点的坐标是.12.若26x x k -+是完全平方式,则常数k 的值为.13.如图,在ADB 和CBD △中,ADB DBC ∠=∠,AD BC =,那么由所给条件判定ADB 和CBD △全等的依据可以简写为.14.如图,在△ABC 中,AB =AC ,点D 在边AC 上,使得BD =BC ,若∠A =40°,则∠ABD 的度数为.15.分式22x x -+有意义的条件是.16.如图,点C 和点F 在线段AD 上,AF CD =,90A D ∠=∠=︒,60B E ∠=∠=︒,若3AB =,则EF =.17.已知:5a b -=,22a b 15+=,则ab =.18.在平面直角坐标系xOy 中,横、纵坐标都是整数的点为整点.若坐标系内两个整点(),A p q 和()(),B m n m n ≤能使关于x 的等式()()2x px q x m x n ++=++恒成立,则称点B 是点A 的分解点.例如:()4,3A 、()1,3B 满足()()24313x x x x ++=++且13≤,所以点B 是点A 的分解点.(1)点()3,2的分解点的坐标是;(2)在点()3,0C 、()0,3D -、()0,4E -中,不存在分解点的点是.三、解答题19.计算:(1)()()22232236x y xy x y ⋅-÷-;(2)()()()2311x x x -+--.20.因式分解:(1)2244x xy y -+;(2)32312x xy -.21.先化简,再求值:()()()4222a a b a b a b --+-,其中2a =-,1b =.22.下面是小明设计的“作三角形一边上的高”的尺规作图过程.已知:如图,ABC V .(∠B 为锐角且AC AB >)求作:ABC V 的边BC 上的高AD .作法:①以点A 为圆心,AB 长为半径画弧,交BC 于点M ;②分别以点B ,M 为圆心,以大于12BM 的长为半径画弧,两弧相交于点N ;③作直线AN 交BC 于点D ,则线段AD 即为所求ABC V 的边BC 上的高.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)直线AN 是线段BM 的.点N 在这条直线上的依据是.23.如图,90A D ∠=∠=︒,AC DB =,AC 和BD 相交于点E ,BEC ∠的平分线交BC 于点F .求证:EF BC ⊥.24.如图,在平面直角坐标系xOy 中,点A 坐标为()1,3-,点B 坐标为()2,0-,直线l 经过点1,0且与x 轴垂直,连接AB .(1)请在图中画出线段AB 关于直线l 对称后的图形—线段A B '',点A 的对称点A '的坐标为,点B 的对称点B '的坐标为;(2)直线l 上有一动点P ,当AP BP +取最小值时,请在图中画出点P ;(3)在坐标轴上取点Q ,使ABQ 为等腰三角形,这样的点Q 有个.25.利用垂直平分线将三角形分割出等腰三角形:(1)如图1所示,ABC V 中,AB BC <,AC 的垂直平分线交BC 于点D ,连接AD ,那么图中出现的等腰三角形是;(2)如图2所示,ABC V 中,90BAC ∠=︒,AC 的垂直平分线交BC 于点D ,连接AD ,那么图中出现的等腰三角形是;(3)请利用上述方法,将图3中的直角三角形分割成三个等腰三角形.26.如图,在△ABC 中,AB =AC ,∠BAC =90°,点D 是边BC 上的动点,连接AD ,点C 关于直线AD 的对称点为点E ,射线BE 与射线AD 交于点F .(1)在图1中,依题意补全图形;(2)记DAC α∠=(45α<︒),求ABF ∠的大小;(用含α的式子表示)(3)若△ACE 是等边三角形,猜想EF 和BC 的数量关系,并证明.27.观察下列各式,回答问题:①()()2111x x x -+=-;②()()23111x x x x -++=-;③()()324111x x x x x -+++=-;……(1)()()109211x x x x x -+++=++ ;(2)按此规律,第n 个等式是:;(3)2320232024122222++++++ 的值的末位数字是.28.在平面直角坐标系xOy 中,直线l 为一、三象限角平分线.点P 关于y 轴的对称点称为点P 的一次反射点,记作1P ;1P 关于直线l 的对称点称为点P 的二次反射点,记作2P .例如:如图1所示,点()2,5P -的一次反射点1P 为()2,5,二次反射点2P 为()5,2.根据定义,回答下列问题:(1)如果点A 在第一象限,那么点A 的二次反射点2A 在第象限;(2)若点B 在第二象限,点1B 、2B 分别是点B 的一次、二次反射点,当12OB B △为等边三角形时,射线OB 与y 轴正半轴的夹角大小为;(3)点C 的坐标为(),2a ,点D 的坐标为()2,2a a +,正方形EFGH 的四个顶点坐标分别为()1,3E -、()4,3F -、()4,6G -、()1,6H -,若在线段CD 上的所有点中,恰有一个点的二次反射点落在正方形EFGH 的边上,直接写出a 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期中模拟试卷 姓名
1. 4 的平方根是( )A . 2 B . 16 C. ±2 D .±16
2.设a =19-1,a 在两个相邻整数之间,则这两个整数是( )
A .1和2
B .2和3
C .3和4
D .4和5
3. 下列各式中,正确的是( )A .
3=- B
.3- C
3± D
3± 4. 如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线
OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( ) (A )2.5 B )2 2 (C ) 3 (D ) 5 5. 下面哪个点在函数y=
1
2
x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 6. 过点A(2, 3-)且垂直于y 轴的直线交y 于点B ,那么点B 的坐标为( ) (A)(0,2) (B)(2,0) (C)(0, )3- (D)( )0,3- 7. 已知点P( )1,3++m m 在y 轴上,则点P 的坐标为( )
(A)(0, )2- (B)(2,0) (C)(4,0) (D)(0, )4- 8. 在直角坐标系中A (2,0)、B (-3,-4)、O (0,0),则△AOB 的面积为( ) A. 4 B. 6 C. 8 D. 3 9. 已知函数b kx y +=的图象如图,则b kx y +=2的图象可能是( )
A .
B .
C .
D .
9.在直角坐标系中,A (1,0),B (-1,0),△ABC 为等腰三角形,则C 点的坐标是_____
10.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′点,那么△ADC ′的面积是 .
11
.计算的结果是 .
12.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.
13.点A (a ,b )和B 关于x 轴对称,而点B 与点C (2,3)关于y 轴对称,那么,a= _______ , b=_______ 14. (1)5
15
20)3(30--
-π (2
15. “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?
观测点
第10题图
16.在同一直角坐标系中,画出函数
32,32,2+=-==x y x y x y 的图像,并观察它们的关系.
17.探究创新:
(1)依次连接4⨯4方格各条边中点,得到一个正方形,
如图阴影部分,求这个正方形的面积和边长。
(2)利用4⨯4方格,作出面积为10的正方形。
18.已知点(2,-4)在一次函数y=kx+2的图象上.
⑴求k 的值;
⑵若点(-1,m)在直线y=kx+2上,试求出m 的值; ⑶若(2
1
-,y 1)、B (-2,y 2)、C (1,y 3)都在该直线y=kx+2上,试比较y 1、y 2、y 3的大小关系.
19.一辆客车从甲地开往甲地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y 1(km ),出租车
离甲地的距离为y 2(km ),客车行驶时间为x (h ),y 1,y 2与x 的函数关系图象如图所示: (1)根据图象,直接写出....y 1,y 2关于x 的函数关系式。
(2)分别求出当x=3,x=5,x=8时,两车之间的距离。
(3)若设两车间的距离为S (km ),请写出S 关于x 的函数关系式。