【华师大版】初二数学上册《【学案】 13.3.3 等边三角形的性质和判定》

合集下载

华师版八年级数学上册第13章 全等三角形【创新教案】13.3.3 等边三角形的性质和判定

华师版八年级数学上册第13章 全等三角形【创新教案】13.3.3 等边三角形的性质和判定

13.3.3 等边三角形的性质和判定
【教学目标】
掌握等边三角形的性质和判定方法.
培养分析问题、解决问题的能力.
【重点难点】
重点
等边三角形的性质和判定方法.
难点
等边三角形性质的应用
【教学过程】
一、创设情境,提出问题
回顾上节课讲过的等边三角形的有关知识
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
二、例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上.
③过边AB上D点作DE∥BC,交边AC于E点.
2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB =30°.
三、课堂小结
1、等边三角形和性质
2、等边三角形的条件
四、布置作业
1.教科书第84页练习1、2
2.选做题:
(1)教科书第84页习题13.3第7题.
(2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?
(3)《课堂感悟与探究》。

华师大版八年级数学上册教学设计:13.2全等三角形的判定(6课时)

华师大版八年级数学上册教学设计:13.2全等三角形的判定(6课时)
(四)课堂练习
1.练习题目设计:
-设计不同难度的练习题,包括基础题、提高题和综合题,以满足不同学生的学习需求。
-练习题要覆盖全等三角形的各个判定方法,让学生通过练习,加深对判定方法的理解。
2.练习过程指导:
-学生独立完成练习,教师观察学生的解题过程,了解学生的掌握情况。
-对学生解题中出现的常见错误进行分类指导,帮助学生找到错误原因,并指导正确的解题方法。
3.学习方法指导:
-教师向学生传授几何学习的方法和技巧,如如何识别关键信息、如何进行逻辑推理等。
-鼓励学生将所学知识进行内化,形成自己的知识体系,提高几何问题的解决能力。
五、作业布置
为了巩固学生对全等三角形判定方法的理解和应用,以及提高学生的几何证明能力,特此布置以下作业:
1.基础巩固题:
-完成课本第85页的练习题1、2、3,重点在于让学生通过实际操作,加深对全等三角形判定方法的理解。
-教师通过典型例题,展示各种判定方法的应用场景,引导学生进行对比分析。
-学生通过课堂讨论,归纳总结各种判定方法的特点和适用范围。
3.创设生活情境,让学生在实际问题中运用全等三角形的性质和判定方法。
-教师设计富有生活气息的问题,让学生感受到数学与生活的紧密联系。
-学生运用所学知识解决问题,提高数学应用能力。
-重点在于让学生理解每个判定方法背后的几何原理,以及如何在实际问题中灵活运用。
-难点在于学生需要能够从给定的条件中识别出合适的判定方法,并正确进行证明。
2.能够运用全等三角形的性质和判定方法解决实际问题,特别是综合性较强的几何问题。
-重点在于培养学生的问题分析能力和解题策略,使其能够将理论应用到实践中。
-难点在于学生需要具备较强的逻辑思维能力和空间想象力,以应对复杂的几何问题。

13.3.3 等边三角形的性质与判定(说课稿)-2022-2023学年八年级数学上册同步备课系列(人

13.3.3 等边三角形的性质与判定(说课稿)-2022-2023学年八年级数学上册同步备课系列(人

13.3.3 等边三角形的性质与判定(说课稿)一、教学目标经过本节课的学习,学生应能够: 1. 理解等边三角形的定义及其性质; 2. 掌握判断一个三角形是否为等边三角形的方法; 3. 运用等边三角形的性质解决实际问题。

二、教学重难点重点1.等边三角形的定义及其性质;2.判断一个三角形是否为等边三角形的方法。

难点1.运用等边三角形的性质解决实际问题。

三、教学步骤与内容步骤一:导入新知1.引入问题:小明手上有一个三角尺,边长分别是10 cm、10 cm和12 cm,请问这个三角形是不是等边三角形?2.让学生思考并讨论问题,激发学生对等边三角形的兴趣。

步骤二:引入定义1.将等边三角形的定义呈现在黑板上:三角形的三条边相等时,称为等边三角形。

2.向学生解释等边三角形的定义,帮助他们理解等边三角形的性质。

步骤三:探究等边三角形的性质1.提问:等边三角形的三个角相等吗?2.引导学生思考,并快速讨论得出结论:等边三角形的三个角都是60°。

3.引导学生找出等边三角形的其他性质:等边三角形的三条高线重合,并且高线上的点与三角形的顶点连线分成60°和120°两个角。

4.让学生通过画图验证等边三角形的性质。

步骤四:判断等边三角形的方法1.引导学生讨论如何判断一个三角形是否为等边三角形。

2.引导学生发现,只需判断三条边相等即可判断一个三角形是否为等边三角形。

3.提供一些示例,让学生运用所学知识判断是否为等边三角形。

步骤五:运用等边三角形的性质解决问题1.出示一个实际问题:小明想用几根长度相等的木条拼成一个等边三角形,每根木条的长度是6 cm,请问需要几根木条?2.让学生思考并找出解决方法:用等边三角形的性质,我们知道等边三角形的三边均相等,所以只需将6 cm的木条依次连接即可。

3.引导学生完成计算,得出需要3根木条。

步骤六:总结与拓展1.总结等边三角形的性质和判定方法。

2.提供一些拓展问题,让学生运用所学知识解决更复杂的问题。

华师大版八年级数学上册13.2.3全等三角形的判定边角边(S.A.S)教学设计

华师大版八年级数学上册13.2.3全等三角形的判定边角边(S.A.S)教学设计
二、学情分析
八年级学生在前期的学习中,已经掌握了平面几何的基本概念、三角形的基本性质以及全等三角形的初步认识。在此基础上,学生对全等三角形的判定方法具有一定的理论基础和实践经验。然而,边角边(S.A.S)这一判定方法的引入,对学生来说仍具有一定的挑战性。因此,在教学过程中,教师需关注以下几点:
1.学生在几何直观感知和空间想象能力方面的发展水平不同,对全等三角形的判定方法理解程度存在差异。教师应充分调动学生的几何直观,通过实物模型、几何画板等教学手段,帮助学生建立清晰的空间概念。
1.教师将学生分成若干小组,每个小组讨论以下问题:
a.边角边(S.A.S)判定全等三角形的条件是什么?
b.如何运用边角边(S.A.S)判定方法解决实际问题?
c.在运用边角边(S.A.S)判定全等三角形时,需要注意哪些问题?
2.学生在小组内分享自己的观点,展开讨论,共同解决问题。
3.教师巡回指导,关注学生的讨论过程,及时解答学生的疑问。
结合教材中的典型例题,引导学生运用边角边(S.A.S)判定方法进行分析、解答。通过案例分析,帮助学生巩固所学知识,提高解决问题的能力。
4.实践应用,拓展提高
设计具有挑战性的实践题目,让学生将所学知识应用于解决实际问题。同时,针对学生的个体差异,提供不同难度的题目,使学生在实践中拓展提高。
5.总结反思,内化知识
4.针对学生的学习兴趣和动机,教师应结合生活实际,设计丰富多样的教学活动,激发学生的学习兴趣,提高学生对全等三角形判定方法的重视程度。
三、教学重难点和教学设想
(一)教学重点
1.边角边(S.A.S)全等三角形的判定方法的掌握与应用。
2.全等三角形性质的理解及其在解决实际问题中的应用。
3.培养学生的几何直观感知、空间想象能力和逻辑思维能力。

13.3 第3课时 等边三角形的性质与判定

13.3 第3课时 等边三角形的性质与判定
(A )
A.60° B.90°
C.120° D.150°
2.(3分)如图,△ABC是等边三角形 ,AD是角平分线
边三角形,下列结论:①AD⊥BC;②EF=FD;③BE=
结论的个数为( A )
A.3 B.2 C.1 D.0
3.(3分 )如图, 已知△ ABC是等边三角形 ,点 B,C, 线上,且CG=CD,DF=DE,则∠E= 15° .
12 . 如图 , 在等边三角形 ABC 的边 BC 上任取一点 D
60°,DE交∠ACB的外角平分线于点E,则△ADE是 等
三、解答题(共44分)
13.(10分)如图,E是等边三角形ABC的边AC上一点,
CD=BE,试判断△ADE的形状.
解:∵E为等边△ABC的边AC上一点,
∴AB=AC,∠BAE=60°,在△ABE和△ACD中,A
④有两个角相等的等腰三角形是等边三角形.
A.0个 B.1个
C.2个 D.3个
8.(3分)在△ABC中,AB=BC,∠B=∠C,则∠A的
9.(3分)一个三角形一边上的中线和另一边上的高分别 的对称轴,则这个三角形的形状是 等边三角形 .
10.(8分)如图,在△ABC中,点D是AB上的一点,
且AD=DC=DB,∠B=30°.求证:△ADC是等边三
4 . (3 分 ) 如图 , 在等边△ ABC 中 , AB = 6 , D 是 BC 上
3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为
5.(3分)如图所示,△ABC为等边三角形,AD⊥BC, 则∠ADE= 75° .
6.(8分)如图,在等边△ABC中,点D是AC的中点,E是
一点,且CE=CD,DF⊥BE,垂足是点F,求证:BF=E

13.3等边三角形的性质和判定(3)

13.3等边三角形的性质和判定(3)

13.3等边三角形的性质和判定(3)【导学目标】1.理解并掌握等边三角形的定义,探索等边三角形的性质和判定方法2.能够用等边三角形的知识解决相应的数学问题【导学重点】等边三角形判定定理的发现与证明.【导学难点】等边三角形性质和判定的应用.【导学过程】一、自主学习认真看课本P79—P80练习上面的内容.看时请注意:①思考、归纳等边三角形的性质和判定?②看例4的格式和步骤,思考等边三角形的性质和判定是如何运用的.6分钟后,比一比看谁能做对检测题。

二、合作探究探究一:等边三角形的性质1.思考:把等腰三角形的性质(等腰三角形的两个底角相等)用到等边三角形,能得到什么结论?2.归纳:等边三角形的性质:等边三角形的 .跟踪训练:如图,△ABD,△AEC都是等边三角形,求证:BE=DC探究二:等边三角形的判定1.思考:(1)一个三角形满足什么条件就是等边三角形?(2)你认为有一个角等于60°的等腰三角形是等边三角形吗?已知:求证:证明:2.归纳:等边三角形的判定:(1) . (2) . 跟踪训练:如图,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,求证:△DEF•是等边三角形三、达标检测1.等边△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A.60° B.90° C.120°D.150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③ B.①②④DAF。

华师版八年级数学上册(HS)教案 第13章 全等三角形及全等三角形的判定条件

华师版八年级数学上册(HS)教案 第13章 全等三角形及全等三角形的判定条件

13.2三角形全等的判定1.全等三角形 2 全等三角形的判定条件1.了解全等三角形的概念及全等三角形的对应元素.(重点)2.理解并掌握全等三角形的性质,能用符号正确地表示两个三角形全等.(重点)3.能够根据给出的对应元素判断两个三角形是否全等.(难点)一、情境导入在我们的周围,经常可以看到形状、大小完全相同的图形,这类图形在几何学中具有特殊的意义.观察下列图案,指出这些图案中形状与大小相同的全等图形.你能再举出一些例子吗?二、合作探究探究点一:全等三角形的对应元素及性质【类型一】全等三角形的对应元素如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.解析:结合图形进行分析,分别写出对应边与对应角即可.解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO 与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.方法总结:找全等三角形的对应元素的关键是准确分析图形,另外记全等三角形时,对应顶点要写在对应的位置上,这样就可以比较容易地写出对应角和对应边了.【类型二】应用全等三角形的性质求边长或角度如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.解析:根据三角形的内角和等于180°求出∠ACB的度数,然后根据全等三角形对应角相等即可求出∠DFE,根据全等三角形对应边相等可得EF=BC,然后推出EC=BF.解:∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=180°-30°-50°=100°.∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF-CF=BC-CF,即EC=BF.∵BF=2,∴EC=2.方法总结:本题主要考查了全等三角形对应边相等,全等三角形对应角相等的性质,三角形的内角和定理;在全等三角形中,正确寻找对应边和对应角对解决问题非常关键.【类型三】应用全等三角形的性质进行证明如图,已知△ABE≌△ACD,求证:∠BAD=∠CAE.证明:∵△ABE≌△ACD,∴∠BAE=∠CAD,∴∠BAE-∠DAE=∠CAD-∠DAE,∴∠BAD=∠CAE.方法总结:本题应用全等三角形的性质来证明角相等,解答问题时要将所证的角通过全等及三角形内角之间的关系联系起来.【类型四】全等变换如图所示:在长方形纸片ABCD中,将长方形纸片沿BD折叠,使点A落在点E处,设DE与BC相交于点F,若∠ABD=55°,求∠FDC的度数.解析;由折叠可知△AB D≌△EBD.由全等三角形的性质即可得出对应角相等,从而求出所求角的度数.解:∵△EBD 是由△AB D 折叠而得到的,∴△AB D ≌△EBD.∵∠ABD=55°,∠A=90°,∴.355590 =-=∠=∠BDE ADB∴∠FDC=.2035359090 =--=∠-∠-BDE ADB方法总结:平移,旋转,轴对称,折叠都是全等变换,可得变换前后的图形全等,再由全等的性质解决问题,此类题是常考题型,要熟练应用全等三角形的性质.探究点二:全等三角形的判定条件①面积相等的两个三角形是全等三角形;②三个角分别相等的两个三角形是全等三角形;③三条边及两个角分别相等的两个三角形是全等三角形;④有一边及一角分别对应相等的两个三角形全等.上述正确的有( )A .1个B .2个C .3个D .4个解析:根据全等三角形的定义以及判断两三角形全等所需的元素(3边,3角)中,需要哪些元素能判定两个三角形全等.①面积相等的两个三角形不一定能够完全重合,所以不一定是全等三角形,故①不正确;②三个角分别相等的两个三角形不一定全等,所以②不正确;③三条边及两个角分别相等的两个三角形是全等三角形,正确,实际上条件给的就是三个角,三条边分别相等,因为已知两角,第三个角也就确定了,所以③正确;④有一边及一角分别对应相等的两个三角形不一定全等,所以④不正确.故选A.方法总结:根据能够完全重合的两个三角形全等,去判断根据给定的元素画出的两个三角形是否全等是解题的关键.三、板书设计全等三角形1.全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应边相等.3.全等三角形的判定条件.首先展示全等形的图片,激发学生兴趣,从图中总结全等三角形的概念.最后总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例熟悉运用全等三角形的性质解决一些简单的实际问题.。

华师版八年级上册数学【教学设计】13.3.3 等边三角形的性质和判定

华师版八年级上册数学【教学设计】13.3.3  等边三角形的性质和判定
2.如果1中生得到的方法过少,教师利用下面生没得出的情况进行补充,并让生逐一验证。
1)如图1,在等边三角形ABC中,DE平行BC;
2)如图2,在等边三角形ABC中,DE平行AB,DF平行AC;
3)如图3,在等边三角形ABC中,DE平行AB,EF平行BC,DF平行AC;
4)如图4,在等边三角形ABC中,
以小组为单位先猜想、再通过合作探究,得出结论后表达交流。
5猜想可用哪些方法判定一个三角形是等边三角形?然后通过画图验证你的猜想。
归纳总结得出:
判定:1)三个角都相等的三角形是等边三角形。
2)有一个角是60°的等腰三角形是等边三角形。
先独立猜想,然后以小组为单位对本组成员的所有猜想通过画图利定义进行验证。
学具
等边三角形纸片直尺量角器圆规
教学过程
教师活动
学生活动
创设问
题情境
1出示等边三角形图片.
2提出问题:房子的顶部是什么图形?同学们想不想更深入的了解等边三角形的知识?从而导入新课板书课题[14.3.2等边三角形].
观察图片,口答问题。




1、提出问题:根据原来学习图形的经验你认为应从哪些方面研究等边三角形?
情感态度价值观
1.体验数学充满着探索与创造,感受数学的严谨性,对数学产生强烈的好奇心和求知欲。
2.在本节的学习中获得成功的体验,感受到数学学习的乐趣,建立自信心。
3.体会数学源于生活而又反作用于生活,培养用数学的意识。
重点
等边三角形的性质和判定形成与应用
难点
等边三角形性质与判定的应用
教具
多媒体等边三角形纸片




例4:如图,我校课外兴趣小组在一次测量活动中,测得∠APB=60°,AP=BP=200m,他们便知道池塘最长处是多少m。猜猜他们得出结论是多少m,请验证你的猜想。

八年级上册数学13.3.2 等边三角形的性质与判定导学案

八年级上册数学13.3.2 等边三角形的性质与判定导学案

13.3.2等边三角形第1课时等边三角形的性质与判定一、新课导入1.导入课题:在等腰三角形中,如果底边等于腰长,那么这个等腰三角形又叫什么三角形呢?2.学习目标:(1)知道等边三角形的定义,等边三角形与等腰三角形的关系.(2)能叙述等边三角形的性质.(3)熟练地运用等边三角形的性质解决问题.3.学习重、难点:重点:等边三角形的性质和判定方法.难点:等边三角形的判定的证明.二、分层学习1.自学指导:(1)自学内容:探究等边三角形的性质.(2)自学时间:5分钟.(3)自学方法:注意观察、猜想、证明及归纳总结.(4)探究提纲:①如图,在△ABC中,如果AB=AC,那么它是等腰三角形,如果AB=AC=BC,那么这个三角形是等边三角形.②等边三角形一定是等腰三角形吗?等腰三角形一定是等边三角形吗?等边三角形一定是等腰三角形,等腰三角形不一定是等边三角形.③由②的判断结果,你认为等边三角形是怎样的等腰三角形?等边三角形是三边都相等的特殊的等腰三角形.④在△ABC中,由AB=AC=BC,你能得出等边三角形三个内角的度数吗?试将结论用文字表述出来.等边三角形的三个内角都相等,并且每一个角都等于60°.⑤在△ABC中,由∠A=∠B=∠C,你能得出三边的关系吗?试将结论用文字表述出来.三个角都相等的三角形是等边三角形.⑥如图,△ABC中,AB=AC,a.若∠A=60°,则∠B=60°,∠C=60°,所以△ABC是等边三角形;b.若∠B=60°,则∠A=60°,∠C=60°,所以△ABC是等边三角形;c.若∠C=60°,则∠A=60°,∠B=60°,所以△ABC是等边三角形.d.综合a、b、c你能得出什么结论?试将结论用文字表述出来.有一个角是60°的等腰三角形是等边三角形.2.自学:学生结合探究提纲进行自主探究.3.助学:(1)师助生:①明了学情:了解学生是否能通过等腰三角形的性质去推断等边三角形的性质.②差异指导:引导学生回忆等腰三角形的知识,并运用等腰三角形的知识,去推导等边三角形的性质,运用等腰三角形的判定去推导等边三角形的判定.(2)生助生:学生合作交流帮助完成等边三角形性质和判定的探究.4.强化:(1)交流学习成果:小组交流,展示成果.(2)总结:①等边三角形与等腰三角形的联系与区别.②等边三角形的性质及判定.1.自学指导:(1)自学内容:教材第80页例4.(2)自学时间:5分钟.(3)自学方法:分析此题证明△ADE是等边三角形所采用的方法,还可思考有无其它方法解决.(4)自学参考提纲:①判定一个三角形是等边三角形,按角判定,需证三个角都相等.②判定一个三角形是等边三角形,按边、角判定,需证有两边相等和有一个角等于60°.③例4中,证△ADE是等边三角形,教材的思路是:证:∠A=∠ADE=∠AED还可以证:∠A=60°和AD=AE.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生证明△ADE是等边三角形的思路方法是否正确.②差异指导:引导学生复习等边三角形的判定方法,帮助学生从已知条件中寻求满足判定条件的条件.(2)生助生:学生相互交流帮助.4.强化:(1)例4中证明△ADE是等边三角形,除课本介绍的方法外,还可以先证△ADE有一个角是60°,再证明它是等腰三角形的方法证△ADE是等边三角形.(2)练习:①等边三角形是轴对称图形吗?它有几条对称轴?等边三角形是轴对称图形,它有3条对称轴.②如图,△ABC中,AB=AC=BC,∠A、∠B、∠C的平分线相交于O,则图中共有4个等腰三角形.三、评价1.学生的自我评价(围绕三维目标):学生交流学习收获和学习体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时学习特殊的等腰三角形——等边三角形,可让学生先自主探索再合作交流,小组内、小组间充分交流后概括所得结论,这既巩固等腰三角形的应用知识,又类比探索等腰三角形性质和判定定理的方法,加深了对等腰三角形与等边三角形联系与区别的理解.一、基础巩固(第1、2、3、4每题10分,第5题20分,共60分)1.等边三角形是三边都相等的特殊的等腰三角形.2.等边△ABC的两条角平分线BD和CE交于点I,则∠BIC等于(C)A.60°B.90°C.120°D.150°3.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形,其中是等边三角形的有(D)A.①②③B.①②④C.①③D.①②③④4.如果一个等腰三角形顶角的补角等于120°,那么这个等腰三角形一定是等边三角形.5.已知:如右图,P、Q是△ABC的边BC上的两点,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.解:∵PB=PQ=QC=AP=AQ,∴∠B=∠BAP,△APQ是等边三角形.∠C=∠CAQ.∴∠B=12∠APQ=30°,∠C=12∠AQP=30°.∴∠BAC=180°-∠B-∠C=120°.二、综合应用(20分)6.如图,在等边三角形ABC中,AD是BC上的高,∠BDE=∠CDF=60°,图中有哪些与BD相等的线段?解:AE,DE,BE,AF,CF,DF,DC.三、拓展延伸(20分)7.如图,在等边三角形ABC中,BO,CO分别平分∠ABC和∠ACB,OE∥AB,OF∥AC,试证明BE=EF=FC.证明:在等边三角形ABC中,∠ABC=∠ACB=60°.∵BO,CO分别平分∠ABC,∠ACB,∴∠ABO=∠OBC=30°,∠ACO=∠OCE=30°,又OE∥AB,OF∥AC,∴∠BOE=∠ABO=∠OBC=30°,∠COF=∠ACO=∠OCB=30°.∵BE=OE,CF=OF,∠OEF=2∠OBE=60°,∠OFE=2∠OCF=60°.∴△OEF是等边三角形.∴OE=EF=OF. ∴BE=EF=FC.。

华师大版八年级上册13.全等三角形的判定条件课件

华师大版八年级上册13.全等三角形的判定条件课件

∴∠ ABD= ∠ EBD= ∠ C,∠ A= ∠ BED= ∠ CED.
又∵∠ BED+ ∠ CED=180°,
∴∠ BED= ∠ CED=90°.∴∠ A=90°.
∴∠ ABD+ ∠ EBD+ ∠ C=180-∠ A=90°.
∴ 3 ∠ C=90°,即∠ C=30
感悟新知
知2-练
4-1. 如图, △ ABC ≌△ ADE,∠ DAC=60°, ∠BAE=100°,BC、DE相交于点F,则∠ DFB的度 数为____2_0_°__ .
解题秘方:根据图形旋 转前后的对应位置找对 应关系.
感悟新知
知1-练
方法点拨:在图形的变换中找对应元素从两个方面 理解: 1. 从动态角度理解:重合是找对应元素的关键; 2. 从静态角度理解:从表示方法中找准对应顶点, 然后确定对应边和对应角.
感悟新知
知1-练
解:△ ABC ≌△ DBE. AB 和DB,AC 和DE,BC 和BE 是对应边; ∠ A 和∠ BDE,∠ ABC 和∠ DBE,∠ C 和∠ E 是 对应角.
解:如:边长为1 cm 的等边三角形ABC,与边长 为3 cm的等边三角形A′B′C′,虽然三个角都分别 对应相等,但两个三角形不能重合,即△ ACB 和△ A′C′B′不全等,所以△ ACB 和△ A′C′B′不 一定全等.
感悟新知
知3-练
5-1. 具备下列条件的两个三角形一定全等的是( D ) A. 周长相等 B. 面积相等 C. 形状相同 D. 能够完全重合
示图 如图13.2-1中的△ABC和 △DEF全等,记作 △ABC≌△DEF.
感悟新知
3. 常见三角形的全等变换(如图13.2-2):

华师版八年级上册数学【学案】 13.3.3 等边三角形的性质和判定

华师版八年级上册数学【学案】 13.3.3 等边三角形的性质和判定
)五、课堂小测来自约5分钟)六、独立作业我能行
课本P84练习题(写作业本上)
七、课后反思:
1、学习目标完成情况反思:
2、掌握重点突破难点情况反思:
3、错题记录及原因分析:
学习活动
设计意图
自我评价
课上
1、本节课我对自己最满意的一件事是:
2、本节课我对自己最不满意的一件事是:
作业
独立完成()求助后独立完成()
13.3.3等边三角形的性质和判定
学习目标
1、等腰三角形成为等边三角形的条件及其推理证明。
2、理解并掌握等边三角形的定义,探索等边三角形的性
质和判定方法。
3、能够用等边三角形的知识解决相应的数学问题。
4、在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.
学习重点
等边三角形判定定理的发现与证明
未及时完成()未完成()
五、课堂小测(约5分钟)
1、等边三角形是轴对称图形吗?它有几条对称轴?它们分别是什么线段?
解:(1)
(2)
(3)
2、如图,等边三角形ABC中,AD是BC上的高,∠BDE=∠CDF=60°,图中有哪些与BD相等的线段?
答:
学习难点
引导学生全面、周到地思考问题
学具使用
多媒体课件、小黑板、彩粉笔、三角板等
学习内容
学习活动
设计意图
一、创设情境独立思考(课前20分钟)
1、阅读课本82~83页,思考下列问题:
(1)、等腰三角形成为等边三角形的条件及其推理证明
(2)等边三角形的定义及等边三角形的性质和判定方法。
2、独立思考后我还有以下疑惑:
(1)有一个角是60°的等腰三角形是等边三角形.
(2)三个角都相等的三角形是等边三角形.

八年级数学华师大版上册学案:第13章 课题 全等三角形的判定条件

八年级数学华师大版上册学案:第13章 课题 全等三角形的判定条件

八年级数学华师大版上册学案:第13章课题全等三角形的判定条件课题全等三角形的判定条件【学习目标】1.让学生掌握寻找两个全等三角形的对应边、对应角的规律;2.探索全等三角形的判定条件,体会如何探索研究问题,培养合作精神,体验分类思想.【学习重点】掌握寻找两个全等三角形的对应边、对应角的规律.【学习难点】寻找全等三角形的判定条件.行为提示:创设情境,引导学生探究新知.行为提示:认真阅读课本,独立完成“自学互研”中的题目.自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.学法指导:只给一个条件(一组对应边相等或一组对应角相等);(1)只给一个角:(2)只给一条边:学法指导:给出两个对应角相等的条件:(1)两内角:件?(2)对两个三角形来说,六个元素中至少要有几个元素分别对应相等,两个三角形才会全等呢?探究一:如果只知道两个三角形有一组元素对应相等(边或角),这两个三角形会全等吗?1.试一试:(1)画一个有一角为60°的三角形,与同桌所画的三角形对比一下,观察它们是否全等?(2)再画一个有一条边为5cm的三角形,结果怎样呢?2.填表:课本P60表格;3.发现:两个三角形只有一组对应相等的元素(边或角),那么这两个三角形不一定全等.探究二:两个三角形有两组元素对应相等的情况呢?1.试一试:分别画出相应三角形与同桌所画的三角形对比一下,观察它们是否全等?行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在展示的时候解决.积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.(1)三角形的内角分别为30°和70°;(2)三角形的两边分别是5cm和3cm;(3)三角形的一个内角为30°,一边长为3cm.2.填表:课本P61表格;3.发现:两个三角形只有两组对应相等的元素(边或角),那么这两个三角形不一定全等.探究三:两个三角形有三组元素对应相等,有几种可能的情况?解:有4种情形:三个角对应相等;三条边对应相等;两边和一角对应相等;两角和一边对应相等.范例:如图,△ABC≌△ADE,且∠CAD=10°,∠B =∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=12(∠EAB-∠CAD)=12(120°-10°)=55°.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,∠DGB=∠DFB-∠D=90°-25°=65°.变例:已知△ABC≌△ADE,其中∠CAE=40°,∠C=50°,则DE与AC有何位置关系?请说明理由.解:AC⊥DE.理由:∵△ABC≌△ADE,∴∠E=∠C=50°,∵∠CAE+∠1+∠E=180°,∠CAE=40°,∴∠1=90°,∴AC⊥DE.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块全等三角形的判定条件检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:____________________________________________________ ____________________2.存在困惑:____________________________________________________ ____________________。

最新版【华师大版适用】初二数学上册《【说课稿】13.3.3等边三角形的性质和判定.doc》

最新版【华师大版适用】初二数学上册《【说课稿】13.3.3等边三角形的性质和判定.doc》

13.3.3 等边三角形的性质和判定位评委老师,你们好!首先,我对本节内容进行教材分析一、说教材的地位和作用《等边三角形》是新华师大八年级数学上册13.3第3课时的内容。

在此之前,学生们已经学习了轴对称图形和等腰三角形有关知识,这为过渡到本节内容的学习起到了铺垫的作用。

本节内容在教材中具有不容忽视的重要的地位,本课学习不仅是学生进一步认识特殊的轴对称图形——等边三角形,更是今后证明角相等、线段相等的重要工具,在整个教材中起到了承上启下的作用。

二、说教学目标根据本教材的结构和内容分析,结合学生他们的已有的认知结构,我制定了以下的教学目标:1、知识目标:了解等边三角形的概念,探索并掌握等边三角形的性质、判定方法。

2、能力目标:(1)经过运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维。

(2)经过探索、猜想、证明、归纳等数学活动过程,发展逻辑推理能力。

3、情感态度与价值观:激发学生积极参与数学学习活动的兴趣,培养学生良好的创新意识。

三、说教学的重、难点本着新课程标准,在吃透教材基础上,我确定了以下的教学重点和难点重点:等边三角形判定定理证明。

重点的依据:经过这个定理的证明过程,来发展运用几何符号和图形描述命题的条件和结论的能力,提高学生的符号感和推理能力。

难点:等边三角形性质和判定定理的应用。

难点的依据:等边三角形的性质和判定定理是新学内容,在应用证明过程中又相对比较抽象;学生这方面的能力需要锻炼。

为了讲清教材的重、难点,使学生能够达到本节内容设定的教学目标,我再从教法和学法上谈谈:四、说教法获得知识的过程比获得知识更为重要,如何突出重点,突破难点,从而实现教学目标。

我在教学过程中拟进行如下操作:探索、发现、归纳、练习。

其理论依据是坚持以学生为主体,教师为引导的原则,以学生活动为主,教师讲述为辅,采用学生参与程度高的学导式讨论教学法。

在教师启发引导下,运用问题解决式教学法,发现本课重点知识内容。

八年级数学上册 13 全等三角形 课题 定理与证明学案 华东师大版(2021学年)

八年级数学上册 13 全等三角形 课题 定理与证明学案 华东师大版(2021学年)

八年级数学上册 13 全等三角形课题定理与证明学案 (新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册13 全等三角形课题定理与证明学案(新版)华东师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册13 全等三角形课题定理与证明学案(新版)华东师大版的全部内容。

课题定理与证明【学习目标】1.理解什么是定理和证明,知道如何判断一个命题的真假;2.体会命题证明的必要性,掌握证明的步骤和格式;3.在学习的过程中体会数学的逻辑思维能力和有条理的推理能力.【学习重点】理解证明要步步有理有据,【学习难点】证明的步骤和格式.行为提示:点燃激情,引发学生思考本节课学什么.情景导入生成问题相信我能行:判断下列命题是真命题还是假命题.(1)在同一平面内,如果一条直线平行于两条直线中的一条,那么也平行于另一条;(真命题)(2)两个锐角的和一定是钝角;(假命题)(3)如果a2=b2,那么a=b;(假命题)(4)三角形的一个外角等于与它不相邻的两个内角的和;(真命题)(5)两点确定一条直线.(真命题)知识链接:1.判断某一件事情的语句叫做命题;2.每个命题都是由条件和结论两部分组成,条件是已知事项,结论是由已知事项推出的事项.3.命题分为真命题和假命题.如果条件成立,那么结论一定成立,这样的命题叫做真命题.如果条件成立,不能保证结论一定成立,这样的命题叫做假命题.行为提示:认真阅读课本,独立完成“自学互研”中的题目.自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.学法指导:1。

基本事实与定理的判别:定理需要证明,证明之后就可以直接加以运用,而基本事实则不需要证明,可以直接加以运用,也可以用来证明定理;2.基本事实和定理都是真命题,但真命题不一定是基本事实或定理.行为提示:证明的一般步骤:(1)仔细读题,领会题意,分清命题中的条件和结论;(2)根据题意画出正确的图形,并在图形上标注字母和符号;(3)根据条件、结论,结合图形,用符号语言写出“已知”、“求证”;(4)分析因果关系,探求解题的思路,书写推理过程,并标明依据.行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在展示的时候解决.积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.自学互研生成能力错误!阅读教材P55~P57,完成下面的内容:1.什么是基本事实?什么是定理?你能写出几个学过的定理吗?我们把公认的真命题视为基本事实,它们是判断其他命题真假的出发点.数学中有些命题可以从基本事实或其他真命题出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.2.基本事实、定理、命题的关系命题错误!范例:下列说法错误的是( C)A.定理是真命题B.基本事实是真命题C.证明是真命题D.假命题是命题2.命题“经过直线外一点有且只有一条直线与这条直线平行"是(C )A.定义B.定理C.基本事实D.定义仿例:下列命题中是基本事实的是( C )A.两直线平行,内错角相等B.内错角相等,两直线平行C.两点之间,线段最短D.若a2=b2,则a=b错误!阅读教材P56中的三个命题,并思考如何判断命题的真假.归纳:一个命题的正确性需要通过推理,才能得出判断,这个推理过程叫做证明.范例:证明:直角三角形的两个锐角互余.已知:如图,在Rt△ABC中,∠C=90°。

华师版数学八年级上册13 三角形全等的判定(6课时)教案与反思

华师版数学八年级上册13 三角形全等的判定(6课时)教案与反思

13.2 三角形全等的判定前事不忘,后事之师。

《战国策·赵策》圣哲学校蔡雨欣1 全等三角形(第1课时)一、基本目标全等三角形的概念,能运用符号语言表示两个三角形全等.二、重难点目标【教学重点】全等三角形的性质.【教学难点】掌握两个全等三角形的对应边、对应角的寻找规律,能迅速、正确指出两个全等三角形的对应元素.环节1 自学提纲,生成问题【5 min阅读】阅读教材P59的内容,完成下面练习.【3 min反馈】1.全等用符号≌表示,读作全等于.2.△ABC全等于三角形△DEF,用式子表示为△ABC_≌△DEF_.3.若△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角是∠E,则∠C的对应角是∠F;AB与DE是对应边,BC与EF是对应边,AC与DF是对应边.4.全等三角形的对应边相等,对应角相等.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,若△BOD≌△COE,指出这两个全等三角形的对应边;若△ADO ≌△AEO,指出这两个全等三角形的对应角.【互动探索】(引发学生思考)全等三角形的对应元素该如何找?【解答】∵△BOD≌△COE,∴△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE.∵△ADO≌△AEO,∴△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.【互动总结】(学生总结,老师点评)找全等三角形的对应元素的关键是准确分析图形.另外,记全等三角形时,对应顶点要写在对应的位置上,这样就可以比较容易地写出对应角和对应边了.【例2】如图,△ABC≌△DEF,∠=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.【互动探索】(引发学生思考)由△ABC≌△DEF,找出这两个三角形的对应角、边,即可解决问题.【解答】∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC-BF=7-4=3【互动总结】(学生总结,老师点评)全等三角形的对应边相等,对应角相等.活动2 巩固练习(学生独学)1.已知图中的两个三角形全等,则∠α的度数是( D )A.72°B.60°C.58°D.50°2.如图△ABC≌△DEF,BE=3,AE=2,则DE的长是( A )A.5 B.4C.3 D.23.如图,△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=_70°.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!2 全等三角形的判定条件(第2课时)一、基本目标1.理解影响两个三角形是否全等的元素(边、角).2.理解两个三角形只有一组或两组对应相等的元素(边或角),那么这两个三角形不一定全等.二、重难点目标【教学重点】通过探索得出:两个三角形只有一组或两组对应相等的元素(边或角),这两个三角形不一定全等.【教学难点】通过探索得出三角形全等的判定条件是可以减少的.环节1 自学提纲,生成问题【5 min阅读】阅读教材P59~P61的内容,完成下面练习.【3 min反馈】1.两个三角形完全重合,则这两个三角形全等.2.若两个三角形的三条边与三个角都分别对应相等,那么这两个三角形全等.3.一个三角形经过翻折、平移或旋转等变换得到的新三角形与原三角形全等.4.全等三角形的判定条件至少需要两个三角形有三个相等的元素.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】如图,Rt△ABC沿直角边BC所在的直线向右平移到△DEF处,下列结论中错误的是( )A.AC=DF B.∠DEF=90°C.△ABC≌△DEF D.EC=CF【互动探索】(引发学生思考)根据题意,得△ABC与△DEF具有怎样的关系?【分析】∵△DEF由Rt△ABC平移而成,∠ABC=90°,∴△DEF≌△ABC,∴AC=DF,∴∠DEF=∠ABC=90°,∴A、B、C正确.∵平移的距离及BC的长度不能确定,∴EC与CF的长短不能确定,∴D错误.【答案】D【互动总结】(学生总结,老师点评)一个三角形经过翻折、平移或旋转等变换得到的新三角形与原三角形全等.活动2 巩固练习(学生独学)1.如图,△ABC≌△CDA,∠BAC=95°,∠B=45°,则∠CAD度数为( D ) A.95°B.45°C.30°D.40°2.已知图中的两个三角形全等,则∠1等于( D )A.72°B.60°C.50°D.58°3.如图,△ABC为等边三角形,D是BC边上的一点,△ABD经过旋转后到达△ACE的位置.(1)请说出旋转中心、旋转方向以及旋转角度;(2)请找出AB、AD旋转后的对应线段;(3)若∠BAD=25°,求∠AEC度数.解:(1)由题意,得点A为旋转中心,旋转方向为顺时针,旋转角度为60°.(2)AB、AD旋转后的对应线段分别为AC、AE.(3)∵△ABC为等边三角形,∴∠B=60°.又∵∠BAD=25°,∴∠ADB=180°-25°-60°=95°.由题意知△ABD≌△ACE,∴∠AEC=∠ADB=95°.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!3 边角边(第3课时)一、基本目标掌握三角形全等的“边角边”判定方法,并能进行简单的应用.二、重难点目标【教学重点】应用“边角边”证明两个三角形全等,进而得出线段或角相等.【教学难点】分析问题,寻找判定三角形全等的条件.环节1 自学提纲,生成问题【5 min阅读】阅读教材P62~P65的内容,完成下面练习.【3 min反馈】1.两边及其夹角分别相等的两个三角形全等,可以简写成“边角边”或“S.A.S.”.2.有两边和一个角对应相等的两个三角形不一定全等.3.如图,AB与CD相交于点O,OA=OC,OD=OB,∠AOD=_∠COB___,根据S.A.S.可得到△AOD≌△COB,从而得到AD=CB.4.如图,已知BD =CD ,要根据“SAS ”判定△ABD ≌△ACD ,则还需添加的条件是_∠ADC =∠ADB _.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,A 、D 、F 、B 在同一直线上,AD =BF ,AE =BC ,且AE ∥BC .求证:△AEF ≌△BCD .【互动探索】(引发学生思考)由AD =BF 易得AF =BD .又AE =BC ,则要证△AEF ≌△BCD 还需什么条件?【证明】∵AE ∥BC , ∴∠A =∠B . ∵AD =BF , ∴AF =BD .在△AEF 和△BCD 中,∵⎩⎨⎧AE =BC ,∠A =∠B ,AF =BD ,∴△AEF ≌△BCD (S.A .S.).【互动总结】(学生总结,老师点评)判定两个三角形全等时,若有两边一角对应相等时,角必须是两边的夹角.【例2】如图,BC ∥EF ,BC =BE ,AB =FB ,∠1=∠2.若∠1=45°,求∠C 的度数.【互动探索】(引发学生思考)要求∠C 的度数,若△ABC ≌△FBE ,就可以得出∠C =∠BEF ,则由BC ∥EF 可得∠C =∠BEF =∠1,从而解决问题.【解答】∵∠1=∠2, ∴∠ABC =∠FBE .在△ABC 和△FBE 中,∵⎩⎨⎧BC =BE ,∠ABC =∠FBE ,AB =FB ,∴△ABC ≌△FBE (S.A .S.), ∴∠C =∠BEF .又∵BC ∥EF ,∠1=45°, ∴∠C =∠BEF =∠1=45°.【互动总结】(学生总结,老师点评)(1)全等三角形是证明线段和角相等的重要工具;(2)学会挖掘题中的已知条件,如“公共边”“公共角”等.活动2 巩固练习(学生独学)1.如图,AB =AC ,AD =AE ,欲证△ABD ≌△ACE ,可补充条件( A )A .∠1=∠2B .∠B =∠C C .∠D =∠ED .∠BAE =∠CAD2.下列条件中,不能证明△ABC ≌△ DEF 的是( C )A .AB =DE ,∠B =∠E ,BC =EF B .AB =DE ,∠A =∠D ,AC =DF C .BC =EF ,∠B =∠E ,AC =DF D .BC =EF ,∠C =∠F ,AC =DF3.如图,已知AB =AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?解:AC 平分∠BCD .理由如下: ∵AC 平分∠BAD , ∴∠BAC =∠DAC .在△ABC 和△ADC 中,∵⎩⎨⎧AB =AD ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌ADC (S.A .S.), ∴∠ACB =∠ACD , ∴AC 平分∠BCD .活动3 拓展延伸(学生对学)【例3】如图,四边形ABCD 、DEFG 都是正方形,连结AE 、CG .求证: (1)AE =CG ; (2)AE ⊥CG .【互动探索】观察图形,证明 △ADE ≌△CDG ,就可以得出AE =CG ;结合全等三角形的性质和正方形的性质即可证得AE ⊥CG .【证明】(1)∵四边形ABCD 、DEFG 都是正方形, ∴AD =CD ,GD =ED .∵∠CDG =90°+∠ADG ,∠ADE =90°+∠ADG , ∴∠CDG =∠ADE .在△ADE 和△CDG 中,∵ ⎩⎨⎧AD =CD ,∠ADE =∠CDG ,DE =DG∴△ADE ≌△CDG (S.A .S.),∴AE=CG.(2)设AE与DG相交于点M,AE与CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED.又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.【互动总结】(学生总结,老师点评)正方形的四条边相等,四个角都等于90°,利用正方形的性质结合全等三角形的判定与性质即可解决问题.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!4 角边角(第4课时)一、基本目标掌握三角形全等的判定方法:A.S.A.和A.A.S.并能解决实际问题.二、重难点目标【教学重点】已知两角一边的三角形全等的探究.【教学难点】灵活运用三角形全等条件证明三角形全等.环节1 自学提纲,生成问题【5 min阅读】阅读教材P66~P70的内容,完成下面练习.【3 min反馈】1.两角及其夹边分别相等的两个三角形全等,可以简写成“角边角”或“A.S.A.”.2.两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“A.A.S.”.3.能确定△ABC≌△DEF的条件是( D )A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E4.如图所示,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:∠B=∠C_,使得△ABE≌△ACF.(只需填写一种情况即可)教师点拨:此题答案不唯一,还可以填AB=AC或∠AEB=∠AFC.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.【互动探索】(引发学生思考)由AE=CF,易得AF=CE.要证ADF≌△CBE还需哪些条件?【证明】∵AD∥BC,BE∥DF,∴∠A=∠C,∠DFA=∠BEC.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在△ADF 和△CBE 中, ∵⎩⎨⎧∠A =∠C ,AF =CE ,∠DFA =∠BEC ,∴△ADF ≌△CBE (A .S.A .).【互动总结】(学生总结,老师点评)在“A .S.A .”中,包含“边”和“角”两种元素,是两角夹一边,且“边”必须是“两角的夹边”,而不是两角及一角的对边,应用时要注意区分.【例2】如图,在△ABC 中,AD ⊥BC 交于点D ,BE ⊥AC 于点E ,AD 与BE 交于点F .若BF =AC ,求证:△ADC ≌△BDF .【互动探索】(引发学生思考)观察图形,要证△ADC ≌△BDF ,只需证∠DAC =∠DBF .又在Rt △ADC 与Rt △BDF 中,利用“等角的余角相等”即可得∠DAC =∠DBF .【证明】∵AD ⊥BC ,BE ⊥AC , ∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC +∠AEF =90°,∠BFD +∠DBF =90°, ∴∠DAC =∠DBF .在△ADC 和△BDF 中,∵ ⎩⎨⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,∴△ADC ≌△BDF (A .A .S.).【互动总结】(学生总结,老师点评)(1)在解决三角形全等的问题中,要注意挖掘题中的隐含条件,如:对顶角、公共边、公共角等.(2)有直角三角形就有互余的角,利用“同角(等角)的余角相等”是证角相等的常用方法.活动2 巩固练习(学生独学) 1.完成教材P70“练习”第1~2题. 略2.如图,点B 在线段AD 上,BC ∥DE ,AB =ED ,BC =DB .求证:∠A =∠E .证明:∵BC ∥DE , ∴∠ABC =∠BDE .在△ABC 和△EDB 中,∵⎩⎨⎧AB =DE ,∠ABC =∠BDE ,BC =BD ,∴△ABC ≌△EDB (S.A .S.), ∴∠A =∠E .环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!5 边边边(第5课时)一、基本目标会运用“边边边”证明三角形全等. 二、重难点目标 【教学重点】掌握“边边边”判定两个三角形全等. 【教学难点】探索三角形全等条件的过程.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P71~P72的内容,完成下面练习. 【3 min 反馈】1.三边分别相等的两个三角形全等,可以简写成“边边边”或“S.S.S.”. 2.在△ABC 、△DEF 中,若AB =DE ,BC =EF ,AC =DF ,则△ABC ≌△EFG . 3.已知AB =3,BC =4,CA =6,EF =3,FG =4,要使△ABC ≌△EFG ,则EG =6.4.如图是用直尺和圆规作一个角等于已知角的示意图,则说明∠A ′O ′B ′=∠AOB 的依据是S.S.S..环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,AB =AD ,CB =CD ,求证:△ABC ≌△ADC .【互动探索】(引发学生思考)要证△ABC ≌△ADC ,只需看这两个三角形的三边是否相等.【证明】在△ABC 和△ADC 中,∵⎩⎨⎧AB =AD ,CB =CD ,AC =AC ,∴△ABC ≌△ADC (S.S.S.).【互动总结】(学生总结,老师点评)注意运用“S.S.S.”证三角形全等时的证明格式;在证明过程中善于挖掘“公共边”这个隐含条件.【例2】如图,AB =DE ,AC =DF ,点E 、C 在直线BF 上,且BE =CF .求证:△ABC ≌△DEF .【互动探索】(引发学生思考)已知两个三角形有两组对边相等,同一直线上的一组边相等,可考虑用“S.S.S.”证明△ABC ≌△DEF .【证明】∵BE =CF ,∴EC +BE =EC +CF ,即BC =EF .在△ABC 和△DEF 中,∵⎩⎨⎧BC =EF ,AB =DE ,AC =DF ,∴△ABC ≌△DEF (S.S.S.).【互动总结】(学生总结,老师点评)判定两个三角形全等,先根据已知条件或易证的结论确定判定三角形全等的方法,然后根据判定方法看缺什么条件,再去证什么条件.【例3】如图,AB =AD ,DC =BC ,∠B 与∠D 相等吗?为什么?【互动探索】(引发学生思考)要判断角相等,可考虑用三角形全等证明,需添加辅助线AC 构造三角形.【解答】∠B =∠D .理由如下: 连结AC .在△ADC 和△ABC 中,∵⎩⎨⎧AD =AB ,AC =AC ,DC =BC ,∴△ADC ≌△ABC (S.S.S.), ∴∠B =∠D .【互动总结】(学生总结,老师点评)要证∠B 与∠D 相等,可证这两个角所在的三角形全等,但现有条件并不满足,可以考虑添加辅助线证明.活动2 巩固练习(学生独学)1.如图,线段AD 与BC 交于点O ,且AC =BD ,AD =BC ,则下面的结论中不正确的是( C )A .△ABC ≌△BADB .∠CAB =∠DBAC .OB =OCD .∠C =∠D2.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M 、N 重合,过角尺顶点C 作射线OC .由做法得△MOC ≌△NOC 的依据是S.S.S..3.如图,AC 与BD 交于点O ,AD =CB ,E 、F 是BD 上两点,且AE =CF ,DE =BF .求证:(1)∠D =∠B ; (2)AE ∥CF .证明:(1)在△ADE 和△CBF 中,∵⎩⎨⎧AE =CF ,AD =BC ,DE =BF ,∴△ADE ≌△CBF (S.S.S.), ∴∠D =∠B .(2)∵△ADE ≌△CBF , ∴∠AED =∠CFB .∵∠AED +∠AEO =180°,∠CFB +∠CFO =180°, ∴∠AEO =∠CFO , ∴AE ∥CF .环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!6 斜边直角边(第6课时)一、基本目标掌握直角三角形全等的判定方法——斜边、直角边(或H.L.).二、重难点目标【教学重点】直角三角形全等的判定定理的理解和应用.【教学难点】利用直角三角形全等的判定定理解决问题.环节1 自学提纲,生成问题【5 min阅读】阅读教材P73~P75的内容,完成下面练习.【3 min反馈】1.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( B )A.A.A.S. B.S.A.S.C.H.L. D.S.S.S.2.斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边直角边”或“H.L.”.3.判定两个直角三角形全等的方法有S.S.S.、A.S.A.、A.A.S.、S.A.S.、H.L..环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.【互动探索】(引发学生思考)可以通过证△ABC ≌△ADC 得到∠1=∠2.结合已知条件,可以利用“H.L.”得到Rt △ABC ≌Rt △ADC .【证明】∵AB ⊥BC ,AD ⊥DC , ∴∠B =∠D =90°,∴△ABC 和△ACD 均为直角三角形. 在Rt △ABC 和Rt △ADC 中, ∵⎩⎨⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC (H.L.), ∴∠1=∠2.【互动总结】(学生总结,老师点评)用“H.L.”证明三角形全等的前提是已知两个直角三角形,即在证明格式上表明“Rt △”.【例2】如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC .【互动探索】(引发学生思考)观察图形,不能直接通过证△AOD 与△BOC 得到结论,需作辅助线CD ,用“H.L.”证明Rt △ADC ≌Rt △BCD ,从而得到AD =BC .【证明】连结CD . ∵AD ⊥AC ,BC ⊥BD , ∴∠A =∠B =90°.在Rt △ADC 和Rt △BCD 中,∵⎩⎨⎧AC =BD ,DC =CD ,∴Rt △ADC ≌Rt △BCD , ∴AD =BC .活动2 巩固练习(学生独学)1.下列条件不能判定两个直角三角形全等的是( B ) A .斜边和一直角边对应相等 B .两个锐角对应相等 C .一锐角和斜边对应相等 D .两条直角边对应相等2.如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,分别过点B 、C 作过点A 的直线的垂线BD 、CE .若BD =4 cm ,CE =3 cm ,则DE =__7___cm.3.如图,点C 、E 、B 、F 在一条直线上,AB ⊥CF 于点B ,DE ⊥CF 于点E ,AC =DF ,AB =DE .求证:CE =BF .证明:∵AB ⊥CF ,DE ⊥CF , ∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,∵⎩⎨⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (H.L.), ∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 活动3 拓展延伸(学生对学)【例3】如图,已知AD 、AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .求证:BC =BE .【互动探索】要证BC =BE ,可以通过三角形全等解决,本题应该通过证明哪对三角形全等来解决呢?【证明】∵AD 、AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC =AE , ∴Rt △ADC ≌Rt △AFE (H.L.), ∴CD =EF .在Rt △ABD 和Rt △ABF 中, ∵⎩⎨⎧AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (H.L.), ∴BD =BF ,∴BD -CD =BF -EF ,即BC =BE .【互动总结】(学生总结,老师点评)证明线段相等可以通过证明三角形全等解决.在一个问题中,有时我们需要多次证明全等来创造已知条件,从而得到结论.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!【素材积累】海明威和他的“硬汉形象”美国作家海明威是一个极具进取精神的硬汉子。

2021秋八上第13章全等三角形13、3三角形3等边三角形的性质和判定授课课件新版华东师大版

2021秋八上第13章全等三角形13、3三角形3等边三角形的性质和判定授课课件新版华东师大版

总结
知1-讲
利用等边三角形的性质求角的度数时,通过利 用等边三角形的三个内角都相等,并且每一个角都 等于60°的性质,找出要求角与已知角间的关系来 进行相关计算; 有时 还要结合全等图形等知识来 解决.
知1-讲
例2 如图,等边三角形ABC的边长为3,D是AC的中点, 点E在BC的延长线上,若DE=DB,求 CE的长.
知1-练
4 (中考 ·黔西南州)如图,已知△ABC是等边三角形, 点B,C,D,E在同一直线上,且CG=CD,DF= DE,则∠E=________.
知识点 2 等边三角形的判定
知2-讲
1.判定定理1:三个角都相等的三角形是等边三 角形;
判定定理2:有一个角是60°的等腰三角形是等 边三角形.
2.应用注意事项:判定定理1在任意三角形中都 适用,判定定理2的前提条件是等腰三角形; 因此要结合题目的条件选择适1-讲
1.等边三角形定义:三条边都相等的三角形是等边三 角形.
要点精析:(1)它是特殊的等腰三角形,具备等腰三 角 形的所有性质;(2)它是特殊的等腰三角形,任意两边都 可作为腰,任意一个角都可以作为顶角.(3)任意一边 上的“三线合一”
知1-讲
2.等边三角形的性质:(1)等边三角形的三条边 都相等;(2)等边三角形的三个内角都相等,并且每一 个角都等于60°.(3)等边三角形是轴对称图形,它有 三条对称轴,分别为三边的垂直平分线;(4)各边上的 高、中线、对应的角平分线重合,且长度相等.
知2-讲
例3 如图13.3-8,AB//CD,∠1 =∠2. 求证: AB = AC. 分析:要证AB=AC,可以设法证明∠B=
∠1,而∠1=∠2,因此只要证明 ∠B=∠2. 证明:∵AB∥AC(已知) ∴∠B =∠2(两直线平行,同位角 相等). 又∵ ∠1 =∠2(已知), ∴∠ B=∠1 (等量代换), ∴AB=AC(等角对等边).

初二数学八年级上册《13.3.2 第1课时 等边三角形的性质与判定2》教案

初二数学八年级上册《13.3.2 第1课时 等边三角形的性质与判定2》教案
等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。
四、小结
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
五、作业:
13.3.2等边三角形
第1课时等边三角形的性质和判定
教学目的
1.使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2.熟识等边三角形的性质及判定.
2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
教学重点:等腰三角形的性质及其应用。
教学难点:简洁的逻辑推理。
教学过程
一、复习巩固
1.叙述等腰三角形的性质,它是怎么得到的?
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。
3.上面的条件和结论如何叙述?
等边三角形的各角都相等,并且每一个角都等于60°。
等边三角形是轴对称图形吗?如果是,有几条对称轴?
等边三角形也称为正三角形。
例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。
2.若等腰三角形的两边长为3和4,则其周长为多少?

华师大版-数学-八年级上册-等边三角形有什么性质

华师大版-数学-八年级上册-等边三角形有什么性质

初中-数学-打印版
等边三角形有什么性质?
等边三角形有什么性质?
难易度:★★★★
关键词:等腰三角形
答案:
等边三角形的性质:等边三角形的三个内角都相等,且都等于60°。

等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴。

【举一反三】
典例:如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为()
A、9
B、12
C、15
D、18
思路引导:由∠ADE=60°,可证得△ABD∽△DCE;可用等边三角形的边长表示出DC的长,进而根据相似三角形的对应边成比例,求得△ABC的边长.∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC-BD=AB-3;∵∠ADE=∠C=60°,∴∠DEC=∠ADB=120°-∠CED;又∵∠B=∠C=60°,∴△ABD∽△DCE;∴,即
;解得AB=9.故选A.
标准答案:A
初中-数学-打印版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、课堂小测(约5分钟)
六、独立作业我能行
课本P84练习题(写作业本上)
七、课后反思:
1、学习目标完成情况反思:
2、掌握重点突破难点情况反思:
3、错题记录及原因分析:
学习活动
设计意图
自我评价
课上
1、本节课我对自己最满意的一件事是:
2、本节课我对自己最不满意的一件事是:
作业
独立完成()求助后独立完成()
(1)有一个角是60°的等腰三角形是等边三角形.
(2)三个角都相等的三角形是等边三角形.
(3)等边三角形的三个内角都相等,并且每一个角都等
于60°.
$13.3.2等边三角形(一)导学案
学习活动
设计意图
2、运用新知解决问题:(重点例习题的强化训练)
例1:如图,△ABC是等边三角形,DE∥BC,交AB,AC于D,E。求证△ADE是等边三角形。
【4】求证:三个角都相等的三角形是等边三角形.
已知:如图,在△ABC中,∠A=∠B=∠C.
求证:△ABC是等边三角形.
证明:∵∠A=∠B,
∴BC=AC(等角对等边).
又∵∠A=∠C,
∴BC=AC(等角对等边).
∴AB=BC=AC,即△ABC是等边三角形.
四、归纳总结巩固新知(约15分钟)
1、知识点的归纳Байду номын сангаас结:
13.3.3等边三角形的性质和判定
学习目标
1、等腰三角形成为等边三角形的条件及其推理证明。
2、理解并掌握等边三角形的定义,探索等边三角形的性
质和判定方法。
3、能够用等边三角形的知识解决相应的数学问题。
4、在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.
学习重点
等边三角形判定定理的发现与证明
二、答疑解惑我最棒(约8分钟)
甲:
乙:
丙:
丁:
同伴互助答疑解惑
学习活动
设计意图
三、合作学习探索新知(约15分钟)
1、小组合作分析问题
2、小组合作答疑解惑
3、师生合作解决问题
【1】把等腰三角形的性质用到等边三角形,能得到什么结论?
【2】一个三角形满足什么条件就是等边三角形?
【3】你认为有一个角等于60°的等腰三角形是等边三角形吗?你能证明你的结论吗?
未及时完成()未完成()
五、课堂小测(约5分钟)
1、等边三角形是轴对称图形吗?它有几条对称轴?它们分别是什么线段?
解:(1)
(2)
(3)
2、如图,等边三角形ABC中,AD是BC上的高,∠BDE=∠CDF=60°,图中有哪些与BD相等的线段?
答:
学习难点
引导学生全面、周到地思考问题
学具使用
多媒体课件、小黑板、彩粉笔、三角板等
学习内容
学习活动
设计意图
一、创设情境独立思考(课前20分钟)
1、阅读课本82~83页,思考下列问题:
(1)、等腰三角形成为等边三角形的条件及其推理证明
(2)等边三角形的定义及等边三角形的性质和判定方法。
2、独立思考后我还有以下疑惑:
相关文档
最新文档