高考数学复习点拨 有关复数的一题多解
复数高考基础题型总结及解题技巧
复数高考基础题型总结及解题技巧近年来,随着我国高考改革的深入,考试内容也在不断地进行调整和优化。
其中,复数基础题型一直是考试中的一个重要组成部分。
针对这一主题,我们将就复数高考基础题型进行总结及解题技巧,帮助考生更好地掌握和应对这一考试难点。
一、基础概念总结1. 复数的定义复数是由实数和虚数单位i(i^2=-1)的乘积所构成的数,形如a+bi (a、b为实数,i为虚数单位)。
2. 复数的实部和虚部在复数a+bi中,a为实部,b为虚部。
3. 复数的四则运算复数的加法、减法、乘法和除法的运算规则,需要考生熟练掌握。
二、高考基础题型总结1. 复数的加减法复数的加减法考查考生对实部和虚部的分别以及相同部分的相加减的能力。
2. 复数的乘法复数的乘法需要考生掌握实部和虚部相乘的规则,同时避免常见错误。
3. 复数的除法复数的除法同样需要考生掌握实部和虚部相除的规则,以及如何处理除数为复数的情况。
4. 复数的平方和立方考生需要掌握复数的平方和立方的运算技巧,注意复数单位i的运算与化简。
三、解题技巧1. 完全掌握基础概念考生在准备复数基础题型时,首先要完全掌握复数的定义、实部和虚部的概念,以及四则运算的规则。
2. 多做练习题通过大量的练习,考生可以更好地掌握复数基础题型的解题技巧,提高解题速度和准确性。
3. 注意细节在做题过程中,考生需要特别注意运算过程中的细节,避免因计算错误导致最终答案错误。
4. 熟练掌握化简规则在复数的乘法、除法以及平方、立方运算中,化简是非常关键的一步,考生需熟练掌握化简的规则和技巧。
复数高考基础题型在考试中占据重要地位,对考生的基本数学能力和逻辑思维能力提出了很高的要求。
考生需要在复习时充分掌握基础概念,多做练习,并且注重细节和化简的技巧,从而更好地应对考试。
复数基础题型的掌握也对于后续学习和工作中的数学运用具有重要意义。
以上观点仅代表个人观点,仅供参考。
希望对复数高考基础题型的解题技巧和应试能力有所帮助!复数的基础题型总结及解题技巧是高考复习中不可或缺的一部分。
高考数学复习点拨:有关复数的一题多解
有关复数的一题多解湖北 王卫华 张国鸿由于每个同学在观察题目时抓住问题的特点不同、运用的知识不同,因而,同一问题可能得到几种不同的解法,这就是“一题多解”.通过一题多解训练,可使同学们认真观察、多方联想、恰当转化,提高数学思维的变通性,易激发同学们学习数学的兴趣,增强求知欲.例题.已知复数z 的模为2,求i z -的最大值.解法一(代数法)设)(R y x yi x z ∈+=、,y y x i z y x 25)1(.42222-=-+=-+=则,32,2max =--=∴≤i z y y 时,当 .解法二(三角法)设),sin (cos 2θθi z +=则 .sin 45)1sin 2cos 422θθθ-=-=-+(i z.31sin max =--=∴i z 时,当θ解法三(几何法).i z i z y x z z 所对应的点之间的距离与表示上的点,是圆点-=+∴=4,222 如图所示,可知当i z 2-=时,max -iz 解法四(运用模的性质)312=+=-+≤-i z i z 而当i z 2-=时,.3.3max =-∴=-iz i z 解法五(运用共轭复数的性质) 1)()()(2+-+=--=-i z z z z i z i z i z .)((),(25的虚部)表z z I z I +=又3,9,2)(max 2max =-∴=-∴≤i z i z z I .说明:此题构题新颖,耐人寻味,粗看此题只不过是一道常见的复数题,但经仔细分析就会发现这是一道相当典型的题目,它把复数的有关概念结合起来,是一道考察同学们的适应能力、等价转化能力、分析问题和解决问题能力以及逻辑推理能力等综合素质的好题.解法一是最常见的解法;解法二是课本上研究性学习内容的实际应用;解法三是转化迁移能力的体现,将复数问题转化为几何问题;解法四与解法五是利用复数的有关性质去解题.通过以上多种解法,用复数的不同知识点进行求解,有机地把复数知识网络串联,达到解一道题而掌握一系列知识点的目的.。
高考数学复习高频考点题型精讲精练专题02 复数
高考数学复习高频考点题型精讲精练专题02 复数考向:复数是以考查复数的四则运算为主,偶尔与其他知识交汇,难度较小。
考查代数运算的同时,主要涉及考查的概念有:复数的代数形式、复数的模、复数的几何意义等。
考点:复数的四则运算、复数的模、共轭复数、复数的代数形式、复数的几何意义。
导师建议:复数在高考中考查的比较基础,化简能力和计算能力是重中之重!特别是化简中移项、多项式的运算!1.复数的概念(1)虚数单位:①=-1;②实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍成立.(2)复数的定义形如(,∈R )的数叫复数,叫复数的实部,叫复数的虚部. (3)复数的分类i 2i a bi a b a b1.对于复数z它的共轭复数为z一、单选题1.已知i 52i z ⋅=-,则z 的虚部是( ). A .5B .5i -C .5-D .1- 【答案】C 【详解】52i i(52i)25i i i (i)z ---===--⋅-,虚部是5-.故选:C. 2.已知复数z 满足()1i 2i z -=-,则复数z 的虚部为( ) A .12B .1i 2C .32D .3i 2【答案】A【详解】由()1i 2i z -=-可得()()()()222i 1i 2i 22i i i 31i 1i 1i 1i 1i 22z -+-+--====+--+-, 所以复数z 的虚部为12.故选:A 3.已知复数z 满足()20231i iz -=(i 是虚数单位),则z 的虚部是( )A .12-B .12C .1i 2-D .1i 2【答案】A【详解】因为()50520235054343i i i i i ⨯+==⨯=-,所以()2023i 1i iz -==-,故()()()i 1i i 1i 1i 1i 1i 1i 222z -+--====---+,所以z 的虚部为12-. 故选:A.4.已知复数1i z =-,则212z z+的实部为( ) A .110B .110-C .15D .15- 【答案】A【详解】解:因为1i z =-,所以222(1i)2(1i)24i z z +=-+-=-, 所以21124i 24i 11i 224i (24i)(24i)20105z z ++====++--+,所以212z z +的实部为110.故选:A. 5.若i 为虚数单位,复数z 满足()1i 34i i z +=+-,则z 的实部为( ). A .3-B .3C .2-D .2 【答案】D【详解】()1i 34i i i 5i z +=+-==-,则()()()()5i 1i 5i 46i23i 1i 1i 1i 2z ----====-++-,则z 的实部为2.故选:D.6.已知复数z 满足()1i 1z +=,则z z ⋅=( )A .14BC .12D 【答案】C解法二:先求z ,利用2z z z ⋅=求解.(拓展:求复数的模时,可直接根据复数的模的公式和性质(=z z ,22z z z z ==⋅,1212z z z z ⋅=⋅,1122z z z z =)进行计算) 【详解】解法一:由()1i 1z +=得()111i 1i 2z ==-+,所以()11i 2z =+,因此2142z z ⋅==. 解法二:因为()1i 1z +=,所以()1i 1z +=,1=,所以z =故212z z z ⋅==, 故选:C.7.复数z 满足:12,2iz z z +==-( )A .21i 515-B .21i 155-C .21i 155+D .21i 155- 【答案】A【详解】解:设i,,R z a b a b =+∈,则i z a b =-, 由122iz z +=-得()()()12i 21i i i 2i 2i 2i 2i 55a b a b a b a b +⎛⎫++=++=+++=- ⎪--+⎝⎭, 225125a a b b ⎧+=⎪⎪∴⎨⎪+=-⎪⎩,解得25115a b ⎧=⎪⎪⎨⎪=-⎪⎩,21i 515z ∴=-.故选:A . 8.已知i 是虚数单位,复数2(12i)-的共轭复数的虚部为( ) A .4i B .3-C .4D .4- 【答案】C【详解】22(12i)14i 4i 144i 34i -=-+=--=--,故复数2(12i)-的共轭复数为34i -+,故共轭复数的虚部为4.故选:C9.若复数z 满足(13i)z 24i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则z =( ) A .258B.2 【答案】C【详解】因为复数z 满足(13i)z 24i +=+,则24i (24i)((13i)71z i (13i)(13i)(13i)55++-===-+++, 所以复数z 的共轭复数为71i 55z =-,则z =C .10.若()3i3ia a +∈+R 是纯虚数,则a =( ) A .-1B .1C .-9D .9【答案】A 【详解】()()()()()3i 3i 93i 33i 3i 3i 3i 1010a a a a +--++==+++-, 因为3i 3i a ++是纯虚数,故()330109010a a +⎧=⎪⎪⎨-⎪≠⎪⎩,得1a =-,故选:A.11.已知复数()2i z m m m =-+为纯虚数,则实数m 的值为( )A .1-B .0C .1D .0或1 【答案】C【详解】因为()2i z m m m =-+为纯虚数,所以200m m m ⎧-=⎨≠⎩,解得1m =.故选:C.12.若虚数z 使得z 2+z 是实数,则z 满足( ) A .实部是12-B .实部是12C .虚部是0D .虚部是12【答案】A【详解】设i z a b =+(,R a b ∈且0b ≠),222222(i)(i)2i i (2)i z z a b a b a ab b a b a a b ab b +=+++=+-++=+-++, 2z z +是实数,因此20ab b +=,0b =(舍去),或12a =-.故选:A .13.已知复数()1i z a a =+-,其中a ∈R ,若z 是实数,则=a ( ) A .0B .1C .1-D .i 【答案】B【详解】因为复数()1i z a a =+-,且z 是实数,则101a a -=⇒=,故选:B.14.已知()i32i ,R 1ia b a b -=+∈+,则a b +=( ) A .3B .4C .5D .7 【答案】C 【详解】由i32i 1ia b -=++可得()()()i 1i 32i 3223i a b b b -=++=-++, 则32231b ab -=⎧⎨+=-⎩,所以72a b =⎧⎨=-⎩,故5a b +=.故选:C.15.已知5i i a b =+(,R a b ∈),则a +b 的值为( ) A .-1B .0C .1D .2 【答案】C【详解】5i i =,故i i a b +=,所以0,1a b ==,1a b +=.故选:C 16.已知a ∈R ,(5i)i 15i a +=+(i 为虚数单位),则=a ( ) A .1-B .1C .3-D .3 【答案】A【详解】由题意知,(5i)i 5i 15i a a +=-+=+,则1a =-.故选:A.17.已知复数z 的共轭复数为z ,且(1i)(1i)z z -=+,则下列四个选项中,z 可以为( ) A .12i +B .2i -C .22i -D .22i + 【答案】D【详解】设()i ,R z a b a b =+∈,由已知得(1i)(i)(1i)(i)a b a b -+=+-,即()i ()i a b b a a b a b ++-=++-,∴b a a b -=-,即a b =,对照各选项,只有D 满足.故选:D .18.已知i 是虚数单位,若i2iz =-,则||z =( ) A .1B .3【答案】C 【详解】因为()()()i 2i i 12i 12i 2i 2i 2i 555z +-+====-+--+,所以||z ==C. 19.已知复数z 满足()1i 1i z -=+,i 为虚数单位,则z =( )A .iB +C .11i 22+D .1i + 【答案】B【详解】1i i)i)==1i 1i 1i (1i)(1i)222z +++===+----+,故选:B20.若()31i 2z -=-,则z =( )A.3 【答案】B【详解】由()31i 2z -=-得()()1i 2z -⋅-=-,所以212i iz -==-,则12z i =+,所以z :B . 21.已知复数2i1iz =-,则以下判断正确的是( )A .复数z 的模为1B .复数zC .复数z 的虚部为iD .复数z 的虚部为1- 【答案】B【详解】由2i1i z =-可得()()()222i 1i 2i 2i 1i 1i 1i 1i z ++===-+-+-;即复数z 的虚部为1,所以CD 错误;则复数z 即A 错误,B 正确;故选:B22.复数()i 12i z =-+在复平面内对应的点位于( ) A .第一象限B .第二象限 C .第三象限D .第四象限 【答案】D【详解】因为()i 12i 2i z =-+=-,可知复数z 在复平面内对应的点为()2,1-, 所以z 在复平面内对应的点位于第四象限.故选:D 23.在复平面内,复数1ii-+对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A 【详解】()()()1i i 1i 1i i i i -+⋅--+==+⋅-,故1ii-+在复平面内对应的点坐标为()1,1,位于第一象限.故选:A24.已知i 52i z ⋅=-,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详解】由题意得()252i i52i 25i i i z --===--, 所以复数z 在复平面内对应的点为()2,5--,位于第三象限,故选:C 25.复数z 满足2i3i iz -=+(i 是虚数单位),则z 的共轭复数z 对应的点在复平面内位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C 【详解】因为2i 13i 1i 1z --=+=-+,所以1i z =--,所以z 在复平面上的对应点的坐标为()1,1--,点()1,1--位于第三象限.故选:C. 26.在复平面内,复数()2i z a a =+∈R 对应的点在直线2y x =-上,则i1iz -=+( ) A .1B .i C .i -D .35i 22--【答案】B【详解】复平面内,复数()2i z a a =+∈R 对应的点为(),2a , 又在直线2y x =-上,所以22a =-,解得1a =-,所以12i z =-+,则()()()()1i 1i i 12i i 1i 2ii 1i 1i 1i 1i 1i 2-+---+--+=====++++-z .故选:B.1.若复数z 满足(1)i 1i z -⋅=-,则z 的虚部是( ) A .1B .1-C .i D .i - 【答案】B【详解】由(1)i 1i z -⋅=-得:1i11i iz --==--,i z ∴=- z ∴的虚部为1-.故选:B.2.设复数z 满足12i 1iz=+-,则z 的虚部为( ) A .1-B .1C .i -D .i 【答案】A【详解】()()12i 1i 3i z =+-=+,3i z ∴=-,z ∴的虚部为1-.故选:A. 3.若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .2 【答案】D【详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D4.若1z =-,则1z zz =-( )A .1-B .1-C .13-D .13- 【答案】C【详解】1(1113 4.z zz =-=--=+=113z zz ==--故选 :C5.若复数z 满足i 34i z ⋅=-,则z =( )A .1B .5C .7D .25【答案】B【详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z =.故选:B . 6.若1i z =+.则|i 3|z z +=( )A ....【答案】D【详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z +故选:D.7.复数2i 13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭, 该点在第一象限,故选:A.8.已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( )A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【答案】B【详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B.9.设()()2346i z z z z ++-=+,则z =( )A .12i -B .12i +C .1i +D .1i -【答案】C【详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+.故选:C. 10.已知a R ∈,()13ai i i +=+,(i 为虚数单位),则=a ( )A .1-B .1C .3-D .3【答案】C【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.11.设复数z 满足i 3i z z +=- ,z 在复平面内对应的点为(,)x y ,则( )A .1x =B .1y =C .=1x -D .1y =-【答案】B【详解】复数z 满足i 3i z z +=-,即(i)3i z z --=-,其几何意义为复平面内的点z 到点(0,1)-和点(0,3)的距离相等,即点z 的轨迹为(0,1)-和(0,3)的垂直平分线1312y -+==, 即z 在复平面内对应的点(,)x y 在直线1y =上,故1y =,故选:B12.复数12i z i=+的共轭复数在复平面内所对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【详解】(12)22112(12)(12)555i i i i z i i i i -+====+++-,2155z i =-,对应点为21(,)55-,在第四象限.故选:D.z 的实部为( )A .1B .1-C .0D .i -【答案】C【详解】解:()1i 1i z -=+, 所以()()()()1i 1i 1i 2i i 1i 1i 1i 2z +++====-+-,i z ∴=-,z ∴的实部为0.故选:C 2.复数112i +的虚部为( ) A .1i 5B .15C .25-D .2i 5- 【答案】C【详解】()()112i 12i 12i 12i 12i 55-==-++-,∴复数112i +的虚部为25-.故选:C . 3.若复数243i 32i z +⎛⎫=- ⎪-⎝⎭,则z 的共轭复数为( ) A .64i --B .4i -C .64i -+D .4i【答案】A【详解】()()()()43i 2i 43i 510i 12i 2i 2i 2i 5++++===+--+,所以()212i 364i z =+-=-+,则64i z =--.故选:A4.已知复数z 满足2i 3i 0z z --+=,则z 的共轭复数z =( )A .1i +B .1i -C .1i 5+D .1i 5- 【答案】B【详解】由2i 3i 0z z --+=,得3i 12i z -=-(3i)(12i)(12i)(12i)-+=-+55i 1i 5+==+,所以1i z =-.故选:B5.若复数()3i 3ia z a +=∈+R 是纯虚数,则z =( ) A .1-B .i -C .i a -D .3i【答案】B【详解】()()()3i 3i 339i 1010a a a z +-++-==为纯虚数,1,i a z =-=,i z =-,故选:B . 6.已知复数z 是纯虚数,11i z ++是实数,则z =( ) A .-i B .i C .-2i D .2i【答案】A【详解】由题意设()i R z b b =∈,则11i (1i)(1i)(1)(1)i 1i 1i (1i)(1i)2z b b b b +++-++-===++-+, 因为11iz ++是实数,所以10b -=,得1b =,所以i z =,所以i z =-,故选:A. 7.已知复数2i z =-,且i z az b -+=,,其中a ,b 为实数,则a b -=( )A .-2B .0C .2D .3【答案】C 【详解】由题意得2i z =+,则代入原式得:()2i 2i i a b +--+=,即()()221i i a b a -+++=,所以22011a b a -+=⎧⎨+=⎩, 解得02a b =⎧⎨=-⎩,所以2a b -=.故选:C . 8.已知复数z 满足i 212i z +=+,则z =( )A .2i --B .2i -+C .2i -D .2i +【答案】D【详解】由i 212i z +=+得:i 12i z =-+,因此12i (12i)(i)2i i i (i)z -+-+-===+⋅-.故选:D 9.已知复数z 满足(i 1)2i z -=,则z =( )A .1B.2【答案】B【详解】(i 1)2i z -=∵,2i 2i(i 1)1i i 1(i 1)(i 1)z --===-----∴,||z ∴故选:B . 10.若复数z 满足2i 2iz =-,则1z +=( )A .5D .17【答案】C 【详解】∵2i 2iz =-,∴()2i 2i 24i z =-=+,∴134i 5z +=+=.故选:C.11.在复平面内,复数11i-(i 为虚数单位)的共轭复数对应的点位于( ). A .第一象限;B .第二象限;C .第三象限;D .第四象限.【答案】D 【详解】解:()()11i 1i 11i 1i 1i 1i 222++===+--+,所以其共轭复数为11i 22-,它在复平面所对应的点坐标为11,22⎛⎫- ⎪⎝⎭,位于第四象限.故选:D. 12.在复平面内,复数z 对应的点的坐标为()1,1-,则i z ⋅=( )A .1i +B .1i --C .1i -D .1i -+【答案】D【详解】因为在复平面内,复数z 对应的点的坐标为()1,1-,所以1i z =-,所以1i z =+,故()2i i 1i i i 1i z ⋅=+=+=-+,故选:D二、多选题13.把复数z 的共轭复数记作z ,已知1i z =+(i 为虚数单位),则下列结论正确的有( ) A .22i z =B .2z z +=C .2zz =D .2i z z= 【答案】BC【详解】由1+i z =,可得1i z =-,有:()2221i =12i i 2i z =--+=-,选项A 错误. 1i 1i=2z z +=++-,选项B 正确;()()21i 1i =1i =2z z ⋅=+⋅--,选项C 正确;()2221i 1i 12i i i 1i 1i 2z z ++++====--,选项D 错误.故选:BC . 14.已知复数113i z =-,23i z =+,则( )A .126+=z zB .1222i z z -=-+C .1268i z z =-D .12z z 在复平面内对应的点位于第四象限【答案】BCD【详解】对于A 选项,1242i z z +=-,所以,12z z +==A 错; 对于B 选项,1213i 3i 22i z z -=+--=-+,B 对;对于C 选项,()()1213i 3i 68i z z =-+=-,C 对;对于D 选项,12z z 在复平面内对应的点位于第四象限,D 对.故选:BCD.15.下列命题中的真命题有( )A .复数2i -的虚部是i -B .()()3i 2i 7i -+=+C .复数3i z a =+的模为5时实数4a =D .若z 的共轭复数仍是z ,则z R ∈【答案】BD【详解】由复数虚部概念知2i -的虚部是1-,排除A ;由复数乘法法则计算知B 正确;复数3i z a =+的模为5时实数4a =±,排除C ;若z 的共轭复数仍是z ,则z 的虚部为0,所以D 中的命题为真.故选:BD .16.若复数z 满足()1i 1z -=,则( )A .1i z =-+B .z 的实部为1C .1i z =+D .22i z =【答案】BD【详解】由()1i 1z -=得:()21i 21i 1-i z z -=⇒==+,因此A 错误,实部为1,则B 正确,1i z =-,故C 错误,()2221i 12i+i 2i z =+=+=,故D 正确.故选:BD17.已知复数z 满足20232i 1i z-=+,则( ) A .z 的实部为32B .31i 22z =-+ C .z 在复平面内对应的点位于第二象限D .232i 2z =+ 【答案】AD 【详解】由题意得2i (2i)(1i)31i 1i (1i)(1i)22z --+===+--+,A 选项正确,31i 22z =-,B 选项错误 z 在复平面内对应的点位于第四象限,C 选项错误,22313i 2i 222z ⎛⎫=+=+ ⎪⎝⎭,D 选项正确.故选:AD.18.已知i 为虚数单位,复数()122i 2i R z a z a a =-=+∈,,,下列结论正确的有( ) A .12=z zB .12z z =C .若()12122z z z z +=⋅,则2a =D .若2i z =-,则0a =【答案】AC【详解】A 选项,12z z =,A 选项正确. B 选项,122i z a z =+≠,B 选项错误. C 选项,()()1222424i z z a a +=++-, ()21244i z z a a ⋅=+-,若()12122z z z z +=⋅,则2244244a a a a +=⎧⎨-=-⎩,解得2a =,所以C 选项正确. D 选项,当0a =时,22i z =≠-,所以D 选项错误.故选:AC。
复数高考基础题型总结及解题技巧
复数高考基础题型总结及解题技巧复数高考基础题型总结及解题技巧一、概述复数在高考数学中是一个基础而重要的概念,涉及到代数、函数、方程等多个章节。
在高考中,复数的题型也是非常常见的,包括求模、共轭、乘法、除法、方程等多种类型。
了解复数的基础知识,并掌握解题技巧,对于高考数学的备考至关重要。
二、复数的基本概念1. 复数的定义复数是由实部和虚部构成的数,通常表示为a+bi,其中a为实部,bi 为虚部,i为虚数单位,满足i^2=-1。
2. 复数的表示形式复数可以表示为代数形式a+bi,也可以表示为三角形式r(cosθ + isinθ),其中r为复数的模,θ为辐角。
3. 复数的运算复数的加法、减法、乘法、除法与实数的运算类似,需要分别对实部和虚部进行运算。
三、常见高考基础题型及解题技巧1. 求复数的模题型:已知复数z=a+bi,求z的模|z|。
解题技巧:利用复数的定义,|z|=√(a^2+b^2)。
2. 求复数的共轭题型:已知复数z=a+bi,求z的共轭复数z*。
解题技巧:z*的实部和虚部分别与z相同,但虚部的符号相反,即z*=a-bi。
3. 复数的乘法题型:计算复数z1=a+bi和z2=c+di的乘积。
解题技巧:根据复数的乘法规则,进行实部和虚部的分配、合并、整理,得到结果。
4. 复数的除法题型:计算复数z1=a+bi除以z2=c+di的商。
解题技巧:利用复数的定义和除法运算规则,将分母有理化,然后进行分子分母同乘后整理得到商的实部和虚部。
5. 解复数方程题型:解方程z^2=a,其中a为实数。
解题技巧:化为二元一次方程组,利用求根公式解得复数解。
四、个人观点与总结复数作为数学中的一个重要概念,不仅在高考中频繁出现,而且在数学建模、物理等领域也有着广泛的应用。
对复数的基础知识和解题技巧进行深入的学习和掌握,对于数学学科的发展至关重要。
希望同学们能够在备考高考数学的过程中,认真对待复数的学习,多加练习,提高对复数的理解和运用能力。
高考数学专题02 复数(解析版)
专题02 复数一、单选题1.(2022·河北深州市中学高三期末)已知复数()()2i 1i z a =++(其中i 为虚数单位,a R ∈)在复平面内对应的点为()1,3,则实数a 的值为( ) A .1 B .2C .1-D .0【答案】A 【解析】 【分析】先利用复数的乘法化简,再利用复数的几何意义求解. 【详解】因为()()()2i 1i 22i z a a a =++=-++, 又因为复数在复平面内对应的点为()1,3,所以2123a a -=⎧⎨+=⎩,解得1a = 故选:A2.(2022·河北保定·高三期末)()()2212i 1i --+=( ) A .32i -- B .36i -- C .32i - D .36i -【答案】B 【解析】 【分析】根据复数的四则运算计算即可. 【详解】22(12i)(1i)34i 2i 36i --+=---=--.故选:B3.(2022·河北张家口·高三期末)已知12z i =-,则5iz=( ) A .2i -+ B .2i - C .105i -D .105i -+【答案】A 【解析】 【分析】利用复数的除法化简可得结果. 【详解】()()()5i 12i 5i 5i2i 12i 12i 12i z +===-+--+, 故选:A.4.(2021·福建·莆田二中高三期末)复数()()cos2isin3cos isin θθθθ+⋅+的模为1,其中i 为虚数单位,[]0,2πθ∈,则这样的θ一共有( )个. A .9 B .10C .11D .无数【答案】C 【解析】 【分析】先根据复数()()cos2isin3cos isin θθθθ+⋅+的模为1及复数模的运算公式,求得22cos 2sin 31θθ+=即22cos 2cos 3θθ=,接下来分cos2cos3θθ=与cos2cos3θθ=-两种情况进行求解,结合[]0,2πθ∈,求出θ的个数. 【详解】()()cos2isin3cos isin =cos2isin3cos isin 1θθθθθθθθ+⋅++⋅+=,其中cos isin 1θθ+=,所以cos2isin31θθ+=,即22cos 2sin 31θθ+=,222cos 21sin 3cos 3θθθ=-=,当cos2cos3θθ=时,①1232πk θθ=+,1k Z ∈,所以12πk θ=-,1k Z ∈,因为[]0,2πθ∈,所以0θ=或2π;②2232πk θθ=-+,2k Z ∈,所以22π5k θ=,2k Z ∈,因为[]0,2πθ∈,所以0θ=,2π5,4π5,6π5,8π5或2π;当cos2cos3θθ=-时,①()32321πk θθ=++,3k Z ∈,即()321πk θ=-+,3k Z ∈,因为[]0,2πθ∈,所以πθ=,②()42321πk θθ=-++,4k Z ∈,即()421π5k θ+=,4kZ ∈,因为[]0,2πθ∈,所以π5θ=,3π5,π,7π5,9π5,综上:π5mθ=,0,1,10m =,一共有11个. 故选:C5.(2022·山东省淄博实验中学高三期末)设复数z 满足()23i 32i z -=+,则z =( )A.12 B C .1 D 【答案】C 【解析】 【分析】根据给定条件结合复数除法计算复数z ,进而计算z 的模作答. 【详解】因复数z 满足()23i 32i z -=+,则32i (32i)(23i)13ii 23i (23i)(23i)13z +++====--+, 所以1z =. 故选:C6.(2022·山东枣庄·高三期末)已知i 为虚数单位,则2022i =( ). A .1 B .1- C .I D .i -【答案】B 【解析】 【分析】由于41i =,故2022i 可以化简为2i ,即可得到答案. 【详解】20224505+22i i ==i ⨯=1-.故选:B.7.(2022·山东德州·高三期末)已知复数z 满足()121i iz +=-,其中i 为虛数单位,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】根据复数的模长公式以及四则运算得出z =,最后确定复数z 在复平面内所对应的点的象限. 【详解】21i 22|2i |i i +=+=-=z =则复数z 在复平面内所对应的点坐标为⎝⎭,在第一象限.故选:A8.(2022·山东淄博·高三期末)已知复数z 是纯虚数,11iz+-是实数,则z =( ) A .-i B .iC .-2iD .2i【答案】B 【解析】 【分析】由题意设i()z b b R =∈,代入11iz+-中化简,使其虚部为零,可求出b 的值,从而可求出复数z ,进而可求得其共轭复数 【详解】由题意设i()z b b R =∈, 则11i (1i)(1i)(1)(1)i1i 1i (1i)(1i)2z b b b b ++++-++===---+, 因为11iz+-是实数,所以10b +=,得1b =-, 所以i z =-, 所以i z =, 故选:B9.(2022·山东临沂·高三期末)已知复数26i1iz +=-,i 为虚数单位,则z =( )A.B .C .D .【答案】C 【解析】 【分析】利用复数除法运算求得z ,然后求得z . 【详解】 ()()()()()()()()26i 1i 26i 1i 13i 1i 24i1i 1i 2z ++++===++=-+-+,z =故选:C10.(2022·湖北武昌·高三期末)已知复数1i z =-,则2iz=-( ) A .13i 55-B .13i 55--C .13i 55-+D .1355i +【答案】D 【解析】 【分析】先得出z ,由复数的乘法运算可得答案. 【详解】复数1i z =-,则1i z =+则()()()()1i 2i 1i 13i 2i 2i 2i 2i 5z ++++===---+ 故选:D11.(2022·湖北·黄石市有色第一中学高三期末)已知复数数列{}n a 满足12i a =,1i i 1n n a a +=++,N n *∈,(i 为虚数单位),则10a =( ) A .2i B .2i - C .1i + D .1i -+【答案】D 【解析】 【分析】推导出数列{}i n a -是等比数列,确定该数列的首项和公比,即可求得10a 的值. 【详解】由已知可得()1i i i n n a a +-=-,因此,数列{}i n a -是以1i i a -=为首项,以i 为公比的等比数列,所以,91010i i i i 1a -=⋅==-,故101i a =-+.故选:D.12.(2022·湖北江岸·高三期末)已知()12i 43i z -=-,则z =( ) A .10i +B .2i +C .2i -D .25i +【解析】 【分析】利用复数的除法化简复数z ,利用共轭复数的定义可得结果. 【详解】 由已知可得()()()()43i 12i 43i 105i2i 12i 12i 12i 5z -+-+====+--+,因此,2i z =-. 故选:C.13.(2022·湖北襄阳·高三期末)下面是关于复数22i 1i z =-(i 为虚数单位)的命题,其中真命题为( )A .2z =B .复数z 在复平面内对应点在直线y x =上C .z 的共轭复数为11i 22-D .z 的虚部为1i 2-【答案】B 【解析】 【分析】化简复数为代数形式,然后求模,写出对应点的坐标.得其共轭复数及虚部,判断各选项即得. 【详解】∵22i 11i 1i 1i 2z ---===--,所以z =A 错误;所以复数z 在复平面内对应点坐标为11(,)22--,在直线y x =上,B 正确;所以z 的共轭复数为11i 22-+,C 错误;所以z 的虚部为12-,D 错误.故选:B .14.(2022·湖北省鄂州高中高三期末)复数4i1iz =+,则z =( ) A .22i -- B .22i -+C .22i +D .22i -【答案】D 【解析】先计算z ,再根据共轭复数的概念即可求解. 【详解】根据复数除法的运算法则可得41i z i =+()()()414422112i i i i i i -+===+-+ ,所以可得其共轭复数22z i =-.故选:D.15.(2022·湖北·高三期末)已知复数121i,i z z =-=,则复数12z z 的共轭复数的模为( ) A .12 B2C .2 D【答案】D 【解析】 【分析】根据复数的除法运算得121i z z =--,再根据共轭复数的概念与模的公式计算即可. 【详解】解:因为121i,i z z =-=, 所以()121iii 1i 1i z z -==--=--, 所以复数12z z 的共轭复数为1i -+.故选:D16.(2022·湖北·恩施土家族苗族高中高三期末)若1i z =-+.设zz ω=,则ω=( ) A .2i B .2C .22i +D .22i -【答案】B 【解析】 【分析】根据1i z =-+求出1i z =--,结合复数的乘法运算即可. 【详解】由1i z =-+,得1i z =--,所以2(1i)(1i)=(i 1)=2zz ω==-+----. 故选:B17.(2022·湖南常德·高三期末)已知复数z 满足:()1i i z +=,则z z ⋅=( )A .12 B C .1D .i 2【答案】A 【解析】 【分析】首先根据复数的除法运算求出z ,然后根据复数的乘法运算即可求出结果. 【详解】 因为(1)z i i +=, 所以()()i 1i i 1i 11i 1i (1i)1i 222z -+====+++-, 因此11111i i 22222z z ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭⋅=.故选:A.18.(2022·湖南娄底·高三期末)复数()i 3i z =-⋅在复平面内对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】由复数乘法法则计算出z ,然后可得其对应点的坐标,得所在象限. 【详解】∵()3i i 13i z =-=+⋅,∴z 在复平面内对应的点为()1,3,位于第一象限. 故选:A .19.(2022·湖南郴州·高三期末)已知i 为虚数单位,复数z 满足()i 123i 4z +=+,则z 的共轭复数z =( ) A .12i - B .12i +C .2i -D .2i +【答案】B 【解析】根据复数的模和除法运算,即可得到答案; 【详解】 |43i |55(12i)12i 12i 12i 5z +-====-++ ∴12i z =+,故选:B20.(2022·广东揭阳·高三期末)复数z 满足()1i 1i(i z +=-为虚数单位),则z 的模为( ) A.12-B .12C .1 D【答案】C 【解析】 【分析】先做除法运算求出复数z ,再根据复数模的计算公式求其模. 【详解】由()1i 1i z +=-得1ii 1iz -==-+,从而i 1z =-= 21.(2022·广东潮州·高三期末)已知i 为虚数单位,复数21i 1i -=+z ,则z 的虚部为( )A .0B .-1C .-iD .1【答案】B 【解析】 【分析】化简复数z 1i =-, z 的虚部为i 前面的系数,即可得到答案. 【详解】21i 22(1-i)1i 1i 1i (1i)(1-i)z -====-+++.则z 的虚部为-1.故选:B.22.(2022·广东罗湖·高三期末)已知复数()1i i =+⋅z (i 为虚数单位),则z 的共轭复数z =( ) A .1i + B .1i -C .1i -+D .1i --【答案】D 【解析】求出复数z,进而可得其共轭复数.【详解】()1i i=1+iz=+⋅-,则1iz=--故选:D.23.(2022·广东清远·高三期末)已知i为虚数单位,复数z的共轭复数z满足(1i)|1|+=z,则z=()A.1i-B.1i+C.22i-D.22i+【答案】B【解析】【分析】结合复数除法运算求出z,进而得出z.【详解】因为21i1i===-+z,所以1iz=+.故选:B24.(2022·广东汕尾·高三期末)若复数z满足1i12iz+=+其中(i为虚数单位),则复数z的共轭复数为()A.3i5--B.3i5-+C.3i5-D.3i5+【答案】D 【解析】【分析】化简可得3i5z-=,根据共轭复数的概念,即可得答案.【详解】因为1i(1i)(12i)3i12i(12i)(12i)5z++--===++-,所以3i5z+ =,故选:D.25.(2022·江苏通州·高三期末)20221i1i-⎛⎫=⎪+⎝⎭()A .1B .iC .-1D .-i【答案】C 【解析】 【分析】由复数的除法和复数的乘方运算计算. 【详解】21i (1i)i 1i (1i)(1i)--==-+-+, 所以2022202221i (i)i 11i -⎛⎫=-==- ⎪+⎝⎭.故选:C .26.(2022·江苏宿迁·高三期末)已知复数z 满足()1i 4i z +=,则z =( ) A.2 B C .D .【答案】C 【解析】 【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果. 【详解】由已知可得()()()()4i 1i 4i2i 1i 22i 1i 1i 1i z -===-=+++-,因此,z = 故选:C.27.(2022·江苏扬州·高三期末)若复数z =202112i +(i 为虚数单位),则它在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】 化简复数z =202112i +,得到其对应点的坐标即可解决.【详解】z 202112i ==+12i =+2i 21i 555-=-, 则z 在复平面上对应的点为21(,)55Z -,Z 位于第四象限.故选:D28.(2022·江苏海安·高三期末)已知复数z 满足(1-i)z =2+3i (i 为虚数单位),则z =( ) A .-12+52iB .12+52iC .12-52iD .-12-52i 【答案】A 【解析】 【分析】利用复数的运算法则求解. 【详解】 ∵(1-i)z =2+3i, ∴()()()()23i 1i 23i 15i 15i 1i 1i 1i 222z +++-+====-+-+-. 故选:A.29.(2022·江苏如东·高三期末)已知复数z 满足202120222023i 4i 3i z =-,则z =( ) A .4+3i B .4-3iC .3+4iD .3-4i【答案】C 【解析】 【分析】将202120222023i 4i 3i z =-中的202120222023i ,i ,i ,根据41i = 化简,即可得答案. 【详解】 因为41i =,故由202120222023i 4i 3i z =-可得:23i 4i 3i z =-,即4i 334i z =+=+, 故选:C.30.(2022·江苏苏州·高三期末)设i 为虚数单位,若复数(1i)(1i)a -+是纯虚数,则实数a 的值为( ) A .1- B .0C .1D .2【答案】A【解析】 【分析】用复数的乘法法则及纯虚数的定义即可. 【详解】(1i)(1i)1i i 1(1)i a a a a a -+=+-+=++-为纯虚数,10a ∴+=,1a ∴=-,故选:A .31.(2022·江苏无锡·高三期末)已知3i1ia ++(i 为虚数单位,a ∈R )为纯虚数,则=a ( ) A .1- B .1C .3-D .3【答案】C 【解析】 【分析】先利用复数除法法则进行化简,结合纯虚数条件列出方程,求出a 的值. 【详解】3i (3i)(1i)i 3i+31i 22a a a a ++--+==+3(3)i2a a ++-=为纯虚数, 30a ∴+=,3a ∴=-,故选:C. 二、多选题32.(2022·河北唐山·高三期末)已知复数i z a b =+(,a b ∈R 且0b ≠),z 是z 的共扼复数,则下列命题中的真命题是( ) A .z z +∈R B .z z -∈RC .z z ⋅∈RD .zz∈R【答案】AC 【解析】 【分析】由题知i z a b =-,进而根据复数的加减乘除运算依次讨论各选项即可得答案. 【详解】解:对于A 选项,i z a b =+,i z a b =-,所以2z z a +=∈R ,故正确; 对于B 选项,i z a b =+,i z a b =-,2i z z b -=∉R ,故错误;对于C 选项,i z a b =+,i z a b =-,22z z a b ⋅=+∈R ,故正确;对于D 选项,i z a b =+,i z a b =-,()22222222i i i i z a b ab z a a b a b a b b a b --===+-+-+, 所以当0a =时,z z ∈R ,当0a ≠时,zz ∉R ,故错误.故选:AC33.(2022·山东莱西·高三期末)已知复数()21i z a a =+-,i 为虚数单位,a R ∈,则下列正确的为( )A .若z 是实数,则1a =-B .复平面内表示复数z 的点位于一条抛物线上C .zD .若21z z =+,则1a =±【答案】BC 【解析】 【分析】以实数定义求出参数a 判断选项A ;以复数z 对应点的坐标判断选项B ;求出复数z 的模判断选项C ;以复数相等求出参数a 判断选项D. 【详解】选项A :由复数()21i z a a =+-是实数可知210a -=,解之得1a =±.选项A 判断错误;选项B :复数()21i z a a =+-在复平面内对应点2(,1)Z a a -,其坐标满足方程21y x =-,即点2(,1)Z a a -位于抛物线21y x =-上. 判断正确;选项C :由()21i z a a =+-,可得z ===判断正确; 选项D :21z z =+ 即()()221i =2121i a a a a +-+--可得()2221121a a a a =+⎧⎪⎨-=--⎪⎩,解之得1a =-.选项D 判断错误. 故选:BC34.(2022·广东东莞·高三期末)已知复数123,,z z z ,1z 是1z 的共轭复数,则下列结论正确的是( ) A .若120z z +=,则12=z zB .若21z z =,则12=z zC .若312z z z =,则312z z z =D .若1211z z +=+,则12=z z【答案】ABC 【解析】 【分析】若i z a b =+ ,则i z a b =-,z z ==,利用复数代数运算,可以判断AB ;利用复数的三角运算,可以判断C ;利用数形结合,可以判断D. 【详解】 对于A :若120z z += ,则12z z =-,故122z z z =-=, 所以A 正确; 对于B :若21z z =,则12=z z , 所以B 正确; 对于C :设11(cos i sin )z r αα=+ ,22(cos i sin )z r ββ=+则()()31212cos()i sin z z z r r αβαβ==+++ ,故312z z z = , 所以C 正确; 对于D :如下图所示,若11OA z =+ ,21OB z =+,则1OC z =,2OD z =,故12z z ≠ , 所以D 错误.故选:ABC35.(2022·江苏如皋·高三期末)关于复数12z =- (i 为虚数单位),下列说法正确的是( )A .|z |=1B .z +z 2=-1C .z 3=-1D .(z +1)3=i【答案】AB 【解析】 【分析】根据复数模的计算公式求得复数的模,可判断A;根据复数的乘方运算可判断B,C,D. 【详解】由复数12z =-,可得||1z == ,故A 正确;2211112222z z +=--=-- ,故B 正确;3222111()1222z z z =⋅=--+--=,故C 错误;3221111(1)(1)(1)(((12222z z z ⎛⎫+=++=+=-=- ⎪ ⎪⎝⎭,故D 错误, 故选:AB.36.(2022·江苏苏州·高三期末)下列命题正确的是( ) A .若12,z z 为复数,则1212z z z z =⋅ B .若,a b 为向量,则a b a b ⋅=⋅C .若12,z z 为复数,且1212z z z z +=-,则120z z =D .若,a b 为向量,且a b a b +=-,则0a b ⋅= 【答案】AD 【解析】 【分析】根据复数运算、向量运算的知识对选项进行分析,从而确定正确选项. 【详解】令1i z a b =+,()2i ,,,R z c d a b c d =+∈,,12()i z z ac bd ad bc =-++,12z z ===1z =2z =1212z z z z ∴=⋅,A 对;cos a b a b θ⋅=⋅⋅,cos a b a b a b θ∴⋅=⋅⋅=⋅不一定成立,B 错; 12()()i z z a c b d +=+++,12()()i z z a c b d -=-+-,1212z z z z -=+,0ac bd ∴+=,12(i)(i)()i 0z z a b c d ac bd ad bc =++=-++≠,C 错.将a b a b +=-两边平方并化简得0a b ⋅=,D 对. 故选:AD 三、填空题37.(2021·福建·莆田二中高三期末)设x ∈R ,记[]x 为不大于x 的最大整数,{}x 为不小于x 的最小整数.设集合{}|23,A z z z C =≤⎡⎤≤∈⎣⎦,{}{}|23,B z z z C =≤≤∈,则A B 在复平面内对应的点的图形面积是______ 【答案】5π 【解析】 【分析】依题意表示出集合{}|24,A z z z C =≤<∈,{}|13,B z z z C =<≤∈,从求出A B ,再根据复数的几何意义求出复数z 的轨迹,即可得解; 【详解】解:依题意由23z ≤⎡⎤≤⎣⎦,所以24z ≤<,由{}23z ≤≤,所以13z <≤,所以{}{}|23,|24,A z z z C z z z C =≤⎡⎤≤∈=≤<∈⎣⎦,{}{}{}|23,|13,B z z z C z z z C =≤≤∈=<≤∈,所以{}|23,A B z z z C =≤≤∈设()i ,z x y x y R =+∈,由23z ≤≤,所以23≤,所以2249x y ≤+≤,所以复数z 再复平面内对应的点为在复平面内到坐标原点的距离大于等于2且小于等于3的圆环部分,所以圆环的面积()22325S ππ=-=故答案为:5π38.(2022·广东佛山·高三期末)在复平面内,复数z 对应的点的坐标是(3,5)-.则(1i)z -=___________. 【答案】28i -- 【解析】 【分析】根据给定条件求出复数,再利用复数的乘法运算计算作答. 【详解】在复平面内,复数z 对应的点的坐标是(3,5)-,则35i z =-,所以(1i)(1i)(35i)28i z -=--=--. 故答案为:28i --39.(2022·江苏常州·高三期末)i 是虚数单位,已知复数z 满足等式2i0i z z+=,则z 的模z =________.【解析】 【分析】以复数运算规则和复数模的运算性质对已知条件进行变形整理,是本题的简洁方法. 【详解】 由2i 0i z z +=,可得2i i z z =- 则有2ii z z-=,即i 2i 2z z ⨯=⨯-=,故有z =。
高考数学压轴专题2020-2021备战高考《复数》单元汇编附解析
新数学《复数》复习知识点一、选择题1.已知复数z 满足11212i i z +=+(i 为虚数单位),则z 的虚部为( ) A .4 B .4i C .4- D .4i -【答案】C【解析】112i 11420i 34i 12i 5z ++-===-+ ,所以z 的虚部为4-,选C.2.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅=A .25-B .25C .7-D .7【答案】A【解析】【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】 Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题3.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )A .2B .3C .2D .3【答案】A【解析】 ()11z i i i =-=+,故2z =,故选A.4.在复平面内复数83i +、45i -+对应的点分别为A 、B ,若复数z 对应的点C 为线段AB 的中点,z 为复数z 的共轭复数,则z z ⋅的值为( )A .61B .13C .20D .10【答案】C【解析】由题意知点、的坐标为、,则点的坐标为, 则,从而,选C.5.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则a b 的值为( ) A .32- B .23- C .23 D .32【答案】B【解析】【分析】先根据复数乘法计算,再根据复数概念求a,b 比值.【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=,因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +(,)a b 、共轭为.-a bi6.若12i +是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A .2,3b c ==B .2,1b c ==-C .2,1b c =-=-D .2,3b c =-=【答案】D【解析】【分析】由题意,将根代入实系数方程x 2+bx +c =0整理后根据得数相等的充要条件得到关于实数a ,b 的方程组102220b c b -++=⎧⎪⎨=⎪⎩,解方程得出a ,b 的值即可选出正确选项 【详解】由题意12+是关于x 的实系数方程x 2+bx +c =0∴2﹣2+b 2+bi +c =0,即()12220b c b i -+++=∴102220b c b -++=⎧⎪⎨+=⎪⎩,解得b =﹣2,c =3 故选:D .【点睛】本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题7.已知i 是虚数单位,则131i i +=+( ) A .2i -B .2i +C .2i -+D .2i --【答案】B【解析】【分析】利用复数的除法运算计算复数的值即可.【详解】由复数的运算法则有: 13(13)(1)422(1)(11)2i i i i i i i i ++-+===++-+. 故选B .【点睛】对于复数的乘法,类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可;对于复数的除法,关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.8.复数的共轭复数对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,再利用共轭复数的概念求出复数的共轭复数,进一步求出对应点的坐标得结果 .【详解】, 的共轭复数为, 对应坐标是在第三象限,故选C.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.9.已知i 为虚数单位,,a b ∈R ,复数12i i a bi i+-=+-,则a bi -=( ) A .1255i - B .1255i + C .2155i - D .21i 55+ 【答案】B【解析】【分析】 由复数的除法运算,可得(1)(2)12(2)(2)55i i i i i i a b i=+++-=--+,即可求解a b i -,得到答案.【详解】 由题意,复数12i i a bi i+-=+-,得(1)(2)1312(2)(2)555i i a b i=i i i i i i ++++-=-=--+, 所以1255a b i=i -+,故选B . 【点睛】 本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.10.若复数z 的虚部小于0,|z |5=4z z +=,则iz =( )A .13i +B .2i +C .12i +D .12i -【答案】C【解析】【分析】 根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解.【详解】由4z z +=,得()2z mi m =+∈R ,因为||z ==1m =±.又z 的虚部小于0,所以2z i =-,12iz i =+.故选:C【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.11.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( )A .10101010i --B .10111010i --C .10111012i --D .10111010i -【答案】B【解析】【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i i i -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.12.设i 是虚数单位,则复数734i i ++在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】 因为734i i++(7)(34)2525=1(34)(34)25i i i i i i +--==-+-, 所以所对应的点为(1,1)-,位于第四象限,选D.13.若121z z -=,则称1z 与2z 互为“邻位复数”.已知复数1z a =与22z bi =+互为“邻位复数”,,a b ∈R ,则22a b +的最大值为( )A .8-B .8+C .1+D .8【答案】B【解析】【分析】根据题意点(,)a b 在圆22(2)(1x y -+-=(,)a b 到原点的距离,计算得到答案.【详解】|2|1a bi --=,故22(2))1a b -+=,点(,)a b 在圆22(2)(1x y -+=上,(,)a b 到原点的距离,故22a b +的最大值为)221(18=+=+. 故选:B .【点睛】本题考查了复数的运算,点到圆距离的最值,意在考查学生的计算能力和转化能力.14.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数【答案】C【解析】【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】 ()2222110t t t ++=++>Q ,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z Q 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.15.复数12i2i+=-().A.i B.1i+C.i-D.1i-【答案】A【解析】试题分析:12(12)(2)2422(2)(2)5i i i i iii i i+++++-===--+,故选A.【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.16.已知复数122izi+=-(i为虚数单位),则z的虚部为()A.-1 B.0 C.1 D.i 【答案】C【解析】【分析】利用复数的运算法则,和复数的定义即可得到答案.【详解】复数()()()()1221252225i ii iz ii i i+++====--+,所以复数z的虚部为1,故选C.【点睛】本题主要考查了复数的运算法则和复数的概念,其中解答中熟记复数的基本运算法则和复数的概念及分类是解答的关键,着重考查了推理与运算能力,属于基础题.17.欧拉公式cos sinixe x i x=+(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,4i ie e ππ表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】根据欧拉公式计算4i ie e ππ,再根据复数几何意义确定象限.因为4224422iie cos isinicos isineππππππ+===-++,所以对应点(,在第二象限,选B.【点睛】本题考查复数除法以及复数几何意义,考查基本分析求解能力,属基本题.18.已知下列三个命题:①若复数z1,z2的模相等,则z1,z2是共轭复数;②z1,z2都是复数,若z1+z2是虚数,则z1不是z2的共轭复数;③复数z是实数的充要条件是z z=.则其中正确命题的个数为( )A.0个B.1个C.2个D.3个【答案】C【解析】【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z和2z的模相等,例如1=1+z i,2z,则1z和2z是共轭复数是错误的;对于②1z和2z都是复数,若12+z z是虚数,则其实部互为相反数,则1z不是2z的共轭复数,所以②是正确的;对于③复数z是实数,令z a=,则z a=所以z z=,反之当z z=时,亦有复数z是实数,故复数z是实数的充要条件是z z=是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.19.已知复数z满足(1)2i z i-=,i为虚数单位,则z等于A.1i-B.1i+C.1122i-D.1122i+【答案】B【解析】【分析】由题意可得21zi=-,根据复数的除法运算即可.【详解】由()12i z i-=,可得22(1)112iz ii+===+-,【点睛】本题主要考查了复数的除法运算,复数的模,属于中档题.20.复数满足48i z z +=+,则复数z 在复平面内所对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】 设(,)z a bi a b R =+∈,则48z z a bi i +=+=+,可得48a b ⎧⎪+=⎨=⎪⎩,即可得到z ,进而找到对应的点所在象限.【详解】设(,)z a bi a b R =+∈,则48z z a bi i +=++=+,48a b ⎧⎪+=∴⎨=⎪⎩,6,68i 8a z b =-⎧∴∴=-+⎨=⎩, 所以复数z 在复平面内所对应的点为()6,8-,在第二象限.故选:B【点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.。
高考数学中的复数问题解析
高考数学中的复数问题解析高中数学中,复数是一个较为抽象的概念,在数学学科中是至关重要的。
其中,复数在高考数学中占据着举足轻重的位置,是高考数学的必修内容。
复数可以被视为是可扩展的数,它不仅可以进行实数的运算,还能进行虚数的运算,从而能够解决实数无法解决的问题。
本文将对高考数学中的复数问题进行解析。
一、复数的定义及基本运算复数定义为一个形如a+bi的数,其中a是实数部分,b是虚数部分,i为虚数单位,i平方等于-1。
复数之间可以进行加减乘除的运算,其中,加法和减法是分别对实数部分和虚数部分进行相应的加减运算;而乘法和除法需要应用到复数的公式和三角函数的定义。
二、复数的表示方式和共轭复数复数有多种表示方法,最常见的是直角坐标系和极坐标系。
在直角坐标系中,复数可以表示为平面直角坐标系上的一个有序数对,已知复数z=a+bi,实数a为复数z的实部,虚数b为复数z的虚部。
在极坐标系中,复数可以表示为半径为r,极角为θ的复数z=r(cosθ+i sinθ),其中r为复数z的模,θ为复数z的辐角。
共轭复数是指实部相同,虚部相反的复数。
即若z=a+bi,则z*(z的共轭复数)=a-bi。
在复数的乘除法中,会经常用到共轭复数。
三、复数方程的解法复数也可以用于解决实数无法解决的问题,其中一个典型的例子就是复数方程。
在高考数学中,关于复数方程的题目也比较常见。
我们可以通过先将方程转换为标准形式,再运用求根公式进行解答,或者直接使用因式分解法、配方法等技巧对复数方程进行求解。
四、复数平面向量与极坐标系下的复数复数平面向量是指以复数为顶点,以原点为起点的向量。
我们可以对复数的加减乘除、求共轭复数等运算等价于对向量的平移、翻转等操作。
在经过相关推导后,我们还可将复数与向量的运算统一于极坐标系上,即把复数看做复平面向量,从而能够更方便地进行复数的运算和处理。
五、拉格朗日插值法和复数数列拉格朗日插值法是一种通过已知函数部分节点的值来确定函数的方法,其中复数在插值多项式的构造中起到了重要的作用。
高考数学压轴专题2020-2021备战高考《复数》知识点总复习附解析
【高中数学】高考数学《复数》解析一、选择题1.复数z 满足(2)36z i i +=-(i 为虚数单位),则复数z 的虚部为( ) A .3 B .3i -C .3iD .3-【答案】D 【解析】 【分析】首先化简复数z ,然后结合复数的定义确定其虚部即可. 【详解】 由题意可得:()()()()362361151322255i i i i z i i i i -----====--++-, 据此可知,复数z 的虚部为3-. 本题选择D 选项. 【点睛】复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.若复数21z i i=+-(i 为虚数单位),则||z =( )A BC D .5【答案】C 【解析】 【分析】根据复数的运算,化简复数,再根据模的定义求解即可. 【详解】22(1)121(1)(1)i z i i i i i i +=+=+=+--+,||z ==故选C. 【点睛】本题主要考查了复数的除法运算,复数模的概念,属于中档题.3.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅= A .25- B .25C .7-D .7【答案】A 【解析】 【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A 【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题4.已知复数(2)z i i =-,其中i 是虚数单位,则z 的模z = ( )A B C .3D .5【答案】B 【解析】(2)2z i i i i =-=-==B .5.已知复数z 满足()1i z i +=,i 为虚数单位,则z 等于( )A .1i -B .1i +C .1122i - D .1122i + 【答案】A 【解析】因为|2(1)11(1)(1)i i z i i i i -===-++-,所以应选答案A .6.设i 是虚数单位,则()()3211i i -+等于()A .1i -B .1i -+C .1i +D .1i --【答案】B 【解析】 【分析】 化简复数得到答案. 【详解】()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++故答案选B 【点睛】本题考查了复数的计算,意在考查学生的计算能力.7.若43i z =+,则zz=( ) A .1 B .1-C .4355i + D .4355i - 【答案】D 【解析】 【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.8.已知i 是虚数单位,则复数242iz i-=+的共轭复数在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】先将复数化为代数形式,再根据共轭复数的概念确定对应点,最后根据对应点坐标确定象限. 【详解】 解:∵()()()()242232424242105i i i z i i i i ---===-++-, ∴32105z i =+, ∴复数z 的共轭复数在复平面内对应的点的坐标为(32105,),所在的象限为第一象限. 故选:A .点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi9.设复数21i x i=-(i 是虚数单位),则112233202020202020202020202020C x C x C x C x+++⋅⋅⋅+=( ) A .1i + B .i -C .iD .0【答案】D 【解析】 【分析】先化简1x +,再根据所求式子为2020(1)1x +-,从而求得结果. 【详解】 解:复数2(1ix i i=-是虚数单位), 而1122332020202020202020202020202020(1)1C x C x C x C x x +++⋯+=+-, 而2121(1)111(1)(1)i i i i x i i i i i -++++====--+-, 故11223320202020202020202020202020202020(1)11110C x C x C x C x x i +++⋯+=+-=-=-=, 故选:D . 【点睛】本题主要考查复数的乘除法运算、二项式定理的应用,属于中档题.10.设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】由()11i x yi -=+,其中,x y 是实数,得:11,1x x x y y ==⎧⎧∴⎨⎨-==-⎩⎩,所以x yi +在复平面内所对应的点位于第四象限. 本题选择D 选项.11.若202031i iz i+=+,则z 在复平面内对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】化简得到2z i =+,得到答案. 【详解】()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限.故选:A . 【点睛】本题考查了复数对应象限,意在考查学生的计算能力.12.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案. 【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件. 故选C. 【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.13.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( ) A .2i -+ B .2i -- C .2i + D .2i -【答案】A 【解析】 【分析】根据欧拉公式求出2cos sin22iz e i i πππ==+=,再计算(12)z i +的值.【详解】∵2cossin22iz e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+. 故选:A. 【点睛】此题考查复数的基本运算,关键在于根据题意求出z .14.已知复数122iz i+=- (i 为虚数单位),则z 的虚部为( ) A .-1 B .0C .1D .i【答案】C 【解析】 【分析】利用复数的运算法则,和复数的定义即可得到答案. 【详解】 复数()()()()1221252225i i i iz i i i i +++====--+,所以复数z 的虚部为1,故选C . 【点睛】本题主要考查了复数的运算法则和复数的概念,其中解答中熟记复数的基本运算法则和复数的概念及分类是解答的关键,着重考查了推理与运算能力,属于基础题.15.已知i 为虚数单位,,a b ∈R ,复数12ii a bi i+-=+-,则a bi -=( ) A .1255i - B .1255i + C .2155i - D .21i 55+ 【答案】B 【解析】 【分析】由复数的除法运算,可得(1)(2)12(2)(2)55i i i i i i a b i=+++-=--+,即可求解a b i -,得到答案. 【详解】由题意,复数12ii a bi i+-=+-,得(1)(2)1312(2)(2)555i i a b i=i i i i i i ++++-=-=--+, 所以1255a b i=i -+,故选B . 【点睛】本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.16.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( ) A .1 B .iC .1-D .i -【答案】A 【解析】()12i z i +=22(1)112i i i z i i -⇒===++,所以z 的虚部是1,选A.17.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( ) A .1i -- B .1i +C .312i -D .312i +【答案】D 【解析】21z z +=-323122i i i -=+- ,选D.18.若复数满足,则复数的虚部为( )A .B .C .D .【答案】B 【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果. 详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为19.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解. 【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.复数321i i -(i 为虚数单位)的共轭复数是 ( )A .2155i -+ B .2133i + C .2155i -- D .2133i - 【答案】C 【解析】试题分析:由题;3(21)22121(21)(21)555i i i i i i i i -+-===-+--+-,则共轭复数为:2155i --. 考点:复数的运算及共轭复数的概念.。
高考数学二轮复习复数选择题专项训练知识归纳总结及解析
高考数学二轮复习复数选择题专项训练知识归纳总结及解析一、复数选择题1.已知复数2z i =-,若i 为虚数单位,则1iz +=( )A .3155i + B .1355i + C .113i +D .13i + 答案:B【分析】利用复数的除法法则可化简,即可得解.【详解】,.故选:B.解析:B【分析】 利用复数的除法法则可化简1iz +,即可得解.【详解】2z i =-,()()()()12111313222555i i i i ii z i i i +++++∴====+--+.故选:B.2.若()211z i =-,21z i =+,则12z z 等于( )A .1i +B .1i -+C .1i -D .1i -- 答案:D【分析】由复数的运算法则计算即可.【详解】解:,.故选:D.解析:D【分析】由复数的运算法则计算即可.【详解】解:()2211122z i i i i =-=-+=-,()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.3.设复数1i z i =+,则z 的虚部是( ) A .12 B .12i C .12- D .12i - 答案:A【分析】根据复数除法运算整理得到,根据虚部定义可得到结果.【详解】,的虚部为.故选:.解析:A【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果.【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12. 故选:A .4.已知复数()2m m m i z i --=为纯虚数,则实数m =( ) A .-1 B .0 C .1 D .0或1 答案:C【分析】结合复数除法运算化简复数,再由纯虚数定义求解即可【详解】解析:因为为纯虚数,所以,解得,故选:C.解析:C【分析】结合复数除法运算化简复数z ,再由纯虚数定义求解即可【详解】解析:因为()()22m m m iz m m mi i --==--为纯虚数,所以200m m m ⎧-=⎨≠⎩,解得1m =,故选:C.5.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5BC .D .5i答案:B【分析】由已知等式,利用复数的运算法则化简复数,即可求其模.【详解】,所以,故选:B解析:B【分析】由已知等式,利用复数的运算法则化简复数,即可求其模.【详解】(2)21z i i i =+=-,所以|z |故选:B6.若复数()()24z i i =--,则z =( )A .76i --B .76-+iC .76i -D .76i +答案:D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.解析:D【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果.【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .7.已知i 是虚数单位,则复数41i i +在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限 答案:A【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限.【详解】,所以复数对应的坐标为在第一象限,故选:A解析:A【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限.【详解】44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A8.已知复数1z i i =+-(i 为虚数单位),则z =( )A .1B .iC iD i 答案:D【分析】先对化简,求出,从而可求出【详解】解:因为,所以,故选:D解析:D【分析】 先对1z i i =+-化简,求出z ,从而可求出z【详解】解:因为1z i i i i =+-==,所以z i =, 故选:D9.若复数z 满足421i z i +=+,则z =( ) A .13i + B .13i - C .3i + D .3i - 答案:C【分析】首先根据复数的四则运算求出,然后根据共轭复数的概念求出.【详解】,故.故选:C.解析:C【分析】首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z .【详解】()()()()421426231112i i i i z i i i i +-+-====-++-,故3z i =+. 故选:C. 10.若1m i i+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1D 答案:C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题是纯虚数,为纯虚数,所以m=1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】 由题1m i i+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.11.复数2i i -的实部与虚部之和为( ) A .35 B .15- C .15 D .35答案:C【分析】利用复数代数形式的乘除运算化简得答案.【详解】,的实部与虚部之和为.故选:C【点睛】易错点睛:复数的虚部是,不是.解析:C【分析】利用复数代数形式的乘除运算化简得答案.【详解】()()()2+1212222+555i i i i i i i i -+===-+--,2i i ∴-的实部与虚部之和为121555-+=. 故选:C【点睛】易错点睛:复数z a bi =+的虚部是b ,不是bi .12.复数()()212z i i =-+,则z 的共轭复数z =( )A .43i +B .34i -C .34i +D .43i - 答案:D【分析】由复数的四则运算求出,即可写出其共轭复数.【详解】∴,故选:D解析:D【分析】由复数的四则运算求出z ,即可写出其共轭复数z .【详解】2(2)(12)24243z i i i i i i =-+=-+-=+∴43z i =-,故选:D13.在复平面内,复数z 对应的点的坐标是(1,1),则z i =( ) A .1i -B .1i --C .1i -+D .1i + 答案:A【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解.【详解】因为在复平面内,复数对应的点的坐标是,所以,所以,故选:A解析:A【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解.【详解】因为在复平面内,复数z 对应的点的坐标是(1,1),所以1z i =+, 所以11i i i z i+==-, 故选:A14.设复数z 满足(1)2i z -=,则z =( )A .1BCD .2答案:B【分析】由复数除法求得,再由模的运算求得模.【详解】由题意,∴.故选:B .解析:B【分析】由复数除法求得z ,再由模的运算求得模.【详解】由题意22(1)11(1)(1)i z i i i i +===+--+,∴z == 故选:B .15.若复数11i z i ,i 是虚数单位,则z =( ) A .0 B .12 C .1 D .2答案:C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C .解析:C【分析】由复数除法求出z ,再由模计算.【详解】 由已知21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以1z i =-=.故选:C .二、复数多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限答案:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i - 答案:ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.下面是关于复数21i z =-+的四个命题,其中真命题是( ) A.||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1- 答案:ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题. 19.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =答案:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误; 解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确. 故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.20.已知复数122z =-+(其中i 为虚数单位,,则以下结论正确的是( ).A .20zB .2z z =C .31z =D .1z = 答案:BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】12z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.21.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥答案:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z =C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题.22.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限 答案:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z =,故B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.23.已知复数12ω=-+,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限答案:AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确;2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=-⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;22111122212ω----====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛- ⎝⎭,在第三象限,故D 选项错误. 故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.24.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z = B .若复数2z =,则m =C .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 答案:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-+,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m =B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨-≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-,()()221420412z z ++=+--+=,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.25.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i 5z +=- C .复数z 的实部为1- D .复数z 对应复平面上的点在第二象限 答案:BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==A 错误;1255z i =--,故B 正确; 复数z 的实部为15-,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】 本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.26.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模答案:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】 本题考查复数的几何意义,考查复数的模27.已知复数12ω=-+(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω> 答案:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-+所以12ω=--,∴2131442ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,2111102222ωω++=---++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】 本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.28.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.29.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .5 答案:ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.30.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方答案:CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误;因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.。
高考复数专题及答案百度文库
一、复数选择题1.设复数1i z i=+,则z 的虚部是( ) A .12 B .12i C .12- D .12i - 2.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( )A .97- B .7 C .97 D .7-3.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( )A .1B .0C .-1D .1+i 4.若复数1z i i ⋅=-+,则复数z 的虚部为( ) A .-1 B .1C .-iD .i 5.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( )A .2a >或1a <-B .1a >或2a <-C .12a -<<D .21a -<< 6.已知复数31i z i -=,则z 的虚部为( ) A .1B .1-C .iD .i - 7.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限 8.复数312i z i =-的虚部是( ) A .65i - B .35i C .35 D .65- 9.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 10.若(1)2z i i -=,则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 11.设2i z i +=,则||z =( )A B C .2 D .512.已知复数202111i z i-=+,则z 的虚部是( ) A .1-B .i -C .1D .i 13.122i i-=+( ) A .1 B .-1C .iD .-i 14.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( ) A .10 B .9 C .8 D .715.已知i 是虚数单位,设11i z i ,则复数2z +对应的点位于复平面( ) A .第一象限 B .第二象限C .第三象限D .第四象限 二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=17.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( ) A .复数z 在复平面上对应的点可能落在第二象限 B .z 可能为实数C .1z =D .1z的虚部为sin θ 18.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =19.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =20.下面关于复数的四个命题中,结论正确的是( )A .若复数z R ∈,则z R ∈B .若复数z 满足2z ∈R ,则z R ∈C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z = 21.设复数z 满足1z i z+=,则下列说法错误的是( )A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z = 22.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 23.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称24.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω>25.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s n n n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )A .22z z =B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =-D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数26.以下为真命题的是( )A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数27.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i -- 28.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数B .若32a bi i -=+,则3,2a b ==C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z - 29.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上【参考答案】***试卷处理标记,请不要删除一、复数选择题1.A【分析】根据复数除法运算整理得到,根据虚部定义可得到结果.【详解】,的虚部为.故选:.解析:A【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果.【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12. 故选:A .2.B【分析】先求出,再解不等式组即得解.【详解】依题意,,因为复数为纯虚数,故,解得.故选:B【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解. 【详解】 依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =. 故选:B【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.3.C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知=,故选C解析:C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知i e π=cos sin 101i ππ+=-+=-,故选C4.B【分析】,然后算出即可.由题意,则复数的虚部为1故选:B解析:B【分析】1i z i-+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B 5.A【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果.【详解】因为,,所以,,所以或.故选:A【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果.【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->,所以2a >或1a <-.故选:A【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题. 6.B【分析】化简复数,可得,结合选项得出答案.【详解】则,的虚部为故选:B解析:B化简复数z ,可得z ,结合选项得出答案.【详解】()311==11i i z i i i i i--=-=+- 则1z i =-,z 的虚部为1-故选:B7.B【分析】对复数进行化简,再得到在复平面内对应点所在的象限.【详解】,在复平面内对应点为,在第二象限.故选:B.解析:B【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i=-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.8.C【分析】由复数除法法则计算出后可得其虚部.【详解】因为,所以复数z 的虚部是.故选:C .解析:C【分析】由复数除法法则计算出z 后可得其虚部.【详解】 因为33(12)366312(12)(12)555i i i i i i i i +-===-+--+, 所以复数z 的虚部是35. 故选:C . 9.B利用复数的运算法则和复数的几何意义求解即可【详解】,所以,在复平面内的对应点为,则对应点位于第二象限故选:B解析:B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】()()12i 1i 12i 33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫-⎪⎝⎭,则对应点位于第二象限 故选:B10.B【分析】先求解出复数,然后根据复数的几何意义判断.【详解】因为,所以,故对应的点位于复平面内第二象限.故选:B.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计解析:B【分析】先求解出复数z ,然后根据复数的几何意义判断.【详解】因为(1)2z i i -=,所以()212112i i i z i i +===-+-, 故z 对应的点位于复平面内第二象限.故选:B.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.11.B【分析】利用复数的除法运算先求出,再求出模即可.【详解】,.故选:B .解析:B【分析】利用复数的除法运算先求出z ,再求出模即可.【详解】()22212i i i z i i i++===-,∴z ==故选:B .12.C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.解析:C【分析】求出z ,即可得出z ,求出虚部.【详解】()()()220211i 1ii 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C.13.D【分析】利用复数的除法求解.【详解】.故选:D解析:D【分析】利用复数的除法求解.【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D14.D【分析】根据复数的模的性质求模,然后可解得.【详解】解:,解得.故选:D .【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则, 模的性质:,,.解析:D【分析】根据复数的模的性质求模,然后可解得a .【详解】 解:()()()()24242422221212501111i i i i aai ai ++++====+--,解得7a =. 故选:D .【点睛】 本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R=+∈,则z =模的性质:1212z z z z =,(*)n n z z n N =∈,1122z z z z =. 15.A【分析】由复数的除法求出,然后得出,由复数的几何意义得结果.【详解】由已知,,对应点为,在第一象限,故选:A.解析:A【分析】由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果.【详解】由已知(1)(1)(1)(1)i i z i i i --==-+-, 222z i i +=-+=+,对应点为(2,1),在第一象限,故选:A.二、多选题16.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈;当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 18.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.19.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 20.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++,因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.21.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.22.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.23.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.24.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.25.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确; 对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 3322z i ππ=+=+,则122z =-,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误. 故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.26.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 27.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.28.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题.29.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.30.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.。
高中数学高考总复习复数习题讲解
高中数学高考总复习复数习题及详解一、选择题1.复数3+2i2-3i =( )A .iB .-iC .12-13iD .12+13i [答案] A [解析]3+2i 2-3i =(3+2i )(2+3i )(2-3i )(2+3i )=6+9i +4i -613=i . 2.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i [答案] C[解析] 由题意知A (6,5),B (-2,3),AB 中点C (x ,y ),则x =6-22=2,y =5+32=4,∴点C 对应的复数为2+4i ,故选C.3.若复数(m 2-3m -4)+(m 2-5m -6)i 表示的点在虚轴上,则实数m 的值是( )A .-1B .4C .-1和4D .-1和6 [答案] C[解析] 由m 2-3m -4=0得m =4或-1,故选C.[点评] 复数z =a +bi (a 、b ∈R )对应点在虚轴上和z 为纯虚数应加以区别.虚轴上包括原点(参见教材104页的定义),切勿错误的以为虚轴不包括原点.4.(文)已知复数z =11+i ,则z -·i 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 [答案] B[解析] z =1-i 2,z -=12+i 2,z -·i =-12+12i .实数-12,虚部12,对应点⎝ ⎛⎭⎪⎫-12,12在第二象限,故选B.(理)复数z 在复平面上对应的点在单位圆上,则复数z 2+1z( )A .是纯虚数B .是虚数但不是纯虚数C .是实数D .只能是零 [答案] C[解析] 解法1:∵z 的对应点P 在单位圆上, ∴可设P (cos θ,sin θ),∴z =cos θ+i sin θ.则z 2+1z =cos2θ+i sin2θ+1cos θ+i sin θ=2cos 2θ+2i sin θcos θcos θ+i sin θ=2cos θ为实数.解法2:设z =a +bi (a 、b ∈R ), ∵z 的对应点在单位圆上,∴a 2+b 2=1,∴(a -bi )(a +bi )=a 2+b 2=1,∴z 2+1z =z +1z=(a +bi )+(a -bi )=2a ∈R .5.(2010·XX 市)复数(3i -1)i 的共轭复数....是( ) A .-3+i B .-3-i C .3+iD.3-i[答案] A[解析] (3i-1)i=-3-i,其共轭复数为-3+i.6.已知x,y∈R,i是虚数单位,且(x-1)i-y=2+i,则(1+i)x-y的值为( )A.-4B.4C.-1D.1[答案] A[解析] 由(x-1)i-y=2+i得,x=2,y=-2,所以(1+i)x-y=(1+i)4=(2i)2=-4,故选A.7.(文)复数z1=3+i,z2=1-i,则z=z1·z2在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限[答案] D[解析] ∵z=z1z2=(3+i)(1-i)=4-2i,∴选D.(理)现定义:e iθ=cosθ+isinθ,其中i是虚数单位,e为自然对数的底,θ∈R,且实数指数幂的运算性质对e iθ都适用,若a=C50cos5θ-C52cos3θsin2θ+C54cosθsin4θ,b=C51cos4θsinθ-C53cos2θsin3θ+C55sin5θ,那么复数a+b i等于( )A.cos5θ+isin5θB.cos5θ-isin5θC.sin5θ+icos5θD.sin5θ-icos5θ[答案] A[解析] a+b i=C50cos5θ+iC51cos4θsinθ+i2C52cos3θsin2θ+i3C53cos2θsin3θ+i4C54cosθsin4θ+i5C55sin5θ=(cosθ+isinθ)5=(e iθ)5=e i(5θ)=cos5θ+isin5θ,选A.8.(文)已知复数a=3+2i,b=4+xi(其中i为虚数单位),若复数ab∈R,则实数x的值为( )A .-6B .6 C.83 D .-83[答案] C [解析]a b =3+2i 4+xi =(3+2i )(4-xi )16+x2 =12+2x 16+x 2+⎝ ⎛⎭⎪⎫8-3x 16+x 2i ∈R ,∴8-3x 16+x 2=0,∴x =83. (理)设z =1-i (i 是虚数单位),则z 2+2z=( )A .-1-iB .-1+iC .1-iD .1+i [答案] C[解析] ∵z =1-i ,∴z 2=-2i ,2z =21-i =1+i ,∴z 2+2z=1-i ,选C.9.在复平面内,复数21-i 对应的点到直线y =x +1的距离是( )A.22B. 2 C .2 D .2 2 [答案] A[解析] ∵21-i =2(1+i )(1-i )(1+i )=1+i 对应点为(1,1),它到直线x -y +1=0距离d =12=22,故选A. 10.(文)设复数z 满足关系式z +|z -|=2+i ,则z 等于( ) A .-34+iB.34-iC.34+i D .-34-i[答案] C[解析] 由z =2-|z -|+i 知z 的虚部为1,设z =a +i (a ∈R ),则由条件知a =2-a 2+1,∴a =34,故选C.(理)若复数z =a +i1-2i(a ∈R ,i 是虚数单位)是纯虚数,则|a +2i |等于( )A .2B .2 2C .4D .8 [答案] B[解析]z =a +i 1-2i =(a +i )(1+2i )5=a -25+2a +15i 是纯虚数,∴⎩⎪⎨⎪⎧a -25=02a +15≠0,∴a =2,∴|a +2i |=|2+2i |=2 2. 二、填空题11.规定运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若⎪⎪⎪⎪⎪⎪zi-i2=1-2i ,设i 为虚数单位,则复数z =________. [答案] 1-i[解析] 由已知可得⎪⎪⎪⎪⎪⎪zi -i 2=2z +i 2=2z -1=1-2i ,∴z =1-i .12.若复数z 1=a -i ,z 2=1+i (i 为虚数单位),且z 1·z 2为纯虚数,则实数a 的值为________. [答案] -1[解析] 因为z 1·z 2=(a -i )(1+i )=a +1+(a -1)i 为纯虚数,所以a =-1.13.(文)若a 是复数z 1=1+i 2-i 的实部,b 是复数z 2=(1-i )3的虚部,则ab 等于________.[答案] -25[解析] ∵z 1=1+i 2-i =(1+i )(2+i )(2-i )(2+i )=15+35i ,∴a =15.又z 2=(1-i )3=1-3i +3i 2-i 3=-2-2i ,∴b =-2.于是,ab =-25.(理)如果复数2-bi1+2i (i 是虚数单位)的实数与虚部互为相反数,那么实数b 等于________.[答案] -23[解析]2-bi 1+2i =2-bi 1+2i ·1-2i 1-2i =2-2b 5-b +45i , 由复数的实数与虚数互为相反数得,2-2b 5=b +45,解得b =-23.14.(文)若复数z =sin α-i (1-cos α)是纯虚数,则α=________. [答案] (2k +1)π (k ∈Z )[解析] 依题意,⎩⎨⎧ sin α=01-cos α≠0,即⎩⎨⎧α=k πα≠2k π,所以α=(2k +1)π (k ∈Z ).[点评] 新课标教材把《复数》这一章进行了精简,不再要求复数的三角形式以及复杂的几何形式和性质;对于复数的模的要求很低,了解概念就行.主要考查复数的代数形式以及复数的四则运算,这是我们复习的重点,不要超过X 围.(理)设i 为虚数单位,复数z =(12+5i )(cos θ+i sin θ),若z ∈R ,则tan θ的值为________. [答案] -512[解析] z =(12cos θ-5sin θ)+(12sin θ+5cos θ)i ∈R , ∴12sin θ+5cos θ=0,∴tan θ=-512.三、解答题15.已知复数z =a 2-7a +6a +1+(a 2-5a -6)i (a ∈R ).试XX 数a 分别为什么值时,z 分别为: (1)实数;(2)虚数;(3)纯虚数.[解析] (1)当z 为实数时,⎩⎨⎧a 2-5a -6=0a +1≠0,∴a =6,∴当a =6时,z 为实数.(2)当z 为虚数时,⎩⎨⎧a 2-5a -6≠0a +1≠0,∴a ≠-1且a ≠6,故当a ∈R ,a ≠-1且a ≠6时,z 为虚数.(3)当z 为纯虚数时,⎩⎨⎧a 2-5a -6≠0a 2-7a +6=0a +1≠0∴a =1,故a =1时,z 为纯虚数. 16.求满足⎪⎪⎪⎪⎪⎪z +1z -1=1且z +2z ∈R 的复数z .[解析] 设z =a +bi (a 、b ∈R ), 由⎪⎪⎪⎪⎪⎪z +1z -1=1⇒|z +1|=|z -1|,由|(a +1)+bi |=|(a -1)+bi |, ∴(a +1)2+b 2=(a -1)2+b 2,得a =0,∴z =bi ,又由bi +2bi∈R 得,b -2b=0⇒b =±2,∴z =±2i .17.将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a ,第二次出现的点数为b .(1)设复数z =a +bi (i 为虚数单位),求事件“z -3i 为实数”的概率;(2)求点P (a ,b )落在不等式组⎩⎨⎧a -b +2≥00≤a ≤4b ≥0表示的平面区域内(含边界)的概率.[解析] (1)z =a +bi (i 为虚数单位),z -3i 为实数,则a +bi -3i =a +(b -3)i 为实数,则b =3.依题意得b 的可能取值为1,2,3,4,5,6,故b =3的概率为16.即事件“z -3i 为实数”的概率为16.(2)连续抛掷两次骰子所得结果如下表:不等式组所表示的平面区域如图中阴影部分所示(含边界).由图知,点P (a ,b )落在四边形ABCD 内的结果有:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6),共18种.所以点P (a ,b )落在四边形ABCD 内(含边界)的概率为P =1836=12.。
高考数学压轴专题新备战高考《复数》全集汇编及答案解析
【最新】数学《复数》高考知识点一、选择题1.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】 【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案. 【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件. 故选C. 【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.2.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则ab的值为( ) A .32-B .23-C .23D .32【答案】B 【解析】 【分析】先根据复数乘法计算,再根据复数概念求a,b 比值. 【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=, 因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi3.复数21iz i+=-,i 是虚数单位,则下列结论正确的是A .z =B .z 的共轭复数为31+22i C .z 的实部与虚部之和为1 D .z 在复平面内的对应点位于第一象限【答案】D 【解析】 【分析】利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论. 【详解】由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则2z ==,z的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D . 【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -.4.设3443i z i-=+,()21f x x x =-+,则()f z =( ) A .i B .i -C .1i -+D .1i +【答案】A 【解析】 【分析】利用复数代数形式的乘除运算化简,代入函数解析式求解. 【详解】 解:3443iz i-=+Q ()()()()344334434343i i i z i i i i ---∴===-++-()21f x x x =-+Q()()()21f z i i i ∴=---+=故选:A 【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.5.复数的共轭复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,再利用共轭复数的概念求出复数的共轭复数,进一步求出对应点的坐标得结果 .【详解】,的共轭复数为,对应坐标是在第三象限,故选C.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.6.设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】由()11i x yi -=+,其中,x y 是实数,得:11,1x x x y y ==⎧⎧∴⎨⎨-==-⎩⎩,所以x yi +在复平面内所对应的点位于第四象限. 本题选择D 选项.7.复数1122ii ++的虚部为( ) A .110 B .110-C .310D .310-【答案】A 【解析】 【分析】化简复数111122510i i i +=++,结合复数的概念,即可求解复数的虚部,得到答案,. 【详解】由题意,复数()()1121112212122510i i i i i i i -+=+=+++-, 所以复数1122ii ++的虚部为110.故选:A.【点睛】本题主要考查了复数的运算法则,以及复数的概念,其中解答中熟记复数的运算法则,准确化简是解答的关键,着重考查了推理与计算能力,属于基础题.8.若复数()234sin 12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( )A .6πB .3π C .23π D .3π或23π 【答案】B 【解析】分析:由题意得到关于sin ,cos θθ的方程组,求解方程组结合题意即可求得三角函数值,由三角函数值即可确定角的大小.详解:若复数()23412z sin cos i θθ=-++为纯虚数,则:234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 1cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=. 本题选择B 选项.点睛:本题主要考查纯虚数的概率,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.9.复数11i+的共轭复数是 ( ) A .1122i + B .1122i - C .1i - D .1i +【答案】A 【解析】 【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数11i+,进而可得结果. 【详解】因为()()111121211i i i i i -+--==+, 所以11i+的共轭复数是1122i +,故选:A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.10.设3iz i+=,i 是虚数单位,则z 的虚部为( ) A .1 B .-1C .3D .-3【答案】D 【解析】 因为z=3ii+13i =-∴z 的虚部为-3,选D.11.设i 是虚数单位,z 表示复数z 的共轭复数,若231zi i=+-,则4z i +=( )A .6B .50C .D 【答案】C 【解析】 【分析】计算5z i =-,再代入计算得到答案. 【详解】由231zi i =+-,得()()2315z i i i =+-=-,则45455z i i i i +=++=+= 故选:C . 【点睛】本题考查了复数运算,共轭复数,复数的模,意在考查学生对于复数知识的综合应用.12.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( ) A .2i -+ B .2i -- C .2i + D .2i -【答案】A 【解析】 【分析】根据欧拉公式求出2cos sin22iz e i i πππ==+=,再计算(12)z i +的值.【详解】∵2cossin22iz e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+. 故选:A. 【点睛】此题考查复数的基本运算,关键在于根据题意求出z .13.若复数1a iz i+=-,且3·0z i >,则实数a 的值等于( ) A .1 B .-1C .12D .12-【答案】A 【解析】 【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可. 【详解】()()()()()i 1i 11ii 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.14.(2018江西省景德镇联考)若复数2i2a z -=在复平面内对应的点在直线0x y +=上,则z =( )A .2 BC .1D .【答案】B 【解析】分析:化简复数z ,求出对应点坐标,代入直线方程,可求得a 的值,从而可得结果. 详解:因为复数2i 22a az i -==-, 所以复数2i 2a z -=在复平面内对应的点的坐标为,12a ⎛⎫- ⎪⎝⎭, 由复数2i2a z -=在复平面内对应的点在直线0x y +=上, 可得10212aa z i -=⇒==-,,z ==,故选B.15.已知i 为虚数单位,,a b ∈R ,复数12ii a bi i+-=+-,则a bi -=( ) A .1255i - B .1255i + C .2155i - D .21i 55+ 【答案】B 【解析】 【分析】由复数的除法运算,可得(1)(2)12(2)(2)55i i i i i i a b i=+++-=--+,即可求解a b i -,得到答案. 【详解】由题意,复数12ii a bi i+-=+-,得(1)(2)1312(2)(2)555i i a b i=i i i i i i ++++-=-=--+, 所以1255a b i=i -+,故选B . 【点睛】本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.16.若复数z 满足2(12)1i z z +=+,则其共轭复数z 为( ) A .1188i + B .1188i -+C .1188i --D .1188i - 【答案】B 【解析】 【分析】 计算得到18iz --=,再计算共轭复数得到答案. 【详解】21111(12)1,,44888i i z z z z i i --+=+∴===-+-Q . 故选:B . 【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.17.已知复数134z i=+,则下列说法正确的是( ) A .复数z 的实部为3 B .复数z 的虚部为425i C .复数z 的共轭复数为342525i + D .复数的模为1【答案】C 【解析】 【分析】直接利用复数的基本概念得选项. 【详解】1343434252525i z i i -===-+, 所以z 的实部为325,虚部为425-,z 的共轭复数为342525i +15=, 故选C. 【点睛】该题考查的是有关复数的概念和运算,属于简单题目.18.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( ) A .1i -- B .1i +C .312i -D .312i +【答案】D 【解析】21z z +=-323122i i i -=+- ,选D.19.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( ) A .0个 B .1个C .2个D .3个【答案】C 【解析】 【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断. 【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个. 故选C 【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.20.若复数z 满足()12z i i +=(i 为虚数单位),则z =( )A .1B .2C D .【答案】C【解析】试题分析:因为(1)2z i i +=,所以22(1)1,12i i i z i i -===++因此1z i =+= 考点:复数的模。
高考数学压轴专题专题备战高考《复数》全集汇编附解析
数学《复数》高考复习知识点一、选择题1.设复数21i x i =-(i 是虚数单位),则112233202020202020202020202020C x C x C x C x +++⋅⋅⋅+=( )A .1i +B .i -C .iD .0【答案】D【解析】【分析】先化简1x +,再根据所求式子为2020(1)1x +-,从而求得结果.【详解】 解:复数2(1i x i i =-是虚数单位), 而1122332020202020202020202020202020(1)1C x C x C x C x x +++⋯+=+-, 而2121(1)111(1)(1)i i i i x i i i i i -++++====--+-, 故11223320202020202020202020202020202020(1)11110C x C x C x C x x i +++⋯+=+-=-=-=, 故选:D .【点睛】本题主要考查复数的乘除法运算、二项式定理的应用,属于中档题.2.若复数21z i i =+-(i 为虚数单位),则||z =( )AB C D .5【答案】C【解析】【分析】根据复数的运算,化简复数,再根据模的定义求解即可.【详解】 22(1)121(1)(1)i z i i i i i i +=+=+=+--+,||z ==故选C. 【点睛】本题主要考查了复数的除法运算,复数模的概念,属于中档题.3.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅=A .25-B .25C .7-D .7【解析】【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题4.已知复数21i z =-+,则( ) A .2z = B .z 的实部为1 C .z 的虚部为1- D .z 的共轭复数为1i +【答案】C【解析】分析:由题意首先化简复数z ,然后结合z 的值逐一考查所给的选项即可确定正确的说法. 详解:由复数的运算法则可得:()()()()21211112i i z i i i ----===---+--,则z =,选项A 错误;z 的实部为1-,选项B 错误;z 的虚部为1-,选项C 正确;z 的共轭复数为1z i =-+,选项D 错误.本题选择C 选项.点睛:本题主要考查复数的运算法则,复数的几何意义等知识,意在考查学生的转化能力和计算求解能力.5.在复平面内,已知复数z 对应的点与复数2i --对应的点关于实轴对称,则z i =( ) A .12i -B .12i +C .12i -+D .12i -- 【答案】B【解析】【分析】由已知求得z ,代入z i,再由复数代数形式的乘除运算化简得答案.由题意,2z i =-+, 则22(2)()12z i i i i i i i-+-+-===+-. 故选:B .【点睛】 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.6.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( )A .1B .iC .1-D .i -【答案】A【解析】 ()12i z i +=22(1)112i i i z i i -⇒===++,所以z 的虚部是1,选A.7.已知复数z 满足121i z i i +⋅=--(其中z 为z 的共轭复数),则z 的值为( )A .1B .2CD 【答案】D【解析】【分析】 按照复数的运算法则先求出z ,再写出z ,进而求出z .【详解】21(1)21(1)(1)2i i i i i i i ++===--+Q , 1222(2)121i i z i i z i z i i i i i+-∴⋅=-⇒⋅=-⇒==--=---,12||z i z ∴=-+⇒==故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.8.已知两非零复数12,z z ,若12R z z ∈,则一定成立的是A .12R z z ∈B .12R z z ∈C .12R z z +∈D .12R z z ∈ 【答案】D【解析】利用排除法:当121,1z i z i =+=-时,12z z ∈R ,而()21212z z i i R =+=∉,选项A 错误, 1211z i i R z i+==∉-,选项B 错误, 当121,22z i z i =+=-时,12z z ∈R ,而123z z i R +=-∉,选项C 错误,本题选择D 选项.9.若202031i i z i+=+,则z 在复平面内对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】化简得到2z i =+,得到答案.【详解】 ()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限. 故选:A .【点睛】本题考查了复数对应象限,意在考查学生的计算能力.10.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数【答案】C【解析】【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】 ()2222110t t t ++=++>Q ,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z Q 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误;∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.11.复数12i 2i +=-( ). A .iB .1i +C .i -D .1i -【答案】A【解析】 试题分析:12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.12.已知复数z 满足21zi z i +=-,则z =A .12i +B .12i -C .1i +D .1i - 【答案】C【解析】【分析】设出复数z ,根据复数相等求得结果.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故()()()()22221zi z a bi i a bi b a a b i i +=++-=-++-=-,故2121b a a b -+=⎧⎨-=-⎩,解得11a b =⎧⎨=⎩. 所以1z i =+.故选:C .【点睛】本题考查复数的运算,共轭复数的求解,属综合基础题.13.在复平面内,复数21i z i =+ (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】 分析:首先求得复数z ,然后求解其共轭复数即可. 详解:由复数的运算法则有:()()()()2121211112i i i i i z i i i i --====+++-, 则1z i =-,其对应的点()1,1-位于第四象限.本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.14.(2018江西省景德镇联考)若复数2i 2a z -=在复平面内对应的点在直线0x y +=上,则z =( )A .2B C .1 D .【答案】B【解析】分析:化简复数z ,求出对应点坐标,代入直线方程,可求得a 的值,从而可得结果. 详解:因为复数2i 22a a z i -==-, 所以复数2i 2a z -=在复平面内对应的点的坐标为,12a ⎛⎫- ⎪⎝⎭, 由复数2i 2a z -=在复平面内对应的点在直线0x y +=上, 可得10212a a z i -=⇒==-,,z ==,故选B.15.已知i 为虚数单位,,a b ∈R ,复数12i i a bi i+-=+-,则a bi -=( ) A .1255i - B .1255i + C .2155i - D .21i 55+ 【答案】B【解析】【分析】 由复数的除法运算,可得(1)(2)12(2)(2)55i i i i i i a b i=+++-=--+,即可求解a b i -,得到答案.【详解】 由题意,复数12i i a bi i+-=+-,得(1)(2)1312(2)(2)555i i a b i=i i i i i i ++++-=-=--+, 所以1255a b i=i -+,故选B . 【点睛】 本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.16.已知(,)a bi a b R +∈是11i i +-的共轭复数,则a b +=( ) A .1-B .12-C .12D .1 【答案】A【解析】【分析】 先利用复数的除法运算法则求出11i i+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】 ()()21(1)21112i i i i i i ++===-+-i , ∴a +bi =﹣i ,∴a =0,b =﹣1,∴a +b =﹣1,故选:A .【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.17.复数52i -的共轭复数是( ) A .2i + B .2i -C .2i -+D .2i -- 【答案】C【解析】【分析】 先化简复数代数形式,再根据共轭复数概念求解.【详解】因为522i i =---,所以复数52i -的共轭复数是2i -+,选C. 【点睛】本题考查复数运算以及共轭复数概念,考查基本求解能力.18.在复平面内,复数z 满足()112z i i +=-,则z 对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】 ∵()112z i i +=-,∴()()()()221211212213131111222i i i i i i i z i i i i i -----+--=====--++--,∴1322z i =-+,故对应的点在第二象限.故选B .19.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限. 详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅-Q 22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.20.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z =( ) A .iB .i -C .2iD .2i -【答案】A【解析】 因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-.。
高考数学压轴专题新备战高考《复数》图文解析
【高中数学】数学复习题《复数》知识点练习一、选择题1.已知复数z ,则|z |=( ) A .14 B .12 C .1 D .2【答案】B【解析】【分析】【详解】解:因为4i ===,因此|z |=122.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅=A .25-B .25C .7-D .7【答案】A【解析】【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】 Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题3.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )AB C .2 D .3【答案】A【解析】 ()11z i i i =-=+,故z = A.4.已知复数z 的模为2,则z i -的最大值为:( ) A .1 B .2 C .5 D .3【答案】D【解析】 因为z i -213z i ≤+-=+= ,所以最大值为3,选D.5.已知复数(2)z i i =-,其中i 是虚数单位,则z 的模z = ( )A .3B .5C .3D .5【答案】B【解析】 22(2)22(1)5z i i i i =-=-=+-=,故选B .6.在复平面内复数83i +、45i -+对应的点分别为A 、B ,若复数z 对应的点C 为线段AB 的中点,z 为复数z 的共轭复数,则z z ⋅的值为( )A .61B .13C .20D .10 【答案】C【解析】由题意知点、的坐标为、,则点的坐标为,则,从而,选C.7.设i 是虚数单位,若复数()103a a R i -∈-是纯虚数,则a 的值为( ) A .-3B .-1C .1D .3【答案】D【解析】【分析】【详解】因, 故由题设, 故,故选D . 考点:复数的概念与运算.8.若复数21z i i=+-(i 为虚数单位),则||z =( )ABCD .5【答案】C【解析】【分析】 根据复数的运算,化简复数,再根据模的定义求解即可.【详解】22(1)121(1)(1)i z i i i i i i +=+=+=+--+,||z ==故选C. 【点睛】本题主要考查了复数的除法运算,复数模的概念,属于中档题.9.已知复数i z x y =+(x ,y ∈R),且2z +=1y x -的最大值为( ) ABC.2+D.2【答案】C【解析】【分析】根据模长公式,求出复数z 对应点的轨迹为圆,1y x -表示(,)x y 与(0,1)连线的斜率,其最值为过(0,1)点与圆相切的切线斜率,即可求解.【详解】∵复数i z x y =+(x ,y ∈R),且2z +==()2223x y ++=. 设圆的切线l :1y kx =+=化为2420k k --=,解得2k =∴1y x-的最大值为2 故选:C.【点睛】 本题考查复数的几何意义、轨迹方程、斜率的几何意义,考查数形结合思想,属于中档题.10.若复数()21a i a R i -∈+为纯虚数,则3ai -=() A B .13 C .10 D【解析】【分析】由题意首先求得实数a 的值,然后求解3ai -即可.【详解】由复数的运算法则有:2(2)(1)221(1)(1)22a i a i i a a i i i i ++-+-==+++-, 复数()21a i a R i -∈+为纯虚数,则2020a a +=⎧⎨-≠⎩,即2,|3|a ai =--=本题选择A 选项.【点睛】复数中,求解参数(或范围),在数量关系上表现为约束参数的方程(或不等式).由于复数无大小之分,所以问题中的参数必为实数,因此,确定参数范围的基本思想是复数问题实数化.11.已知两非零复数12,z z ,若12R z z ∈,则一定成立的是A .12R z z ∈B .12R z z ∈C .12R z z +∈D .12R z z ∈ 【答案】D【解析】利用排除法:当121,1z i z i =+=-时,12z z ∈R ,而()21212z z i i R =+=∉,选项A 错误, 1211z i i R z i+==∉-,选项B 错误, 当121,22z i z i =+=-时,12z z ∈R ,而123z z i R +=-∉,选项C 错误,本题选择D 选项.12.若121z z -=,则称1z 与2z 互为“邻位复数”.已知复数1z a =与22z bi =+互为“邻位复数”,,a b ∈R ,则22a b +的最大值为( )A.8-B.8+C.1+D .8【答案】B【解析】【分析】根据题意点(,)a b在圆22(2)(1x y -+-=(,)a b 到原点的距离,计算得到答案.|2|1a bi --=,故22(2))1a b -+=,点(,)a b 在圆22(2)(1x y -+=上,(,)a b 到原点的距离,故22a b +的最大值为)221(18=+=+. 故选:B .【点睛】本题考查了复数的运算,点到圆距离的最值,意在考查学生的计算能力和转化能力.13.设i 是虚数单位,z 表示复数z 的共轭复数,若231z i i =+-,则4z i +=( )A .6B .50C .D 【答案】C【解析】【分析】计算5z i =-,再代入计算得到答案.【详解】由231z i i=+-,得()()2315z i i i =+-=-,则45455z i i i i +=++=+= 故选:C .【点睛】本题考查了复数运算,共轭复数,复数的模,意在考查学生对于复数知识的综合应用.14.若复数z 满足1(120)z i -=,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】化简复数,求得24z i =+,得到复数在复平面对应点的坐标,即可求解.【详解】 由题意,复数z 满足1(120)z i -=,可得()()()10121024121212i z i i i i +===+--+, 所以复数z 在复平面内对应点的坐标为(2,4)位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.15.设2i 2i 1i z =++-,则复数z =( ) A .12i -B .12i +C .2i +D .2i - 【答案】A【解析】【分析】根据复数的运算法则,求得12z i =+,再结合共轭复数的概念,即可求解.【详解】由题意,可得复数()()()2i 1i 2i 2i 2i 12i 1i 1i 1i z +=++=++=+--+, 所以12i z =-.故选:A .【点睛】本题主要考查了复数的运算,以及复数的共轭复数的概念及应用,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算能力.16.在复平面内,复数121i z i -=+对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】试题分析:1213122i i i -=--+在复平面内所对应的点坐标为,位于第三象限,故选C .考点:复数的代数运算及几何意义.17.若复数1a i z i +=-,且3·0z i >,则实数a 的值等于( ) A .1B .-1C .12D .12- 【答案】A【解析】【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可.【详解】()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.18.已知i 为虚数单位,,a b ∈R ,复数12i i a bi i+-=+-,则a bi -=( ) A .1255i - B .1255i + C .2155i - D .21i 55+ 【答案】B【解析】【分析】 由复数的除法运算,可得(1)(2)12(2)(2)55i i i i i i a b i=+++-=--+,即可求解a b i -,得到答案.【详解】 由题意,复数12i i a bi i+-=+-,得(1)(2)1312(2)(2)555i i a b i=i i i i i i ++++-=-=--+, 所以1255a b i=i -+,故选B . 【点睛】 本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.19.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( )A .1B .iC .1-D .i -【答案】A【解析】 ()12i z i +=22(1)112i i i z i i -⇒===++,所以z 的虚部是1,选A.20.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( )A .22i -B .22i +C .22i -+D .22i --【答案】A【解析】【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=, 整理可得:()()2440b a i b b ++++=, 所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A .。
高考数学压轴专题人教版备战高考《复数》全集汇编含解析
高中数学《复数》期末考知识点一、选择题1.已知z C ∈,2z i z i ++-=,则z 对应的点Z 的轨迹为( )A .椭圆B .双曲线C .抛物线D .线段【答案】D 【解析】 【分析】由复数模的几何意义,结合三角不等式可得出点Z 的轨迹. 【详解】2z i z i ++-=的几何意义为复数z 对应的点Z 到点()0,1A -和点()0,1B 的距离之和为2,即ZA ZB AB +=,另一方面,由三角不等式得ZA ZB AB +≥.当且仅当点Z 在线段AB 上时,等号成立. 因此,点Z 的轨迹为线段. 故选:D. 【点睛】本题考查复数模的几何意义,将问题转化为距离之和并结合三角不等式求解是解题的关键,考查分析问题和解决问题的能力,属于中等题.2.在复平面内复数83i +、45i -+对应的点分别为A 、B ,若复数z 对应的点C 为线段AB 的中点,z 为复数z 的共轭复数,则z z ⋅的值为( ) A .61 B .13 C .20 D .10【答案】C 【解析】由题意知点、的坐标为、,则点的坐标为,则,从而,选C.3.已知复数z 满足()13i z i +=,i 为虚数单位,则z 等于( )A .1i -B .1i +C .1122i - D .1122i + 【答案】A 【解析】 因为|3+|2(1)11(1)(1)i i z i i i i -===-++-,所以应选答案A .4.设i 是虚数单位,则()()3211i i -+等于()A .1i -B .1i -+C .1i +D .1i --【答案】B 【解析】 【分析】 化简复数得到答案. 【详解】()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++故答案选B 【点睛】本题考查了复数的计算,意在考查学生的计算能力.5.若1+是关于x 的实系数方程20x bx c ++=的一个复数根,则( ) A .2,3b c == B .2,1b c ==-C .2,1b c =-=-D .2,3b c =-=【答案】D 【解析】 【分析】由题意,将根代入实系数方程x 2+bx +c =0整理后根据得数相等的充要条件得到关于实数a ,b的方程组10b c -++=⎧⎪⎨=⎪⎩,解方程得出a ,b 的值即可选出正确选项【详解】由题意1是关于x 的实系数方程x 2+bx +c =0∴﹣2+b bi +c =0,即()10b c i -+++=∴100b c -++=⎧⎪⎨=⎪⎩,解得b =﹣2,c =3故选:D . 【点睛】本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题6.复数z 满足(2)36z i i +=-(i 为虚数单位),则复数z 的虚部为( ) A .3 B .3i -C .3iD .3-【答案】D 【解析】【分析】首先化简复数z ,然后结合复数的定义确定其虚部即可. 【详解】 由题意可得:()()()()362361151322255i i i i z i i i i -----====--++-, 据此可知,复数z 的虚部为3-. 本题选择D 选项. 【点睛】复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.7.已知(,)a bi a b R +∈是11ii+-的共轭复数,则a b +=( ) A .1- B .12-C .12D .1【答案】A 【解析】 【分析】先利用复数的除法运算法则求出11ii+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】()()21(1)21112i i ii i i ++===-+-i , ∴a +bi =﹣i , ∴a =0,b =﹣1, ∴a +b =﹣1, 故选:A . 【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.8.已知i 是虚数单位,则131ii +=+( ) A .2i - B .2i +C .2i -+D .2i --【答案】B 【解析】 【分析】利用复数的除法运算计算复数的值即可. 【详解】由复数的运算法则有:13(13)(1)422(1)(11)2i i i ii i i i ++-+===++-+. 故选B . 【点睛】对于复数的乘法,类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可;对于复数的除法,关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.9.复数的共轭复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,再利用共轭复数的概念求出复数的共轭复数,进一步求出对应点的坐标得结果 .【详解】,的共轭复数为,对应坐标是在第三象限,故选C.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.10.若202031i i z i+=+,则z 在复平面内对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】 【分析】化简得到2z i =+,得到答案. 【详解】()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限.故选:A . 【点睛】本题考查了复数对应象限,意在考查学生的计算能力.11.设3iz i+=,i 是虚数单位,则z 的虚部为( ) A .1 B .-1C .3D .-3【答案】D 【解析】 因为z=3ii+13i =-∴z 的虚部为-3,选D.12.若复数z 满足1(120)z i -=,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】化简复数,求得24z i =+,得到复数在复平面对应点的坐标,即可求解. 【详解】由题意,复数z 满足1(120)z i -=,可得()()()10121024121212i z i i i i +===+--+, 所以复数z 在复平面内对应点的坐标为(2,4)位于第一象限 故选:A. 【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.13.设2i2i 1iz =++-,则复数z =( ) A .12i - B .12i +C .2i +D .2i -【答案】A【分析】根据复数的运算法则,求得12z i =+,再结合共轭复数的概念,即可求解. 【详解】由题意,可得复数()()()2i 1i 2i2i 2i 12i 1i 1i 1i z +=++=++=+--+, 所以12i z =-. 故选:A . 【点睛】本题主要考查了复数的运算,以及复数的共轭复数的概念及应用,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算能力.14.复数1122ii ++的虚部为( ) A .110 B .110-C .310D .310-【答案】A 【解析】 【分析】化简复数111122510i i i +=++,结合复数的概念,即可求解复数的虚部,得到答案,. 【详解】由题意,复数()()1121112212122510i i i i i i i -+=+=+++-, 所以复数1122ii ++的虚部为110.故选:A.【点睛】本题主要考查了复数的运算法则,以及复数的概念,其中解答中熟记复数的运算法则,准确化简是解答的关键,着重考查了推理与计算能力,属于基础题.15.已知2a ib i i+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1 B .1C .2D .3【答案】B 【解析】 【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果. 【详解】因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.16.已知z 是复数,则“2z 为纯虚数”是“z 的实部和虚部相等”的( ) A .充分必要条件 B .充分不必要条 C .必要不充分条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】设z a bi =+,2z 为纯虚数得到0a b =±≠,得到答案. 【详解】设z a bi =+,,a b ∈R ,则()2222z a babi =-+,2z为纯虚数220020a b a b ab ⎧-=⇔⇔=±≠⎨≠⎩,z 的实部和虚部相等a b ⇔=. 故选:D. 【点睛】本题考查了既不充分也不必要条件,意在考查学生的推断能力.17.若复数满足,则复数的虚部为( )A .B .C .D .【答案】B 【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果. 详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为18.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限. 详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅-Q 22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.20.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z=( ) A .i B .i -C .2iD .2i -【答案】A 【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-.。
高考数学一轮复习复数多选题专项训练知识点总结及解析
高考数学一轮复习复数多选题专项训练知识点总结及解析一、复数多选题1.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )A .20zB .2z z =C .31z =D .1z =答案:BCD 【分析】利用复数的运算法则直接求解. 【详解】解:复数(其中为虚数单位), ,故错误; ,故正确; ,故正确; .故正确. 故选:. 【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD 【分析】利用复数的运算法则直接求解. 【详解】解:复数12z =-+(其中i 为虚数单位),2131442z ∴=--=-,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =---+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD . 【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.2.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件答案:BC 【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论. 【详解】 设,则,则,若,则,,若,则不为纯虚数, 所以,“”是“为纯虚数”必要不充分解析:BC 【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论. 【详解】设(),z a bi a b R =+∈,则z a bi =-,则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件;若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC. 【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.3.对任意1z ,2z ,z C ∈,下列结论成立的是( ) A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅ D .12z z =的充要条件是12=z z答案:AC 【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是. 【详解】解:由复数乘法的运算律知,A 正确; 取,;,满足,但且不解析:AC 【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确; 由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误.故选:AC 【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题. 4.给出下列命题,其中是真命题的是( ) A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数答案:AD 【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D. 根据,得到,再用共轭复数的定义判断. 【详解】 A .根据共轭解析:AD 【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题; D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD 【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 5.复数21iz i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i + C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限答案:CD 【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得. 【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD 【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得. 【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD. 故选:CD 【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面. 6.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i --答案:ABC 【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可. 【详解】 因为,对于A :的虚部为,正确; 对于B :模长,正确; 对于C :因为,故为纯虚数,解析:ABC 【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可. 【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确; 对于D :z 的共轭复数为1i +,错误. 故选:ABC . 【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.7.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限答案:BD 【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断. 【详解】 因为复数满足, 所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误; 复数对应复平面上的点在第二象限解析:BD 【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==A 错误;1255z i =--,故B 正确; 复数z 的实部为15-,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确.故选:BD 【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.8.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A.若0m =,则共轭复数1z = B .若复数2z =,则m = C .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++=答案:BD 【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误. 【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确; 对于C ,若复数z 为纯虚数,则满足,解得,解析:BD 【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-+,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m =B 正确;对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨-≠⎪⎩,解得1m =-,故C 错误;对于D ,若0m =,则1z =-,()()221420412z z ++=+--+=,故D 正确. 故选:BD. 【点睛】本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题. 9.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( ) A.|z |=B .复数z 在复平面内对应的点在第四象限 C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上 答案:AC 【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项. 【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC 【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项. 【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC 【点睛】本小题主要考查复数的有关知识,属于基础题.10.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( ) A.||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根答案:ABCD 【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确. 【详解】 因为(1﹣i )z =解析:ABCD 【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确. 【详解】因为(1﹣i )z =2i ,所以21i z i=-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z =A 正确;所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确; 因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确. 故选:ABCD. 【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.11.已知i 为虚数单位,以下四个说法中正确的是( ). A .234i i i i 0+++= B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线答案:AD 【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D. 【详解】,则A 正确;虚数不能比较大小,则B 错误; ,则,解析:AD 【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D. 【详解】234110i i i i i i +++=--+=,则A 正确; 虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误;令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确; 故选:AD 【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.12.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z zB .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >答案:BCD 【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD 【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等,比如11i i -=+,但是11i i -≠+,所以B 项是错误的; 因为当两个复数相等时,模一定相等,所以A 项正确; 故选:BCD. 【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.13.已知复数1z =-(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 的虚部为2答案:ABC 【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解. 【详解】 对选项由题得 .所以复数对应的点为,在第二象限,所以选项正确解析:ABC 【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-12w ∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 的虚部为2,所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.14.下面关于复数的四个命题中,结论正确的是( )A .若复数z R ∈,则z R ∈B .若复数z 满足2z ∈R ,则z R ∈C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z = 答案:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z ∈,所以220b a b=+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.15.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =答案:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确. 故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.16.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z += 答案:ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=. 故选:ACD .【点睛】 本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.17.已知复数12z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 答案:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫-+=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫=- ⎪ ⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()2020633644311122z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.18.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 答案:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.19.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 答案:BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.20.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限 答案:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.21.已知复数12ω=-+(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω> 答案:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-+所以12ω=--,∴2131442ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=---++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】 本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.22.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .5答案:ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.。
高考数学压轴专题2020-2021备战高考《复数》全集汇编含解析
数学《复数》复习知识点一、选择题1.复数z 满足()1|1|z i i +=-,则复数z 在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】根据复数的运算法则,化简z =-,再结合复数的几何表示方法,即可求解. 【详解】由题意,复数z 满足()1|1|z i i +=-,可得)()()1|1|11122i i z i i i --===-++-,则复数z 在复平面内对应的点为位于第四象限. 故选:D .【点睛】本题主要考查了复数的几何表示方法,以及复数的除法运算,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力.2.在复平面内,若复数z 满足|z +1|=|1+i z |,则z 在复平面内对应点的轨迹是( ) A .直线B .圆C .椭圆D .抛物线【答案】A【解析】【分析】设()z x yi x y R =+∈、,代入11z iz +=+,求模后整理得z 在复平面内对应点的轨迹是直线.【详解】设()z x yi x y R =+∈、,1x yi ++=,()11iz i x yi +=++=y x =-,所以复数z x yi =+对应点的轨迹为直线,故选A.【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,动点的轨迹问题,是基础题.3.已知复数21i z =-+,则( ) A .2z = B .z 的实部为1 C .z 的虚部为1- D .z 的共轭复数为1i +【答案】C【解析】分析:由题意首先化简复数z ,然后结合z 的值逐一考查所给的选项即可确定正确的说法. 详解:由复数的运算法则可得:()()()()21211112i i z i i i ----===---+--,则z =,选项A 错误;z 的实部为1-,选项B 错误;z 的虚部为1-,选项C 正确;z 的共轭复数为1z i =-+,选项D 错误.本题选择C 选项.点睛:本题主要考查复数的运算法则,复数的几何意义等知识,意在考查学生的转化能力和计算求解能力.4.若z C ∈且342z i ++≤,则1z i --的最大和最小值分别为,M m ,则M m -的值等于( )A .3B .4C .5D .9 【答案】B【解析】【分析】根据复数差的模的几何意义可得复数z 在复平面上对应的点的轨迹,再次利用复数差的模的几何意义得到,M m ,从而可得M m -的值.【详解】 因为342z i ++≤,故复数z 在复平面上对应的点P 到134z i =--对应的点A 的距离小于或等于2, 所以P 在以()3,4C --为圆心,半径为2的圆面内或圆上, 又1z i --表示P 到复数21z i =+对应的点B 的距离,故该距离的最大值为222AB +==,最小值为22AB -=,故4M m -=.故选:B.【点睛】本题考查复数中12z z -的几何意义,该几何意义为复平面上12,z z 对应的两点之间的距离,注意12z z +也有明确的几何意义(可把12z z +化成()12z z --),本题属于中档题.5.若1+是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A .2,3b c ==B .2,1b c ==-C .2,1b c =-=-D .2,3b c =-=【答案】D【解析】【分析】由题意,将根代入实系数方程x 2+bx +c =0整理后根据得数相等的充要条件得到关于实数a ,b的方程组100b c -++=⎧⎪⎨=⎪⎩,解方程得出a ,b 的值即可选出正确选项 【详解】由题意1是关于x 的实系数方程x 2+bx +c =0∴﹣2+b bi +c =0,即()10b c i -+++=∴100b c -++=⎧⎪⎨=⎪⎩,解得b =﹣2,c =3 故选:D .【点睛】本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题6.复数21i z i+=-,i 是虚数单位,则下列结论正确的是 A.z =B .z 的共轭复数为31+22i C .z 的实部与虚部之和为1D .z 在复平面内的对应点位于第一象限 【答案】D【解析】【分析】 利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】 由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则221310()()22z =+=,z 的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D . 【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭为a bi -.7.在复平面内与复数21i z i =+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( )A .1i --B .1i -C .1i +D .1i -+ 【答案】D【解析】【分析】根据复数的运算法则求出1z i =+,即可得到其对应点关于虚轴对称点的坐标,写出复数.【详解】由题()()()2122211112i i i i z i i i i -+====+++-,在复平面对应的点为(1,1), 关于虚轴对称点为(-1,1),所以其对应的复数为1i -+.故选:D【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.8.复数的共轭复数对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,再利用共轭复数的概念求出复数的共轭复数,进一步求出对应点的坐标得结果 . 【详解】,的共轭复数为, 对应坐标是在第三象限,故选C.【点睛】 复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.9.复数1122i i ++的虚部为( ) A .110 B .110- C .310 D .310- 【答案】A【解析】【分析】 化简复数111122510i i i +=++,结合复数的概念,即可求解复数的虚部,得到答案,. 【详解】 由题意,复数()()1121112212122510i i i i i i i -+=+=+++-, 所以复数1122i i ++的虚部为110. 故选:A.【点睛】本题主要考查了复数的运算法则,以及复数的概念,其中解答中熟记复数的运算法则,准确化简是解答的关键,着重考查了推理与计算能力,属于基础题.10.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( )A .10101010i --B .10111010i --C .10111012i --D .10111010i -【答案】B【解析】【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i i i -=++++⋅⋅⋅+-,2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.11.若复数z 满足2(12)1i z z +=+,则其共轭复数z 为( )A .1188i +B .1188i -+C .1188i --D .1188i - 【答案】B【解析】【分析】 计算得到18i z --=,再计算共轭复数得到答案. 【详解】 21111(12)1,,44888i i z z z z i i --+=+∴===-+-Q . 故选:B .【点睛】 本题考查了复数的化简,共轭复数,意在考查学生的计算能力.12.若202031i i z i+=+,则z 在复平面内对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】化简得到2z i =+,得到答案.【详解】 ()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限. 故选:A .【点睛】本题考查了复数对应象限,意在考查学生的计算能力.13.复数z 满足(2)1i z i -=+,那么||z =( )A .5B .15C .25D .5【答案】D【解析】【分析】 化简得到1355z i =+,再计算复数模得到答案. 【详解】(2)1i z i -=+,∴1(1)(2)13255i i i i z i ++++===-,∴1355z i =+,∴||z =. 故选:D .【点睛】 本题考查了复数的运算,复数模,意在考查学生的计算能力.14.设复数z 满足()13i z i +=+,则z =( )AB .2C .D 【答案】D【解析】分析:先根据复数除法得z ,再根据复数的模求结果.详解:因为()13i z i +=+,所以31(3)(1)212i z i i i i +==+-=-+,因此z =选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi15.如果复数z 满足336z i z i ++-=,那么1z i ++的最小值是( )A .1B C .2 D 【答案】A【解析】 分析:先根据已知336z i z i ++-=找到复数z 对应的点Z 的轨迹,再利用数形结合求 1z i ++的最小值.详解:设复数z 对应的点Z(x,y),6=,它表示点Z 到A (0,-3)和B (0,3)的距离和为6,所以点Z 的轨迹为线段AB, 因为1z i ++Z 到点C (-1,-1)的距离,所以当点Z 在点D(0,-1)时,它和点C (-1,-1)的距离最小,且这个最小距离为1. 故答案为:A点睛:(1)本题主要考查复数的几何意义,意在考查学生对这些知识的掌握水平和数形结合的思想方法.(2)z a bi ++表示复数z 对应的点到(-a,-b )的距离,类似这样的结论还有一些,大家要结合直角坐标理解它的几何意义,并做到能利用它解题.16.已知复数z 满足(1)43z i i +=-,其中i 是虚数单位,则复数z 在复平面中对应的点到原点的距离为( )ABC .52D .54【答案】B【解析】【分析】利用复数的除法运算化简z, 复数z 在复平面中对应的点到原点的距离为||,z 利用模长公式即得解.【详解】由题意知复数z 在复平面中对应的点到原点的距离为||,z43(43)(1)1717,12222||2i i i i z i i z ----====-+∴== 故选:B【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.17.复数52i -的共轭复数是( ) A .2i + B .2i - C .2i -+ D .2i --【答案】C【解析】【分析】先化简复数代数形式,再根据共轭复数概念求解.【详解】 因为522i i =---,所以复数52i -的共轭复数是2i -+,选C. 【点睛】本题考查复数运算以及共轭复数概念,考查基本求解能力.18.在复平面内,复数z 满足()112z i i +=-,则z 对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】 ∵()112z i i +=-,∴()()()()221211212213131111222i i i i i i i z i i i i i -----+--=====--++--,∴1322z i =-+,故对应的点在第二象限.故选B .19.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限.详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅-Q 22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.20.已知复数为纯虚数(为虚数单位),则实数( ) A .-1B .1C .0D .2【答案】B【解析】【分析】化简得到,根据纯虚数概念计算得到答案. 【详解】为纯虚数,故且,即. 故选:.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关复数的一题多解
由于每个同学在观察题目时抓住问题的特点不同、运用的知识不同,因
而,同一问题可能得到几种不同的解法,这就是“一题多解”.通过一题多解训练,可使同学们认真观察、多方联想、恰当转化,提高数学思维的变通性,易激发同学们学习数学的兴趣,增强求知欲.
例题.已知复数z 的模为2,求i z -的最大值. 解法一(代数法)设)(R y x yi x z ∈+=、,
y y x i z y x 25)1(.42222-=-+=-+=则,
32,2max =--=∴≤i z y y 时,当 . 解法二(三角法)设),sin (cos 2θθi z += 则 .sin 45)1sin 2cos 422θθθ-=-=-+(i z
.31sin max =--=∴i z 时,当θ 解法三(几何法)
.
i z i z y x z z 所对应的点之间的距离与表示上的点,
是圆点-=+∴=4,222
如图所示,可知当i z 2-=时,3max =-i z . 解法四(运用模的性质)
12+=-+≤-i z i z 而当i z 2-=时,.3.3max =-∴=-i z i z 解法五(运用共轭复数的性质)
1)()()(2
+-+=--=-i z z z z i z i z i z .)((),(25的虚部)表z z I z I +=
又3,9,2)(max 2
max =-∴=-∴≤i z i z z I .
说明:此题构题新颖,耐人寻味,粗看此题只不过是一道常见的复数题,但经仔细分析就会发现这是一道相当典型的题目,它把复数的有关概念结合起来,是一道考察同学们的适应能力、等价转化能力、分析问题和解决问题能力以及逻辑推理能力等综合素质的好题.解法一是最常见的解法;解法二是课本上研究性学习内容的实际应用;解法三是转化迁移能力的体现,将复
数问题转化为几何问题;解法四与解法五是利用复数的有关性质去解题.通过以上多种解法,用复数的不同知识点进行求解,有机地把复数知识网络串联,达到解一道题而掌握一系列知识点的目的.
一元挑随 一元挑随峯孞尛。