六年级下-比和比例

合集下载

六年级数学下册教案- 比和比例 -人教版 (1)

六年级数学下册教案- 比和比例 -人教版  (1)

六年级数学下册教案 - 比和比例 - 人教版一、教学目标1. 让学生理解比和比例的概念,掌握比和比例的基本性质。

2. 培养学生运用比和比例解决实际问题的能力,提高学生的数学思维和逻辑推理能力。

3. 培养学生的合作意识和团队精神,提高学生的表达和沟通能力。

二、教学内容1. 比的概念和基本性质2. 比例的概念和基本性质3. 比例尺的应用4. 比例分配问题三、教学重点和难点1. 教学重点:比和比例的概念,比例尺的应用,比例分配问题。

2. 教学难点:比和比例的基本性质,比例尺的理解和应用。

四、教学方法1. 讲授法:讲解比和比例的概念和基本性质。

2. 案例分析法:通过具体的实例,让学生理解比和比例的应用。

3. 小组讨论法:让学生分组讨论,共同解决实际问题,培养学生的合作意识和团队精神。

五、教学步骤1. 导入新课通过引入生活中的实例,让学生对比的概念有一个初步的认识。

2. 讲解比的概念和基本性质通过讲解,让学生理解比的概念,掌握比的基本性质。

3. 讲解比例的概念和基本性质通过讲解,让学生理解比例的概念,掌握比例的基本性质。

4. 比例尺的应用通过讲解和实例分析,让学生理解比例尺的概念,掌握比例尺的应用。

5. 比例分配问题通过讲解和实例分析,让学生理解比例分配的概念,掌握比例分配的方法。

6. 小组讨论让学生分组讨论,共同解决实际问题,培养学生的合作意识和团队精神。

7. 课堂小结对本节课的内容进行总结,强调重点和难点。

8. 作业布置布置相关的练习题,让学生巩固所学知识。

六、教学反思本节课通过讲解、实例分析和小组讨论等方式,让学生理解了比和比例的概念,掌握了比和比例的基本性质,能够运用比和比例解决实际问题。

在教学过程中,要注意引导学生积极参与,培养学生的合作意识和团队精神。

同时,要对学生的表现进行及时的评价和反馈,激发学生的学习兴趣,提高学生的学习效果。

需要重点关注的细节是“比例尺的应用”。

比例尺是数学中一个重要的概念,它广泛应用于地图、设计、建筑等领域。

(完整版)六年级下册比和比例

(完整版)六年级下册比和比例

推进新课
(4)用比例知识解题: 大家回忆一下用比例知识解决实际问题的 步骤是什么样的?
①认真审题找出两种相关联的量; ②判断两种量成什么比例; ③设未知数x; ④列出比例式(含有未知数); ⑤解比例; ⑥检验。
①修一条公路,全长12km,开工3天修了 1.5km。照这样计算,修完这条公路一共 需要多少天?
两种相关联的量是什么? 路程(工作量)和时间。
两种量成什么比例? (正比例)
题中的等量关系应该怎样表示? 全部工作量∶全部时间=3天工作量∶3天
解:设未知数x,解比例。 设修完这条公路一共需要x天
全部工作量∶全部时间=3天工作量∶3天 12∶x=1.5∶3
1.5x=36 x=24
答:修完这条公路一共需要24天
(2)说出下面各比例尺的具体意义。
①比例尺1:3000000表示
②比例尺20:1表示
③比例尺
表示
(3)巩固练习。 ①求比例尺。
一条绿化带长350m,在平面图上用 7cm的线段表示。这幅图纸的比例尺 是多少?
②求实际距离。
在比例尺是1:8000000的地图上,量 得A地到B地的距离是5cm。求AB两 地的实际距离。
第10课时 比和比例(1)
R·六年级下册
新课导入
什么叫做比?举例说明。各部分名称是什么? 什么叫做比的基本性质?举例说明。 什么叫做比例?举例说明。各部分名称是什么? 什么叫做比例的基本性质?举例说明。
推进新课
比和分数有什么关系? 比和除法有什么关系?
5
5
Байду номын сангаас
6
6
化简下面各比并求比值。
复习比例尺。 (1)什么叫做比例尺? 图上距离:实际距离=比例尺

六年级下册数学试题-专题10比和比例 全国通用 有答案

六年级下册数学试题-专题10比和比例  全国通用 有答案

10.比和比例知识要点梳理一、比的意义和性质1.比的意义两个数相除又叫做两个数的比。

比的写法和读法:表示数a与数b(b不能为零)的比,写作a:b,也可以写作。

“:”是比号,读作“比”,所以a:b读作a比b。

比的前项和后项:比号前面的数叫做比的前项,比号后面的数叫做比的后项。

前项除以后项所得的商是比的结果,叫做比值。

例如:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值2.比的基本性质比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

二、比、分数和除法比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线。

比可以写成分数形式,如7:4可读作:七比四。

比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。

比、分数和除法之间的联系与区别如下表所示:三、求比值与化简比1.求比值前项除以后项所得的商是比的结果,叫比值。

同类量的比,其比值没有单位名称;不同类量的比,其比值有单位名称。

例如:100千米:5时=20千米/时2.化简比比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

把两个数的比化成最简整数比的,称为化简比或比的化简。

四、比例的意义和性质1.比例的意义表示两个比相等的式子叫做比例。

组成比便的四个数,叫做比例的项,两端的两项叫做比例配外项,中间的两项叫做比例的内项。

例如:2.比例的基本性质在比例单,两个外项的积等于两个内项的积,这叫做比例的基本性质。

例如:15:60=12:48可得:60×12=15×48如果把比例写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积相等。

五、比和比例的区别六、解比例根据比例的基本性质,如果已经知道比例中的任何三项,就可求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

解比例时,先根据比例的基本性质把原比例改写成两个外项乘积与两个内项乘积相等形式的方程,再用已知的两项的乘积除以另一个已知项求出未知项。

六年级下册《比和比例》总复习-

六年级下册《比和比例》总复习-

可以用两种方法解答:
(一)用比例解:
设需要X小时,因为工效相等,所以
72:6=120:X 72X=120×6 X=10
(二)用算术方法解: 先求出工作效率,再求工作时间:
120÷(72÷6) =120÷12 =10(小时)
答:需要10小时。
小结:
这两种方法得区别在于解比例只用到一个关 系式:工作量÷工作时间=工作效率,思路简捷;而 列算式解答,除了用到上面这个关系式,还要用到: 工作量÷工作效率=工作时间,思路转折多一些。 请大家以后在解题时,用自己理解得方法解答。
比例尺分为( 数值比例尺)和(
线段比例)尺
9) :1
4
( 2 ):8=0、25=— 1=620÷( 80
)
()
出粉率一定,面粉重量和小麦重量成( )正比例、
被除数一定,除数和商成( 反)比例、
总价一定,单价和数量成( 反)比例、
小明每天看8页书,它看书得总页数和看书得天数成(
已知a×b=c( a、b、c 均不为0)
答:这幅图纸得比例尺是1:5000、
(4)求实际距离。
在比例尺是 1:8000000得地图上,量得A地到B地得距离是 5厘米。求AB两地得实际距离。
解: 设A.B两地之间得距离是x厘米。
图上距离
根据:
———— 实际距离
=比例尺
5:x =1:8000000 1×x= 5×8000000
x= 40000000 40000000厘米=400千米 答:A.B两地实际距离是400千米。
12
答:三条边分别长21厘米,28厘米, 35厘米。 白云居课件
甲乙丙3人和合租一套房子,房 租为990。甲住了 1 得时间

六年级数学下册总复习《比和比例》

六年级数学下册总复习《比和比例》

0
40
80
120千米
2、在比例尺是1∶4000000的地图上量 得甲、乙两地的距离是35cm,若把这 两地画在比例尺是1:7000000的地图 上,应画多少长?
3、在一副比例尺1:5000000 的地图上,甲、乙两城间的 距离是2.4cm,一列火车每小 时72千米的速度从甲城开往 乙城,共要几小时?
分 子 6
分 分数的基本性质 数 分数的分母和分子同 值 时乘以或除以相同的 2 数(0除外),比值不变。
三、求比值和化简比 举例 求 比 = 4÷ 值 = 10
2 : 4 5 9 3 5 10 2 3 10 × 5 =5 9 2 =3
一般方法
结果

根据比值的意义, 是一个商,可 用前项除以后项。 以是整数、小 所得的商如果是分 数或分数,但 数,不能是假分数。不能是假分数。
轻松学数学 快乐在海卫
例2
(1) X︰( 2 × 5
5 1 )= : 9 10 1 9
(2)(10+5)χ=10×30
(3) 2.3︰X=(9.6 - 4.5)︰10.2
按比例分配是把一个量按一定的比来分配. 解题方法: (1)根据比,得出各部分占总量的几分之 几,即先求出总份数,然后求出各部分量占 总量的几分之几,最后按照求一个数的几分 之几是多少的解题方法,求出各部分的量。 (2)根据比,求出总份数,然后用总 数量 除以总份数, 求出另一份是多少,再用一份 的量乘各部分的份数求得各部分的量。
性质 应用 0.9:0.6=9:(6)=3:(2)
例如:
1. 0.9︰0.6 =(0.9×10)︰(0.6×10) = 9 ︰6 =(9÷3)︰(6÷3) = 3 ︰2 2. 5 ︰6 = 20︰24

六年级数学下册第13课时_比和比例—比例

六年级数学下册第13课时_比和比例—比例

1.5 6 解比例: = 2.5 解: 1.5
4
x
x = 6× 2.5 x
6 × 2.5 = 1.5
1
x=
10
比例尺:
一幅图的图上距离和实际距离的比,叫做 这幅图的比例尺。
图上距离 :实际距离 比例尺

图上距离 比例尺 实际距离
图上距离 比例尺 实际距离 实际距离 比例尺 图上距离
=10(m)
杏花村
荷花村 0 4km
答:两个村的实际距离是10m。
4、量得北京到天津的图上距离是3cm, 实际距离是多少千米?
3×50 =150(km) 答:北京到天津的实际 距离是150km。 比例尺
0 50km
5、在比例尺是1︰5000000的云南地图上,量得大理到 楚雄的距离是3.2厘米。计算一下,大理到楚雄的实际 距离大约是多少千米?
1 3.2 5000000
3.2 5000000
16000000 (cm) 160(km)
答:大理到楚雄的实际距离大约是160km。
6、在一张1:500的设计图纸上,量得一正方形建筑 的边长是20cm,这个建筑物的实际占地面积是多少 平方米? (1)求边长的实际距离: (2)求建筑物实际占地面积: 1 2 = 10000(m2) 20 100 500 20 500 10000 (cm) 100(m)
强 调
(1)比例尺与一般的尺不同,它是一个比,不能 带有计量单位;
(3)求比例尺时,一般要把较小的项化简成“1”。
(4)无论是计算比例尺、计算实际距离,还是计 算图上距离,都要先把参加计算的数量统一成较小的 长度单位,然后再计算。这样方便一些。 (5)计算实际距离和计算图上距离时,数值比例 尺最好写成分数形式,这样可以把比例尺当作一个分 数来参加计算。

六年级下册数学知识点解析:比和比例

六年级下册数学知识点解析:比和比例

次火车自北京西站开往安庆西站,行驶至全程的511再向前56千米处所用时间比提速前减少了60分钟,而到达安庆西站比提速前早了2小时.问北京西站、安庆西站两地相距多少千米两地相距多少千米? ?【分析与解】设北京西站、安庆西站相距多少千米?设北京西站、安庆西站相距多少千米?(511x+56)x+56)::x=60x=60::120120,即,即,即((511x+56)x+56)::x=1x=1::2,即x=1011x+112x+112,解得,解得x=1232x=1232.. 即北京西站、安庆西站两地相距即北京西站、安庆西站两地相距1232千米,千米,3.两座房屋A 和B 各被分成两个单元.若干只猫和狗住在其中.已知:各被分成两个单元.若干只猫和狗住在其中.已知:A A 房第一单元内猫的比率房第一单元内猫的比率((即住在该单元内猫的数目与住在该单元内猫狗总数之比在该单元内猫的数目与住在该单元内猫狗总数之比))大于B 房第一单元内猫的比率;并且A 房第二单元内猫的比率也大于B 房第二单元内猫的比率.试问是否整座房屋A 内猫的比率必定大于整座房屋B 内猫的比率的比率? ?【分析与解】 如下表给出的反例指出:如下表给出的反例指出:如下表给出的反例指出:对所提出问题的回答应该是否定的.对所提出问题的回答应该是否定的.对所提出问题的回答应该是否定的.表中具体写出了各个表中具体写出了各个单元及整座房屋中的宠物情况和猫占宠物总数的比率.单元及整座房屋中的宠物情况和猫占宠物总数的比率. 小升初数学知识点解析:比和比例两个数相除又叫做两个数的比.两个数相除又叫做两个数的比.一、比和比例的性质性质1:若a: b=c a: b=c::d ,则,则(a + c)(a + c)(a + c)::(b + d)= a (b + d)= a::b=c b=c::d ;性质2:若a: b=c a: b=c::d ,则,则(a - c)(a - c)(a - c)::(b - d)= a (b - d)= a::b=c b=c::d ;性质3:若a: b=c a: b=c::d ,则,则(a +x c)(a +x c)(a +x c)::(b +x d)=a (b +x d)=a::b=c b=c::d ;(x 为常数)性质4:若a: b=c a: b=c::d ,则a ×d ×d = = = b×b×b×c c ;(即外项积等于内项积即外项积等于内项积) )正比例:如果a ÷b=k(k 为常数为常数)),则称a 、b 成正比;成正比;反比例:如果a ×b=k(k 为常数为常数)),则称a 、b 成反比.成反比.二、比和比例在行程问题中的体现在行程问题中,因为有在行程问题中,因为有速度速度=路程时间,所以:,所以: 当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.1.A 和B 两个数的比是8:5,每一数都减少34后,后,A A 是B 的2倍,试求这两个数.倍,试求这两个数.【分析与解】方法一:设A 为8x 8x,则,则B 为5x 5x,于是有,于是有,于是有(8x-34):(5x-34)=2(8x-34):(5x-34)=2(8x-34):(5x-34)=2::1,x=17x=17,所以,所以A 为136136,,B 为8585.. 方法二:因为减少的数相同,所以前后A A 、、B 的差不变,开始时差占3份,后来差占1份且与B 一样多,也就是说减少的3434,占开始的,占开始的3-1=2份,所以开始的1份为34÷2=17,所以A 为17×8=136,B 为17×5=85.17×5=85.2.近年来.近年来火车火车大提速,大提速,142714274.家禽场里鸡、鸭、鹅三种家禽中公篱与母篱数量之比是2:3,已知鸡、鸭、鹅数量之比是8:7:5,公鸡、母鸡数量之比是1:3,公鸭、母鸭数量之比是3:4.试求公鹅、母鹅的数量比..试求公鹅、母鹅的数量比.【分析与解】 公鸡占家禽场家禽总数的公鸡占家禽场家禽总数的公鸡占家禽场家禽总数的 =21124615:(3544)45:46:(3544)46:47.333345´´+´´=´´+´´=8118751310´=+++,母鸡占总数的310; 公鸭占总数的8338753420´=+++,母鸭占总数的420; 公鹅占总数的213332102020-+=+(),母鹅占总数的234232102020-+=+(),公鹅、母鹅数量之比【分析与解】70cm 的杆子产生影子的长度为175cm;所以影子的长度与杆子的长度比为:所以影子的长度与杆子的长度比为:175175175::70=2.5倍.为322020::3:2.5.在古巴比伦的在古巴比伦的金字塔金字塔旁,旁,其朝西下降的阶梯旁其朝西下降的阶梯旁6m 的地方树立有1根走子,其影子的其影子的前端前端正好到达阶梯的第3阶(箭头箭头)).另外,此时树立l 根长70cm 自杆子,其影子的长度为175cm 175cm,设阶梯各阶的高度,设阶梯各阶的高度与深度都是50cm 50cm,求柱子的高度为多少?,求柱子的高度为多少? 于是,影子的长度为6+1.5+1.6+1.5+1.5×25×25×2.5=11.25.5=11.25.5=11.25,所以杆子的长度为,所以杆子的长度为11.11.25÷225÷225÷2.5=4.5m .5=4.5m .5=4.5m..6.已知三种.已知三种混合物混合物由三种成分A 、B 、C 组成,第一种仅含成分A 和B ,重量比为3:5;第二种只含成分B 和C ,重量比为I :2;第三种只含成分A 和C ,重量之比为2:3.以什么.以什么比例比例取这些混合物,才能使所得的混合物中A ,B 和C ,这三种成分的重量比为3:5:2 ?【分析与解】注意到第一种混合物种A 、B 重量比与最终混合物的A 、B 重量比相同,均为3:5.5.所以,所以,k=65. 标准的时钟每隔56511分钟重合一次.分钟重合一次. 假设经历了假设经历了x 分钟.分钟. 于是,甲钟每隔于是,甲钟每隔52460651124605´´´-分钟重合一次,甲钟重合了246052460´-´×x 次;次; 同理,乙钟重合了同理,乙钟重合了246052460´+´×x 次;次; 于是,需要乙钟比甲钟多重合于是,需要乙钟比甲钟多重合于是,需要乙钟比甲钟多重合 246052460´+´×x-246052460´-´×x=102460´×x=10; 所以,所以,x=24x=24x=24×60;×60;×60; 所以要经历24×60×65511分钟,则为5246065 51165246011´´=´天.于是为65天510(24)10()1111´=天.后来,由一队工人23与二队工人13组成新一队,其余的工人组成新二队.其余的工人组成新二队.两支新队又同时分别接受两项工作量与条件完全相同的工程,两支新队又同时分别接受两项工作量与条件完全相同的工程,两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队结果新二队先将第二种、第三种先将第二种、第三种混合物混合物的A 、B 重量比调整到重量比调整到 3 3 3::5,再将第二种、第三种混合物中A 、B 与第一种混合物中A 、B 视为单一物质视为单一物质. .第二种混合物不含第二种混合物不含A ,第三种混合物不含B ,所以1.5倍第三种混合物含A 为3,5倍第二种混合物含B 为5,即第二种、第三种混合物的重量比为5:1.51.5..于是此时含有于是此时含有C 为5×2+15×2+1..5×3=145×3=14.5.5.5,在最终混合物中,在最终混合物中C 的含量为3A 3A//5B 含量的2倍.有14.14.5÷25÷25÷2-1=6.25-1=6.25-1=6.25,所以含有第一种混合物,所以含有第一种混合物6.256.25..即第一、二、三这三种混合物的即第一、二、三这三种混合物的比例比例为6.256.25::5:1.5=251.5=25::2020::6.7.现有男、女职工共1100人,其中全体男工和全体女工可用同样人,其中全体男工和全体女工可用同样天数天数完成同样的工作;若将男工人数和女工人数对调一下,则全体男25天完成的工作,全体女工需36天才能完成,问:男、女工各多少人女工各多少人? ?【分析与解】 直接设出男、女工人数,然后在通过直接设出男、女工人数,然后在通过直接设出男、女工人数,然后在通过方程方程求解,过程会比较繁琐.求解,过程会比较繁琐.设开始男工为“1”,此时女工为“设开始男工为“1”,此时女工为“k k ”,有1名男工相当k 名女工.男工、女工人数对调以后,则男工为“男工为“k k ”,相当于女工“,相当于女工“k k 2”,女工为“I”.,女工为“I”.有k 2:1=361=36::2525,所以,所以于是,开始有男工数为11k+×1100=500人,女工600人.人.8.有甲乙两个钟,甲每天比.有甲乙两个钟,甲每天比标准时间标准时间慢5分钟,而乙每天比标准时间快5分钟,在3月15日的日的零点零点零分的时候两钟正好对准.若已知在某一时刻,乙钟和甲钟时针与分针都分别重合,且在从3月15日开始到这个时候,乙钟时针与分针重合的次数比甲钟多10次,那么这个时候的标准时间是多少次,那么这个时候的标准时间是多少? ?【分析与解】 小时106(60)541111´=分钟.分钟.9.一队和二队两个.一队和二队两个施工施工队的人数之比为3:4,每人工作效率之比为5:4,两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工96÷147=282´´´´282×4645天.天.144:(282×:(282×4645)=(144×45):(282×46))=(144×45):(282×46)=540。

比和比例(课件)-六年级数学下册人教版

比和比例(课件)-六年级数学下册人教版

答:需要糖0.1千克,水1.9千克。
➢ 用正、反比例的知识解决问题
甲工程队铺一条路,前5天 乙工程队铺路,原计划每天
铺了16千米,照这样的速度, 铺3.2千米,15天铺完。实
铺完这条路用了15天。这条 际每天铺4千米,实际需要
路长多少千米? 正比例
多少天铺完? 反比例
在练习本上解 答这两题。
➢ 用正、反比例的知识解决问题 • 解题步骤 ✓ 分析数量关系,判断成什么比例关系。 ✓ 找等量关系。若成正比例,则按“等比”找等量关系式; 若成反比例,则按“等积”找等量关系式。 ✓ 列比例。设未知数x,并代入等量关系式。 ✓ 解比例。 ✓ 检验写答。

5 32
前比 后

项号 项

3∶ 2 = 6 ∶4
内项 外项
➢ 比和比例的区别
• 基本性质
化简比 的根据
比的基本性质:比的前项和后项同时乘或除以 解比例 相同的数(0除外),比值相等。
的根据
比例的基本性质:在比例里,两个外项的积等于
两个内项的积。
➢ 比和比例的联系 • 比是比例的基础,比例是比的扩展; • 两个相等的比可以组成比例。
➢ 判断正、反比例的方法
一找:分析数量关系,确定哪两种量是相关联的量 二看:分析这两种相关联的量,看它们之间的关系是
乘积一定还是比值一定 三判断:如果乘积一定,成反比例
如果比值一定,成正比例 如果乘积和比值都不一定,不成比例
用比和比例的知识解决问题
➢ 按一定的比分配问题
一种糖水是糖与水按1∶19的比例配制而成的。要配制 这种糖水2千克,需要糖和水各多少千克?
成整数比再化简。 把比的前、后项同时乘分母的最小公倍数,转化成整 分数比 数比再化简。

六年级下册数学讲义—比和比例

六年级下册数学讲义—比和比例

比和比例(一)比和比例学习要点一、比和比例的区别:1.两个数相除,叫做两个数的比。

(比是由两个数组成的,分别是前项、后项。

)例:2∶32.两个相等的比,可以组成比例。

(比例是由四个数组成的,分别是两个外项、两个内项。

)例:2∶3=4∶6二、有关性质:1.分数的基本性质:分数的分子和分母同时扩大或缩小相同的倍数(0除外),分数的大小不变。

2.商不变性质:被除数和除数同时乘以或除以相同的数(0除外),商不变。

3.比的基本性质:比的前项和后项都乘以或除以相同的数(0除外),比值不变。

4.小数性质:小数的末尾添上“0”或去掉“0”,,小数的大小不变。

5.比例的基本性质:在比例里,两个内项的积等于两个外项的积。

三比和分数、除法:四、求比值和化简比:1.求比值:用前项除以后项求商。

结果是一个数,可以是整数、小数、分数。

2.化简比:结果是一个比。

有前项和后项,而且前项和后项必须是整数,且不能再约分。

小数比(同时扩大10、100、1000……)化简比的方法整数比(约分)最简比(商后项是互质数)分数比(变符号)五、正比例和反比例:1.判断:(1)一找:找出“两种变量”和“一个定量”。

(2)二写:写出关系式。

(3)判断:商正积反。

×(反)÷(正)速度时间路程÷(正)×(反)÷(正)单价数量总价÷(正)×(反)÷(正)一天工作量间天数总工作量÷(正)×(反)÷(正)每组人数组数总人数÷(正)×(反)÷(正)方砖面积块数房间面积÷(正)×(反)÷(正)底面积高体积÷(正)×(反)÷(正)长宽长方形的面积÷(正)正方形的周长÷边长=4(一定)正圆的周长÷直径=π(一定)正图上距离÷实际距离=比例尺(一定)正正方形的面积÷边长=边长(不一定)不成圆的面积÷半径=πr(不一定)不成盐的质量÷海水的质量=出盐率(一定)正讨论(1)比与分数、除法的关系(2)求比值与化简比的区别。

六年级数学下册教案- 比和比例-人教版 (1)

六年级数学下册教案- 比和比例-人教版 (1)

六年级数学下册教案:比和比例(人教版)一、教学目标1. 知识与技能:让学生掌握比和比例的概念,能够运用比和比例解决实际问题。

2. 过程与方法:通过小组合作和实际操作,培养学生观察、分析、解决问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养良好的学习习惯和团队精神。

二、教学内容1. 比的概念:两个数相除,又叫做两个数的比。

2. 比例的概念:表示两个比相等的式子叫做比例。

3. 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

4. 比例的基本性质:在比例里,两个外项的积等于两个内项的积。

5. 比的应用:解决实际问题,如按比例分配等。

三、教学重点与难点1. 重点:比和比例的概念,比的基本性质,比例的基本性质。

2. 难点:运用比和比例解决实际问题。

四、教学方法1. 讲授法:讲解比和比例的概念,比的基本性质,比例的基本性质。

2. 小组合作法:让学生在小组内讨论,共同解决实际问题。

3. 实际操作法:通过实际操作,让学生更好地理解比和比例。

五、教学步骤1. 导入新课(5分钟)- 利用生活实例,引出比和比例的概念。

2. 新课讲解(10分钟)- 详细讲解比和比例的概念,比的基本性质,比例的基本性质。

3. 小组讨论(5分钟)- 让学生分组讨论,如何运用比和比例解决实际问题。

4. 实际操作(5分钟)- 让学生进行实际操作,加深对比和比例的理解。

5. 课堂练习(10分钟)- 出示一些实际问题,让学生运用比和比例的知识解决。

6. 课堂小结(5分钟)- 对本节课的内容进行总结,强调重点和难点。

7. 课后作业(5分钟)- 布置一些与比和比例相关的作业,让学生巩固所学知识。

六、教学评价1. 课堂参与度:观察学生在课堂上的参与程度,是否积极回答问题,参与讨论。

2. 作业完成情况:检查学生作业的完成情况,是否正确理解并运用了比和比例的知识。

3. 实际操作能力:观察学生在实际操作中的表现,是否能够熟练运用比和比例解决实际问题。

六年级下册数学专题-比和比例

六年级下册数学专题-比和比例

知识点一:认识比1、两个数相除又叫两个数的比,任何两个相关数量的比都可以抽象为两个数的比。

知识点二:比、除法、分数的关系2、比、除法、分数之间的联系:知识点三:比值的计算方法3、计算方法:求两个数的比的比值,就是用比的前项除以后项。

4、比和比值的区别:(1)比表示的是两个数的一种关系;比值是一个数值; (2)比可以写成bab a 或:的形式;比值可以是分数、小数或整数。

知识点四:比的基本性质5、比的前项、后项同时乘或除以相同的数(0除外),比值不变。

这叫做比的基本性质。

知识点五:化简比6、如果比的前项和后项都是整数,化简时可直接把比的前项和后项同时除以它们的最大公因数。

比 前项 比号 后项 比值 除法 被除数 除号 除数 商 分数 分子分数线分母分数值比和比例知识归纳提示:在以后解决问题或计算时,求两个数或几个数的比,如果没有特殊要求,一般要求出最简单的整数比。

知识点六:比例的意义7、比例的意义:表示两个比相等的式子叫做比例。

比例中有两个内项和两个外项。

拓展:比和比例的联系:比例是由比组成的。

比和比例的区别:(1)意义不同,比表示两个数相除的关系;比例表示两个比相等的关系 (2)形式不同,比由两项组成,比例由四项组成。

知识点七:比例的基本性质8、在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

如果用字母表示比例的四个项,d c b a ::=,那么比例的基本性质可以表示成c b d a ⨯=⨯。

拓展:(1)根据比例的基本性质,可以判断两个比能否组成比例。

(2)组成比例的4个数最多可以组成8个不同的比例。

(3)根据比例的基本性质,已知比例中的任意三项,就可以求出第四项。

知识点八:解比例9、根据比例的基本性质,把两个外项和两个内项分别相乘,将比例式改写成c b d a ⨯=⨯的形式,再解方程求出x 的值。

【例1】 比的意义:一辆汽车3小时行驶了150千米,这辆汽车行驶的路程和时间的比是多少?比值是多少?比值表示什么?【练习】甲3小时走15千米,乙4小时走24千米。

六年级下册数学总复习-比和比例:第 1 课时 比和比例的基本知识-通用版

六年级下册数学总复习-比和比例:第 1 课时 比和比例的基本知识-通用版
8.如果 a= 2 b,那么 a∶b=( 2∶3 ),当 a=6 时,b=( 9 )。 3
9.判断下面生活中的实例是否成比例,如果成比例,成什 么比例?
(1)用煤的天数一定,每天用煤量与总用煤量。 ( 成正比例 )
(2)一本书的页数一定,已看的页数与未看的页数。 ( 不成比例 )
(3)把一张 100 元的人民币分别换成同一种面值的零钱,面 值和张数。 ( 成反比例 )
8 3.4.5、7.5、 1 和 3 这四个数可以组成比例。 ( √ )
2 10 4.因为 C=πd,所以π和 d 成反比例关系。 ( ✕ )
5.相关联的两种量不成正比例关系就成反比例关系。 ( ✕ )
三、选择。(每小题 3 分,共 18 分)
1.下面各比中,比值最大的是( C )。
A.3∶2
B.4∶3
第一组、第二组收集到的瓶子数量的比是 4∶3=8∶6; 第二组、第三组收集到的瓶子数量的比是 6∶5; 所以第一组、第二组、第三组收集到的瓶子数量的比是 8∶6∶5。
D.正方形的周长和边长成正比例关系
四、计算。(38 分)
1.求下面各比的比值。(8 分)
3 ∶6= 1
4
8
3∶ 9 =5 4 20 3
2.4∶0.16=15 2 时∶12 分=2 5
2.把下面各比化成最简整数比。(12 分)
2 ∶ 8 =3∶4 5 15 1.4∶3.5=2∶5
200g∶ 2 kg=1∶2 5
=7y(x、y 均不为 0)可以得出 x∶y=( 7∶5 )。
3. 5 ∶2.5 的比值是( 1 ),如果后项除以 4,要使比值
4
2
不变,前项应( 除以 4 );如果前项除以 4,后项不变,比值是

小学六年级数学《比和比例》优秀教案(10篇)

小学六年级数学《比和比例》优秀教案(10篇)

小学六年级数学《比和比例》优秀教案(10篇)学校六班级数学《比和比例》优秀教案篇1【教学内容】比和比例〔1〕。

【教学目标】1.使同学进一步理解比和比例的含义及性质,会化简比和求比值,会解比例。

2.经受比和比例的复习,体验对比、归纳的学习方法,培育同学归纳整理、敏捷运用学问的力量。

【重点难点】理解比和比例、求比值及化简比等学问。

【教学预备】多媒体课件。

【复习导入】老师:我们已经学习了比和比例,你知道比和比例的哪些学问?同学逐一说出一些学问后,老师揭示课题。

【归纳整理】1.复习比和比例的意义和性质出示表格,通过提问进行填空。

引导提问:什么叫做比?举例说明。

各部分名称是什么?什么叫做比的基本性质?举例说明。

什么叫做比例?举例说明。

各部分名称是什么?什么叫做比例的基本性质?举例说明。

〔1〕组织同学议一议,并互相沟通。

〔2〕指名同学汇报,汇报时留意举例说明,并进行集体评议。

〔3〕同学汇报后,老师板书表格。

比例的基本性质有什么用途?指名同学回答。

练习:解比例:一人板演,其余做在草稿本上。

2.复习比、分数、除法的关系。

提问:比和分数有什么关系?比和除法有什么关系?出示表格:比、分数与除法的关系:组织同学仔细填写表格,并议一议,互相沟通。

用投影仪汇报同学的完成状况,并进行集体评议。

老师依据同学的沟通板书:老师举例:5∶6==〔〕÷(〕由一名同学板演,其他做在练习本上。

3.复习求比值和化简比。

出示习题:化简下面各比并求比值。

请四名同学板演:其余同学做在练习本上。

做完后集体订正,请同学们说一说求比值与化简比的方法。

出示表格。

化简比与求比值的不同之处〔1〕组织同学思索,仔细填写表格。

〔2〕同学相互议一议,相互沟通。

〔3〕指名说一说,并进行集体评议。

老师板书:4.复习比例尺。

(1)什么叫做比例尺?指名回答后,老师板书:=比例尺(2)说出下面各比例尺的详细意义。

①比例尺1:3000000表示②比例尺20:1表示③比例尺表示组织同学先想一想,同桌互相沟通。

数学人教版六年级下册整理与复习-比和比例

数学人教版六年级下册整理与复习-比和比例

比例
意义
各部分 名称
基本 性质
二、先在下表中写出比和比例的一些知识,再举例 说明。

比例
意义 两个数相除又叫两个 表示两个比相等的式
数的比。
子叫做比例。
各部分 名称
基本 性质
3 ∶ 2 = 1.5 前项 后项 比值
比号
比的前项和后项同时 乘或者同时除以相同 的数(0除外),比值 不变。
3 ∶ 2 = 9 ∶6
求实际距离
人教版数学六年级下册
整理和复习
1.数与代数 比和ቤተ መጻሕፍቲ ባይዱ例
一、梳理旧知,探寻联系
比 比和比例
比例
比的意义 比的基本性质
比、分数和除法的关系
比的应用
比例的意义和基本性质
正、反比例 比例的应用
正反比例的意义、图象
判断两个相关联的量 是否成正比例或反比例
二、先在下表中写出比和比例的一些知识,再举例 说明。

三、比、分数、除法的关系
联系 各部分名称
例子
分数 分子 分数线- 分母 分数值
除法 被除数 除号÷ 除数 比 前项 比号∶ 后项
商 比值
5 8
5÷8 5∶8
①你们看出来它们之间的联系了吗?谁相当于谁呢? ②比的基本性质、分数的基本性质、商不变的规律之 间有什么联系?
四、试一试
化简比: 2∶ 2 3
六、按比分配的意义
3.水是由氢和氧按1:8的质量比化合而成的,5.4kg的 水含氢和氧各多少?
氢:5.4× 1 =0.6(千克)
81
氧:5.4× 8 =4.8(千克)
81
答:5.4kg的水含氢0.6千克,含氧4.8千克。
六、按比分配的意义

六年级数学下册教案- 比和比例 -人教版 (2)

六年级数学下册教案- 比和比例 -人教版  (2)

六年级数学下册教案 - 比和比例 - 人教版 (2)一、教学目标1. 让学生理解比和比例的概念,掌握比和比例的表示方法,能够正确地进行比和比例的计算。

2. 培养学生的观察能力、分析能力和逻辑思维能力,提高学生解决实际问题的能力。

3. 培养学生合作学习的能力,增强学生的团队意识和合作精神。

二、教学内容1. 比的概念:两个数相除,又叫做两个数的比。

比可以用分数表示,也可以用整数表示。

2. 比例的概念:表示两个比相等的式子,叫做比例。

比例有四个项,分别是第一比例项、第二比例项、第三比例项和第四比例项。

3. 比和比例的计算:根据比和比例的定义,进行相应的计算。

4. 比例尺:图上距离和实际距离的比,叫做比例尺。

比例尺是一个比,可以用分数表示,也可以用整数表示。

5. 比的应用:解决实际问题,如按比例分配、按比例计算等。

三、教学重点与难点1. 教学重点:比和比例的概念,比和比例的表示方法,比例尺的概念。

2. 教学难点:比和比例的计算,解决实际问题。

四、教学方法1. 采用启发式教学方法,引导学生主动探究,培养学生的观察能力、分析能力和逻辑思维能力。

2. 通过实例讲解,让学生理解比和比例的概念,掌握比和比例的表示方法。

3. 采用小组合作学习的方式,让学生在合作中学会比和比例的计算方法,培养学生的团队意识和合作精神。

4. 结合实际生活,让学生运用比和比例的知识解决实际问题,提高学生解决实际问题的能力。

五、教学过程1. 导入新课:通过生活中的实例,引导学生理解比和比例的概念。

2. 讲解新课:讲解比和比例的定义,比和比例的表示方法,比例尺的概念。

3. 演示计算:通过实例演示比和比例的计算方法,让学生掌握计算步骤。

4. 小组合作:让学生在小组内进行比和比例的计算练习,培养学生的合作能力。

5. 实际应用:结合实际生活,让学生运用比和比例的知识解决实际问题。

6. 总结反馈:对本节课的内容进行总结,了解学生的学习情况,对学生的疑问进行解答。

六年级数学下册概念公式(新人教版)(比和比例)

六年级数学下册概念公式(新人教版)(比和比例)

六年级数学下册概念公式(新人教版)(比和比例)姓名:学号:一.比 1.两个数的比表示两个数相除·2.在两个数的比中.比号前面的数叫做比的前项.比号后面的数叫做比的后项.比的前项除以后项的商.叫做比值·例: 12 ∶ 20 = = 12÷20 = = 0.612∶20读作:12比20区分比和比值:比值是一个数.通常用分数表示.也可以用小数或整数表示·比是一个式子.表示两个数的关系.可以写成比.也可以写成分数的形式·3.两个数的比也可以写成分数形式·例如:15:10也可以写成.仍读作“15比10”·4.比的前项和后项同时乘或除以相同的数(0除外).比值不变·这叫做比的基本性质·5.化简比:化简之后结果还是一个比.不是一个数·(最简单的整数比:前项和后项是互质关系)(1)整数比:前项和后项同时除以它们的最大公因数·(2)分数比:前项后项同时乘分母的最小公倍数.再按化简整数比的方法来化简·也可以求出比值.再写成比的形式·(3)小数比:向右移动小数点的位置.也就是先化成整数比·4.求比值的方法:前项÷后项·结果是一个数(整数.小数或分数)·5.比和除法.分数的区别:除法被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数分子分数线(—)分母(不能为0)分数的基本性质分数是一个数比前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系附:商不变的性质:被除数和除数同时乘或除以相同的数(0除外).商不变·分数的基本性质:分子和分母同时乘或除以相同的数(0除外).分数的大小不变·二.比例1.① 比:两个数相除又叫做两个数的比·② 比值:比的前项除以后项所得的商叫做比值·③比例:表示两个比相等的式子叫做比例·④组成比例的四个数.叫做比例的项.两端的两项叫做比例的外项.中间的两项叫做比例的内项·⑤在比例里.两个外项的积等于两个内项的积·这叫做比例的基本性质·⑥根据比例的基本性质.如果已知比例中的任何三项.就可以求出这个比例中的另外一个未知项·求比例中的未知项.叫做解比例·2. 正比例和反比例① 两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的比值(也就是商)一定.这两种量就叫做成正比例的量.它们的关系叫做正比例关系·用字母表示=k(一定)② 两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的乘积一定.这两种量就叫做成反比例的量.它们的关系叫做反比例关系·用字母表示x×y=k(一定)3.① 一幅图的图上距离和实际距离的比.叫做这幅图的比例尺·图上距离图上距离:实际距离=比例尺或 =比例尺实际距离②比例尺分为:数值比例尺和线段比例尺·③比例尺应用题的解答方法:(注意:单位要一致.一般用“厘米”单位计算)④比例尺 = 图上距离:实际距离实际距离 = 图上距离÷比例尺图上距离 = 实际距离×比例尺新人教版六年级数学下总复习概念——(式与方程)(1)方程:含有未知数的等式叫做方程·(如:是方程.而3+25不是方程.5+36>100也不是方程·)(2)解方程的方法:(等式性质和四则运算各部分间关系)①加数+加数=和加数=和-另一个加数②被减数-减数=差被减数=差+减数减数=被减数-差③因 数×因数=积 因 数=积÷另一个因数④被除数÷除数=商 被除数=商×除数除 数=被除数÷商(3)运算顺序:加减乘除混合的算式要(先乘除后加减);只有加减法或只有乘除法就要(从左到右)·(4)用字母表示数可以简明地表达数量.数量关系.运算定律和计算公式等.为研究和解决问题带来很多方便·(V=st V=sh )(5)a3 表示:3个a 相乘 a ×a ×a3a 表示:3个a 相加 a +a +a 即a ×33a表示:a 除以3 a ÷3(6)等式表示相等关系的式子·(7)等式的性质:等式两边加上或减去同一个数.左右两边仍然相等·等式两边乘同一个数.或除以同一个不为0的数.左右两边仍然相等·(8)运算定律加法交换律: a + b = b + a加法结合律:(a + b)+c = a +(b + c)乘法交换律:a ×b=b ×a乘法结合律:(a ×b)×c= a ×(b ×c)乘法分配律:(a + b )×c=a × c + b × c减法的性质:a -b -c= a -c -ba -b -c=a -(b + c)除法的简算:a ÷ b ÷ c= a ÷ c ÷ ba ÷b ÷ c= a÷(b × c)(9)常用单位换算单位换算的方法: 个数×进率大单位 小单位个数÷进率1000 10 10 101.长度单位: 千米 —→ 米—→ 分米—→ 厘米—→ 毫米km m dm cm mm100 10000 100 100 1002.面积单位:平方千米—→公顷—→平方米—→平方分米—→平方厘米—→平方毫米 km2 hm2 m2 dm2 cm2 mm21000升 ———→ 毫 升 L ml∣ ∣ 1000 ↓ 1000 ↓ 3.体积(容积)单位:立方米 —→ 立方分米 —→ 立方厘米 m3 dm3 cm31000 10004.重量单位:吨—→千克—→克t kg g10 105.人民币单位:元—→角—→分100 12 ? 24 60 60 6.时间单位:世纪—→年—→月—→日—→时—→分—→秒【大月(31天)有:1.3.5.7.8.10.12月】【小月(30天)有:4.6.9.11月】【闰年:2月有29天;全年有366天】【平年:2月有28天;全年有365天】;。

六年级数学比和比例

六年级数学比和比例

六年级数学比和比例
(实用版)
目录
1.比和比例的定义
2.比和比例的性质
3.比和比例的应用
4.提高比和比例的解题技巧
正文
1.比和比例的定义
比和比例是数学中常见的概念,比是指两个数相除的结果,比例则是指两个比相等的式子。

比如,如果我们说一个长度为 10 厘米的线段是另一个长度为 5 厘米的线段的两倍,我们就可以说这两个线段的比是 2:1,也可以说这两个线段的比例是 2/1。

2.比和比例的性质
比和比例有一些基本的性质。

比如,如果两个比的比值相等,那么这两个比就是相等的,也就是说,如果 a:b=c:d,那么 a/b=c/d。

另外,比例也有一个基本性质,那就是如果两个比例相等,那么它们的乘积也相等,也就是说,如果 a:b=c:d,那么 a*d=b*c。

3.比和比例的应用
比和比例在实际生活中应用广泛,比如在商业中,我们常常需要通过比例来计算成本和利润;在科学研究中,我们常常需要通过比来描述两个量的关系。

此外,比和比例也是解决许多数学问题的基础,比如在解方程时,我们常常需要通过比例来找到未知数的值。

4.提高比和比例的解题技巧
要提高比和比例的解题技巧,首先我们需要理解比和比例的概念,熟悉它们的基本性质。

其次,我们需要多做一些有关比和比例的练习题,这样可以帮助我们加深对比和比例的理解,提高我们的解题能力。

最后,我们需要学会灵活运用比和比例的知识,比如在解题时,我们可以通过比例来简化方程,这样更容易找到未知数的值。

总的来说,比和比例是数学中非常重要的概念,它们在实际生活中的应用也非常广泛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比和比例
1.一个比例,组成比例的比的比值是1/4 ,两个外项分别是17和3/5 ,写出这个比例。

2.有两个比,比值都是2/3 ,第一个比的后项与第二个比的前项都是6,把这两个比组成比例。

3.把6×8=24×2改写成四个比例。

4.把7m =8n 改写成四个比例。

5.如果甲数的4/5与乙数的7/9相等,那么甲数与乙数的比是多少?6.男生人数的5/8与女生人数的5/9相等,那么女生人数与男生人数的比是多少?
7 .如果x/8=Y/13 ,那么X:Y=()
8. 车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是多少?
9. 一种盐水是由盐和水按 1 :30 的重量配制而成的。

其中,盐的重量占盐水的(—),水的重量占盐水的(—)。

10. 光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生多少人?
11. 如果x÷y = 712 ×2,那么x和y成()比例;如果x:4=5:y,那么x和y成()比例。

12. 甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上
乙需要多少小时?
13. 图上6厘米表示表示实际距离240千米,这幅图的比例尺是多少?
14. 小正方形和大正方形边长的比是2:7小正方形和大正方形面积的比是多少?
15. 在盐水中,盐占盐水的110,盐和水的比是多少?
16. 如果X=34Y,那么Y:X=()。

17. 一件工作,甲单独做12天完成,乙单独做18天完成。

甲乙效率的最简比是多少?
18. 一个三角形三个内角度数的比是6:2:1,这个三角形是什么三角形?
19. 甲与乙的工作效率比是6:5,两人合做一批零件共计880个,乙比甲少做多少个?
20. 建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?
21. 乙两个数的平均数是25,甲数与乙数的比是3:4,甲、乙两数各是多少?
22. 一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验田的面积是多少平方米?
23. 一种药水是用药物和水按3:400配制成的。

(1)要配制这种药水1612千克,需要药粉多少千克?
(2)用水60千克,需要药粉多少千克?
(3)用48千克药粉,可配制成多少千克的药水?
24. 纸箱里有红绿黄三色球,红色球的个数是绿色球的3倍,绿色球的个数与黄色球个数的比是4:5,已知绿色球与黄色球共81个,问三色球各有多少个?
25. 修一条公路,每天修0.5千米,36天完成。

如果每天修0.6千米,多少天可修完?(用比例方法解)
26. 已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.
27. 有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克,求在新合金内铜与锌的比.
28. 13.一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50千米.问:此人走完全程用了多少时间?
29、王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是多少?这个比的比值的意义是什么?
30、一个直角三角形的两个锐角的度数比是1:5,这两个锐角各是多少度?
31、商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?
32、配制一种农药,药粉和水的比是1:500
(1) 现有水6000千克,配制这种农药需要药粉多少千克?
(2) 现有药粉3.6千克,配制这种农药需要水多少千克?
33、园林绿化队要栽一批树苗,第一天栽了总数的15 ,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5。

这批树苗一共有多少棵?。

相关文档
最新文档