人教版高一数学必修一2.2.1对数与对数运算2007

合集下载

人教版高中数学必修一对数与对数运算对数及对数的性质课件PPT

人教版高中数学必修一对数与对数运算对数及对数的性质课件PPT
x = 5 x=-2 x =
讲授新课
1.对数的定义: 一般地,如果ax=N ( a > 0 , 且a ≠ 1 )
那么数x叫做以a为底N的对数,记作: 其中a叫做对数的底数, N叫做真数.
注意:限制条件是a > 0 , 且a ≠ 1
填写学案,题1
讲授新课
练习1:将下列指数式写成对数式:
① 52 = 25
(2)log
1 a
=
0
即:1的.对数是0
(3)log
a a
=
1
即:底数的对数是1
(4)对数恒等式:aloga N = N
(5)对数恒等式:loga an = n
巩固练习
1、指数式b2 = a(b 0,且b 1)相应的对数式是(D)
A log2a = b B log2 b = a
C logab=2
解:(1)64
-
2 3
=
(43
)
-
2 3
= 4-2 =
1
(4) ln e2 = -x
16
1
1
1
e-x = e2
(2)x6 = 8所以x = 86 = (23 )6 = 22 = 2 - x = 2
(3)10 x = 100所以x = 2
x = -2
讲授新课 4.对数的性质 探究活动 1、试求下列各式的值:

简记作
。如 loge 9 简记为 ln 9.
填写学案,题4
例题分析
例1.将下列指数式写成对数式:
(1) 54 = 625
(2)
e-6
=
1
b
(3) 10 a = 27 (4) ( 1 )m = 5.73

高中数学课件:2.2.1对数与对数运算

高中数学课件:2.2.1对数与对数运算
例9.若a,b是方程2(lgx)2 -4lgx+1=0的两个实根, 求lg(ab)(logab+logba)的值.
专题三 坚持科教 兴国 推进自主创

热点一 科教兴国 时事❶ 第三届深圳国际智能装备产业博览会
第三届深圳国际智能装备产业博览会暨第六届深圳国 际电子装备产业博览会于2017年7月27日至29日在深圳会 展中心举办。本届博览会以“智能改变未来,产业促进发 展”为主题,定位于创新型、专业性和国际化,展会将突
1.我国科技取得成就的原因有哪些? ①我国经济实力不断增强,为科技创新提供了坚实的 物质基础。 ②我国实施科教兴国战略和人才强国战略,为科技创 新提供了强有力的政策支持。 ③我国大力弘扬创新精神,尊重劳动、尊重知识、尊 重人才、尊重创造。
④社会主义制度具有集中力量办大事的优越性。 ⑤广大科研工作者发扬了艰苦奋斗、开拓创新、团结 协作的精神等。
2.我国为什么要实施创新驱动发展战略,坚持走中国特 色自主创新道路? ①我国正处在社会主义初级阶段,教育科学技术水平比 较落后,科技水平和民族创新能力不足。 ②创新是一个民族进步的灵魂,是一个国家兴旺发达的 不竭动力。 ③我国是一个发展中国家,要想真正地缩小与发达国家 之间的差距,关键靠创新。
④只有把科技进步的基点放在增强自主创新能力和持续创 新能力上,才能实现我国科学技术的跨越式发展,真正掌 握发展的主动权。 ⑤没有创新,就要受制于人,没有创新,就不可能赶超发 达国家。 ⑥科学技术是第一生产力,科技创新能力已越来越成为综 合国力竞争的决定性因素。 ⑦增强自主创新能力,有利于全面建成小康社会、实现中 华民族的伟大复兴。
出智能自动化设备、机器人、3D打印、可穿戴产业的展览 主题,瞄准打造全球智能装备领域第一展会平台的目标, 展示深圳智能装备产业的发展成就。

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。

〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。

〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。

教学重难点:指、对数式的互化。

教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。

这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。

能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。

二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。

其中a 叫做对数的底数,N 叫做真数。

根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。

高一数学必修1:2.2.1《换底公式及对数运算的应用》课件

高一数学必修1:2.2.1《换底公式及对数运算的应用》课件

例3 生物机体内碳14的半衰期为 5730年,湖南长沙马王堆汉墓 女尸出土时碳14的残余量约 占原始含量的76.7%,试推算 马王堆汉墓的年代.
作业:书上P74---3(5)(6)、4(3)(4)、
5(3)(4)、9, 11
补充:1.求值:
(log 2 5 log 4 0.2)(log 5 2 log 25 0.5)
5.
思考2:你能用lg2和lg3表示log23吗?
为底的对数叫自然对数(naturallogarithm),
为了简便,N的自然对数简记作lnN。
例题与练习
例1将下列指数式化为对数式,
对数式化为指数式.
(1)54=625
(2) 26 1
64
(3) (1)m 5.73 3
(4) log 1 16 4
2
(5) lg 0.01 2 (6)ln10 2.303
化为指数式:
1
(1) 54=625 ;
1
(2) 2-6= 64 ;
(3)
(
)m=5.73
3
;
(4)
log 1 16=-4;
2
(5) lg0.01=-2; (6) ln10=2.303.
例2.求下列各式中x的值:
(1)log64x=
2 3
;
(2)
logx8=6
;
(3)lg100=x;
(4)-lne2=x .
知识探究(二):幂的对数
思考1:log23与log281有什么关系? 思考2:将log281=4log23推广到一般情形有什么结论?
思考3:如果a>0,且a≠1,M>0,你有什么方法证明等式logaMn=nlogaM成立.

人教A版高中数学必修一教学课件:2.2.1 第2课时 对数的运算

人教A版高中数学必修一教学课件:2.2.1 第2课时 对数的运算

一级达标重点名校中学课件
换底公式的应用
已知 log189=a,18b=5,用 a,b 表示 log3645.
思路点拨:已知对数和指数幂的底数都是 18,需求值的对 数底数为 36,因此既可以将需求的对数化为与已知对数同底后 再求解,也可以将已知与需求值的对数都换为同一底数后再求 解.
一级达标重点名校中学课件
答案:(1)2
(2)12
25 9 (3) (4) 2 4
一级达标重点名校中学课件
对数运算性质的应用
2 3 lg 3+ lg 9+ lg 27-lg 5 5 化简: lg 81-lg 27 3 .
思路点拨:思路一:“正用”性质,先正用性质把式子中 的每一个对数都化成 nlg 3 的形式,再化简. 2 3 思路二:“逆用”性质,先逆用性质把 lg 9, · lg 5 5 -lg 3分别化为 lg
3
-1
一级达标重点名校中学课件
• 对数恒等式alogaN=N的应用 • (1)能直接应用对数恒等式的直接求值即 可. • (2)对于不能直接应用对数恒等式的情况按 以下步骤求解.
一级达标重点名校中学课件
1.求值: (1)10lg 2=________.(2)31+log34=________. (3)2
一级达标重点名校中学课件
lg 5 lg 5 又 18 =5,则 b=log185= = , lg 18 lg 2+2lg 3
b
2b 所以 lg 5= lg 3.② a 2lg 3+lg 5 lg 45 lg 9+lg 5 log3645= = = , lg 36 2lg 2+2lg 3 2lg 2+2lg 3 将①、②两式代入上式并化简整理, a+b 得 log3645= . 2-a

2.2.1 对数与对数运算

2.2.1 对数与对数运算
复习旧知
一般地,函数y=ax (a>0,且a≠1)叫做指数函数, 其中x是自变量,函数的定义域是R。
y
y ax
(a>1)
ya
x
y (0,1) O
y=1 x
(0<a<1)
(0,1) O
y=1 x
定义域:R 值域:(0,+∞)

问题导入
1.截止到1999年底,我国人口约13亿.如果今后能将人 口年平均增长率控制在1%,那么我国人口数y与经过的年 数x之间的关系如下:
=logaN

对数的性质(x=logaN )
须大于零;
问题2: 你能写出下列对数的值吗?
新知探究
(1)在指数式中 a > 0,故零和负数没有对数,即式子logaN中N必
log2 1
lg 1 log 2 2 lg10
1 1
0 0
log3 1
log3 3
ax=N x=logaN
底数 底数

常用对数与自然对数
常用对数:通常把以10为底的对数叫常用对数,
新知探究
并把 log10 N ,
简记作
lg N .
例如: 10 5 简记作lg5; log10 3.5 简记作lg3.5. log 自然对数:以无理数e=2.71828……为底的对数叫自然对数, 为了简便,N的自然对数 log e N 简记作 lnN。 例如:loge 3 简记作ln3 ; loge 10 简记作ln10

人教版高中数学必修一
2.2.1 对数与对数运算
第一课时 对数
学习目标
对数如何定义?
什么是常用对数?什么是自然对数?
对数有哪些性质?

数学必修一:2-2-1-1对数函数

数学必修一:2-2-1-1对数函数

2.对数与指数的关系 (1)指数式 ab=N 与对数式 logaN=b 中,a、b、N 三者间的关系 实质如下(a>0 且 a≠1):
项目 式 子 a b N
意义
指数式 ab=N 底数 指数 幂
a的b次幂等于N
对数式 logaN=b 底数 对数 真数 以a为底N的对数等于b
(2)利用对数式与指数式之间的关系,可以把指数与对数进行互化.

(5-2 6)=2;
(4)log1041=0; (5)ln e=1;
(6)利用公式
=N 求得
=9.
(7)原式=
=7×5=35.
第十六页,编辑于星期日:十一点 三十一分。
题型三 对数恒等式
的应用
审题指导 利用指数幂的运算性质和对数恒等式化简求值. (4分)
(8分)
(12分)
第十七页,编辑于星期日:十一点 三十一分。
对数的表达式 x=logaN 中底数 a 须满足 a>0 且 a≠1,只有满足这一条件式子才能够成立,在解题时要时时记 住这一点.
第二十页,编辑于星期日:十一点 三十一分。
单击此处进入 活页限时训练
第二十一页,编辑于星期日:十一点 三十一分。
(3)∵14-2=16,∴
=-2.
(4)∵log101 000=3,∴103=1 000.
第十二页,编辑于星期日:十一点 三十一分。
题型二 对数基本性质的应用
【例 2】 求下列各式中 x 的值.
(1)log2(log4x)=0;
(2)log3(lg x)=1;
(3)log(
2-1)
1 3+2
=x. 2
第七页,编辑于星期日:十一点 三十一分。

2.2.1对数与对数运算(必修一优秀课件)

2.2.1对数与对数运算(必修一优秀课件)
(D)(2) (3) (4)
课 堂 互 动 探 究
【解析】选B.由对数定义可知(1)(2)(4)均正确,而(3)中
对数的底数不等于1.
基 础 自 主 演 练 课 后 巩 固 作 业
课 前 新 知 初 探
2.(2011·海口高一检测)设a>0,a≠1,x∈R,下列结论错误的 是( ) (B)logax2=2logax (D)logaa=1
2
(3)lg 0.01 2
1 4 解:(1)( ) 16 2
(4)ln10 2.303
(2)27 128
(3)10 0.01
2
(4)e2.303 10
求下列各式的值 (1)log0.5 1 (4) log3 243 (5) lg 4 64 (6)log
2
log (2) 9 81
是2010年的2倍?
a 1 8%
x=


x
2a
x 2 即 1.08
小结:
这是已知底数和幂的值,求指数的问题。 即指数式ab=N中,已知a 和N,求b的问题。
这里( a 0且a 1 )
你能看得出来吗?怎样求呢?
对数的定义
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对
特的方法构造出对数方法。1614年6月在爱丁堡出版的
第一本对数专著》《奇妙的对数表的描述》中阐明了 对数原理,后人称为纳皮尔对数。
假设2010年我国的国民生产总值为a亿元,如果每年 平均增长8%,那么经过多少年后国民生产总值
是2010年的2倍?
假设2010年我国的国民生产总值为a亿元,如果每年
平均增长8%,那么经过多少年后国民生产总值
(3)log25 625 解: (1)log0.5 1

对数与对数运算教案-人教版高中数学必修一第二章2.2.1 第二课时

对数与对数运算教案-人教版高中数学必修一第二章2.2.1 第二课时

第二章基本初等函数(Ⅰ)2.2 对数函数2.2.1.对数与对数运算第二课时对数运算1 教学目标1.1 知识与技能:[1]掌握对数的运算性质,能正确地利用对数的运算性质进行对数运算;[2]掌握对数换底公式的运用 .能用换底公式将一般对数转化为自然对数或常用对数。

[3]对数及其运算性质的综合应用1.2过程与方法:[1]通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.1.3 情感态度与价值观:[1]通过对数的运算法则的学习,培养学生的严谨的思维品质 .[2]在学习过程中培养学生探究的意识.[3]让学生理解运算法则之间的内在联系,培养分析、解决问题的能力.通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.2教学重点/难点/易考点2.1 教学重点[1]重点:对数式运算性质及时推导过程;[2]对数换底公式。

[3]对数及其运算性质的综合应用2.2 教学难点[1]难点:对数运算性质的发现过程及其证明;[2]对数换底公式的证明和应用。

3 专家建议启发学生从对数运算性质入手,了解对数在数学史上的重要作用,了解对数对大数运算的简化作用,降低运算的数量级,掌握一定量的对数计算基本模型,在熟练运用对数运算性质的基础上以对数的思维模式去考虑和处理问题,加深对于运算性质和换底公式的理解和运用,掌握对数运算的特殊性,为下一节学习对数函数打好基础.高考中对数的考查方式一般以选择题或填空题的形式出现。

4 教学方法实验探究——归纳总结——补充讲解——练习提高5 教学用具多媒体。

6 教学过程6.1 引入新课【师】同学们好。

从今天我们开始进入新一节内容的学习:对数与对数运算。

【板书】2.2.1.对数与对数运算第二课时【师】我们知道了对数的基本定义和性质,请认真回忆一下!【板书或投影】对数基本知识点1、对数的定义b N a =log其中 ),1()1,0(+∞∈ a 与 ),0(+∞∈N (负数与零没有对数);b ∈(文字表述:N 为正数,a 为非1正数,b 为任意实数)两类特殊对数:(1)常用对数:以10为底,记作lgN .(2)自然对数:以无理数e=2.71828……为底,记作lnN .2、三组互化式)10( log ≠>=⇔=a a b N N a a b 且lg 10b N N b =⇔=ln b N N e b =⇔=3、两个恒值(1) 01log =a (2) 1log =a a4、两个嵌套式(迭代式)(1)对数恒等式N a N a =log(2))10( log ≠>=a a b a b a 且5.指数运算法则,(R n m a a a n m n m ∈=⋅+),()(R n m a a mn n m ∈=)()(R n b a ab n n n ∈⋅=【生】对数定义式是......,指数式与对数式的转化......,对数恒等式,自然对数、常用对数【师】注意每个字母的取值X 围:底数,10≠>a a 且,真数N>0;再回忆一下指数运算的几个式子【板书或投影】)10( log ≠>=⇔=a a b N N a a b 且指数的运算性质n m n m a a a +=⋅; n m n m a a a -=÷mn n m a a =)( ; m nm na a = 6.2 新知介绍[1] 对数的运算性质【师】下面请同学们自行推导对数的运算性质!(5 分钟)【板演/PPT 】教师演示对数运算性质三式的证明。

高中数学人教版必修1课件:2.2.1 第二课时 对数的运算

高中数学人教版必修1课件:2.2.1 第二课时 对数的运算

lg 125 lg 25 lg 法二:原式= lg 2 + lg 4 +lg
5 lg 2 lg 4 lg 8 · + 8 lg 5 lg 25+lg 125
3lg 5 2lg 5 lg 5 lg 2 2lg 2 3lg 2 13lg 5 3lg 2 =13. = + + · + + = 3lg 2 · lg 2 2lg 2 3lg 2 lg 5 2lg 5 3lg 5 lg 5 (2)因为log189=a,18b=5,所以log185=b,于是 log189+log185 a+b log1845 log189×5 法一:log3645= = = = . log1836 182 2log1818-log189 2-a log18 9 lg 9 法二:因为 =log189=a,所以lg 9=alg 18, lg 18 同理得lg 5=blg 18, lg 9+lg 5 alg 18+blg 18 a+b lg 45 lg9×5 所以log3645= = = = = . lg 36 182 2lg 18-lg 9 2lg 18-alg 18 2-a lg 9
提示:能.令am=M,an=N, ∴MN=am n.

由对数的定义知logaM=m,logaN=n,loga(MN) =m+n, ∴loga(MN)=logaM+logaN.
[导入新知] 对数的运算性质 若a>0,且a≠1,M>0,N>0,那么: (1)loga(M· N)= logaM+logaN , M (2)loga N = logaM-logaN , (3)logaMn= nlogaM (n∈R).
[类题通法] 解对数方程的方法 根据目前的知识我们只能求解两种简单的对数方程: (1)等号两边为底数相同的对数式,则真数相等; (2)化简后得到关于简单对数式(形如lg x)的一元二次方程, 再由对数式与指数式的互化解得x. [注意] 大于零. 在解方程时,需检验得到的x是否满足所有真数都

数学:2.2.1《对数与对数运算》课件(新人教a版必修1)

数学:2.2.1《对数与对数运算》课件(新人教a版必修1)

( 3).10
log 5 1125
例2 求下列各式中x的值:
2 1log 64 x ; 2log x 8 6; 3lg100 x; 4 ln e 2 x. 3
练习5.填空
1.设 loga 2 m, oga 3 n, 则a
2 m 3n
108
1 log3 2
n
例6、计算下列各式
(1) log2 6 log2 3 1 (2) log5 3 log5 3 2 log5 2 log5 3 (3) 1 1 log5 10 log5 0.36 log5 8 2 3
例7 用 (1)
loga x, loga y, loga z 表示下列各式:
4
( 2).2 64
6
log 2 64 6 1 1 1 1 3 log 27 ( 3).27 3 3 3 x (4).1.08 2 log 1.08 2 x
练习2.把下列对数式写成指数式:
1 3 1 (1). log2 3 2 8 8 3 ( 2). log5 125 3 5 125 3 ( 3). lg 0.001 3 10 0.001 (4). ln10 2.303 e 2.303 10
练习3.求下列各式的值:
(1) l og2 4; ( 2) l og3 27; ( 3) l og5 125; ( 4) l g1000 ; ( 5) l g 0.001.
2 3 3 3 3
练习4.计算下列各式的值:
(1).2
log 2 4 log 3 27 lg10 5
( 2).3 (4).5

对数及其运算(1,2课时)
1.对数的定义.

高一(人教A版)第二章数学课件:2.2.1对数与对数运算(第2课时对数及运算)

高一(人教A版)第二章数学课件:2.2.1对数与对数运算(第2课时对数及运算)

x loga|x| (3)loga|xy|=loga|x|· loga|y|;(4)log y= . loga|y|
a
A.1 C.3
B.2 D.4
2014-6-4
研修班
22
【错解】 D
【错因】 产生错解的主要原因是没有准确掌握对数的运算性质.
(1)logax2=2logax,不能保证x>0; (3)(4)虽保证了真数大于零,但是公式应用有误.
在使用换底公式时,底数的取值不唯一,应根据实际情况选择. (3)关于换底公式的另外两个结论: ①logac·logca=1;②logab·logbc·logca=1.
2014-6-4
研修班
21
设x,y为非零实数,a>0,a≠1,则下列式子中正确的个数为(
)
(1)logax2=2logax;(2)logax2=2loga|x|;
(1) (2) (3) loga(MN)=logaM+log .aN loga(M/N)=
logaM-.logaN
logaMn= nlogaM (n∈R).
2.对数换底公式 logcb logab=log a (a>0,a≠1,b>0,c>0,c≠1); c 特别地:logab· logba=1(a>0,a≠1,b>0,b≠1).
2014-6-4 研修班 16
(1)本例的解法均利用了换底公式,关于换底公式: ①换底公式的主要用途在于将一般对数化为常用对数或自然对 数,然后查表求值,解决一般对数求值的问题. ②换底公式的本质是化同底,这是解决对数问题的基本方法. 解题过程中换什么样的底应结合题目条件,并非一定用常用对数、 自然对数. (2)求条件对数式的值,可从条件入手,从条件中分化出要求的 对数式,进行求值;也可从结论入手,转化成能使用条件的形式; 还可同时化简条件和结论,直到找到它们之间的联系.

人教版高中数学必修1:2.2.1《对数》课件【精品课件】

人教版高中数学必修1:2.2.1《对数》课件【精品课件】

20
例2
求下列各式的值:
(1) log2(47×25);
(2) lg5
31log3 2
100

(3) log318 -log32 ;
(4)
3
1 log 3 2
.
21
例3 计算:
2 log 5 2 log 5 3 1 1 log 5 10 log 5 0.36 log 5 8 2 3
对数与对数运算
第二课时
对数的运算
13
问题提出
1.对数源于指数,对数与指数是怎样互 化的?
2.指数与对数都是一种运算,而且它们 互为逆运算,指数运算有一系列性质, 那么对数运算有那些性质呢?
14
15
知识探究(一):积与商的对数
思考1:求下列三个对数的值:log232, log24 , log28.你能发现这三个对数之 间有哪些内在联系? 思考2:将log232=log24十log28推广到一 般情形有什么结论?
48
思考3:点P(m,n)与点Q(n,m)有怎样的 位置关系?由此说明对数函数 y log a x x 的图象与指数函数 y a 的图象有怎样 的位置关系? y Q P o x
49
思考4:一般地,对数函数的图象可分为 几类?其大致形状如何? y 0 <a <1 y a >1
1 0 1 x 1 0 1
(5) lg0.01=-2;
化为指数式:
3
(6) ln10=2.303.
10
2
例2.求下列各式中x的值:
2 (1)log64x= ; (2) logx8=6 ; 3
(3)lg100=x;
(4)-lne2=x .

人教版高中数学必修一学案:《对数与对数运算》(含答案)

人教版高中数学必修一学案:《对数与对数运算》(含答案)

2.2.1 对数与对数运算(二)自主学习1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么,(1)log a (MN )=______________;(2)log a M N=____________;(3)log a M n =__________(n ∈R ).2.对数换底公式:________________________.对点讲练正确理解对数运算性质【例1】 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( )①log a x + log a y =log a (x +y ); ②log a x -log a y =log a (x -y );③log a x y=log a x ÷log a y ; ④log a (xy )=log a x ·log a y . A .0个 B .1个 C .2个 D .3个规律方法 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件.使用运算性质时,应牢记公式的形式及公式成立的条件.变式迁移1 (1)若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( )A .log a x =-log a 1xB .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x(2)对于a >0且a ≠1,下列说法中正确的是( )①若M =N ,则log a M =log a N ;②若log a M =log a N ,则M =N ;③若log a M 2=log a N 2,则M =N ;④若M =N ,则log a M 2=log a N 2.A .①③B .②④C .②D .①②③④对数运算性质的应用【例2】 计算:(1)log 535-2log 573+log 57-log 51.8; (2)2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1.变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514; (2)(lg 5)2+lg 2·lg 50.换底公式的应用【例3】 设3x =4y =36,求2x +1y的值.规律方法 换底公式的本质是化同底,这是解决对数问题的基本方法.解题过程中换什么样的底应结合题目条件,并非一定用常用对数、自然对数.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 142=a ,用a 表示log 27.1.对于同底的对数的化简要用的方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成两对数的和(差).2.对于常用对数的化简要创设情境充分利用“lg 5+lg 2=1”来解题.3.对于多重对数符号对数的化简,应从内向外逐层化简求值.4.要充分运用“1”的对数等于0,底的对数等于“1”等对数的运算性质.5.两个常用的推论:(1)log a b ·log b a =1;(2)log am b n =n mlog a b (a 、b >0且均不为1).课时作业一、选择题1.lg 8+3lg 5的值为( )A .-3B .-1C .1D .32.已知lg 2=a ,lg 3=b ,则log 36等于( )A.a +b aB.a +b bC.a a +bD.b a +b3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg a b 2的值等于( ) A .2 B.12 C .4 D.144.若2.5x =1 000,0.25y =1 000,则1x -1y等于( ) A.13 B .3 C .-13D .-3 5.计算2log 525+3log 264-8log 71的值为( )A .14B .8C .22D .27二、填空题6.设lg 2=a ,lg 3=b ,那么lg 1.8=______________.7.已知log 63=0.613 1,log 6x =0.386 9,则x =____________.三、解答题8.求下列各式的值:(1)12lg 3249-43lg 8+lg 245; (2)(lg 5)2+2lg 2-(lg 2)2.9.已知log 189=a,18b =5,试用a ,b 表示log 365.2.2.1 对数与对数运算(二) 答案自学导引1.(1)log a M +log a N (2)log a M -log a N(3)n log a M2.log a b =log c b log c a对点讲练【例1】 A [对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的.] 变式迁移1 (1)A(2)C [在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立. 在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有 M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立.]【例2】 解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2log 55=2.(2)原式=lg 2(2lg 2+lg 5)+(lg 2-1)2=lg 2(lg 2+lg 5)+1-lg 2=lg 2+1-lg 2=1.变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514; (2)(lg 5)2+lg 2·lg 50.解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7) =1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=(lg 5)2+lg 2·(lg 2+2lg 5)=(lg 5)2+2lg 5·lg 2+(lg 2)2=(lg 5+lg 2)2=1.【例3】 解 由已知分别求出x 和y .∵3x =36,4y =36,∴x =log 336,y =log 436,由换底公式得:x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364 =log 36(32×4)=log 3636=1.变式迁移3 解 (1)利用换底公式,得lg 4lg 3·lg 8lg 4·lg m lg 8=2, ∴lg m =2lg 3,于是m =9.(2)由对数换底公式,得log 27=log 27log 22=log 2712=2log 27=2(log 214-log 22) =2(1a -1)=2(1-a )a. 课时作业1.D [lg 8+3lg 5=lg 8+lg 53=lg 1 000=3.]2.B [log 36=lg 6lg 3=lg 2+lg 3lg 3=a +b b.] 3.A [由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12, ∴⎝⎛⎭⎫lg a b 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b=22-4×12=2.] 4.A [由指数式转化为对数式:x =log 2.51 000,y =log 0.251 000,则1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13.] 5.C6.a +2b -12解析 lg 1.8=12lg 1.8 =12lg 1810=12lg 2×910=12(lg 2+lg 9-1)=12(a +2b -1). 7.2解析 由log 63+log 6x=0.613 1+0.386 9=1.得log 6(3x )=1.故3x =6,x =2.8.解 (1)方法一 原式=12(5 lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5) =52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5) =12lg 10=12. 方法二 原式=lg 427-lg 4+lg 7 5 =lg 42×757×4=lg(2·5)=lg 10=12. (2)方法一 原式=(lg 5+lg 2)(lg 5-lg 2)+2lg 2=lg 10·lg 52+lg 4=lg ⎝⎛⎭⎫52×4=lg 10=1. 方法二 原式=(lg 10-lg 2)2+2lg 2-lg 22=1-2lg 2+lg 22+2lg 2-lg 22=1.9.解 ∵18b =5,∴log 185=b,又∵log 189=a ,∴log 365=log 185lg 1836=b log 18(18×2) =b 1+log 182=b 1+log 18189 =b 1+(1-log 189)=b 2-a.。

「精品」人教A版数学必修一2.2.1对数与对数运算-精品课件

「精品」人教A版数学必修一2.2.1对数与对数运算-精品课件

2.2.1│ 考点类析
同理 b=53.所以ab=5.
2.2.1│ 考点类析
考点三 对数运算性质的应用 重点探究型 例 3 (1)计算 log2 478+log212-12log242=_-__12_____.
[解析] 原式=log2
478×12-log2
42=log24 73×12×
1 7×
6=log22
-12=-12.
2.2.1│ 考点类析
[解析]
(2)①x=2-12=
1= 2
22;②x2=25,因为
x>0,所
以 x=5;
③x2=52,得 x=±5;④lg x=5,x=105=100 000.
(3)由 log3[log4(log5a)]=0,得 log4(log5a)=1,所以 log5a =4,所以 a=54.
[导入二] (1)根据上一节的例 8 我们能从 y=13×1.01x 中算出任意
一个 x(经过的年份)的人口总数,可不可以算出哪一年人口数 低于 13 亿?
(2)那么哪一年的人口达到 18 亿? 师生共同讨论:(1)由指数函数性质知,a>1,x>0,有 1.01x>1,所以 y=13×1.01x>13. (2)人口数达到 18 亿时,y=18,所以有1183=1.01x. 在以上这两个式子中,能求出 x 的范围或值吗? 今天我们学习对数与对数运算.
2.2.1│ 重点难点 重点难点
[重点] 对数式与指数式的互化及对数的性质. [难点] 利用对数式的有关性质求值.
2.2.1│ 教学建议
教学建议
对于对数概念的引入的教学,建议教师先让学生阅读教材中的实 例,体会数学概念源于生活,再复习指数式,引入对数概念,便于学 生接受.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13 1.01 18
x
x?
已知底数和幂的值,求指数.你 看出来了吗?怎样求呢?
18 1.01 13
x
一、对数的概念 定义: 一般地,如果 的b次幂等于N, 就是
b
aa 0, a 1
,那么数 b叫做
a N
以a为底 N的对数,记作 loga N b a叫做对数的底数,N叫做真数。
4 2 16
log 16 2
4
读作2是以4为底,16的对数

说明:
(1)注意底数的限制 ,
a>0,a≠1;
(2)注意对数的书写格式;
思考:
为什么对数的定义中要求底数 a>0 且a≠1 ?
二、两个特殊对数 ①常用对数:以10为底的对数 log10 N ,简记为: lgN
②自然对数: 以无理数e=2.71828…为底的对数的对数
loge N
简记为 : lnN . (在科学技术中 , 常常使用以 e 为 底的对数)
注意:两个特殊对数的Hale Waihona Puke 写三、对数式与指数式的互化
例题讲解 1、将下列指数式化为对数式,对数式化为指数式
(1) 5 625
4
1 6 (2) 2 64
1 m (3) ( ) 5.73 3
(4)log5 125 3
4、求下列各式的值:
(1)2log2 3 3
(2)7
log7 0.6
0.6
思考:你发现了什么? 对数恒等式: a loga N N
得出对数性质
1、负数和零没有对数 2、“1”的对数等于零,即
loga 1 0
loga a 1
3、底数的对数等于“1”,即 4、对数恒等式: a loga N N
教学目标
知识目标:理解对数与指数的关系,能进行对 数式与指数式的互 化并可利用对数的简单性质求 值。
能力目标:培养学生的类比、分析、归纳能力 以及分析问题解决问题的能力。 情感目标:培养学生的探究意识和数学应用意 识。
x y 13 1.01 在课本57页的例8中,我们能从 关系中, 算出任意一个年头 的人口总数。反之,如果问“哪 一年的人口数可达到18亿,该如何解决?
教学内容分析 本节课是高中数学必修1中第二章对数函数内容的第 一课时,也就是对数函数的入门。通过本节课的学习, 可以让学生理解对数的概念及性质,从而进一步深化 对对数模型的认识与理解,为学习对数函数作好准备。 同时,通过强调“对数源于指数”,理解指数与对数 之间的互逆关系,培养学生的逻辑思维能力。因此本 节课在知识结构上起了承上启下的作用。
(5) log 1 3 2
3
(6) lg a 1.069
2、求下列各式的值:
2 (1) log 64 x 3
( 2) log x 8 6
(3) lg 100 x
(4) ln e x
2
四、对数的性质
合作探究
1、负数和零有没有对数?为什么?
负数和零没有对数
2、求下列各式的值:
课本64练习: 1.(2)、(4); 2.(2)、(4); 3.



(1)对数概念 (重点) (2)指数式与对数式的互化(重点) (3)对数性质(难点)

课本82页复习参考题第1、2题
(1) log3 1 0
( 2) lg1 0
(3) ln1 0
思考:你发现了什么? “1”的对数等于零,即
loga 1 0
3、求下列各式的值:
(1) log3 3 1
(2) lg10 1
(3) ln e 1
思考:你发现了什么? 底数的对数等于“1”,即loga a 1
相关文档
最新文档