上海市闵行区2019-2020学年中考数学一模考试卷含解析
2019-2020学年上海市闵行区部分学校初三数学第一学期中考一模试卷及解析
2019-2020学年上海市闵行区部分学校初三数学第一学期中考一模试卷一、选择题:(本大题共6题,每题4分,满分24分) 1.(4分)下列各数中,无理数是( ) A .4-B .129C .39D .2272.(4分)不等式23x ->的解集是( ) A .23x >-B .23x <-C .32x >-D .32x <-3.(4分)下列方程中,有实数根的是( ) A .1x x -=- B .10x x -+= C .22111x x x =-- D .2202010x x +-=4.(4分)已知反比例函数ky x=,当0x >时,y 的值随x 的值增大而增大,下列四个选项中,可能是二次函数22y kx x k =--图象的选项是( )A .B .C .D .5.(4分)要判断一个四边形门框是否为矩形,在下面四个拟定方案中,正确的方案是( ) A .测量对角线是否相互平分 B .测量两组对边是否分别相等C .测量对角线是否互相垂直D .测量其中三个角是否是直角6.(4分)如果两个圆的圆心距为3,其中一个圆的半径长为4,另一个圆的半径长大于1,那么这两个圆的位置关系不可能是( ) A .内含B .内切C .外切D .相交.二、填空题:(本大题共12题,每题4分,满分48分) 7.(4分)计算:23a a ⋅= .8.(4分)在实数范围内分解因式:222x x --= . 9.(4分)已知2()21f x x =-,且f (a )3=,那么a = .10.(4分)如图.函数(y kx b k =+、b 为常数,0)k ≠的图象如图,则关于x 的不等式0kx b +>的解集为 .11.(4分)某同学计划购买一双运动鞋,在网站上浏览时发现如表所示的男鞋尺码对照表. 中码CHN 220 225 230 ⋯250 255 260 ⋯美码USA4.555.5⋯ 7.588.5⋯如果美码()y 与中码()x 之间满足一次函数关系,那么y 关于x 的函数关系式为 .12.(4分)一个不透明的袋子中装有8个大小、形状、都一样的小球,其中有3个红球与5个黄球,从这8个球中任取一个球是红球的概率是: .13.(4分)如果一段斜坡的坡角是30︒,那么这段斜坡的坡度是 .(请写成1:m 的形式) 14.(4分)如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a =,AC b =,如果用向量a ,b 表示向量AD ,那么向量AD 可以表示为 .15.(4分)已知正三角形的边长为2,那么该三角形的半径长为 .16.(4分)如果两点(2,)A a 和(,)B x b 在抛物线24y x x m =-+上,那么a 和b 的大小关系为:a b .(从“>”“”“<”“”中选择).17.(4分)平移抛物线224y x x =-,可以得到抛物线224y x x =+,请写出一种平移方法 . 18.(4分)如果三角形的两个内角α∠与β∠满足290αβ+=︒,那么,我们将这样的三角形称为“准互余三角形”.在ABC ∆中,已知90C ∠=︒,3BC =,4AC =(如图所示),点D 在AC 边上,联结BD .如果ABD ∆为“准互余三角形”,那么线段AD 的长为 (写出一个答案即可).三、解答题:(本大题共7题,满分78分)19.(10分)计算:231|31|26823--⨯+--20.(10分)解方程组:2228560x y x xy y +=⎧⎨+-=⎩21.(10分)如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,1BC =,点D 在边AC 上,且45DBC ∠=︒,求sin ABD ∠的值.22.(10分)某电脑公司2019年的各项经营收入中,经营电脑配件的收入为800万元,占全年经营总收入的40%,该公司预计2021年经营总收入要达到2880万元,且计划从2019年到2021年,每年经营总收入的年增长率相同,问2020年预计经营总收入为多少万元?23.(12分)已知:如图,ABC ∆中,90ACB ∠=︒,D 在斜边AB 上,DE AC ⊥,DF BC ⊥,垂足分 别为E ,F .(1)当ACD BCD ∠=∠时,求证:四边形DECF 是正方形; (2)当BCD A ∠=∠时,求证:CD CFCA AD=.24.(12分)如图,已知一个抛物线经过(0,1)A ,(1,3)B ,(1,1)C -三点. (1)求这个抛物线的表达式及其顶点D 的坐标; (2)联结AB 、BC 、CA ,求tan ABC ∠的值;(3)如果点E 在该抛物线的对称轴上,且以点A 、B 、C 、E 为顶点的四边形是梯形,直接写出点E 的坐标.25.(14分)在圆O 中,弦AB 与CD 相交于点E ,且弧AC 与弧BD 相等.点D 在劣弧AB 上,联结CO 并延长交线段AB 于点F ,联结OA 、OB .当5OA =,且1tan 2OAB ∠=.(1)求弦CD 的长;(2)如果AOF ∆是直角三角形,求线段EF 的长; (3)如果4CEF BOF S S ∆∆=,求线段AF 的长.参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.【解答】解:.2A =-,是整数,属于有理数; 12.93B =,是整数,属于有理数;C 是无理数;22.7D 是分数,属于有理数. 故选:C .2.【解答】解:不等式的两边同时除以2-得,32x <-.故选:D . 3.【解答】解:10,10x -,1x ∴,0x ∴-<,∴x ≠-,A ∴不正确;100x ,当1x =有最小值1,∴1x ,B ∴不正确;22111x x x =--两边同时乘以21x -,得1x =, 经检验1x =是方程的增根,∴方程无解;C ∴不正确;2202010x x +-=,△2202040=+>,∴方程有两个不相等的实数根,D ∴正确;故选:D .4.【解答】解:反比例函数ky x=,当0x >时,y 的值随x 的值增大而增大, 0k ∴<,∴二次函数22y kx x k =--中,20k <,则图象开口向下,0k ->,则图象与y 轴交在正半轴上,又10b =-<,∴二次项与一次项系数相同,则对称轴在y 轴左侧,符合题意的只有选项D . 故选:D .5.【解答】解:三个角是直角的四边形是矩形,∴在下面四个拟定方案中,正确的方案是D ,故选:D .6.【解答】解:一个圆的半径R 为4,另一个圆的半径r 大于1,41R r ∴-<-,5R r +>即:3R r -<, 圆心距为3,∴两圆不可能外切,故选:C .二、填空题:(本大题共12题,每题4分,满分48分) 7.【解答】解:23235a a a a +⋅==. 故答案为:5a .8.【解答】解:原式2(1)3(11x x x =--=-+--故填:(11x x ---. 9.【解答】解:2()21f x x =-,f (a )3=,f ∴(a )2213a =-=, 2213a ∴-=时,2a =±,故答案为2±.10.【解答】解:函数y kx b =+的图象经过点(2,0),并且函数值y 随x 的增大而减小, 所以当2x <时,函数值大于0,即关于x 的不等式0kx b +>的解集是2x <. 故答案为:2x <.11.【解答】解:设y 关于x 的函数关系式为:y kx b =+, 由题意可得:52258255k b k b =+⎧⎨=+⎩解得:0.117.5k b =⎧⎨=-⎩y ∴关于x 的函数关系式为0.117.5y x =-,故答案为:0.117.5y x =-.12.【解答】解:在口袋中放有3个红球与5个黄球,共8个,这两种球除颜色外完全相同,随机从口袋中任取一个球,从这8个球中任取一个球是红球的概率是:38.故答案为:38.13.【解答】解:3tan tan 301:33i α==︒==, 故答案是:1:3.14.【解答】解:如图,延长AD 到E ,使得DE AD =,连接BE ,CE .AD DE =,BD CD =,∴四边形ABEC 是平行四边形, ∴BE AC b ==,AE AB BE a b =+=+,∴111222AD AE a b ==+.故答案为1122a b +.15.【解答】解:如图所示:连接OA 、OB 、OC ,过O 作OD BC ⊥于D , ABC ∆是边长为2的等边三角形, 2AB AC BC ∴===,60ABC ∠=︒, 30OBD ∴∠=︒, OD BC ⊥,90ODB ∴∠=︒,112BD CD BC ===, 33tan30133OD BD ∴=︒=⨯=, 2323OB OD ∴==, ∴该三角形的半径长为233, 故答案为:233.16.【解答】解:抛物线24y x x m =-+的对称轴为2x =,∴当2x =时函数有最小值,b a ∴,故答案为.17.【解答】解:22242(1)2y x x x =-=--,22242(1)2y x x x =+=+-,∴两抛物线的顶点坐标分别为(1,2)-和(1,2)--,∴将抛物线224y x x =-先向左平移2个单位长度,可以得到抛物线224y x x =+.故答案为:向左平移2个单位.18.【解答】解:过点D 作DM AB ⊥于M .设ABD α∠=,A β∠=.①当290αβ+=︒时,90DBC αβ++∠=︒, DBC DBA ∴∠=∠,DM AB ⊥,DC BC ⊥,DM DC ∴=,90DMB C ∠=∠=︒,DM DC =,BD BD =,Rt BDC Rt BDM(HL)∴∆≅∆, 3BM BC ∴==,90C ∠=︒,3BC =,4AC =,225AB BC AC ∴=+,532AM ∴=-=,设AD x =,则4CD DM x ==-,在Rt ADM ∆中,则有222(4)2x x =-+, 解得52x =. 52AD ∴=. ②当290αβ+=︒时,90DBC αβ++∠=︒, DBC A β∴∠==∠, C C ∠=∠, CBD CAB ∴∆∆∽,2BC CD CA ∴=, 94CD ∴=, 97444AD AC CD ∴=-=-=. 故答案为52或74. 三、解答题:(本大题共7题,满分78分) 19.【解答】解:23|31|26823--3123234=--++-3=-20.【解答】解:2228560x y x xy y +=⎧⎨+-=⎩①②, 由②得:60x y +=,0x y -=,原方程组可化为2860x y x y +=⎧⎨+=⎩或280x y x y +=⎧⎨-=⎩,故原方程组的解为11122x y =⎧⎨=-⎩,228383x y ⎧=⎪⎪⎨⎪=⎪⎩.21.【解答】解:如图,过点D 作DM AB ⊥于M ,在BA 上取一点H ,使得BH DH =,连接DH .设DM a =.90C ∠=︒,30A ∠=︒, 903060ABC ∴∠=︒-︒=︒, 45DBC ∠=︒,604515ABD ∴∠=︒-︒=︒,HB HD =,15HBD HDB ∴∠=∠=︒,30DHM HBD HDB ∴∠=∠+∠=︒,2DH BH a ∴==,3MH a =,23BM a a =,2222(23)(26)BD DM BM a a a a ∴=+=++, 62sin (26)DM ABD DB a -∴∠===+. 22.【解答】解:从2019年到2021年,平均经营总收入增长率为x ,根据题意可得:280040%(1)2880x ÷+=,解得:10.220%x ==,2 2.2x =-(不合题意舍去),则80040%(120%)2400÷⨯+=(万元),答:2020年预计经营总收入为2400万元.23.【解答】证明:(1)DE AC ⊥,DF BC ⊥,90DEC DFC ∴∠=∠=︒,又90ECF ∠=︒,∴四边形DECF 为矩形.ACD BCD ∠=∠,CD ∴平分ACB ∠,DE DF ∴=,∴四边形DECF 是正方形.(2)90BCD ACD ACB ∠+∠=∠=︒,BCD A ∠=∠,90A ACD ∴∠+∠=︒,1809090ADC ∴∠=︒-︒=︒.DCF A ∠=∠,90DFC ADC ∠=∠=︒,CDF ACD ∴∆∆∽, ∴CD CF CA AD=.24.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠.由题意可得:311a b c a b c c =++⎧⎪=-+⎨⎪=⎩解得:111a b c =⎧⎪=⎨⎪=⎩∴抛物线的解析式为:21y x x =++,22131()24y x x x =++=++, ∴顶点D 的坐标1(2-,3)4; (2)如图,过点B 作BF x ⊥轴于F ,延长CA 交BF 于点D ,过点A 作AM BC ⊥于M ,3BF ∴=, (0,1)A ,(1,1)C -,//AC x ∴轴,CD BF ∴⊥,2CD BD ∴==,1AD =,1CA =,22BC ∴=,45BCD CBD ∠=∠=︒,AM BC ⊥,45MAC MCA ∴∠=∠=︒,CM AM ∴=,22CM AM ∴===, 32BM BC CM ∴=-=, 1tan 3AM ABC BM ∴∠==; (3)(0,1)A ,(1,3)B ,(1,1)C -,∴直线AC 解析式为:1y =,直线AB 解析式为:21y x =+,直线BC 解析式为:2y x =+,若//BE AC ,则点E 的纵坐标为3,且点E 在对称轴上, ∴点1(2E -,3); 若//CE AB ,则CE 的解析式为;23y x =+, 点E 在对称轴上,12x ∴=-, 2y ∴=, 即点1(2E -,2); 若//AE BC ,则AE 解析式为:1y x =+, 点E 在对称轴上,12x ∴=-, 12y ∴=, 即点1(2E -,1)2, 综上所述:点E 的坐标为1(2-,3)或1(2-,2)或1(2-,1)2. 25.【解答】解:(1)如图,过点O 作OH AB ⊥于点H , 1tan 2OH OAB AH∠==, ∴设OH a =,2AH a =,2225AO OH AH =+=,1a ∴=,1OH ∴=,2AH =,OH AB ⊥,24AB AH ∴==,弧AC =弧BD∴AB CD =,4AB CD ∴==;(2)OA OB =,OAF OBA ∴∠=∠,OAF ECF ∴∠=∠,①当90AFO ∠=︒时, 5OA =1tan 2OBA ∠=,OC OA ∴==,1OF =,4AB =, 5tan tan 2EF CF ECF CF OBA ∴=∠=∠= ②当90AOF ∠=︒时,OA OB =,OAF OBA ∴∠=∠, 1tan tan 2OAF OBA ∴∠=∠=,5OA = tan OF OA OAF ∴=∠=52AF ∴=, OAF OBA ECF ∠=∠=∠,OFA EFC ∠=∠, OFA EFC ∴∆∆∽,∴EF OC OF OF AF +==, 32EF∴==, 即:32EF =或 (3)如图,连接OE , ECB EBC ∠=∠,CE EB ∴=,OE OE =,OB OC =,OEC OEB ∴∆≅∆,OEC OEB S S ∆∆∴=,4CEF BOF S S ∆∆=,4()CEO EOF BOE EOF S S S S ∆∆∆∆∴+=-,∴53CEO EFO S S ∆∆=,∴53CO FO =,33555FO CO ∴==, 221OH OA AH ∴=-=, 22255HF OF OH ∴=-=,2525AF AH HF ∴=+=+.。
2020年上海闵行初三数学一模试卷及答案
闵行区2019学年第一学期九年级质量监控考试数 学 试 卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 3.本次测试可使用科学计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.如果把Rt △ABC 的各边长都扩大到原来的n 倍,那么锐角A 的四个三角比值 (A )都缩小到原来的n 倍; (B )都扩大到原来的n 倍; (C )都没有变化; (D )不同三角比的变化不一致. 2.已知P 是线段AB 的黄金分割点,且AP > BP ,那么下列比例式能成立的是(A )AB AP AP BP =; (B )AB BP AP AB =; (C )BP ABAP BP=; (D )AB AP . 3.k 为任意实数,抛物线2()0y a x k k a =--≠()的顶点总在(A )直线y x =上; (B )直线y x =-上; (C )x 轴上; (D )y 轴上.4.如图在正三角形ABC 中,点D 、E 分别在AC 、AB 上,且13AD AC =,AE = BE ,那么有 (A )△AED ∽△BED ; (B )△BAD ∽△BCD ; (C )△AED ∽△ABD ; (D )△AED ∽△CBD . 5.下列命题是真命题的是(A )经过平面内任意三点可作一个圆; (B )相等的圆心角所对的弧一定相等;(C )相交两圆的公共弦一定垂直于两圆的连心线; (D )内切两圆的圆心距等于两圆的半径的和.6.二次函数2(0)y a x bx c a =++≠①0a <;②0abc >;③0a b c -+<;④240b ac -<其中正确的结论有(A )1个; (B )2个; (C )3个; (D )4个.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】7.已知线段a = 4厘米,c = 9厘米,那么线段a 和c 的比例中项 ▲ 厘米.8.在Rt △ABC 中,∠C=90º,AB =10,2sin 5A =,那么BC = ▲ . 9.抛物线22(1)3y x =--+在对称轴右侧的部分是 ▲ 的.(填“上升”或B C(第4题x(第6题“下降”)10.如果两个相似三角形的相似比为2︰3,两个三角形的周长的和是100cm ,那么较小的三角形的周长为 ▲ cm .11.e 为单位向量,a 与e 的方向相反,且长度为6,那么a = ▲ e . 12.某人从地面沿坡度i =100米,这时他离地面的高度是 ▲ 米.13.已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,那么tan BAE ∠= ▲ .14.已知在Rt △ABC 中,∠C=90º,AC =3,BC =4,⊙C 与斜边AB 相切,那么⊙C 的半径为 ▲ .15.设抛物线l :2(0)y a x bx c a =++≠的顶点为D ,与y 轴的交点是C ,我们称以C 为顶点,且过点D 的抛物线为抛物线l 的“伴随抛物线”,请写出抛物线241y x x =-+的伴随抛物线的解析式 ▲ .16.半径分别为3cm的⊙O 1与⊙O 2相交于A 、B 两点,如果公共弦AB=,那么圆心距O 1O 2的长为 ▲ cm .17.正五边形的边长与边心距的比值为 ▲ .(用含三角比的代数式表示)18.如图,在等腰△ABC 中,AB = AC = 4,BC = 6,点D 在底边BC 上,且∠DAC =∠ACD ,将△ACD 沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为 ▲ .三、解答题:(本大题共7题,满分78分)ACD B (第18题19.(本题满分10分)已知二次函数图像的最高点是A(1,4),且经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧).求△BCD的面积.20.(本题共2小题,第(1)小题2分,第(2)小题8分,满分10分)已知:在平行四边形ABCD中,AB︰BC = 3︰2.(1)根据条件画图:作∠BCD的平分线,交边AB于点E,取线段BE的中点F,联结DF交CE于点G.(2)设AB=a,AD=b,那么向量CG= ▲;(用向量a、b表示),并在图中画出向量DG在向量AB和AD方向上的分向量.21.(本题共2小题,第(1)小题6分,第(2)小题4分,满分10分)如图,梯形ABCD中,AD∥BC,∠ADC=90º,AD= 2,BC= 4,tan3B .以AB为直径作⊙O,交边DC于E、F两点.(1)求证:DE=CF;(2)求:直径AB的长.BCFE(第21题22.(本题共2小题,第(1)小题3分,第(2)小题7分,满分10分) 2019年第18号台风“米娜”于9月29日早晨5点整,由位于台湾省周边的B 岛东南方约980千米的西北太平洋洋面上(A 点)生成,向西北方向移动.并于9月30日20时30分到达B 岛后风力增强且转向,一路向北于24小时后在浙江省舟山市登陆.“米娜”在登录后风力减弱且再一次转向,以每小时20千米的速度向北偏东30º的方向移动,距台风中心170千米的范围内是受台风影响的区域.已知上海位于舟山市北偏西7º方向,且距舟山市250千米.(1)台风中心从生成点(A 点)到达B 岛的速度是每小时多少千米?(2)10月2日上海受到“米娜”影响,那么上海遭受这次台风影响的时间有多长? (结果保留整数,参考数据:sin 230.39≈,cos230.92≈,tan 230.42≈;sin370.60≈,cos370.80≈,tan370.75≈.)上海 浙江ZB台 湾A北东(第22题图)上海CNDSZ舟山23.(本题共2小题,每小题6分,满分12分)如图,在△ABC 中,BD 是AC 边上的高,点E 在边AB 上,联结CE 交BD 于点O ,且AD OC AB OD ⋅=⋅,AF 是∠BAC 的平分线,交BC 于点F ,交DE 于点G .求证:(1)CE ⊥AB ;(2)AF DE AG BC ⋅=⋅.24.(本题共3题,每小题4分,满分12分)已知:在平面直角坐标系xOy 中,对称轴为直线x = -2的抛物线经过点C (0,2),与x 轴交于A (-3,0)、B 两点(点A 在点B(1)求这条抛物线的表达式; (2)联结BC ,求∠BCO 的余切值;x(第24题ABDC(第23题EFGO(3)如果过点C 的直线,交x 轴于点E ,交抛物线于 点P ,且∠CEO =∠BCO ,求点P 的坐标.25.(本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题4分,满分14分)已知:如图,在Rt △ABC 和Rt △ACD 中,AC =BC ,∠ACB =90°,∠ADC =90°,CD =2,(点A 、B 分别在直线CD 的左右两侧),射线CD 交边AB 于点E ,点G 是Rt △ABC 的重心,射线CG 交边AB 于点F ,AD =x ,CE =y .(1)求证:∠DAB =∠DCF ;(2)当点E 在边CD 上时,求y 关于x 的函数关系式,并写出x 的取值范围; (3)如果△CDG 是以CG 为腰的等腰三角形,试求AD 的长.(第25题ABDCEF G闵行区2019学年第一学期九年级质量监控试卷答案要点及评分标准一、选择题:1.C ; 2.A ; 3.B ; 4.D ; 5.C ; 6.B .二、填空题:7.6; 8.4; 9.下降; 10.40; 11.-6; 12.50; 13;14.125; 15.21y x =-+; 16.2或4; 17.2tan36(2sin36cos36).;18.1.三、解答题:19.解:设所求的二次函数解析式为2(1)4(0)y a x a =-+≠,………………………(2分)把B (0,3)代入得23(01)4a =-+解得:1a =-.…………………………(2分)令0y =,那么2(1)4=0x --+,解得:123,1x x ==-.………………………(2分) ∴CD=4.…………………………………………………………………………(2分)在△BCD 中,12BCD S ∆=·CD ·OB=143=62⨯⨯.………………………………(2分)20.解:(1)角平分线………………………………(1分)整体画对;……………………………(1分) (2)CG =12a -34b -.…………………(4分)画图及结论正确.……………………(4分)21.解:(1)过点O 作OH ⊥DC ,垂足为H . ∵AD ∥BC ,∠ADC=90º,OH ⊥DC , ∴∠BCN =∠OHC =∠ADC =90º.……(1分) ∴AD ∥OH ∥BC .……………………(1分) 又∵OA=OB .……………………………(1分) ∴DH=HC .……………………………(1分) ∵OH ⊥DC ,OH 过圆心,∴EH = HF .……………………………(1分) ∴DH -EH =HC -HF .………………(1分) 即:DE =CF .(2)过点A 作AG ⊥BC ,垂足为点G ,∠AGB = 90°, ∵∠AGB =∠BCN = 90°,∴AG ∥DC .FE (第21题NH ABDC(第20题E F G∵AD ∥BC ,∴AD=CG .……………………………………………………(1分) ∵AD= 2,BC= 4,∴BG= BC -CG =2.………………………………(1分) 在Rt △AGB 中,∵tan 3B =,∴tan 236AG BG B =⋅=⨯=.……………………………………………(1分) 在Rt △AGB 中,222AB AG BG =+∴AB=…………………………………………………(1分)22.解:(1)由题意得,AB=980千米,台风中心到达B 岛的时间是39.5小时.…(1分)∴9802539.5v =≈(千米).…………………………………………………(1分) 答:台风中心从生成点(A 点)到达B 岛的速度是每小时25千米.…(1分) (2)过点S 作SH ⊥ZD ,垂足为点H ,∴∠SHZ = 90°, ∵∠NZD=30°,∠CZN=7°,∴∠CZD=∠CZN +∠NZD=7° + 30°=37°.………………………………(1分)在Rt △SHZ 中,sin ∠CZD =SHSZ.∵∠CZD=37°,SZ=250千米, ∴SH=SZ ·sin ∠CZD=250sin372500.60150⨯≈⨯≈(千米).………(2分)∵150千米<170千米,∴设台风中心移动到E 处时上海开始遭受台风影响到F 处影响结束.即SE=SF=170(千米).(第22题D∵在Rt △SEH 中,∠SHE = 90°,222SE SH HE =+,∴80HE ≈.(2分)∴EF=2EH ≈160(千米).……………(1分)∴上海遭受这次台风影响的时间为16082020EF =≈(小时).…………(1分) 答:上海遭受这次台风影响的时间为8小时.23.证明:(1)∵AD OC AB OD ⋅=⋅,∴AD AB OD OC=.………………………………(1分)∵BD 是AC 边上的高,∴∠BDC = 90°,△ADB 和△ODC 是直角三角形.…………………(1分) ∴Rt △ADB ∽Rt △ODC .………………………………………………(1分) ∴∠ABD =∠OCD .……………………………………………………(1分) 又∵∠EOB =∠DOC ,∠DOC +∠OCD +∠ODC =180°,∠EOB +∠ABD+∠OEB =180°.∴∠OEB = 90°.…………………………………………………………(1分) ∴CE ⊥AB .………………………………………………………………(1分)(2)在△ADB 和△AEC 中,∵∠BAD =∠CAE ,∠ABD =∠OCD ,∴△ADB ∽△AEC .………………………………………………………(2分) ∴AD AB AE AC =, 即AD AE AB AC=.…………………………………………(1分) 在△DAE 和△BAC 中∵∠DAE =∠BAC ,AD AE AB AC=. ∴△DAE ∽△BAC .………………………………………………………(2分) ∵AF 是∠BAC 的平分线, ∴AG DE AF BC=, 即AF DE AG BC ⋅=⋅.…………………………………(1分)24.解:(1)设抛物线的表达式为2(0)y ax bx c a =++≠. 由题意得:229302b a a b c c ⎧-=-⎪⎪-+=⎨⎪=⎪⎩………………………………………………(1分) 解得:23a =,83b =.……………………………………………………(2分) ∴这条抛物线的表达式为228233y x x =++.……………………………(1分) 注:用对称性求解析式酌情给分.(2)令y = 0,那么2282033x x ++=,解得13x =-,21x =-.………………………………………………………(1分)∵点A 的坐标是(-3,0)∴点B 的坐标是(-1,0).…………………(1分) ∵C (0,2)∴1OB =,2OC =.…………………………………………(1分) 在Rt △ OBC 中,∠BOC =90º, ∴cot 2OC BCO OB∠==.………………………………………………………(1分)(3)设点E 的坐标是(x ,0),得OE =x .∵CEO BCO ∠=∠, ∴cot cot CEO BCO ∠=∠.在Rt △ EOC 中,∴cot 22x OE CEO OC ∠===. ∴x =4,∴点E 坐标是(4,0)或 (-4,0).………………………(1分) ∵点C 坐标是(0,2), ∴11:2=222CE l y x y x =+-+或.……………………………………………(1分) ∴212228233y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ ,或212228233y x y x x ⎧=-+⎪⎪⎨⎪=++⎪⎩解得13438x y ⎧=-⎪⎪⎨⎪=⎪⎩和02x y =⎧⎨=⎩(舍去),或194358x y ⎧=-⎪⎪⎨⎪=⎪⎩和02x y =⎧⎨=⎩(舍去); ∴点P 坐标是(134-,38)或(194-,358).………………………(2分)25.(1)证明:∵点G 是Rt △ABC 的重心,∴CF 是Rt △ABC 的中线.…………………………………………(1分)又∵在Rt △ABC ,AC =BC ,∠ACB =90°,∴CF ⊥AB ,即∠AFC =90°.…………………………………………(1分) ∵∠DEF =∠ADE +∠DAE =∠EFC +∠ECF ,且∠ADE =∠EFC =90°,∴∠DAB =∠DCF .…………………………………………………(2分)(2)解: 如右图,过点B 作BH ⊥CD 于点H . 可证△CAD ≌△BCH . ………………………(1分)∴BH = CD = 2,CH = AD = x ,DH = 2-x .(1分)可证AD ∥BH .∴EH DE BH AD =.………………(1分) EH DE x =2,EHDH EH EH DE x =+=+22,224+-=x x EH .……………(1分) )20(242242≤++=+-+=+==x x x x x x HE CH CE y <.…………(1+1分) (3)解: 当GC =GD 时,如图1,取AC 的中点M ,联结MD .那么MD =MC ,联结MG ,MG ⊥CD ,且直线MG 经过点B .那么BH 与MG 共线.又CH =AD ,那么AD =CH =112CD =.………………………………(2分) 当CG =CD 时,如图2,即CG =2,点G 为△ABC 的重心,332CF CG ==,AB =2CF =6,2322AC AB ==, 2218414AD AC CD =-=-=.…………………………………(2分)综上所述,AD =1或14.。
上海市闵行区2019-2020学年中考数学复习检测试题
故选B.
【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.
二、填空题(本题包括8个小题)
11.5750
【解析】
【分析】
根据题意设甲产品的成本价格为b元,求出b,可知A原料与B原料的成本和40元,然后设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,列出方程组得到xn=20n﹣250,最后设生产甲乙产品的实际成本为W元,即可解答
23.(8分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:
A超市:所有商品均打九折(按标价的90%)销售;
21.(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
【详解】
∵甲产品每袋售价72元,则利润率为20%.
设甲产品的成本价格为b元,
∴ =20%,
∴b=60,
∴甲产品的成本价格60元,
∴1.5kgA原料与1.5kgB原料的成本和60元,
∴A原料与B原料的成本和40元,
设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,
根据题意得:
B超市:买一副羽毛球拍送2个羽毛球.
2020届闵行区初三一模数学Word版(附详解)
闵行区2019学年第一学期九年级质量监控考试数 学 试 卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.本次测试可使用科学计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.如果把Rt △ABC 的各边长都扩大到原来的n 倍,那么锐角A 的四个三角比值 (A )都缩小到原来的n 倍; (B )都扩大到原来的n 倍; (C )都没有变化; (D )不同三角比的变化不一致. 2.已知P 是线段AB 的黄金分割点,且AP > BP ,那么下列比例式能成立的是 (A )AB AP AP BP =; (B )AB BP AP AB =; (C )BP ABAP BP=; (D)AB AP = 3.k 为任意实数,抛物线2()0y a x k k a =--≠()的顶点总在(A )直线y x =上; (B )直线y x =-上; (C )x 轴上; (D )y 轴上. 4.如图在正三角形ABC 中,点D 、E 分别在AC 、AB 上,且13AD AC =,AE = BE ,那么有 (A )△AED ∽△BED ; (B )△BAD ∽△BCD ; (C )△AED ∽△ABD ; (D )△AED ∽△CBD . 5.下列命题是真命题的是(A )经过平面内任意三点可作一个圆; (B )相等的圆心角所对的弧一定相等;(C )相交两圆的公共弦一定垂直于两圆的连心线; (D )内切两圆的圆心距等于两圆的半径的和.6.二次函数2(0)y a x bx c a =++≠①0a <;②0abc >;③0a b c -+<;④240b ac -<; 其中正确的结论有(A )1个; (B )2个; (C )3个; (D )4个.(第4题图)二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】7.已知线段a = 4厘米,c = 9厘米,那么线段a 和c 的比例中项 ▲ 厘米. 8.在Rt △ABC 中,∠C=90º,AB =10,2sin 5A =,那么BC = ▲ . 9.抛物线22(1)3y x =--+在对称轴右侧的部分是 ▲ 的.(填“上升”或“下降”) 10.如果两个相似三角形的相似比为2︰3,两个三角形的周长的和是100cm ,那么较小的三角形的周长为 ▲ cm .11.e r 为单位向量,a r 与e r 的方向相反,且长度为6,那么a r = ▲ e r .12.某人从地面沿坡度i =100米,这时他离地面的高度是 ▲ 米. 13.已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,那么tan BAE ∠= ▲ .14.已知在Rt △ABC 中,∠C=90º,AC =3,BC =4,⊙C 与斜边AB 相切,那么⊙C 的半径为 ▲ .15.设抛物线l :2(0)y a x bx c a =++≠的顶点为D ,与y 轴的交点是C ,我们称以C为顶点,且过点D 的抛物线为抛物线l 的“伴随抛物线”,请写出抛物线241y x x =-+的伴随抛物线的解析式 ▲ .16.半径分别为3cm的⊙O 1与⊙O 2相交于A 、B 两点,如果公共弦AB=,那么圆心距O 1O 2的长为 ▲ cm .17.正五边形的边长与边心距的比值为 ▲ .(用含三角比的代数式表示) 18.如图,在等腰△ABC 中,AB = AC = 4,BC = 6,点D 在底边BC 上,且∠DAC =∠ACD ,将△ACD 沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)已知二次函数图像的最高点是A (1,4),且经过点B (0,3),与x 轴交于C 、D 两点(点C 在点D 的左侧).求△BCD 的面积. 20.(本题共2小题,第(1)小题2分,第(2)小题8分,满分10分)已知:在平行四边形ABCD 中,AB ︰BC = 3︰2.(1)根据条件画图:作∠BCD 的平分线,交边AB 于点取线段BE 的中点F ,联结DF 交CE 于点G .(2)设AB u u u r =a r ,AD u u u r =b r ,那么向量CG u u u r= ▲ ;(用向量a r 、b r 表示),并在图中画出向量DG uuu r在向量AB u u u r 和AD u u u r方向上的分向量.ACDB(第18题图)21.(本题共2小题,第(1)小题6分,第(2)小题4分,满分10分)如图,梯形ABCD 中,AD ∥BC ,∠ADC=90º,AD= 2,BC= 4,tan 3B =.以AB 为直径作⊙O ,交边DC 于E 、F 两点. (1)求证:DE =CF ; (2)求:直径AB 的长.22.(本题共2小题,第(1)小题3分,第(2)小题7分,满分10分)2019年第18号台风“米娜”于9月29日早晨5点整,由位于台湾省周边的B 岛东南方约980千米的西北太平洋洋面上(A 点)生成,向西北方向移动.并于9月30日20时30分到达B 岛后风力增强且转向,一路向北于24小时后在浙江省舟山市登陆.“米娜”在登录后风力减弱且再一次转向,以每小时20千米的速度向北偏东30º的方向移动,距台风中心170千米的范围内是受台风影响的区域.已知上海位于舟山市北偏西7º方向,且距舟山市250千米.(1)台风中心从生成点(A 点)到达B 岛的速度是每小时多少千米?(2)10月2日上海受到“米娜”影响,那么上海遭受这次台风影响的时间有多长?(结果保留整数,参考数据:sin 230.39≈o ,cos230.92≈o ,tan 230.42≈o ;sin370.60≈o ,cos370.80≈o ,tan370.75≈o .)(第22题图)A (第21题图)23.(本题共2小题,每小题6分,满分12分)如图,在△ABC 中,BD 是AC 边上的高,点E 在边AB 上,联结CE 交BD 于点O ,且AD OC AB OD ⋅=⋅,AF 是∠BAC 的平分线,交BC 于点F ,交DE 于点G .求证:(1)CE ⊥AB ;(2)AF DE AG BC ⋅=⋅.24.(本题共3题,每小题4分,满分12分)已知:在平面直角坐标系xOy 中,对称轴为直线x = -2的抛物线经过点C (0,2),与x 轴交于A (-3,0)、B 两点(点A 在点B(1)求这条抛物线的表达式; (2)联结BC ,求∠BCO 的余切值;(3)如果过点C 的直线,交x 轴于点E 点P ,且∠CEO =∠BCO ,求点P25.(本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题4分,满分14分) 已知:如图,在Rt △ABC 和Rt △ACD 中,AC =BC ,∠ACB =90°,∠ADC =90°,CD =2,(点A 、B 分别在直线CD 的左右两侧),射线CD 交边AB 于点E ,点G 是Rt △ABC 的重心,射线CG 交边AB 于点F ,AD =x ,CE =y . (1)求证:∠DAB =∠DCF ;(2)当点E 在边CD 上时,求y 关于x 的函数关系式,并写出x 的取值范围; (3)如果△CDG 是以CG 为腰的等腰三角形,试求AD 的长.(第24题图)A BDC(第23题图)EFG O(第25题图)ABDE F G行区2019学年第一学期九年级质量监控试卷答案要点及评分标准一、选择题:1.C ; 2.A ; 3.B ; 4.D ; 5.C ; 6.B .二、填空题:7.6; 8.4; 9.下降; 10.40;11.-6;12.50;13;14.125; 15.21y x =-+; 16.2或4; 17.2tan36o(2sin36cos36o o).; 18.1.三、解答题:19.解:设所求的二次函数解析式为2(1)4(0)y a x a =-+≠,………………(2分)把B (0,3)代入得23(01)4a =-+解得:1a =-.…………………(2分) 令0y =,那么2(1)4=0x --+,解得:123,1x x ==-.………………(2分) ∴CD=4.…………………………………………………(2分) 在△BCD 中,12BCD S ∆=·CD ·OB=143=62⨯⨯.……………………(2分)20.解:(1)角平分线………………………………(1分)整体画对;……………………………(1分) (2)CG=12a -r 34b -r.…………………(4分) 画图及结论正确.……………………(4分)21.解:(1)过点O 作OH ⊥DC ,垂足为H .∵AD ∥BC ,∠ADC=90º,OH ⊥DC , ∴∠BCN =∠OHC =∠ADC =90º.……(1分) ∴AD ∥OH ∥BC .……………………(1分) 又∵OA=OB .……………………………(1分) ∴DH=HC .……………………………(1分) ∵OH ⊥DC ,OH 过圆心,∴EH = HF .……………………………(1分) ∴DH -EH =HC -HF .………………(1分)A(第21题图)ABDC(第20题图)EFG即:DE =CF .(2)过点A 作AG ⊥BC ,垂足为点G ,∠AGB = 90°,∵∠AGB =∠BCN = 90°,∴AG ∥DC .∵AD ∥BC ,∴AD=CG .………………………………………(1分) ∵AD= 2,BC= 4,∴BG= BC -CG =2.…………………………(1分) 在Rt △AGB 中,∵tan 3B =,∴tan 236AG BG B =⋅=⨯=.……………………………(1分) 在Rt △AGB 中,222AB AG BG =+∴AB=1分)22.解:(1)由题意得,AB=980千米,台风中心到达B 岛的时间是39.5小时.…(1分)∴9802539.5v =≈(千米).…………………………………(1分) 答:台风中心从生成点(A 点)到达B 岛的速度是每小时25千米.…(1分)(2)过点S 作SH ⊥ZD ,垂足为点H ,∴∠SHZ = 90°,∵∠NZD=30°,∠CZN=7°,∴∠CZD=∠CZN +∠NZD=7° + 30°=37°.……………………(1分) 在Rt △SHZ 中,sin ∠CZD =SHSZ.∵∠CZD=37°,SZ=250千米, ∴SH=SZ ·sin ∠CZD=250sin372500.60150⨯≈⨯≈o (千米).……(2分)∵150千米<170千米, ∴设台风中心移动到E 处时上海开始遭受台风影响 到F 处影响结束.即SE=SF=170(千米). ∵在Rt △SEH 中,∠SHE = 90°,222SE SH HE =+,∴80HE .(2分) ∴EF=2EH ≈160(千米).……………(1分) ∴上海遭受这次台风影响的时间为16082020EF =≈(小时).…………(1分) 答:上海遭受这次台风影响的时间为8小时.(第22题图)23.证明:(1)∵AD OC AB OD ⋅=⋅,∴AD ABOD OC=.………………………(1分) ∵BD 是AC 边上的高,∴∠BDC = 90°,△ADB 和△ODC 是直角三角形.…………………(1分)∴Rt △ADB ∽Rt △ODC .……………………………(1分) ∴∠ABD =∠OCD .…………………………………(1分) 又∵∠EOB =∠DOC ,∠DOC +∠OCD +∠ODC =180°,∠EOB +∠ABD+∠OEB =180°.∴∠OEB = 90°.……………………………………………(1分) ∴CE ⊥AB .……………………………………(1分) (2)在△ADB 和△AEC 中,∵∠BAD =∠CAE ,∠ABD =∠OCD ,∴△ADB ∽△AEC .…………………………………(2分) ∴AD AB AE AC =, 即AD AEAB AC=.…………………………(1分) 在△DAE 和△BAC 中 ∵∠DAE =∠BAC ,AD AEAB AC=. ∴△DAE ∽△BAC .………………………………………(2分) ∵AF 是∠BAC 的平分线, ∴AG DE AF BC =, 即AF DE AG BC ⋅=⋅.……………………(1分)24.解:(1)设抛物线的表达式为2(0)y ax bx c a =++≠.由题意得:229302ba abc c ⎧-=-⎪⎪-+=⎨⎪=⎪⎩………………………………(1分)解得:23a =,83b =.……………………………………(2分)∴这条抛物线的表达式为228233y x x =++.………………(1分)注:用对称性求解析式酌情给分.(2)令y = 0,那么2282033x x ++=,解得13x =-,21x =-.……………………………(1分) ∵点A 的坐标是(-3,0)∴点B 的坐标是(-1,0).………(1分) ∵C (0,2)∴1OB =,2OC =.……………………(1分) 在Rt △ OBC 中,∠BOC =90º,∴cot 2OCBCO OB∠==.………………………………(1分) (3)设点E 的坐标是(x ,0),得OE =x .∵CEO BCO ∠=∠, ∴cot cot CEO BCO ∠=∠.在Rt △ EOC 中,∴cot 22xOE CEO OC ∠===.∴x =4,∴点E 坐标是(4,0)或 (-4,0).……………(1分) ∵点C 坐标是(0,2),∴11:2=222CE l y x y x =+-+或.………………………(1分)∴212228233y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ ,或212228233y x y x x ⎧=-+⎪⎪⎨⎪=++⎪⎩解得13438x y ⎧=-⎪⎪⎨⎪=⎪⎩和02x y =⎧⎨=⎩(舍去),或194358x y ⎧=-⎪⎪⎨⎪=⎪⎩和02x y =⎧⎨=⎩(舍去);∴点P 坐标是(134-,38)或(194-,358).………………………(2分)25.(1)证明:∵点G 是Rt △ABC 的重心,∴CF 是Rt △ABC 的中线.…………………………………………(1分) 又∵在Rt △ABC ,AC =BC ,∠ACB =90°,∴CF ⊥AB ,即∠AFC =90°.…………………………………………(1分) ∵∠DEF =∠ADE +∠DAE =∠EFC +∠ECF ,且∠ADE =∠EFC =90°, ∴∠DAB =∠DCF .…………………………………………………(2分)(2)解: 如右图,过点B 作BH ⊥CD 于点H . 可证△CAD ≌△BCH . ………………………(1分)∴BH = CD = 2,CH = AD = x ,DH = 2-x .(1分)可证AD ∥BH .∴EH DE BH AD =.………………(1EH DE x =2,EHDH EH EH DE x =+=+22,224+-=x x EH .……………(1分) )20(242242≤++=+-+=+==x x x x x x HE CH CE y <.…………(1+1分) (3)解: 当GC =GD 时,如图1,取AC 的中点M ,联结MD .那么MD =MC ,联结MG ,MG ⊥CD ,且直线MG 经过点B .那么BH 与MG 共线.又CH =AD ,那么AD =CH =112CD =.………………………………(2分)当CG =CD 时,如图2,即CG =2,点G 为△ABC 的重心,332CF CG ==,AB =2CF =6,AC AB =,AD =2分)综上所述,AD =1。
上海市闵行区2019-2020学年中考数学一模试卷含解析
上海市闵行区2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6B.5C.4D.32.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,所得直线的解析式为()A.y=x+1 B.y=x-1 C.y=x D.y=x-23.在平面直角坐标系xOy中,若点P(3,4)在⊙O内,则⊙O的半径r的取值范围是()A.0<r<3 B.r>4 C.0<r<5 D.r>54.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.5.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是()A.B.C.D.6.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是()人数 3 4 2 1分数80 85 90 95A.85和82.5 B.85.5和85 C.85和85 D.85.5和807.若a与5互为倒数,则a=()A.15B.5 C.-5 D.158.如图,△ABC中,D、E分别为AB、AC的中点,已知△ADE的面积为1,那么△ABC的面积是()A.2 B.3 C.4 D.59.下列图形中,属于中心对称图形的是()A.B.C.D.10.下列运算中,正确的是()A.(a3)2=a5B.(﹣x)2÷x=﹣xC.a3(﹣a)2=﹣a5D.(﹣2x2)3=﹣8x611.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下12.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN 周长的最小值是5cm,则∠AOB的度数是().A.25︒B.30︒C.35︒D.40︒二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)k y k x=≠的图象恰好经过点A′,B ,则的值为_________.14.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 15.已知关于x 的一元二次方程(a-1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是_______________.16.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m 、n 的式子表示AB 的长为______.17.如图,在平行四边形ABCD 中,点E 在边BC 上,将ABE △沿AE 折叠得到AFE △,点F 落在对角线AC 上.若AB AC ⊥,3AB =,5AD =,则CEF △的周长为________.18.如图,函数y=k x (x<0)的图像与直线3交于A 点,将线段OA 绕O 点顺时针旋转30°,交函数y=kx(x<0)的图像于B 点,得到线段OB ,若线段26,则k= _______________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知抛物线y=13x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC 相似,若存在,求出点Q的坐标,若不存在,请说明理由.20.(6分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数kyx 的图象上,过点A的直线y=x+b交x轴于点B.求k和b的值;求△OAB的面积.21.(6分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.22.(8分)计算:(1-n)03|+(-13)-1+4cos30°.23.(8分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)24.(10分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=13,求AE的长.25.(10分)计算:(12)﹣2﹣327+(﹣2)0+|2﹣8|26.(12分)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1<x2,y1<y2,指出点M,N各位于哪个象限,并简要说明理由.27.(12分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD时,直接写出BC的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B.【点睛】此题考查由三视图判断几何体,解题关键在于识别图形2.A【解析】向左平移一个单位长度后解析式为:y=x+1.故选A.点睛:掌握一次函数的平移.3.D【解析】【分析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.【详解】∵点P的坐标为(3,4),∴OP==1.∵点P(3,4)在⊙O内,∴OP<r,即r>1.故选D.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.4.A【解析】试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选A.【考点】简单组合体的三视图.5.B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.6.B【解析】【分析】根据众数及平均数的定义,即可得出答案.【详解】解:这组数据中85出现的次数最多,故众数是85;平均数=110(80×3+85×4+90×2+95×1)=85.5.故选:B.【点睛】本题考查了众数及平均数的知识,掌握各部分的概念是解题关键. 7.A【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.详解:根据题意可得:5a=1,解得:a=15, 故选A . 点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.8.C【解析】【分析】根据三角形的中位线定理可得DE ∥BC ,DE BC =12,即可证得△ADE ∽△ABC ,根据相似三角形面积的比等于相似比的平方可得ADE ABC S S ∆∆=14,已知△ADE 的面积为1,即可求得S △ABC =1. 【详解】∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,DE BC =12, ∴△ADE ∽△ABC , ∴ADE ABC S S ∆∆=(12)2=14, ∵△ADE 的面积为1,∴S △ABC =1.故选C .【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,先证得△ADE ∽△ABC ,根据相似三角形面积的比等于相似比的平方得到ADE ABC S S ∆∆=14是解决问题的关键. 9.B【解析】【分析】A 、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.【详解】A 、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;B 、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;C 、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;D 、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.【点睛】本题考查了轴对称与中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.D【解析】【分析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.【详解】∵(a3)2=a6,∴选项A不符合题意;∵(-x)2÷x=x,∴选项B不符合题意;∵a3(-a)2=a5,∴选项C不符合题意;∵(-2x2)3=-8x6,∴选项D符合题意.故选D.【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.11.C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.12.B试题分析:作点P 关于OA 对称的点P 3,作点P 关于OB 对称的点P 3,连接P 3P 3,与OA 交于点M,与OB 交于点N,此时△PMN 的周长最小.由线段垂直平分线性质可得出△PMN 的周长就是P 3P 3的长,∵OP=3,∴OP 3=OP 3=OP=3.又∵P 3P 3=3,,∴OP 3=OP 3=P 3P 3,∴△OP 3P 3是等边三角形, ∴∠P 3OP 3=60°,即3(∠AOP+∠BOP )=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B .考点:3.线段垂直平分线性质;3.轴对称作图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】【详解】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,,∴A′(12m ), ∵反比例函数y=k x (k≠0)的图象恰好经过点A′,B ,∴12,∴,∴【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.14.1【解析】【分析】根据白球的概率公式44n+=13列出方程求解即可.【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)=44n+=13.解得:n=1,故答案为1.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.15.a<2且a≠1.【解析】【分析】利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.【详解】试题解析:∵关于x的一元二次方程(a-1)x2-2x+l=0有两个不相等的实数根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解这个不等式得,a<2,又∵二次项系数是(a-1),∴a≠1.故a的取值范围是a<2且a≠1.【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.16.3m n n +-【解析】【分析】过点C作CE⊥CF延长BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长. 【详解】解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.在Rt△BDF中,BF=n,∠DBF=30°,∴3tan3DF BF DBF n =⋅∠=.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴3AB BE AE CD DF AE m n n =-=+-=+-.故答案为:3m n n +-.【点睛】此题考查解直角三角形的应用,解题的关键在于做辅助线.17.6.【解析】【分析】先根据平行线的性质求出BC=AD=5,再根据勾股定理可得AC=4,然后根据折叠的性质可得AF=AB=3,EF=BE,从而可求出CEF△的周长.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=5,∵AB AC⊥,∴AC=22BCAB - =2253-=4∵ABE △沿AE 折叠得到AFE △, ∴AF=AB=3,EF=BE ,∴CEF △的周长=CE+EF+FC=CE+BE+CF =BC+AC-AF =5+4-3=6 故答案为6. 【点睛】本题考查了平行四边形的性质,勾股定理,折叠的性质,三角形的周长计算方法,运用转化思想是解题的关键. 18.-33 【解析】 【分析】作AC ⊥x 轴于C ,BD ⊥x 轴于D ,AE ⊥BD 于E 点,设A 点坐标为(3a ,-3a ),则OC=-3a ,AC=-3a ,利用勾股定理计算出OA=-23a ,得到∠AOC=30°,再根据旋转的性质得到OA=OB ,∠BOD=60°,易证得Rt △OAC ≌Rt △BOD ,OD=AC=-3a ,BD=OC=-3a ,于是有AE=OC-OD=-3a+3a ,BE=BD-AC=-3a+3a ,即AE=BE ,则△ABE 为等腰直角三角形,利用等腰直角三角形的性质得到32-6=2(-3a+3a ),求出a=1,确定A 点坐标为(3,-3),然后把A (3,-3)代入函数y=kx即可得到k 的值. 【详解】作AC ⊥x 轴与C ,BD ⊥x 轴于D ,AE ⊥BD 于E 点,如图,点A 在直线3上,可设A 点坐标为(3a ,3a ), 在Rt △OAC 中,OC=-3a ,3a , ∴22AC OC +3,∴∠AOC=30°,∵直线OA绕O点顺时针旋转30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴,BD=OC=-3a,∵四边形ACDE为矩形,∴a,,∴AE=BE,∴△ABE为等腰直角三角形,∴AE,即(),解得a=1,∴A点坐标为(3,),而点A在函数y=kx的图象上,∴k=3×(故答案为【点睛】本题是反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用勾股定理、旋转的性质以及等腰直角三角形的性质进行线段的转换与计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1) 抛物线的解析式为y=13x2-2x+1,(2) 四边形AECP的面积的最大值是814,点P(92,﹣54);(3) Q(4,1)或(-3,1). 【解析】【分析】(1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,13m2−2m+1),根据S四边形AECP=S△AEC+S△APC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出∠BAC=∠PCA=45°,则要分两种情况讨论,根据相似三角形的对应边成比例求t.【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:13×81+9b+c=10,c=1,解得b=−2,c=1,所以抛物线的解析式y=13x2−2x+1;(2)∵AC∥x轴,A(0,1),∴13x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),∵点A(0,1),点B(9,10),∴直线AB的解析式为y=x+1,设P(m,13m2−2m+1),∴E(m,m+1),∴PE=m+1−(13m2−2m+1)=−13m2+3m.∵AC⊥PE,AC=6,∴S四边形AECP=S△AEC+S△APC=12AC⋅EF+12AC⋅PF=12AC⋅(EF+PF)=12AC⋅EP=12×6(−13m2+3m)=−m2+9m.∵0<m<6,∴当m=92时,四边形AECP的面积最大值是814,此时P(9524,);(3)∵y=13x2−2x+1=13(x−3)2−2,P(3,−2),PF=y F−y p=3,CF=x F−x C=3,∴PF=CF,∴∠PCF=45∘,同理可得∠EAF=45∘,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的点Q,设Q(t,1)且AB=92,AC=6,CP=32,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,CQ:AC=CP:AB,(6−t):6=3292t=4,所以Q(4,1);②当△CQP∽△ABC时,CQ:AB=CP:AC,(6−t):9232=6,解得t=−3,所以Q(−3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与△ABC 相似,Q点的坐标为(4,1)或(−3,1).【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ 的比例,要分类讨论,以防遗漏. 20.(1)k=10,b=3;(2)152. 【解析】试题分析:(1)、将A 点坐标代入反比例函数解析式和一次函数解析式分别求出k 和b 的值;(2)、首先根据一次函数求出点B 的坐标,然后计算面积. 试题解析:(1)、把x=2,y=5代入y=kx,得k==2×5=10 把x=2,y=5代入y=x+b ,得b=3(2)、∵y=x+3 ∴当y=0时,x=-3, ∴OB=3 ∴S=12×3×5=7.5 考点:一次函数与反比例函数的综合问题. 21.(1)y =-12(x -3)2+5(2)5 【解析】 【分析】(1)设顶点式y=a (x-3)2+5,然后把A 点坐标代入求出a 即可得到抛物线的解析式; (2)利用抛物线的对称性得到B (5,3),再确定出C 点坐标,然后根据三角形面积公式求解. 【详解】(1)设此抛物线的表达式为y =a(x -3)2+5,将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得12a =-, ∴此抛物线的表达式为21(3) 5.2y x =--+ (2)∵A(1,3),抛物线的对称轴为直线x =3, ∴B(5,3). 令x =0,211(3)522y x =--+=,则1(0)2C ,,∴△ABC 的面积11(51)3 5.22⎛⎫=⨯-⨯-= ⎪⎝⎭ 【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键. 22.1 【解析】 【分析】根据实数的混合计算,先把各数化简再进行合并. 【详解】原式=1 【点睛】此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算. 23.29.8米. 【解析】 【分析】作AD BC ⊥,BH CN ⊥,根据题意确定出ABC ∠与BCH ∠的度数,利用锐角三角函数定义求出AD 与BD 的长度,由CD BD +求出BC 的长度,即可求出BH 的长度. 【详解】解:如图,作AD BC ⊥,BH CN ⊥,由题意得:MCD 57MCA 12AB CH ∠∠︒︒P =,=,, ACB 45BCH ABC 33∠∠∠∴︒︒=,==, AB 40Q =米,AD CD sin ABC?AB 40sin33m BD AB?cos3340cos33===,==∠∴⨯︒︒⨯︒米, BC CD BD 40sin33cos3355.2∴+⨯︒+︒≈==()米,则BH BC?sin3329.8︒≈=米,答:这架无人飞机的飞行高度为29.8米.【点睛】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.24.(1)证明见解析;(22.【解析】【分析】(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得2,于是可求得2.【详解】解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=13,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得22OD OA-=22∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴DC DEAD DC=222ED=.解得:2,∴AE=AD﹣2.25.2【解析】【分析】直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简解:原式=4﹣3+1+22﹣2=22.【点睛】本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点.26.(1) k1=1,b=6(1)15(3)点M在第三象限,点N在第一象限【解析】试题分析:(1)把A(1,8)代入求得=8,把B(-4,m)代入求得m=-1,把A(1,8)、B(-4,-1)代入求得、b的值;(1)设直线y=1x+6与x轴的交点为C,可求得OC的长,根据S△ABC=S△AOC+S△BOC即可求得△AOB的面积;(3)由<可知有三种情况,①点M、N在第三象限的分支上,②点M、N在第一象限的分支上,③ M在第三象限,点N在第一象限,分类讨论把不合题意的舍去即可.试题解析:解:(1)把A(1,8),B(-4,m)分别代入,得=8,m=-1.∵A(1,8)、B(-4,-1)在图象上,∴,解得,.(1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,∴OC=3∴S△ABC=S△AOC+S△BOC=(3)点M在第三象限,点N在第一象限.①若<<0,点M、N在第三象限的分支上,则>,不合题意;②若0<<,点M、N在第一象限的分支上,则>,不合题意;③若<0<,M在第三象限,点N在第一象限,则<0<,符合题意.考点:反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质.27.(1)相等或互补;(2)①BD+AB=2BC;②AB﹣BD2BC;(3)BC3131.(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题, ②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;当点C,D在直线MN两侧时,如图2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D与∠MAC之间的数量是相等或互补;(2)①猜想:BD+AB2BC如图3,在射线AM上截取AF=BD,连接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=2BC∵AF+AB=BF=2BC∴BD+AB=2BC;②如图2,在射线AM上截取AF=BD,连接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=2BC∵AB﹣AF=BF=2BC∴AB﹣BD=2BC;(3)①当点C,D在直线MN同侧时,如图3﹣1,由(2)①知,△ACF≌△DCB,∴CF =BC ,∠ACF =∠ACD =90°, ∴∠ABC =45°,∵∠ABD =90°,∴∠CBD =45°,过点D 作DG ⊥BC 于G ,在Rt △BDG 中,∠CBD =45°,BD =2, ∴DG =BG =1,在Rt △CGD 中,∠BCD =30°, ∴CG =3,DG =3,∴BC =CG+BG =3+1,②当点C ,D 在直线MN 两侧时,如图2﹣1, 过点D 作DG ⊥CB 交CB 的延长线于G , 同①的方法得,BG =1,CG =3, ∴BC =CG ﹣BG =3﹣1即:BC =31+ 或31-,【点睛】本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键.。
2019年上海市闵行区中考数学一模试卷(解析版)
2019年上海市闵行区中考数学一模试卷一、选择题(每题4分,满分24分)1.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不成立的是()A.tan B=B.cos B=C.sin A=D.cot A=2.如果从甲船看乙船,乙船在甲船的南偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.北偏东30°B.北偏西30°C.北偏东60°D.北偏西60°3.将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣2)2﹣4B.y=2(x﹣1)2+3C.y=2(x﹣1)2﹣3D.y=2x2﹣34.已知二次函数y=ax2+bx+c的图象如图所示,那么根据图象,下列判断中不正确的是()A.a<0B.b>0C.c>0D.abc>05.已知:点C在线段AB上,且AC=2BC,那么下列等式正确的是()A.=B.﹣2=C.||=||D.||=||6.已知在△ABC中,点D、E、F分别在边AB、AC和BC上,且DE∥BC,DF∥AC,那么下列比例式中,正确的是()A.=B.=C.=D.=二、填空题:(本大题共12题,每题4分,满分48分)7.已知:x:y=2:5,那么(x+y):y=.8.化简:()=.9.抛物线y=x2+3x+2与y轴的交点坐标是.10.已知二次函数y=﹣3,如果x>0,那么函数值y随着自变量x的增大而(填“增大”或“减小”).11.已知线段AB=4厘米,点P是线段AB的黄金分割点(AP>BP),那么线段AP=厘米.(结果保留根号)12.在△ABC中,点D、E分别在边AB、AC上,且DE∥BC.如果=,DE=6,那么BC=.13.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为.14.在Rt△ABC中,∠C=90°,AB=2,tan A=,那么BC=.15.某超市自动扶梯的坡比为1:2.4.一位顾客从地面沿扶梯上行了5.2米,那么这位顾客此时离地面的高度为米.16.在△ABC和△DEF中,=.要使△ABC∽△DEF,还需要添加一个条件,那么这个条件可以是(只需填写一个正确的答案).17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,点D、E分别在边AB上,且AD=2,∠DCE=45°,那么DE=.18.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为边AB上一点.将△BCD 沿直线CD翻折,点B落在点E处,连接AE.如果AE∥CD,那么BE=.三、解答题:(本大题共7题,满分78分)19.(10分)已知在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象经过点A(1,0)、B(0,﹣5)、C(2,3).求这个二次函数的解析式,并求出其图象的顶点坐标和对称轴.20.(10分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O.E为边AB上一点,且BE=2AE.设=,=.(1)填空:向量=;(2)如果点F是线段OC的中点,那么向量=,并在图中画出向量在向量和方向上的分向量.(注:本题结果用向量,的式子表示.画图不要求写作法,但要指出所作图中表示结论的向量).21.(10分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.点D是AB边上一点,过点D作DE∥BC,交边AC于E.过点C作CF∥AB,交DE的延长线于点F.(1)如果=,求线段EF的长;(2)求∠CFE的正弦值.22.(10分)如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,≈1.4142.23.(12分)如图,在△ABC中,点D为边BC上一点,且AD=AB,AE⊥BC,垂足为点E.过点D作DF∥AB,交边AC于点F,连接EF,EF2=BD•EC.(1)求证:△EDF∽△EFC;(2)如果=,求证:AB=BD.24.(12分)已知:在平面直角坐标系xOy中,抛物线y=ax2+bx经过点A(5,0)、B(﹣3,4),抛物线的对称轴与x轴相交于点D.(1)求抛物线的表达式;(2)联结OB、BD.求∠BDO的余切值;(3)如果点P在线段BO的延长线上,且∠P AO=∠BAO,求点P的坐标.25.(14分)如图,在梯形ABCD中,AD∥BC,AB=CD,AD=5,BC=15,cos∠ABC=.E 为射线CD上任意一点,过点A作AF∥BE,与射线CD相交于点F.连接BF,与直线AD相交于点G.设CE=x,=y.(1)求AB的长;(2)当点G在线段AD上时,求y关于x的函数解析式,并写出函数的定义域;(3)如果=,求线段CE的长.参考答案一、选择1.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不成立的是()A.tan B=B.cos B=C.sin A=D.cot A=【分析】根据三角函数的定义进行判断,就可以解决问题.【解答】解:∵Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,∴tan B=,故A选项成立;cos B=,故B选项成立;sin A=,故C选项成立;cot A=,故D选项不成立;故选:D.【点评】本题主要考查了锐角三角函数的定义,我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sin A.锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.锐角A的对边a与邻边b的比叫做∠A的正切,记作tan A.2.如果从甲船看乙船,乙船在甲船的南偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.北偏东30°B.北偏西30°C.北偏东60°D.北偏西60°【分析】根据题意画出图形,进而分析得出从乙船看甲船的方向.【解答】解:∵从甲船看乙船,乙船在甲船的南偏东30°方向,∴从乙船看甲船,甲船在乙船的北偏西30°方向.故选:B.【点评】此题主要考查了方向角,根据题意画出图形是解题关键.描述方向角时,一般先叙述北或南,再叙述偏东或偏西.3.将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣2)2﹣4B.y=2(x﹣1)2+3C.y=2(x﹣1)2﹣3D.y=2x2﹣3【分析】根据二次函数图象的平移规律“上加下减,左加右减”.【解答】解:由“上加下减,左加右减”的原则可知,将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后,得以新的抛物线的表达式是,y=2(x﹣2+1)2﹣3,即y=2(x﹣1)2﹣3,故选:C.【点评】本题主要考查的是函数图象的平移,由y=ax2平移得到y=a(x﹣h)2+k,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式即可.4.已知二次函数y=ax2+bx+c的图象如图所示,那么根据图象,下列判断中不正确的是()A.a<0B.b>0C.c>0D.abc>0【分析】根据二次函数的图象与性质即可求出答案.【解答】解:(A)由图象的开口方向可知:a<0,故A正确;(B)由对称轴可知:x=<0,∴b<0,故B错误;(C)由图象可知:c>0,故C正确;(D)∵a<0,b<0,c>0,∴abc>0,故D正确;故选:B.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.5.已知:点C在线段AB上,且AC=2BC,那么下列等式正确的是()A.=B.﹣2=C.||=||D.||=||【分析】由已知点C在线段AB上,AC=2BC,故可以知道C点是线段AB的一个三等分点,且靠近B点,所以有BC=AB.【解答】解:∵AC=2BC,∴BC=AB,AC=AB,∴AC+2BC=AB,AC﹣2BC=0,AC+BC=AB,AC﹣BC=BC,∴=,﹣2=4,||=||,||=3||.故选项ABD等式不成立,选项C等式正确.故选:C.【点评】考查了平面向量,掌握平面向量的定义和线段间的数量关系是解题的关键,难度不大.6.已知在△ABC中,点D、E、F分别在边AB、AC和BC上,且DE∥BC,DF∥AC,那么下列比例式中,正确的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理,可得A正确.【解答】解:∵DE∥BC,DF∥AC,∴=,=,∴=.故选:A.【点评】此题考查了平行线分线段成比例定理.解题的关键是注意根据题意作图,利用数形结合思想求解.二、填空题:(本大题共12题,每题4分,满分48分)7.已知:x:y=2:5,那么(x+y):y=7:5.【分析】直接根据已知用同一未知数表示出各数,进而得出答案.【解答】解:∵x:y=2:5,∴设x=2a,则y=5a,那么(x+y):y=7:5.故答案为:7:5.【点评】此题主要考查了比例的性质,正确表示出x,y的值是解题关键.8.化简:()=.【分析】实数的运算法则同样适用于本题.【解答】解:()=﹣=(﹣+)+(1﹣)=.故答案是:.【点评】考查了平面向量的知识,实数的加减运算法则同样适用于平面向量的加减计算.9.抛物线y=x2+3x+2与y轴的交点坐标是(0,2).【分析】若求抛物线与y轴的交点坐标,只需令x=0求得y值即可.【解答】解:令x=0,y=2,则抛物线y=x2+3x+2与y轴的交点坐标是(0,2).【点评】本题考查了二次函数图象上点的坐标特征,若求与坐标轴的交点,只需令x=0或y=0即可.10.已知二次函数y=﹣3,如果x>0,那么函数值y随着自变量x的增大而减小(填“增大”或“减小”).【分析】根据题意和二次函数的性质,可以解答本题.【解答】解:∵二次函数y=﹣3,∴该函数的开口向下,顶点坐标为(0,﹣3),∴当x>0时,y随x的增大而减小,故答案为:减小.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.11.已知线段AB=4厘米,点P是线段AB的黄金分割点(AP>BP),那么线段AP=2﹣2厘米.(结果保留根号)【分析】根据黄金比值为计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=2﹣2,故答案为:2﹣2.【点评】本题考查的是黄金分割,掌握黄金比值是是解题的关键.12.在△ABC中,点D、E分别在边AB、AC上,且DE∥BC.如果=,DE=6,那么BC=10.【分析】直接利用相似三角形的判定与性质得出=,进而分析得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵=,∴=,解得:BC=10.故答案为10.【点评】此题主要考查了相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.13.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为4:9.【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【解答】解:∵两个相似三角形的相似比为2:3,∴这两个相似三角形的面积比为4:9.【点评】本题考查了相似三角形的性质:相似三角形的面积的比等于相似比的平方.14.在Rt△ABC中,∠C=90°,AB=2,tan A=,那么BC=2.【分析】依据Rt△ABC中,∠C=90°,tan A=,可设BC=a,AC=3a,再根据勾股定理列方程求解,即可得到BC的长.【解答】解:∵Rt△ABC中,∠C=90°,tan A=,∴可设BC=a,AC=3a,∵BC2+AC2=AB2,∴a2+(3a)2=(2)2,解得a=2,∴BC=2,故答案为:2.【点评】本题考查锐角三角函数的定义及运用,在直角三角形中,锐角A的对边a与邻边b的比叫做∠A的正切,记作tan A.15.某超市自动扶梯的坡比为1:2.4.一位顾客从地面沿扶梯上行了5.2米,那么这位顾客此时离地面的高度为2米.【分析】已知斜坡的坡比就是告诉了两直角边的关系,设最高点离地面的高度为x,由勾股定理建立方程,解方程即可.【解答】解:由已知得斜坡垂直高度与水平宽度之比为1:2.4.设斜坡上最高点离地面的高度(即垂直高度)为x米,则水平宽度为2.4x米,由勾股定理得x2+(2.4x)2=5.22,解之得x=2(负值舍去).故答案为:2.【点评】本题考查了解直角三角形的应用﹣坡角坡度问题,勾股定理,正确的理解题意是解题的关键.16.在△ABC和△DEF中,=.要使△ABC∽△DEF,还需要添加一个条件,那么这个条件可以是∠B=∠E(答案不唯一)(只需填写一个正确的答案).【分析】根据相似三角形的判定定理即可得到结论.【解答】解:在△ABC和△DEF中,=.要使△ABC∽△DEF,需要添加的条件是∠B=∠E(答案不唯一),故答案为:∠B=∠E.【点评】本题考查了相似三角形的判定定理,熟练掌握相似三角形的判定定理是解题的关键.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,点D、E分别在边AB上,且AD=2,∠DCE=45°,那么DE=.【分析】将△BCE绕点C逆时针旋转90°得到△ACF,连接DF,由旋转的性质可得AF =BE,CF=BC,∠F AC=∠ABC=45°=∠CAB,∠ACF=∠BCE,即可证△FCD≌△ECD,可得DE=DF,根据勾股定理可求DE的长度.【解答】解:如图,将△BCE绕点C逆时针旋转90°得到△ACF,连接DF,∵∠ACB=90°,AC=BC=4,∴AB=8,∠CAB=∠ABC,∵AD=2,∴BD=6=DE+BE,∵将△BCE绕点C逆时针旋转90°得到△ACF∴△AFC≌△BEC∴AF=BE,CF=BC,∠F AC=∠A BC=45°=∠CAB,∠ACF=∠BCE,∴∠F AD=90°∵∠DCE=45°,∠ACB=90°,∴∠ACD+∠BCE=45°,∴∠ACD+∠FCA=45°=∠DCE,且CF=BC,CD=CD,∴△FCD≌△ECD(SAS)∴DE=DF,在Rt△ADF中,DF2=AD2+AF2,∴DE2=4+(6﹣DE)2,∴DE=故答案为【点评】本题考查了全等三角形判定和性质,等腰三角形的性质,旋转的性质,添加恰当的辅助线构造全等三角形是本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为边AB上一点.将△BCD 沿直线CD翻折,点B落在点E处,连接AE.如果AE∥CD,那么BE=.【分析】过D作DG⊥BC于G,依据折叠的性质即可得到CD垂直平分BE,再根据AE ∥CD,得出CD=BD=2.5,进而得到BG=1.5,再根据BC×DG=CD×BF,即可得到BF的长,即可得出BE的长.【解答】解:如图所示,过D作DG⊥BC于G,由折叠可得,CD垂直平分BE,∴当CD∥AE时,∠AEB=∠DFB=90°,∴∠DEB+∠DEA=90°,∠DBE+∠DAE=90°,∵DB=DE,∴∠DEB=∠DBE,∴∠DAE=∠DEA,∴AD=DE,∴AD=BD,∴D是AB的中点,∴Rt△ABC中,CD=BD=2.5,∵DG⊥BC,∴BG=1.5,∴Rt△BDG中,DG=2,∵BC×DG=CD×BF,∴BF==,∴BE=2BF=,故答案为:.【点评】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题:(本大题共7题,满分78分)19.(10分)已知在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象经过点A(1,0)、B(0,﹣5)、C(2,3).求这个二次函数的解析式,并求出其图象的顶点坐标和对称轴.【分析】利用待定系数法求出二次函数的解析式,然后把一般式化为顶点式,从而得到抛物线的顶点坐标和对称轴【解答】解:由这个函数的图象经过点A(1,0)、B(0,﹣5)、C(2,3),∴,解得,∴所求函数的解析式为y=﹣x2+6x﹣5;∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴这个函数图象的顶点坐标为(3,4),对称轴为直线x=3.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解.也考查了二次函数的性质.20.(10分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O.E为边AB上一点,且BE=2AE.设=,=.(1)填空:向量=﹣+;(2)如果点F是线段OC的中点,那么向量=+,并在图中画出向量在向量和方向上的分向量.(注:本题结果用向量,的式子表示.画图不要求写作法,但要指出所作图中表示结论的向量).【分析】(1)根据三角形法则计算即可.(2)根据三角形法则以及平行四边形法则解决问题即可.【解答】解:(1)∵=,BE=2AE,∴=,∵=+=﹣+.故答案为﹣+.(2)∵=+=+,AF=AC,∴=+,∵=+=﹣++=+.向量在向量和方向上的分向量分别为:,(如图所示)故答案为=+.【点评】本题考查作图﹣复杂作图,平面向量的三角形法则,平行四边形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.点D是AB边上一点,过点D作DE∥BC,交边AC于E.过点C作CF∥AB,交DE的延长线于点F.(1)如果=,求线段EF的长;(2)求∠CFE的正弦值.【分析】(1)根据相似三角形的性质得到==,求得DE=2,推出四边形BCFD 是平行四边形,根据平行四边形的性质得到DF=BC=6,于是得到结论;(2)根据平行四边形的性质得到∠B=∠F,根据勾股定理得到AB===10,根据三角函数的定义即可得到结论.【解答】解:(1)∵DE∥BC,∴△ADE∽△ABC,∴==,又∵BC=6,∴DE=2,∵DF∥BC,CF∥AB,∴四边形BCFD是平行四边形,∴DF=BC=6,∴EF=DF﹣DE=4;(2)∵四边形BCFD是平行四边形,∴∠B=∠F,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,利用勾股定理,得AB===10,∴sin B===,∴sin∠CFE=.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.22.(10分)如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,≈1.4142.【分析】过点D作DH⊥AB,垂足为点H,设AB=x,则AH=x﹣3,解直角三角形即可得到结论.【解答】解:过点D作DH⊥AB,垂足为点H,由题意,得HB=CD=3,EC=15,HD=BC,∠ABC=∠AHD=90°,∠ADH=32°,设AB=x,则AH=x﹣3,在Rt△ABE中,由∠AEB=45°,得tan∠AEB=tan45°=.∴EB=AB=x.∴HD=BC=BE+EC=x+15,在Rt△AHD中,由∠AHD=90°,得tan∠ADH=,即得tan32°=,解得:x=≈32.99∴塔高AB约为32.99米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(12分)如图,在△ABC中,点D为边BC上一点,且AD=AB,AE⊥BC,垂足为点E.过点D作DF∥AB,交边AC于点F,连接EF,EF2=BD•EC.(1)求证:△EDF∽△EFC;(2)如果=,求证:AB=BD.【分析】(1)利用两边成比例夹角相等两个三角形相似即可证明;(2)由△EDF∽△ADC,推出=()2=,推出=,即ED=AD,由此即可解决问题;【解答】证明:(1)∵AB=AD,AE⊥BC,∴BE=ED=DB,∵EF2=•BD•EC,∴EF2=ED•EC,即得=,又∵∠FED=∠CEF,∴△EDF∽△EFC.(2)∵AB=AD,∴∠B=∠ADB,又∵DF∥AB,∴∠FDC=∠B,∴∠ADB=∠FDC,∴∠ADB+∠ADF=∠FDC+∠ADF,即得∠EDF=∠ADC,∵△EDF∽△EFC,∴∠EFD=∠C,∴△EDF∽△ADC,∴=()2=,∴=,即ED=AD,又∵ED=BE=BD,∴BD=AD,∴AB=BD.【点评】本题考查等腰三角形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(12分)已知:在平面直角坐标系xOy中,抛物线y=ax2+bx经过点A(5,0)、B(﹣3,4),抛物线的对称轴与x轴相交于点D.(1)求抛物线的表达式;(2)联结OB、BD.求∠BDO的余切值;(3)如果点P在线段BO的延长线上,且∠P AO=∠BAO,求点P的坐标.【分析】(1)根据点A,B的坐标,利用待定系数法可求出抛物线的表达式;(2)利用二次函数的性质可得出抛物线的对称轴,进而可得出点D的坐标,过点B作BC⊥x轴,垂足为点C,由点B,D的坐标可得出CD,BC的长度,结合余切的定义可求出∠BDO的余切值;(3)设点P的坐标为(m,n),过点P作PQ⊥x轴,垂足为点Q,则PQ=﹣n,OQ=m,AQ=5﹣m,在Rt△ABC中,可求出cot∠∠BAC=2,结合∠P AO=∠BAO可得出m ﹣2n=5①,由BC⊥x轴,PQ⊥x轴可得出BC∥PQ,进而可得出4m=﹣3n②,联立①②可得出点P的坐标.【解答】解:(1)将A(5,0),B(﹣3,4)代入y=ax2+bx,得:,解得:,∴所求抛物线的表达式为y=x2﹣x.(2)∵抛物线的表达式为y=x2﹣x,∴抛物线的对称轴为直线x=,∴点D的坐标为(,0).过点B作BC⊥x轴,垂足为点C,如图1所示.∵点B的坐标为(﹣3,4),点D的坐标为(,0),∴BC=4,OC=3,CD=3+=,∴cot∠BDO==.(3)设点P的坐标为(m,n),过点P作PQ⊥x轴,垂足为点Q,如图2所示.则PQ=﹣n,OQ=m,AQ=5﹣m.在Rt△ABC中,∠ACB=90°,∴cot∠∠BAC===2.∵∠P AO=∠BAO,∴cot∠P AO===2,即m﹣2n=5①.∵BC⊥x轴,PQ⊥x轴,∴∠BCO=∠PQA=90°,∴BC∥PQ,∴=,∴=,即4m=﹣3n②.由①、②得:,解得:,∴点P的坐标为(,﹣).【点评】本题考查了待定系数法求二次函数解析式、余切的定义、相似三角形的性质以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)通过构造直角三角形,求出∠BDO的余切值;(3)利用角的余切值及相似三角形的性质,找出关于m,n的二元一次方程组.25.(14分)如图,在梯形ABCD中,AD∥BC,AB=CD,AD=5,BC=15,cos∠ABC=.E 为射线CD上任意一点,过点A作AF∥BE,与射线CD相交于点F.连接BF,与直线AD相交于点G.设CE=x,=y.(1)求AB的长;(2)当点G在线段AD上时,求y关于x的函数解析式,并写出函数的定义域;(3)如果=,求线段CE的长.【分析】(1)分别过点A、D作AM⊥BC、DN⊥BC,垂足为点M、N,根据三角函数解答即可;(2)根据相似三角形的判定和性质解答,进而利用函数解析式解答即可;(3)根据两种情况,利用勾股定理解答即可.【解答】解:(1)分别过点A 、D 作AM ⊥BC 、DN ⊥BC ,垂足为点M 、N . ∵AD ∥BC ,AB =CD ,AD =5,BC =15,∴BM =,在Rt △ABM 中,∠AMB =90°,∴. ∴AB =13.(2)∵, ∴.即得 , ∵∠AFD =∠BEC ,∠ADF =∠C .∴△ADF ∽△BCE .∴,又∵CE =x ,FD =x ,AB =CD =13.即得 FC =. ∵AD ∥BC ,∴.∴.∴.∴所求函数的解析式为,函数定义域为.(3)在Rt △ABM 中,利用勾股定理,得.∴. ∵,∴S 四边形ABEF =80.设S △ADF =S .由△ADF ∽△BCE ,,得 S △AEC =9S .过点E 作EH ⊥BC ,垂足为点H .由题意,本题有两种情况:(ⅰ)如果点G 在边AD 上,则 S 四边形ABCD ﹣S 四边形ABEF =8S =40.∴S =5.∴S △AEC =9S =45.∴.∴EH =6.由 DN ⊥BC ,EH ⊥BC ,易得 EH ∥DN . ∴.又 CD =AB =13,∴,(ⅱ)如果点G 在边DA 的延长线上,则 S 四边形ABCD +S 四边形ABEF +S △AEF =9S . ∴8S =200.解得 S =25.∴S △BEC =9S =225.∴.解得 EH =30.∴. ∴, ∴. 【点评】此题考查四边形的综合题,关键是根据相似三角形的判定和性质以及梯形的性质进行解答即可.。
【附5套中考模拟试卷】上海市闵行区2019-2020学年中考数学模拟试题(1)含解析
上海市闵行区2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.1 2B.14C.16D.1162.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数4.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.2.3 B.2.4 C.2.5 D.2.65.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根6.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )A .1个B .2个C .3个D .47.下列美丽的壮锦图案是中心对称图形的是( )A .B .C .D .8.如图所示,数轴上两点A ,B 分别表示实数a ,b ,则下列四个数中最大的一个数是( )A .aB .bC .1aD .1b9.不等式3x <2(x+2)的解是( ) A .x >2B .x <2C .x >4D .x <410.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )A .B .C .D .11.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A 面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )A .B .C .D .12.如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交 AB 于G ,连接DG ,现在有如下4个结论:①ADG V ≌FDG △;②2GB AG ;③∠GDE=45°;④DG=DE在以上4个结论中,正确的共有( )个A.1个B.2 个C.3 个D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为1,即PS+SQ=1或PT+TQ=1.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(1,﹣3),C(﹣1,﹣1),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为_____.14.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.15.已知关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实根,则k的取值范围为_____.16.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB 等于______ 度.17.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.18.如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为23;③当AD=2时,EF与半圆相切;④若点F恰好落在BC上,则AD=25;⑤当点D从点A 运动到点B时,线段EF扫过的面积是163.其中正确结论的序号是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.20.(6分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D 点,且俯角α为45°,从楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度(结果保留根号).21.(6分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共 人,使用过共享单车的有 人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?22.(8分)如图,分别延长▱ABCD 的边CD AB ,到E F ,,使DE BF =,连接EF ,分别交AD BC ,于G H ,,连结CG AH.,求证:CG //AH .23.(8分) 2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题: (1)本次被调查的学员共有 人;在被调查者中参加“3科”课外辅导的有 人. (2)将条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人.24.(10分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+(),善于思考的小明进行了以下探索:设(2a m +=+(其中ab m n 、、、均为整数),则有22a m 2n +=++∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a + 请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若(2a m ++,用含m 、n 的式子分别表示ab 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +)2;(3)若(2a m +=+,且ab m n 、、、均为正整数,求a 的值.25.(10分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元 (1)笔记本和钢笔的单价各多少元?(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x 个笔记本需要y 1元,买x 支钢笔需要y 2元;求y 1、y 2关于x 的函数解析式; (3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱. 26.(12分)(1)(a ﹣b )2﹣a (a ﹣2b )+(2a+b )(2a ﹣b )(2)(m ﹣1﹣81m +)2269m m m m-++. 27.(12分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.2.D【解析】【分析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.3.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故本题选:D. 【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 4.B 【解析】试题分析:在△ABC 中,∵AB=5,BC=3,AC=4,∴AC 2+BC 2=32+42=52=AB 2, ∴∠C=90°,如图:设切点为D ,连接CD ,∵AB 是⊙C 的切线,∴CD ⊥AB , ∵S △ABC =12AC×BC=12AB×CD ,∴AC×BC=AB×CD ,即CD=AC BC AB ⋅=345⨯=125,∴⊙C 的半径为125,故选B .考点:圆的切线的性质;勾股定理. 5.B 【解析】试题分析:对于一元二次方程,当△=时方程有两个不相等的实数根,当△=时方程有两个相等的实数根,当△=时方程没有实数根.根据题意可得:△=,则方程有两个不相等的实数根.6.B 【解析】 【分析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①抛物线与y 轴交于负半轴,则c <1,故①正确; ②对称轴x 2ba=-=1,则2a+b=1.故②正确;③由图可知:当x=1时,y=a+b+c<1.故③错误;④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.综上所述:正确的结论有2个.故选B.【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.7.A【解析】【分析】根据中心对称图形的定义逐项进行判断即可得.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A.【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.8.D【解析】【详解】∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.∴1a<a<b<1b,故选D.9.D【解析】【分析】不等式先展开再移项即可解答. 【详解】解:不等式3x<2(x+2),展开得:3x<2x+4,移项得:3x-2x<4,解之得:x<4.故答案选D.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤. 10.A 【解析】 【分析】由一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,得出方程ax 2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax 2+(b-1)x+c 与x 轴有两个交点,根据方程根与系数的关系得出函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0,即可进行判断. 【详解】点P 在抛物线上,设点P (x ,ax 2+bx+c ),又因点P 在直线y=x 上, ∴x=ax 2+bx+c , ∴ax 2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y=ax 2+bx+c 交于第一象限的P 、Q 两点, ∴方程ax 2+(b-1)x+c=0有两个正实数根. ∴函数y=ax 2+(b-1)x+c 与x 轴有两个交点,又∵-2ba >0,a >0 ∴-12b a -=-2b a +12a>0∴函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0, ∴A 符合条件, 故选A . 11.A 【解析】 【详解】解:可把A 、B 、C 、D 选项折叠,能够复原(1)图的只有A . 故选A . 12.C 【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF ,∠A=∠GFD=90°,于是根据“HL”判定△ADG ≌△FDG ,再由GF+GB=GA+GB=12,EB=EF ,△BGE 为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE=12ADC ∠=45〫,再抓住△BEF 是等腰三角形,而△GED 显然不是等腰三角形,判断④是错误的.【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE=12ADC=45〫.③正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;∴正确说法是①②③故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(1,﹣2).【解析】【详解】若设M(x,y),则由题目中对“实际距离”的定义可得方程组:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,则M(1,-2).故答案为(1,-2).14.4.02×1.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:40.2万=4.02×1,故答案为:4.02×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.1152k k≤≠且【解析】【分析】若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围.【详解】解:∵方程有两个实数根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤112且k≠1,故答案为k≤112且k≠1.【点睛】此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16.108°【解析】【分析】如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.17.16 5【解析】【分析】由图象得出解析式后联立方程组解答即可.【详解】由图象可得:y甲=4t(0≤t≤5);y乙=()() 2112 916(24)t tt t<⎧-≤≤⎨-≤⎩;由方程组4916y ty t⎧⎨-⎩==,解得t=165.故答案为165.【点睛】此题考查一次函数的应用,关键是由图象得出解析式解答.18.①③⑤.【解析】试题分析:①连接CD,如图1所示,∵点E与点D关于AC对称,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴结论“CE=CF”正确;②当CD⊥AB时,如图2所示,∵AB是半圆的直径,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=43.∵CD⊥AB,∠CBA=30°,∴CD=12BC=23.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为23.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为43.∴结论“线段EF的最小值为23”错误;③当AD=2时,连接OC,如图3所示,∵OA=OC,∠CAB=60°,∴△OAC是等边三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵点E与点D关于AC 对称,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切,∴结论“EF与半圆相切”正确;④当点F恰好落在»BC上时,连接FB、AF,如图4所示,∵点E与点D关于AC对称,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB ,∴ED ∥BC ,∴△FHC ∽△FDE ,∴FH :FD=FC :FE ,∵FC=12EF ,∴FH=12FD ,∴FH=DH ,∵DE ∥BC ,∴∠FHC=∠FDE=90°,∴BF=BD ,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB 是半圆的直径,∴∠AFB=90°,∴∠FAB=30°,∴FB=12AB=4,∴DB=4,∴AD=AB ﹣DB=4,∴结论“AD=25”错误;⑤∵点D 与点E 关于AC 对称,点D 与点F 关于BC 对称,∴当点D 从点A 运动到点B 时,点E 的运动路径AM 与AB 关于AC 对称,点F 的运动路径NB 与AB 关于BC 对称,∴EF 扫过的图形就是图5中阴影部分,∴S 阴影=2S △ABC =2×12AC•BC=AC•BC=4×43=163,∴EF 扫过的面积为163,∴结论“EF 扫过的面积为163”正确.故答案为①③⑤.考点:1.圆的综合题;2.等边三角形的判定与性质;3.切线的判定;4.相似三角形的判定与性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)214y x x =-;(2)(2+221)( 2-22,1);(3)存在,145t =,245t =36t =,4132t = 【解析】试题分析:(1)将x=-2代入y=-2x-1即可求得点B 的坐标,根据抛物线过点A 、O 、B 即可求出抛物线的方程.(2)根据题意,可知△ADP 和△ADC 的高相等,即点P 纵坐标的绝对值为1,所以点P 的纵坐标为1± ,分别代入214y x x =-中求解,即可得到所有符合题意的点P 的坐标. (3)由抛物线的解析式为214y x x =- ,得顶点E (2,﹣1),对称轴为x=2; 点F 是直线y=﹣2x ﹣1与对称轴x=2的交点,求出F (2,﹣1),DF=1.又由A (4,0),根据勾股定理得5AE = .然后分4种情况求解.点睛:(1)首先求出点B 的坐标和m 的值,然后利用待定系数法求出抛物线的解析式;(2)△ADP 与△ADC 有共同的底边AD ,因为面积相等,所以AD 边上的高相等,即为1;从而得到点P 的纵坐标为1,再利用抛物线的解析式求出点P 的纵坐标;(3)如解答图所示,在点M 的运动过程中,依次出现四个菱形,注意不要漏解.针对每一个菱形,分别进行计算,求出线段MF 的长度,从而得到运动时间t 的值.20.(6+23)米【解析】【分析】根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD ,在Rt △PEH 中,利用特殊角的三角函数值分别求出BF ,即可求得PG ,在Rt △PCG 中,继而可求出CG 的长度.【详解】由题意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt △PEH 中,∵tanβ=EH PH =5BF, ∴33∴3,∵tanβ= CG PG, ∴CG=(3)·33∴CD=(6+23)米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.21.(1)200,90 (2)图形见解析(3)750人【解析】试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去0~2,4~6,6~8的人数,即可得2~4的人数,再图上画出即可;(3)用3000乘以骑行路程在2~4千米的人数所占的百分比即可得每天的骑行路程在2~4千米的人数.试题解析:(1)20÷10%=200, 200×(1-45%-10%)=90 ;(2)90-25-10-5=50,补全条形统计图(3)503000200⨯=750(人) 答: 每天的骑行路程在2~4千米的大约750人22.证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出△EGD 和△FHB 全等,从而得出DG=BH ,从而说明AG 和CH 平行且相等,得出四边形AHCG 为平行四边形,从而得出答案.详解:证明:在▱ABCD 中,AB//CD AD//CB AD CB ,,=,E F EDG DCH FBH ,∠∠∠∠∠∴===,又 DE BF =,EGD ∴V ≌()FHB AAS V ,DG BH ∴=,AG HC ∴=,又AD//CB Q ,∴四边形AGCH 为平行四边形, AH //CG ∴.点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG 为平行四边形.23.(1)50,10;(2)见解析.(3)16.8万【解析】【分析】(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人. (3)因为参加“1科”和“2科”课外辅导人数占比为152050+,所以全市参与辅导科目不多于2科的人数为24×152050+ =16.8(万). 【详解】解:(1)本次被调查的学员共有:15÷30%=50(人),在被调查者中参加“3科”课外辅导的有:50﹣15﹣20﹣50×10%=10(人),故答案为50,10;(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,在被调查者中参加“4科”课外辅导的有:50×10%=5(人),补全的条形统计图如右图所示;(3)24×152050+ =16.8(万), 答:参与辅导科目不多于2科的学生大约有16.8人.【点睛】本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.24.(1)22m 3n +,2mn ;(2)2,2,1,1(答案不唯一);(3)a =7或a =1.【解析】【分析】【详解】(1)∵23(3)a m +=+,∴223323a b m n mn +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=1,b =2mn =2.故答案为1,2,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵2=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=1.25.(1)笔记本单价为14元,钢笔单价为15元;(2)y 1=14×0.9x=12.6x ,y 2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.【解析】(1)设每个文具盒z 元,每支钢笔y 元,可列方程组得解之得答:每个文具盒14元,每支钢笔15元.(2)由题意知,y 1关于x 的函数关系式是y 1=14×90%x ,即y 1=12.6x .买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y 2=15x :当买10支以上时,超出的部分有优惠,故此时的函数关系式为y 2=15×10+15×80%(x -10), 即y 2=12x +1.(3)因为x >10,所以y 2=12x +1.当y 1<y 2,即12.6x <12x +1时,解得x <2;当y 1=y 2,即12.6x =12x +1时,解得x =2;当y 1>y 2,即12.6x >12x +1时,解得x >2.综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;当购买奖品2件时,买文具盒和买钢笔钱数相等;当购买奖品超过2件时,买钢笔省钱.26.(1)24a ;(2)233m m m +- 【解析】试题分析:(1)先去括号,再合并同类项即可;(2)先计算括号里的,再将除法转换在乘法计算.试题解析:(1)(a ﹣b )2﹣a (a ﹣2b )+(2a+b )(2a ﹣b )=a 2﹣2ab+b 2﹣a 2+2ab+4a 2﹣b 2=4a 2;(2)228691)1m m m m m m-+--÷++(. =2(1)(1)8(1)1(3)m m m m m m -+-+⨯+- =229(1)1(3)m m m m m -+⨯+- =2(3)(3)(1)1(3)m m m m m m +-+⨯+- =233m mm +-.27.(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为x 元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m 元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x 元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: ()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
上海市闵行区2019-2020学年中考数学模拟试题(4)含解析
上海市闵行区2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣3的相反数是( )A .13-B .13C .3-D .32.计算(—2)2-3的值是( )A 、1B 、2C 、—1D 、—23.在平面直角坐标系中,点(-1,-2)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有( )A .1个B .2个C .3个D .4个5.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .26.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形ABCD 的面积是( )A .13B .20C .25D .347.分式2231x xx+--的值为0,则x的取值为( )A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-18.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2 B.9:4 C.2:3 D.4:99.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=3,则△ACE的面积为()A.1 B.3C.2 D.2310.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.16 B.12 C.24 D.1811.如图,立体图形的俯视图是()A.B.C.D.12.下列图形中既是中心对称图形又是轴对称图形的是( )A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一个棱柱有7个面,则它是______棱柱.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.15.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.16.分解因式:3a 2﹣12=___.17.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP uuu r 可以用点P 的坐标表示为OP uuu r =(m ,n ),已知:OA u u u r =(x 1,y 1),OB uuu r =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA u u u r 与OB uuu r互相垂直,下列四组向量:①OC u u u r =(2,1),OD uuu r =(﹣1,2);②OE uuu r =(cos30°,tan45°),OF uuu r =(﹣1,sin60°);③OG u u u r =(3﹣2,﹣2),OH u u u r =(3+2,12);④OC u u u r =(π0,2),u u u r ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).18.已知直线m ∥n ,将一块含有30°角的直角三角板ABC 按如图方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=20°,则∠2=_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC 中,点D 在边AB 上,满足∠ACD=∠ABC ,若AC=3,AD=1,求DB 的长.20.(6分)如图,在△ABC 中,D 、E 分别是边AB 、AC 上的点,DE ∥BC ,点F 在线段DE 上,过点F 作FG ∥AB 、FH ∥AC 分别交BC 于点G 、H ,如果BG :GH :HC =2:4:1.求ADE FGHS S △△的值.21.(6分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D 的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).22.(8分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A 处测得雕塑顶端点C′的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)23.(8分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下(1)样本中D级的学生人数占全班学生人数的百分比是;(2)扇形统计图中A级所在的扇形的圆心角度数是;(3)请把条形统计图补充完整;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和. 24.(10分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)25.(10分)如图,一次函数y=2x﹣4的图象与反比例函数y=kx的图象交于A、B两点,且点A的横坐标为1.(1)求反比例函数的解析式;(2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.26.(12分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为.(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.27.(12分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x 之间的函数表达式;求小张与小李相遇时x的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.A【解析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。
上海市闵行区2019-2020学年中考第四次模拟数学试题含解析
上海市闵行区2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.18B.16C.14D.122.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )A.2.8×105B.2.8×106C.28×105D.0.28×1073.下列说法不正确的是()A.某种彩票中奖的概率是11000,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件4.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.1095.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.46.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF =142°,则∠C的度数为()A.38°B.39°C.42°D.48°7.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( ) A .1颗 B .2颗 C .3颗 D .4颗8.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣AB D .AC =AD ﹣AB9.若正比例函数y=3x 的图象经过A (﹣2,y 1),B (﹣1,y 2)两点,则y 1与y 2的大小关系为( ) A .y 1<y 2 B .y 1>y 2 C .y 1≤y 2 D .y 1≥y 210.下列事件中为必然事件的是( )A .打开电视机,正在播放茂名新闻B .早晨的太阳从东方升起C .随机掷一枚硬币,落地后正面朝上D .下雨后,天空出现彩虹11.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人12.如图是一个几何体的主视图和俯视图,则这个几何体是( )A .三棱柱B .正方体C .三棱锥D .长方体 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图1,点P 从扇形AOB 的O 点出发,沿O→A→B→0以1cm/s 的速度匀速运动,图2是点P 运动时,线段OP 的长度y 随时间x 变化的关系图象,则扇形AOB 中弦AB 的长度为______cm .14.若23a b =,则a b b +=_____. 15.抛物线 221y x =-的顶点坐标是________.16.点(a -1,y 1)、(a +1,y 2)在反比例函数y =k x(k >0)的图象上,若y 1<y 2,则a 的范围是________.17.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).18.三人中有两人性别相同的概率是_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?20.(6分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).(1)求抛物y=x2+bx+c线的解析式.(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.(3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).21.(6分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。
上海市闵行区2019-2020学年中考数学考前模拟卷(2)含解析
上海市闵行区2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在0,-2,5,14,-0.3中,负数的个数是().A.1 B.2 C.3 D.42.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.其中正确的是()A.①②③B.①④⑤C.①②④D.③④⑤3.在12,0,-1,12-这四个数中,最小的数是()A.12B.0 C.12-D.-14.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×103C.5.55×104D.55.5×1035.下列计算正确的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6 D.(-x)2-x2=06.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为()A.﹣2B.4 C.﹣4 D.27.某车间20名工人日加工零件数如表所示:日加工零件数4 5 6 7 8人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、68.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.169.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,2)D.(﹣1,﹣2)10.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为()A.1 B.4 C.8 D.1211.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.53cm B.25cm C.48cm5D.24cm512.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:|﹣5|﹣9=_____.14.如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是_____平方米.15.已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为_______.16.如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为_________.17.一个多边形的每个内角都等于150°,则这个多边形是_____边形.18.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=223k kx-+(k为常数)的图象上,则y1、y2、y3的大小关系为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?20.(6分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.(1)求tan∠ADF的值;(2)证明:DE是⊙O的切线;(3)若⊙O的半径R=5,求EF的长.21.(6分)某手机店销售10部A 型和20部B 型手机的利润为4000元,销售20部A 型和10部B 型手机的利润为3500元.(1)求每部A 型手机和B 型手机的销售利润;(2)该手机店计划一次购进A ,B 两种型号的手机共100部,其中B 型手机的进货量不超过A 型手机的2倍,设购进A 型手机x 部,这100部手机的销售总利润为y 元.①求y 关于x 的函数关系式;②该手机店购进A 型、B 型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对A 型手机出厂价下调()0100m m <<元,且限定手机店最多购进A 型手机70部,若手机店保持同种手机的售价不变,设计出使这100部手机销售总利润最大的进货方案.22.(8分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元.23.(8分)某车间的甲、乙两名工人分别同时生产500只同一型号的零件,他们生产的零件y (只)与生产时间x (分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:(1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;(2)若乙提高速度后,乙的生产速度是甲的2倍,请分别求出甲、乙两人生产全过程中,生产的零件y (只)与生产时间x (分)的函数关系式;(3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产. 24.(10分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB ,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB 落在坡上的影子BD 的长为8米,落在墙上的影子CD 的长为6米,求旗杆AB 的高(结果保留根号).25.(10分)如图,抛物线212y x bx c =-++经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式; (2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO=2OF ,求m 的值.26.(12分)已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.27.(12分)如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线DE 交AC 于点E ,交AB 延长线于点F .(1)求证:BD=CD ;(2)求证:DC 2=CE•AC ;(3)当AC=5,BC=6时,求DF 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据负数的定义判断即可【详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.故选B.2.B【解析】【分析】由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y>1,得到a﹣b+c>1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b),判断⑤.【详解】解:①∵抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),∴抛物线与x轴的另一交点坐标为(1,1),∴抛物线过原点,结论①正确;②∵当x=﹣1时,y>1,∴a﹣b+c>1,结论②错误;③当x<1时,y随x增大而减小,③错误;④抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,且抛物线过原点,∴22b a-=,c=1, ∴b=﹣4a ,c=1,∴4a+b+c=1,当x=2时,y=ax 2+bx+c=4a+2b+c=(4a+b+c )+b=b ,∴抛物线的顶点坐标为(2,b ),结论④正确;⑤∵抛物线的顶点坐标为(2,b ),∴ax 2+bx+c=b 时,b 2﹣4ac=1,⑤正确;综上所述,正确的结论有:①④⑤.故选B .【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.3.D【解析】试题分析:因为负数小于0,正数大于0,正数大于负数,所以在12,0,-1,12-这四个数中,最小的数是-1,故选D .考点:正负数的大小比较.4.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:5550=5.55×1. 故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.D【解析】试题解析:A 原式=2x 2,故A 不正确;B 原式=x 6,故B 不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.6.C【解析】试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.故选C.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.7.D【解析】【分析】【详解】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案选D.8.B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选C .“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.9.D【解析】【分析】首先利用平移的性质得到△A 1B 1C 1中点B 的对应点B 1坐标,进而利用关于x 轴对称点的性质得到△A 2B 2C 2中B 2的坐标,即可得出答案.【详解】解:把△ABC 向右平移4个单位长度得到△A 1B 1C 1,此时点B (-5,2)的对应点B 1坐标为(-1,2), 则与△A 1B 1C 1关于于x 轴对称的△A 2B 2C 2中B 2的坐标为(-1,-2),故选D .【点睛】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.10.B【解析】【分析】设抛物线与x 轴的两交点A 、B 坐标分别为(x 1,0),(x 2,0),利用二次函数的性质得到P (-2b a ,244ac b a-),利用x 1、x 2为方程ax 2+bx+c=0的两根得到x 1+x 2=-b a ,x 1•x 2=c a,则利用完全平方公式变形得到AB=|x 1-x 2|=a ,接着根据等腰直角三角形的性质得到|244ac b a-|=12•a ,然后进行化简可得到b 2-1ac 的值.【详解】设抛物线与x 轴的两交点A 、B 坐标分别为(x 1,0),(x 2,0),顶点P 的坐标为(-2b a ,244ac b a -), 则x 1、x 2为方程ax 2+bx+c=0的两根,∴x 1+x 2=-b a ,x 1•x 2=c a,∴AB=|x 1-x 2, ∵△ABP 组成的三角形恰为等腰直角三角形,∴|244ac b a -|=12•24b ac a -, 222(4)16b ac a -=2244b ac a-, ∴b 2-1ac=1.故选B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质. 11.D【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度. 【详解】∵四边形ABCD 是菱形,∴CO=12AC=3,BO=12BD=,AO ⊥BO , ∴2222BC CO BO 345=+=+=.∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形. 又∵ABCD S BC AE =⋅菱形,∴BC·AE=24,即()24AE cm 5=. 故选D .点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.12.B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A 、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B 、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C 、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D 、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B .【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】分析:直接利用二次根式以及绝对值的性质分别化简得出答案.详解:原式=5-3=1.故答案为1.点睛:此题主要考查了实数运算,正确化简各数是解题关键.14.【解析】试题分析:根据题意可知小羊的最大活动区域为:半径为5,圆心角度数为90°的扇形和半径为1,圆心角为60°的扇形,则902560177S 36036012πππ⨯⨯⨯⨯=+=. 点睛:本题主要考查的就是扇形的面积计算公式,属于简单题型.本题要特别注意的就是在拐角的位置时所构成的扇形的圆心角度数和半径,能够画出图形是解决这个问题的关键.在求扇形的面积时,我们一定要将圆心角代入进行计算,如果题目中出现的是圆周角,则我们需要求出圆心角的度数,然后再进行计算.15.160︒.【解析】【分析】圆锥的底面半径为40cm ,则底面圆的周长是80πcm ,圆锥的底面周长等于侧面展开图的扇形弧长,即侧面展开图的扇形弧长是80πcm ,母线长为90cm 即侧面展开图的扇形的半径长是90cm .根据弧长公式即可计算.【详解】根据弧长的公式l=180n r π得到:80π=•90 180n,解得n=160度.侧面展开图的圆心角为160度.故答案为160°.16.50°【解析】【分析】延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA得度数.【详解】延长BF交CD于G由折叠知,BE=CF, ∠1=∠2, ∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案为50°.【点睛】本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG ≌△DAE 是解答本题的关键.17.1【解析】【分析】根据多边形的内角和定理:180°•(n-2)求解即可.【详解】由题意可得:180°•(n-2)=150°•n ,解得n=1.故多边形是1边形.18.y 2<y 1<y 2【解析】分析:设t=k 2﹣2k+2,配方后可得出t >1,利用反比例函数图象上点的坐标特征可求出y 1、y 2、y 2的值,比较后即可得出结论.详解:设t=k 2﹣2k+2,∵k 2﹣2k+2=(k ﹣1)2+2>1,∴t >1.∵点A (﹣2,y 1)、B (﹣1,y 2)、C (1,y 2)都在反比例函数y=223k k x-+(k 为常数)的图象上, ∴y 1=﹣2t ,y 2=﹣t ,y 2=t , 又∵﹣t <﹣2t <t , ∴y 2<y 1<y 2.故答案为:y 2<y 1<y 2.点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y 1、y 2、y 2的值是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)12;(2)78 【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求. 详解:(1)甲队最终获胜的概率是12; (2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=78.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(1)12;(2)见解析;(3)83【解析】【分析】(1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.【详解】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==12;(2)连接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC ∥OD ,∵DE ⊥AC ,∴OD ⊥DE ,∴DE 是⊙O 的切线;(3)设AD=x ,则BD=2x ,∴AB=x=10, ∴x=2, ∴AD=2,同理得:AF=2,DF=4,∵AF ∥OD ,∴△AFE ∽△ODE , ∴, ∴=, ∴EF=83. 【点睛】本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.21. (1)每部A 型手机的销售利润为100元,每部B 型手机的销售利润为150元;(2)①5015000y x =-+;②手机店购进34部A 型手机和66部B 型手机的销售利润最大;(3)手机店购进70部A 型手机和30部B 型手机的销售利润最大.【解析】【分析】(1)设每部A 型手机的销售利润为a 元,每部B 型手机的销售利润为b 元,根据题意列出方程组求解即可;(2)①根据总利润=销售A 型手机的利润+销售B 型手机的利润即可列出函数关系式;②根据题意,得1002x x -≤,解得1003x ≥,根据一次函数的增减性可得当当34x =时,y 取最大值; (3)根据题意,()5015000y m x =-+,100703x ≤≤,然后分①当050m <<时,②当50m =时,③当50100m <<时,三种情况进行讨论求解即可.【详解】解:(1)设每部A 型手机的销售利润为a 元,每部B 型手机的销售利润为b 元.根据题意,得1020400020103500a b a b +=⎧⎨+=⎩,解得100150a b =⎧⎨=⎩ 答:每部A 型手机的销售利润为100元,每部B 型手机的销售利润为150元.(2)①根据题意,得()100150100y x x =+-,即5015000y x =-+.②根据题意,得1002x x -≤,解得1003x ≥. 5015000y x =-+Q ,500-<,y ∴随x 的增大而减小.x Q 为正整数,∴当34x =时,y 取最大值,10066x -=.即手机店购进34部A 型手机和66部B 型手机的销售利润最大.(3)根据题意,得()()100150100y m x x =++-.即()5015000y m x =-+,100703x ≤≤. ①当050m <<时,y 随x 的增大而减小,∴当34x =时,y 取最大值,即手机店购进34部A 型手机和66部B 型手机的销售利润最大; ②当50m =时,500m -=,15000y =,即手机店购进A 型手机的数量为满足100703x ≤≤的整数时,获得利润相同;③当50100m <<时,500m ->,y 随x 的增大而增大, ∴当70x =时,y 取得最大值,即手机店购进70部A 型手机和30部B 型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性. 22. (1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元.【解析】【分析】(1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;(2)利用(1)中所求,分别得出两种服装获利即可得出答案.【详解】解:(1)设该车间应安排x 天加工童装,y 天加工成人装,由题意得:104530360x y x y +=⎧⎨+=⎩, 解得:46x y =⎧⎨=⎩,答:该车间应安排4天加工童装,6天加工成人装;(2)∵45×4=180,30×6=180, ∴180×80+180×120=180×(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元.【点睛】本题考查二元一次方程组的应用.23.(1)25,150;(2)y 甲=25x (0≤x≤20),()()15010=503501017x x y x x ⎧≤≤⎪⎨-<≤⎪⎩乙;(3)x =14,150 【解析】【详解】解:(1)甲每分钟生产50020=25只; 提高生产速度之前乙的生产速度=755=15只/分, 故乙在提高生产速度之前已生产了零件:15×10=150只; (2)结合后图象可得:甲:y 甲=25x (0≤x≤20);乙提速后的速度为50只/分,故乙生产完500只零件还需7分钟,乙:y 乙=15x (0≤x≤10),当10<x≤17时,设y 乙=kx +b ,把(10,150)、(17,500),代入可得:10k +b =150,17k +b =500,解得:k =50,b =−350,故y 乙=50x−350(10≤x≤17).综上可得:y 甲=25x (0≤x≤20);()()15010=503501017x x y x x ⎧≤≤⎪⎨-<≤⎪⎩乙; (3)令y 甲=y 乙,得25x =50x−350,解得:x =14,此时y 甲=y 乙=350只,故甲工人还有150只未生产.24.旗杆AB 的高为(+1)m .【解析】试题分析:过点C 作CE ⊥AB 于E ,过点B 作BF ⊥CD 于F .在Rt △BFD 中,分别求出DF 、BF 的长度.在Rt △ACE 中,求出AE 、CE 的长度,继而可求得AB 的长度.试题解析:解:过点C 作CE ⊥AB 于E ,过点B 作BF ⊥CD 于F ,过点B 作BF ⊥CD 于F .在Rt △BFD 中,∵∠DBF=30°,sin ∠DBF=DF BD =12,cos ∠DBF=BF BD =32. ∵BD=8,∴DF=4,BF=22228443BD DF -=-=.∵AB ∥CD ,CE ⊥AB ,BF ⊥CD ,∴四边形BFCE 为矩形,∴BF=CE=43,CF=BE=CD ﹣DF=1. 在Rt △ACE 中,∠ACE=45°,∴AE=CE=43,∴AB=43+1(m ).答:旗杆AB 的高为(3+1)m .25.(1)2142y x x =-++;(2)P (1,72); (3)3或5. 【解析】【分析】(1)将点A 、B 代入抛物线212y x bx c =-++,用待定系数法求出解析式. (2)对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G , 由∠PBO=∠BAO ,得tan ∠PBO=tan ∠BAO ,即PG BO BG AO=,可求出P 的坐标. (3)新抛物线的表达式为2142y x x m =-++-,由题意可得DE=2,过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF ,∴2=1DE EO DO FH OF OH ==,∴FH=1.然后分情况讨论点D 在y 轴的正半轴上和在y 轴的负半轴上,可求得m 的值为3或5.【详解】解:(1)∵抛物线经过点A (﹣2,0),点B (0,4)∴2204b c c --+=⎧⎨=⎩,解得14b c =⎧⎨=⎩, ∴抛物线解析式为2142y x x =-++, (2)()2211941222y x x x =-++=--+, ∴对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G ,∵∠PBO=∠BAO ,∴tan ∠PBO=tan ∠BAO ,∴PG BO BG AO=,∴121BG=,∴12BG=,72OG=,∴P(1,72),(3)设新抛物线的表达式为2142y x x m=-++-则()0,4D m-,()2,4E m-,DE=2过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF ∴2=1DE EO DOFH OF OH==,∴FH=1.点D在y轴的正半轴上,则51,2F m⎛⎫--⎪⎝⎭,∴52OH m=-,∴42512DO mOH m-==-,∴m=3,点D在y轴的负半轴上,则91,2F m⎛⎫-⎪⎝⎭,∴92OH m=-,∴42912DO mOH m-==-,∴m=5,∴综上所述m的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键. 26.(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.详解:(1)证明:原方程可变形为x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.27.(1)详见解析;(2)详见解析;(3)DF=607.【解析】【分析】(1)先判断出AD⊥BC,即可得出结论;(2)先判断出OD∥AC,进而判断出∠CED=∠ODE,判断出△CDE∽△CAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出DF ODEF AE=,即可得出结论.【详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)连接OD,∵DE是⊙O的切线,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴CD CE AC CD=,∴CD2=CE•AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=12AB=52,由(1)知,CD=12BC=3,由(2)知,CD2=CE•AC,∵AC=5,∴CE=295 CDAC,∴AE=AC-CE=5-95=165,在Rt△CDE中,根据勾股定理得,12 5 =,由(2)知,OD∥AC,∴DF OD EF AE=,∴52121655 DFDF+=,∴DF=607.【点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出△CDE∽△CAD是解本题的关键.。
上海市闵行区2019-2020学年中考数学教学质量调研试卷含解析
上海市闵行区2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.(a2)3 =a5B.23a a ag C.(3ab)2=6a2b2D.a6÷a3 =a22.下列各式中,不是多项式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1)C.(x﹣1)2D.2(x﹣2)3.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.4.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣14,y1)、C(﹣12,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.55.如图,Rt△ABC中,∠C=90°,AC=4,3,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A .2πB .4πC .6πD .8π6.已知一个多边形的内角和是外角和的3倍,则这个多边形是( ) A .五边形B .六边形C .七边形D .八边形7.化简16的结果是( ) A .±4B .4C .2D .±28.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .613B .513C .413D .3139.用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为()21100x -=B .2890x x ++=化为()2425x +=C .22740t t --=化为2781416t ⎛⎫-=⎪⎝⎭D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 10.如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( )A .30°B .36°C .54°D .72°11.一元一次不等式2(1+x )>1+3x 的解集在数轴上表示为( ) A .B .C .D .12.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A ,B 在围成的正方体中的距离是( )A.0 B.1 C.2D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点D、E 分别在边AC、BC上,且CD:CE=3︰1.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.14.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量100 200 500 1000 2000A出芽种子数96 165 491 984 1965发芽率0.96 0.83 0.98 0.98 0.98B出芽种子数96 192 486 977 1946发芽率0.96 0.96 0.97 0.98 0.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).15.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E.(1)AB的长等于_____;(2)点F是线段DE的中点,在线段BF上有一点P,满足53BPPF,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_____.16.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.18.一个圆锥的三视图如图,则此圆锥的表面积为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D .小明所求作的直线DE 是线段AB 的 ;联结AD ,AD =7,sin ∠DAC =,BC =9,求AC 的长.20.(6分)如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .求证:AB =DC ;试判断△OEF 的形状,并说明理由.21.(6分)解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①② 22.(8分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1)A 组的频数a 比B 组的频数b 小24,样本容量 ,a 为 : (2)n 为 °,E 组所占比例为 %: (3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有 名.23.(8分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P 的坐标满足(m ,m ﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy 中就是一次函数y=x ﹣1的图象.即点P 的轨迹就是直线y=x ﹣1.(1)若m 、n 满足等式mn ﹣m=6,则(m ,n ﹣1)在平面直角坐标系xOy 中的轨迹是 ; (2)若点P (x ,y )到点A (0,1)的距离与到直线y=﹣1的距离相等,求点P 的轨迹; (3)若抛物线y=214x 上有两动点M 、N 满足MN=a (a 为常数,且a≥4),设线段MN 的中点为Q ,求点Q 到x 轴的最短距离.24.(10分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人? 25.(10分)如图,AB=16,O 为AB 中点,点C 在线段OB 上(不与点O,B 重合),将OC 绕点O 逆时针旋转 270°后得到扇形COD,AP,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP.求证:AP=BQ ;当BQ= 43时,求»QD的长(结果保留 );若△APO 的外心在扇形COD 的内部,求OC 的取值范围.26.(12分)计算:(π﹣3.14)0+|2﹣1|﹣2sin45°+(﹣1)1. 27.(12分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.统计图中A 种支付方式所对应的圆心角为 度.若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法. 解析: ()326a a = ,故A 选项错误; a 3·a = a 4故B 选项正确;(3ab)2 = 9a 2b 2故C 选项错误; a 6÷a 3 = a 3故D 选项错误. 故选B. 2.D 【解析】 【分析】原式分解因式,判断即可. 【详解】原式=2(x 2﹣2x+1)=2(x ﹣1)2。
2020年上海闵行初三数学一模试卷及答案
闵行区2019学年第一学期九年级质量监控考试数学试卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.本次测试可使用科学计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.如果把Rt△ABC的各边长都扩大到原来的n倍,那么锐角A的四个三角比值(A)都缩小到原来的n倍;(B)都扩大到原来的n倍;(C)都没有变化;(D)不同三角比的变化不一致.2.已知P是线段AB的黄金分割点,且AP>BP,那么下列比例式能成立的是(A)AB AP;(B)AB BP;(C)BP AB;(D)AB51.AP BP AP AB AP BP AP 2 3.k为任意实数,抛物线ya(x k)2k(a0)的顶点总在(A)直线yx上;(B)直线y x上;(C)x轴上;(D)y轴上.4.如图在正三角形ABC中,点D、E分别在AC、AB上,且AD1,AE=BE,那么有AC 3(A)△AED∽△BED;(B)△BAD∽△BCD;(C)△AED∽△ABD;(D)△AED∽△CBD.5.下列命题是真命题的是(A)经过平面内任意三点可作一个圆;(B)相等的圆心角所对的弧一定相等;(C)相交两圆的公共弦一定垂直于两圆的连心线;(D)内切两圆的圆心距等于两圆的半径的和.ADEB C(第4题图)6.二次函数yax2bxc(a 0)的图像如图所示,现有以下结论:①a0;②abc 0;③ab c0;④b24ac0;y其中正确的结论有(A)1个;(B)2个;(C)3个;(D)4个.-1O123x(第6题图)第1页共9页二、填空题:(本大题共 12题,每题4分,满分 48分)【请将结果直接填入答题纸的相应位置上】7.已知线段a=4厘米,c=9厘米,那么线段 a 和c 的比例中项 ▲厘米. 8.在Rt △ABC 中,∠C=90o ,AB=10,sinA 2,那么BC= ▲ .59.抛物线y 2(x 1)23在对称轴右侧的部分是 ▲的.(填“上升”或“下降”)10.如果两个相似三角形的相似比为2︰3,两个三角形的周长的和是 100cm ,那么较小的三角形的周长为 ▲cm .r r r r r11.e 为单位向量, a 与e 的方向相反,且长度为 6,那么a= ▲ e .12.某人从地面沿坡度 i 1:3 的山坡走了100 米,这时他离地面的高度是 ▲米.13.已知正方形 ABCD 的边长为 2,如果将线段 BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,那么tanBAE=▲ .14.已知在 Rt △ABC 中,∠C=90o ,AC=3,BC=4,⊙C 与斜边AB 相切,那么⊙C 的半径为 ▲ .15.设抛物线 l :y ax 2bx c(a 0)的顶点为 D ,与y 轴的交点是 C ,我们称以 C为顶点,且过点 D 的抛物线为抛物线 l 的“伴随抛物线” ,请写出抛物线y x 24x 1的伴随抛物线的解析式 ▲ .16.半径分别为3cm 与17cm 的⊙O1与⊙O2相交于A 、B 两点,如果公共弦AB=4 2cm ,那么圆心距O 1O 2的长为▲ cm . 17.正五边形的边长与边心距的比值为 ▲.(用含三角比的代数式表示)18.如图,在等腰△ABC 中,AB= AC=4,BC=6,A点 D 在底边BC 上,且∠DAC=∠ACD ,将△ACD沿着AD 所在直线翻折,使得点 C 落到点E 处, 联结BE ,那么BE 的长为▲ .BD C 三、解答题:(本大题共7题,满分78分)(第18题图)19.(本题满分10分)已知二次函数图像的最高点是 A (1,4),且经过点 B (0,3),与x 轴交于C 、D 两点(点 C 在点D 的左侧).求△BCD 的面积.20.(本题共2小题,第(1)小题2分,第(2)小题8分,满分 10分)已知:在平行四边形ABCD 中,AB ︰BC=3︰2. D C (1)根据条件画图:作∠BCD 的平分线,交边 AB 于点E , 取线段BE 的中点 F ,联结DF 交CE 于点G .uuurr uuur r uuur (2)设AB=a ,AD= b ,那么向量CG= ▲;AB r r uuur(第20题图)(用向量a 、 b 表示),并在图中画出向量 DGuuur uuur在向量AB和AD方向上的分向量.第2页共9页21.(本题共 2小题,第(1)小题6分,第(2)小题4分,满分 如图,梯形ABCD 中,AD ∥BC ,∠ADC=90o ,AD=2,BC=为直径作⊙O ,交边DC 于E 、F 两点. ( 1)求证:DE=CF ;( 2)求:直径AB 的长. A10 分)4,tanB 3.以ABBODEFC(第21题图)22.(本题共 2小题,第(1)小题3分,第(2)小题7分,满分10分)2019年第18号台风“米娜”于 9月29日早晨5点整,由位于台湾省周边的 B 岛东 南方约980千米的西北太平洋洋面上( A 点)生成,向西北方向移动.并于 9月30日20 时30分到达B 岛后风力增强且转向,一路向北于24小时后在浙江省舟山市登陆 .“米娜”在登录后风力减弱且再一次转向,以每小时20千米的速度向北偏东 30o 的方向移动,距台风中心170千米的范围内是受台风影响的区域.已知上海位于舟山市北偏西7o 方向,且距舟山市250千米.( 1)台风中心从生成点(A 点)到达B 岛的速度是每小时多少千米?( 2)10月2日上海受到“米娜”影响,那么上海遭受这次台风影响的时间有多长?(结果保留整数,参考数据:sin23o0.39,cos23o0.92,tan23o0.42 ;sin37o 0.60,cos37o0.80,tan37o0.75 .) C ND上海 浙江SZ上海台 湾BZ 北舟山 东A(第22题图)第 3页共9页23.(本题共2小题,每小题6分,满分12分)如图,在△ABC中,BD是AC边上的高,点E在边AB上,联结CE交BD于点O,且ADOCABOD,AF是∠BAC的平分线,交BC于点F,交DE于点G.求证:(1)CE⊥AB; A(2)AFDEAGBC.DGEOB F C(第23题图)24.(本题共3题,每小题4分,满分12分)已知:在平面直角坐标系 xOy中,对称轴为直线x=-2 与x轴交于A(-3,0)、B两点(点A在点B的左侧).(1)求这条抛物线的表达式;(2)联结BC,求∠BCO的余切值;(3)如果过点C的直线,交x轴于点E,交抛物线于点P,且∠CEO=∠BCO,求点P的坐标.的抛物线经过点 C(0,2),y54321–5–4–3–2–1O 1 2 3 4 5 x–1–2–3–4–5(第24题图)25.(本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题4分,满分14分)已知:如图,在Rt△ABC和Rt△ACD中,AC=BC,∠ACB=90°,∠ADC=90°,CD=2,(点A、B分别在直线CD的左右两侧),射线CD交边AB于点E,点G是Rt△ABC的重心,射线CG交边AB于点F,AD=x,CE=y.(1)求证:∠DAB=∠DCF;(2)当点E在边CD上时,求y关于x的函数关系式,并写出x的取值范围;(3)如果△CDG是以CG为腰的等腰三角形,试求AD的长.A DE FG BC(第25题图)第4页共9页闵行区2019学年第一学期九年级质量监控试卷答案要点及评分标准一、选择题:1.C;2.A;3.B;4.D;5.C;6.B.二、填空题:7.6;8.4;9.下降;10.40;11.-6;12.50;13.2;14.12;o15.y x21;16.2或4;17.2tan36o(2sin36 ).;5 cos36o18.1.三、解答题:19.解:设所求的二次函数解析式为y a(x 1)24(a 0),⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)把B(0,3)代入得 3 a(0 1)2 4 解得:a 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)令y 0,那么(x 1)24=0,解得:x13,x21.⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)∴CD=4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)在△BCD中,S BCD1·CD·OB=143=6.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 22 2分)D C 20.解:(1)角平分线⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)整体画对;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)G(2)CG= 1r3r A E F Ba b.⋯⋯⋯⋯⋯⋯⋯(4分)2 4画图及结论正确.⋯⋯⋯⋯⋯⋯⋯⋯(4分)(第20题图)21.解:(1)过点O作OH⊥DC,垂足为H.∵A D∥BC,∠ADC=90o,OH⊥DC,∴∠BCN=∠OHC=∠ADC=90o.⋯⋯(1分)∴AD∥OH∥BC.⋯⋯⋯⋯⋯⋯⋯⋯(1分)BOA G第5页共9页D E H F C N(第21题图)又∵OA=OB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)∴DH=HC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)∵OH⊥DC,OH过圆心,∴EH=HF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)∴DH-EH=HC-HF.⋯⋯⋯⋯⋯⋯(1分)即:DE=CF.(2)过点A作AG⊥BC,垂足为点G,∠AGB=90°,∵∠AGB=∠BCN=90°,∴AG∥DC.∵AD∥BC,∴AD=CG.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)∵AD=2,BC=4,∴BG=BC-CG=2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)在Rt△AGB中,∵tanB3,∴AG BGtanB 2 3 6.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)在Rt△AGB中,AB2AG2BG2∴AB=210.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)22.解:(1)由题意得,AB=980千米,台风中心到达B岛的时间是39.5小时.⋯(1分)∴v980(千米).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(12539.5分)分)分)分)答:台风中心从生成点( A点)到达B岛的速度是每小时25千米.⋯(1(2)过点S作SH⊥ZD,垂足为点H,∴∠SHZ=90°,∵∠NZD=30°,∠CZN=7°,∴∠CZD=∠CZN+∠NZD=7°+30°=37°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1在Rt△SHZ中,sin∠CZD=SH.∵∠CZD=37°,SZ=250千米,SZ∴SH=SZ·sin∠CZD=250sin37o2500.60 150(千米).⋯⋯⋯(2C ND ∵150千米<170千米,∴设台风中心移动到E处时上海开始遭受台风影响到F处影响结束.即SE=SF=170(千米).∵在Rt△SEH中,∠SHE=90°,SE2SH2HE2,S F上海∴HE=SE2SH21702150280.(2分)HE第 6页共9页Z舟山(第22题图)∴E F=2EH≈160(千米).⋯⋯⋯⋯⋯(1分)∴上海遭受这次台风影响的时间为EF 16020 208(小时).⋯⋯⋯⋯(1分)答:上海遭受这次台风影响的时间为8小时.23.证明:(1)∵ADOC ABOD,∴AD AB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1OD OC分)∵BD是AC边上的高,∴∠BDC=90°,△ADB和△ODC是直角三角形.⋯⋯⋯⋯⋯⋯⋯( 1 分)∴Rt△ADB∽Rt△ODC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)∴∠ABD=∠OCD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)又∵∠EOB=∠DOC,∠DOC+∠OCD+∠ODC=180°,∠EOB+∠ABD+∠OEB=180°.∴∠OEB=90°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∴CE⊥AB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)(2)在△ADB和△AEC中,∵∠BAD=∠CAE,∠ABD=∠OCD,∴△ADB∽△AEC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)∴AD AB,即AD AE.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1AE AC AB AC分)在△DAE和△BAC中∵∠DAE=∠BAC,AD AE.AB AC∴△DAE∽△BAC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)∵AF是∠BAC的平分线,∴AG DE,即AFDEAGBC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1AF BC分)第7页共9页24.解:(1)设抛物线的表达式为 y ax 2bxc(a0). b22a1 由题意得:9a 3bc 0⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(c 2 分)解得:a2,b8.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(23 3分)∴这条抛物线的表达式为y 2 x 28 x2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 13 3 分)注:用对称性求解析式酌情给分.(2)令y=0,那么2x 28 x 2 0, 3 3解得x 13 ,x 2 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (1分)∵点A 的坐标是( 3,0)∴点B 的坐标是(1,0).⋯⋯⋯⋯⋯⋯⋯(1分)∵C (0,2)∴OB 1,OC 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1分)在 Rt △OBC 中,∠BOC=90o ,∴cot BCOOC2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (1 OB分)(3)设点E 的坐标是(x ,0),得OE=x .∵CEOBCO ,∴cotCEO cot BCO .在Rt △EOC 中,∴cotCEO OEx2.OC 2∴x=4,∴点E 坐标是(4,0)或(4,0).⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)∵点C 坐标是(0,2),∴l CE 1 1x 2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (1 :y x2或y=2 2分)y 1 2 y 1 2x x ∴ 2 ,或 22x 2 8x22x 2 8x2y y3 3 3 3第8页共9页x 13x 0 x19x 04和 4和解得3 y (舍去),或 y (舍去);y 2 y 35 28 8∴点P 坐标是(13,3)或( 19 ,35).⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)4 84 825.(1)证明:∵点G 是Rt △ABC 的重心,∴CF 是Rt △ABC 的中线.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)又∵在Rt △ABC ,AC=BC ,∠ACB=90°,∴CF ⊥AB ,即∠AFC=90°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)∵∠DEF=∠ADE+∠DAE=∠EFC+∠ECF ,且∠ADE=∠EFC=90°,∴∠DAB=∠DCF .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)(2)解:如右图,过点 B 作BH ⊥CD 于点H .A D可证△CAD ≌△BCH.⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1分) EF B ∴BH=CD=2,CH=AD=x ,DH=2-x .(1分)H G 可证AD ∥BH.∴ADDE.⋯⋯⋯⋯⋯⋯( 1分)BH EHCx DE ,x 2 DE EH DH ,EH 4 2x.⋯⋯⋯⋯⋯(1分) 2 EH2 EH EH x 2y CE CH HE 4 2x x 242).⋯⋯⋯⋯(1+1分) x 2 x (0<xx 2( 3)解:当GC=GD 时,如图1,取 AC 的中点M ,联结MD.那么MD=MC ,联结MG ,MG ⊥CD ,且直线MG 经过点B .那么BH 与MG 共线.又CH=AD ,那么AD=CH=1CD1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)2当 CG=CD 时,如图2,即CG=2,点G 为△ABC 的重心, CF 3CG3,AB=2CF=6,AC 2AB32,2 2ADAC 2CD 218414.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)综上所述,AD=1或 14.第9页共9页。
2019-2020学年上海市闵行区初三数学第一学期中考一模试卷及解析
2019-2020学年上海市闵行区初三数学第一学期中考一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)如果把Rt ABC ∆的各边长都扩大到原来的n 倍,那么锐角A 的四个三角比值( ) A .都缩小到原来的n 倍 B .都扩大到原来的n 倍 C .都没有变化D .不同三角比的变化不一致2.(4分)已知P 是线段AB 的黄金分割点,且AP BP >,那么下列比例式能成立的是( ) A .AB APAP BP=B .AB BPAP AB=C .BP ABAP BP=D .512AB AP -=3.(4分)k 为任意实数,抛物线2()(0)y a x k k a =--≠的顶点总在( ) A .直线y x =上B .直线y x =-上C .x 轴上D .y 轴上4.(4分)如图,在正△ABC 中,点D 、E 分别在AC 、AB 上,且13AD AC =,AE BE =,则有( )A .AED BED ∆∆∽B .BAD BCD ∆∆∽C .AED ABD ∆∆∽D .AED CBD ∆∆∽5.(4分)下列命题是真命题的是( ) A .经过平面内任意三点可作一个圆 B .相等的圆心角所对的弧一定相等 C .相交两圆的公共弦一定垂直于两圆的连心线 D .内切两圆的圆心距等于两圆的半径的和6.(4分)二次函数2(0)y ax bx c a =++≠的图象如图所示,现有以下结论: ①0a <;②0abc >;③0a b c -+<;④240b ac -<;其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)如果线段4a =厘米,9c =厘米,那么线段a 、c 的比例中项b = 厘米. 8.(4分)在ABC ∆中,若90C ∠=︒,10AB =,2sin 5A =,则BC = 9.(4分)抛物线22(1)3y x =--+在对称轴右侧的部分是 的.(填“上升”或“下降”)10.(4分)如果两个相似三角形的相似比为2:3,两个三角形的周长的和是100cm ,那么较小的三角形的周长为 cm .11.(4分)e 为单位向量,a 与e 的方向相反,且长度为6,那么a = e .12.(4分)某人从地面沿着坡度为1:3i =的山坡走了100米,这时他离地面的高度是 米. 13.(4分)已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,那么tan BAE ∠= .14.(4分)已知在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,C 与斜边AB 相切,那么C 的半径为 . 15.(4分)设抛物线2:(0)l y ax bx c a =++≠的顶点为D ,与y 轴的交点是C ,我们称以C 为顶点,且过点D 的抛物线为抛物线l 的“伴随抛物线”,请写出抛物线241y x x =-+的伴随抛物线的解析式 . 16.(4分)半径分别为3cm 与17cm 的1O 与2O 相交于A 、B 两点,如果公共弦42AB cm =,那么圆心距12O O 的长为 cm .17.(4分)正五边形的边长与边心距的比值为 .(用含三角比的代数式表示)18.(4分)如图,在等腰ABC ∆中,4AB AC ==,6BC =,点D 在底边BC 上,且DAC ACD ∠=∠,将ACD ∆沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为 .三、解答题:(本大题共7题,满分78分)19.(10分)已知二次函数图象的最高点是(1,4)A ,且经过点(0,3)B ,与x 轴交于C 、D 两点(点C 在点D 的左侧).求BCD ∆的面积.20.(10分)已知:在平行四边形ABCD 中,:3:2AB BC =.(1)根据条件画图:作BCD ∠的平分线,交边AB 于点E ,取线段BE 的中点F ,联结DF 交CE 于点G .(2)设AB a =,AD b =,那么向量CG = ;(用向量a 、b 表示),并在图中画出向量DG 在向量AB 和AD 方向上的分向量.21.(10分)如图,梯形ABCD 中,//AD BC ,90ADC ∠=︒,2AD =,4BC =,tan 3B =.以AB 为直径作O ,交边DC 于E 、F 两点. (1)求证:DE CF =; (2)求:直径AB 的长.22.(10分)2019年第18号台风“米娜”于9月29日早晨5点整,由位于台湾省周边的B 岛东南方约980千米的西北太平洋洋面上(A 点)生成,向西北方向移动.并于9月30日20时30分到达B 岛后风力增强且转向,一路向北于24小时后在浙江省舟山市登陆.“米娜”在登录后风力减弱且再一次转向,以每小时20千米的速度向北偏东30︒的方向移动,距台风中心170千米的范围内是受台风影响的区域.已知上海位于舟山市北偏西7︒方向,且距舟山市250千米. (1)台风中心从生成点(A 点)到达B 岛的速度是每小时多少千米?(2)10月2日上海受到“米娜”影响,那么上海遭受这次台风影响的时间有多长?(结果保留整数,参考数据:sin230.39︒≈,cos230.92︒≈,tan230.42︒≈;sin370.60︒≈,cos370.80︒≈,tan370.75︒≈.)23.(12分)如图,在ABC∆中,BD是AC边上的高,点E在边AB上,联结CE交BD于点O,且=,AF是BAC∠的平分线,交BC于点F,交DE于点G.AD OC AB OD求证:(1)CE AB⊥;(2)AF DE AG BC=.24.(12分)已知:在平面直角坐标系xOy中,对称轴为直线2C,与x轴交x=-的抛物线经过点(0,2)于(3,0)A-、B两点(点A在点B的左侧).(1)求这条抛物线的表达式;(2)联结BC,求BCO∠的余切值;(3)如果过点C的直线,交x轴于点E,交抛物线于点P,且CEO BCO∠=∠,求点P的坐标.25.(14分)已知:如图,在Rt ABCADC∠=︒,2CD=,∠=︒,90ACB∆和Rt ACD∆中,AC BC=,90(点A、B分别在直线CD的左右两侧),射线CD交边AB于点E,点G是Rt ABC∆的重心,射线CG交边AB于点F,AD x=.=,CE y(1)求证:DAB DCF∠=∠;(2)当点E在边CD上时,求y关于x的函数关系式,并写出x的取值范围;(3)如果CDG∆是以CG为腰的等腰三角形,试求AD的长.参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.【解答】解:如果把Rt ABC ∆的三边长度都扩大2倍,锐角A 不变,锐角三角函数值不变, 故选:C .2.【解答】解:根据黄金分割定义可知:AP 是AB 和BP 的比例中项,即2AP AB BP =⋅,∴AB APAP BP=. 故选:A . 3.【解答】解:2()(0)y a x k k a =--≠,∴抛物线的顶点为(,)k k -,k 为任意实数,∴顶点在y x =-直线上,故选:B . 4.【解答】解::1:3AD AC =,:1:2AD DC ∴=; ABC ∆是正三角形, AB BC AC ∴==;AE BE =,::1:2AE BC AE AB ∴== ::AD DC AE BC ∴=; 60A C ∠=∠=︒, AED CBD ∴∆∆∽;故选:D .5.【解答】解:A 、经过不在同一直线上的三点才能确定一个圆,错误,是假命题;B 、在同圆或等圆中,相等的圆心角所对的弧一定相等,错误,是假命题;C 、相交两圆的公共弦一定垂直于两圆的连心线,正确,是真命题;D 、内切两圆的圆心距等于两圆的半径的差.错误,是假命题;故选:C .6.【解答】解:抛物线开口向下, 0a ∴<,所以①正确;抛物线的对称轴在y 轴的右侧, a ∴、b 异号,即0b >,抛物线与y 轴的交点在x 轴上方, 0c ∴>,0abc ∴<,所以②错误; 1x =-时,0y <,即0a b c -+<,所以③正确; 抛物线与x 轴有2个交点,∴△240b ac =->,所以④错误.故选:B .二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.【解答】解:线段a 和c 的比例中项为b , ::a b b c ∴=,即4::9b b =, 6b ∴=±(负值舍去). 故答案为:6.8.【解答】解:2sin 5BCA AB==,10AB =, 4BC ∴=,故答案为:4.9.【解答】解:20a =-<,∴抛物线开口向下,∴对称轴右侧的部分呈下降趋势.故答案为:下降.10.【解答】解:设较小的三角形的周长为xcm ,则较大的三角形的周长为(100)x cm -, 两个相似三角形的相似比为2:3,∴两个相似三角形的周长比为2:3, ∴21003x x =-,解得,40x =, 故答案为:40. 11.【解答】解:e 为单位向量,a 与e 的方向相反,且长度为6,∴6a e =-,故答案为6-.12.【解答】解:坡度为1:3i =,∴设离地面的高度为x ,那么水平距离为3x .222(3)100x x +=解得50x =.即这时他离地面的高度是50米. 13.【解答】解;如图,正方形ABCD , 90ABC C ∴∠=∠=︒,在Rt BCD ∆中,2DC BC ==,根据勾股定理得:224422BD AD AB =++=将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处, 22BE BD ∴==22tan 2BE BAE AB ∴∠===, 214.【解答】解:Rt ABC ∆中,90C ∠=︒,3AC =,4BC =; 由勾股定理,得:2223425AB =+=, 5AB ∴=;又AB 是C 的切线,CD AB ∴⊥, CD r ∴=;1122ABC S AC BC AB r ∆==, 125r ∴=, 故答案为:125.15.【解答】解:抛物线2241(2)3y x x x =-+=--,∴顶点坐标D 为(2,3)-,与y 轴交点为(0,1)C ,设伴随抛物线的解析式为:21y ax =+,把(2,3)D -代入得1a =-,∴伴随抛物线21y x =-+,故答案为:21y x =-+. 16.【解答】解:如图,1O 与2O 相交于A 、B 两点,12O O AB ∴⊥,且AD BD =;又42AB =22AD ∴=∴在Rt △1AO D 中,根据勾股定理知11O D =厘米;在Rt △2AO D 中,根据勾股定理知23O D =厘米,12124O O O D O D ∴=+=厘米;同理知,当小圆圆心在大圆内时,解得123O O =厘米1-厘米2=厘米. 故答案是:4或2;17.【解答】解:O 是正五边形ABCDE 的外接圆,1360725BOC ∴∠=⨯︒=︒,111723622BOC ∴∠=∠=⨯︒=︒,设这个正五边形的边长为a ,半径为R ,边心距为r ,222211()24R r a a -==,1sin362a R =︒, 2sin36a R =︒;1tan362a r =︒, 2tan36a r ∴=︒,∴2tan36ar=︒, 故正五边形的边长与边心距的比值为2tan36︒, 故答案为:2tan36︒.18.【解答】解:AB AC =,ABC C ∴∠=∠, DAC ACD ∠=∠, DAC ABC ∴∠=∠, C C ∠=∠, CAD CBA ∴∆∆∽,∴CA CD CB AC =, ∴464CD =, 83CD ∴=,103BD BC CD =-=, DAM DAC DBA ∠=∠=∠,ADM ADB ∠=∠,ADM BDA ∴∆∆∽,∴AD DM BD DA=,即8310833DM =, 3215DM ∴=,65MB BD DM =-=, ABM C MED ∠=∠=∠,A ∴、B 、E 、D 四点共圆,ADB BEM ∴∠=∠,EBM EAD ABD ∠=∠=∠,ABD MBE ∴∆∆∽,(不用四点共圆,可以先证明BMA EMD ∆∆∽,推出BM E AM D ∆∽,推出ADB BEM ∠=∠也可以!)∴AB BD BM BE=, 1BM DB BE AB ∴==. 故答案为:1.三、解答题:(本大题共7题,满分78分)19.【解答】解:设二次函数解析式为2(1)4(0)y a x a =-+≠,把(0,3)B 代入得23(01)4a =-+解得:1a =-,令0y =,那么2(1)40x --+=,解得:13x =,21x =-,∴点C 的坐标为(1,0)-,点D 的坐标为(3,0),4CD ∴=,点B 的坐标为(0,3),3OB ∴=,BCD ∴∆的面积是:43622CD OB ⨯==. 20.【解答】解:(1)作BCD ∠的平分线,交边AB 于点E ,取线段BE 的中点F ,联结DF 交CE 于点G . 作图如下: (2)CE 为BCD ∠的平分线, BCE DCE ∴∠=∠ 又//AB CDDCE BEC ∴∠=∠ GEF GCD ∴∆∆∽ :3:2AB BC = ∴13EF EG CD CG == 13EF CD ∴=,34CG CE = AB a =,AD b =,∴DC AB a ==,BC AD b ==EB BC EC +=,EC CG GE =--∴33213()()44324CG EB BC a b a b =-+=-+=-- 同理可得,333213()())444324DG DF DA AF a b a b =-=+=-=- DG 在向量AB 和AD 方向上的分向量,如图所示:故答案为:1324CG a b =--. 21.【解答】(1)证明:过点O 作OH DC ⊥,垂足为H .//AD BC ,90ADC ∠=︒,OH DC ⊥,90BCD OHC ADC ∴∠=∠=∠=︒.////AD OH BC ∴.又OA OB =.DH HC ∴=.OH DC ⊥,OH 过圆心,EH HF ∴=,DH EH HC HF ∴-=-.即:DE CF =.(2)解:过点A 作AG BC ⊥,垂足为点G ,90AGB ∠=︒,90AGB BCD ∠=∠=︒,//AG DC ∴.//AD BC ,AD CG ∴=.2AD =,4BC =,2BG BC CG ∴=-=.在Rt AGB ∆中,tan 3B =,tan 236AG BG B ∴=⋅=⨯=.在Rt AGB ∆中,222AB AG BG =+ 210AB ∴=.22.【解答】解:(1)由题意得,980AB =千米,台风中心到达B 岛的时间是39.5小时, ∴9802539.5v =≈(千米), 答:台风中心从生成点(A 点)到达B 岛的速度是每小时25千米;(2)过点S 作SH ZD ⊥,垂足为点H ,90SHZ ∴∠=︒,30NZD ∠=︒,7CZN ∠=︒,73037CZD CZN NZD ∴∠=∠+∠=︒+︒=︒,在Rt SHZ ∆中,sin SH CZD SZ∠=. 37CZD ∠=︒,250SZ =千米,sin 250sin372500.60150SH SZ CZD ∴=∠=⨯︒≈⨯≈(千米), 150千米170<千米,∴设台风中心移动到E 处时上海开始遭受台风影响到F 处影响结束.即170SE SF ==(千米).在Rt SEH ∆中,90SHE ∠=︒,222SE SH HE =+, ∴222217015080HE SE SH =--,2160EF EH ∴=≈(千米), ∴上海遭受这次台风影响的时间为16082020EF =≈(小时), 答:上海遭受这次台风影响的时间为8小时.23.【解答】证明:(1)AD OC AB OD =, ∴AD AB OD OC=, BD 是AC 边上的高,90BDC BDA ∴∠=∠=︒,ADB ∆和ODC ∆是直角三角形,Rt ADB Rt ODC ∴∆∆∽,ABD OCD ∴∠=∠,又EOB DOC ∠=∠,180DOC OCD ODC ∠+∠+∠=︒,180EOB ABD OEB ∠+∠+∠=︒. 90OEB ∴∠=︒,CE AB ∴⊥;(2)在ADB ∆和AEC ∆中,BAD CAE ∠=∠,ABD OCD ∠=∠,ADB AEC ∴∆∆∽, ∴AD AB AE AC =,即AD AE AB AC=, 在DAE ∆和BAC ∆中DAE BAC ∠=∠,AD AE AB AC=. DAE BAC ∴∆∆∽, AF 是BAC ∠的平分线, ∴AG DE AF BC=,即AF DE AG BC =. 24.【解答】解:(1)设抛物线的表达式为2y ax bx c =++,将点(0,2)C 、(3,0)A -、对称轴直线2x =-代入,得:229302b a a b c c ⎧-=-⎪⎪-+=⎨⎪=⎪⎩, 解得:23a =,83b =, ∴这条抛物线的表达式为228233y x x =++; (2)令0y =,那么2282033x x ++=, 解得13x =-,21x =-,点A 的坐标是(3,0)-,∴点B 的坐标是(1,0)-,(0,2)C ,1OB ∴=,2OC =,在Rt OBC ∆中,90BOC ∠=︒, ∴cot 2OC BCO OB∠==; (3)设点E 的坐标是(,0)x ,得||OE x =.CEO BCO ∠=∠,cot cot CEO BCO ∴∠=∠,在Rt EOC ∆中,∴||cot 22OE x CEO OC ∠===, ||4x ∴=,∴点E 坐标是(4,0)或(4,0)-,点C 坐标是(0,2), ∴11:2222CE l y x y x =+=-+或, ∴212228233y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩,或212228233y x y x x ⎧=-+⎪⎪⎨⎪=++⎪⎩解得13438x y ⎧=-⎪⎪⎨⎪=⎪⎩和02x y =⎧⎨=⎩(舍去),或194358x y ⎧=-⎪⎪⎨⎪=⎪⎩和02x y =⎧⎨=⎩(舍去); ∴点P 坐标是13(4-,3)8或19(4-,35)8.25.【解答】(1)证明:点G是Rt ABC∆的重心,∆的中线,CF∴是Rt ABC又在Rt ABC∠=︒,∆中,AC BCACB=,90∠=︒,AFCCF AB∴⊥,即90ADE EFC∠=∠=︒,∠=∠+∠=∠+∠,且90DEF ADE DAE EFC ECF∴∠=∠;DAB DCF(2)解:如图1,过点B作BH CD⊥于点H,则90CBH BCH∠+∠=︒,又90∠+∠=︒,BCH ACD∴∠=∠,ACD CBH又90∠=∠=︒,AC CB=,ADC CHB∴∆≅∆,CAD BCHDH x=-,==,2∴==,CH AD xBH CD2∠=∠=∠=︒,90ADC CHB BHD//AD BH ∴,ADE BHE ∴∆∆∽, ∴AD DE BH EH =, ∴2x DE EH =, ∴22x DE EH DH EH EH++==, ∴422x EH x -=+, ∴2424(02)22x x y CE CH HE x x x x -+==+=+=<++; (3)解:当GC GD =时,如图21-,取AC 的中点M ,联结MD ,那么MD MC =, 联结MG ,MG CD ⊥,且直线MG 经过点B ,那么BH 与MG 共线,又CH AD =,那么112AD CH CD ===; 当CG CD =时,如图22-,即2CG =,点G 为ABC ∆的重心,∴332CF CG ==, 26AB CF ∴==,∴2322AC AB ==, ∴2218414AD AC CD =-=-=;综上所述,1AD =或14.。
上海市闵行区2019-2020学年中考一诊数学试题含解析
上海市闵行区2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知3a ﹣2b=1,则代数式5﹣6a+4b 的值是( ) A .4 B .3 C .﹣1 D .﹣32.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、403.两个一次函数1y ax b =+,2y bx a =+,它们在同一直角坐标系中的图象大致是( )A .B .C .D .4.下列计算中,错误的是( ) A .020181=;B .224-=;C .1242=;D .1133-=. 5.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ) A .()2y x 2=- B .()2y x 26=-+ C .2y x 6=+D .2y x =6.计算1211x xx x +---的结果是( ) A .1 B .﹣1C .1﹣xD .311x x +- 7.计算111x x x ---结果是( ) A .0B .1C .﹣1D .x8.关于x 的方程x 2+(k 2﹣4)x+k+1=0的两个根互为相反数,则k 值是( ) A .﹣1B .±2C .2D .﹣29.下列几何体中,俯视图为三角形的是( ) A .B .C .D .10.如图所示是放置在正方形网格中的一个ABC ∆ ,则tan ABC ∠的值为( )A .25B .5 C .2D .1211.下列4个数:9,227,π,(3)0,其中无理数是( ) A .9B .227C .πD .(3)012.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( ) A .13∠=∠ B .11803∠=-∠o C .1903∠=+∠oD .以上都不对二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算:112a a-=________. 14.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 15.若反比例函数y=1m x-的图象在每一个象限中,y 随着x 的增大而减小,则m 的取值范围是_____. 16.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .17.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC=2∠CAD ,则∠BAE=__________度.18.如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC 、CD 上滑动,且E 、F 不与B 、C 、D 重合.当点E 、F 在BC 、CD 上滑动时,则△CEF 的面积最大值是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣.校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A-非常喜欢”、“ B-比较喜欢”、“ C-不太喜欢”、“ D-很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是,图②中A所在扇形对应的圆心角是;(3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?20.(6分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.21.(6分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.22.(8分)如图,在四边形ABCD中,∠A=∠BCD=90°,210==,CE⊥AD于点E.BC CD(1)求证:AE=CE;(2)若tanD=3,求AB的长.23.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.24.(10分)下表给出A、B、C三种上宽带网的收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A 30 25 0.05B 50 50 0.05C 120 不限时设上网时间为t小时.(I)根据题意,填写下表:月费/元上网时间/h 超时费/(元)总费用/(元)方式A 30 40方式B 50 100(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?25.(10分)如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证: △BDA∽△CED.26.(12分)某校组织了一次初三科技小制作比赛,有A.B.C,D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整; (3)通过计算说明,哪个班的获奖率高?(4)将写有A ,B ,C ,D 四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A ,B 两班的概率 .27.(12分)(1)计算:(12)﹣3×[12﹣(12)3]﹣4cos30°; (2)解方程:x (x ﹣4)=2x ﹣8参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】先变形,再整体代入,即可求出答案. 【详解】 ∵3a ﹣2b=1,∴5﹣6a+4b=5﹣2(3a ﹣2b )=5﹣2×1=3, 故选:B . 【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键. 2.D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40, 故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.3.B 【解析】 【分析】根据各选项中的函数图象判断出a 、b 的符号,然后分别确定出两直线经过的象限以及与y 轴的交点位置,即可得解. 【详解】解:由图可知,A 、B 、C 选项两直线一条经过第一三象限,另一条经过第二四象限, 所以,a 、b 异号,所以,经过第一三象限的直线与y 轴负半轴相交,经过第二四象限的直线与y 轴正半轴相交, B 选项符合,D 选项,a 、b 都经过第二、四象限, 所以,两直线都与y 轴负半轴相交,不符合. 故选:B . 【点睛】本题考查了一次函数的图象,一次函数y=kx+b (k≠0),k >0时,一次函数图象经过第一三象限,k <0时,一次函数图象经过第二四象限,b >0时与y 轴正半轴相交,b <0时与y 轴负半轴相交. 4.B 【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A .020181=,故A 正确; B .224-=-,故B 错误; C .1242=.故C 正确;D .1133-=,故D 正确;故选B .点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错. 5.D 【解析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+; 再向下平移3个单位为:22y x 33y x =+-⇒=.故选D . 6.B 【解析】 【分析】根据同分母分式的加减运算法则计算可得.【详解】解:原式=121 x x x+--=1-1 x x-=() --11 x x-=-1,故选B.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.7.C【解析】试题解析:11(1)1 1111x x xx x x x----===-----.故选C.考点:分式的加减法.8.D【解析】【分析】根据一元二次方程根与系数的关系列出方程求解即可.【详解】设方程的两根分别为x1,x1,∵x1+(k1-4)x+k-1=0的两实数根互为相反数,∴x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;∴k=-1.故选D.【点睛】本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=−ba,x1x1=ca,反过来也成立.9.C 【解析】【分析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.10.D【解析】【分析】首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.【详解】解:过点A向CB引垂线,与CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=2142 ADBD==故选:D.【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.11.C【解析】9,227是无限循环小数,π是无限不循环小数,31=,所以π是无理数,故选C.12.C【解析】【分析】根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.【详解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故选C.【点睛】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.12a.【解析】【分析】根据异分母分式加减法法则计算即可.【详解】原式211 222a a a =-=.故答案为:12a.【点睛】本题考查了分式的加减,关键是掌握分式加减的计算法则.14.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】分析:利用关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩可得m=﹣1,n=2∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩整理为:42546a ba+=⎧⎨=⎩解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.15.m>1【解析】∵反比例函数m1yx-=的图象在其每个象限内,y随x的增大而减小,∴m1->0,解得:m>1,故答案为m>1.16.12.【解析】【分析】【详解】根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为12.考点:概率公式.17.22.5°【解析】【详解】Q四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,Q∠EAC=2∠CAD,∴∠EAO=∠AOE,Q AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.18.3【解析】解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF =S△ABC=12BC•AH=12BC•22AB BH-=43,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=43﹣12×23×22(23)(3)-=3.故答案为:3.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)答案见解析;(2)B,54°;(3)240人.【解析】【分析】(1)根据D程度的人数和所占抽查总人数的百分率即可求出抽查总人数,然后利用总人数减去A、B、D 程度的人数即可求出C程度的人数,然后分别计算出各程度人数占抽查总人数的百分率,从而补全统计图即可;(2)根据众数的定义即可得出结论,然后利用360°乘A程度的人数所占抽查总人数的百分率即可得出结论;(3)利用960乘C程度的人数所占抽查总人数的百分率即可.【详解】解:(1)被调查的学生总人数为65%120÷=人,C程度的人数为120(18666)30-++=人,则A的百分比为18100%15%120⨯=、B的百分比为66100%55%120⨯=、C的百分比为30100%25%120⨯=,补全图形如下:(2)所抽取学生对数学学习喜欢程度的众数是B、图②中A所在扇形对应的圆心角是36015%54︒⨯=︒.故答案为:B;54︒;(3)该年级学生中对数学学习“不太喜欢”的有96025%240⨯=人答:该年级学生中对数学学习“不太喜欢”的有240人.【点睛】此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键.20.证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.21.(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.【解析】【分析】(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;(3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.【详解】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距21米,由题意得,60x+70﹣95x=21,解得,x=1.2,前2分钟﹣3分钟,两机器人相距21米时,由题意得,35x﹣70=21,解得,x=2.1.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),设线段GH所在直线的函数解析式为:y=kx+b,则,,解得,则直线GH的方程为y=x+,当y=21时,解得x=4.6,答:两机器人出发1.2分或2.1分或4.6分相距21米.【点睛】本题考查了一次函数的应用,读懂图像是解题关键.. 22.(1)见解析;(2)AB =4 【解析】 【分析】(1)过点B 作BF ⊥CE 于F ,根据同角的余角相等求出∠BCF=∠D ,再利用“角角边”证明△BCF 和△CDE 全等,根据全等三角形对应边相等可得BF=CE ,再证明四边形AEFB 是矩形,根据矩形的对边相等可得AE=BF ,从而得证;(2)由(1)可知:CF=DE ,四边形AEFB 是矩形,从而求得AB=EF ,利用锐角三角函数的定义得出DE 和CE 的长,即可求得AB 的长. 【详解】 (1)证明:过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,∠1+∠D =90°. ∵∠BCD =90°, ∴∠1+∠2=90°, ∴∠2=∠D . 又BC =CD∴△BHC ≌△CED (AAS ). ∴BH =CE .∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE =BH . ∴AE =CE .(2)∵四边形ABHE 是矩形, ∴AB =HE .∵在Rt △CED 中,tan 3CED DE==, 设DE =x ,CE =3x ,∴CD ==. ∴x =2.∴DE =2,CE =3. ∵CH =DE =2.∴AB=HE=3-2=4.【点睛】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.23.(1)0.3 ,45;(2)108°;(3)16.【解析】【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(I)见解析;(II)见解析;(III)见解析.【分析】(I)根据两种方式的收费标准分别计算,填表即可;(II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;(III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.【详解】(I)当t=40h时,方式A超时费:0.05×60(40﹣25)=45,总费用:30+45=75,当t=100h时,方式B超时费:0.05×60(100﹣50)=150,总费用:50+150=200,填表如下:(II)当0≤t≤25时,y1=30,当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=30(025){345(25)tt t≤≤->;当0≤t≤50时,y2=50,当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=50(050){3100(50)tt t≤≤->;(III)当75<t<100时,选用C种计费方式省钱.理由如下:当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,当t=75时,y1=180,y2=125,y3=120,所以当75<t<100时,选用C种计费方式省钱.【点睛】本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.25.证明见解析.【解析】【分析】不难看出△BDA和△CED都是直角三角形,证明△BDA∽△CED,只需要另外找一对角相等即可,由于AD是△ABC的中线,又可证AD⊥BC,即AD为BC边的中垂线,从而得到∠B=∠C,即可证相似.∵AB是⊙O直径,∴AD⊥BC,又BD=CD,∴AB=AC,∴∠B=∠C,又∠ADB=∠DEC=90°,∴△BDA∽△CED.【点睛】本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用.26.(1)25件;(2)见解析;(3)B班的获奖率高;(4).【解析】试题分析:(1)直接利用扇形统计图中百分数,进而求出B班参赛作品数量;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量;(3)分别求出各班的获奖百分率,进而求出答案;(4)利用树状统计图得出所有符合题意的答案进而求出其概率.试题解析:(1)由题意可得:100×(1﹣35%﹣20%﹣20%)=25(件),答:B班参赛作品有25件;(2)∵C班提供的参赛作品的获奖率为50%,∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),如图所示:;(3)A班的获奖率为:×100%=40%,B班的获奖率为:×100%=44%,C班的获奖率为:=50%;D班的获奖率为:×100%=40%,故C班的获奖率高;(4)如图所示:,故一共有12种情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,求抽到A 、B 两班的概率为:=.考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图. 27.(1)3;(1)x 1=4,x 1=1. 【解析】 【分析】(1)根据有理数的混合运算法则计算即可; (1)先移项,再提取公因式求解即可. 【详解】解:(1)原式=8×(12﹣18)﹣4×33 =8×38﹣33=3;(1)移项得:x (x ﹣4)﹣1(x ﹣4)=0, (x ﹣4)(x ﹣1)=0, x ﹣4=0,x ﹣1=0, x 1=4,x 1=1. 【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市闵行区2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是()A.0.156×10-5B.0.156×105C.1.56×10-6D.1.56×1062.在平面直角坐标系中,二次函数y=a(x–h)2+k(a<0)的图象可能是A.B.C.D.3.若()292mm--=1,则符合条件的m有()A.1个B.2个C.3个D.4个4.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是()A.两点之间的所有连线中,线段最短B.经过两点有一条直线,并且只有一条直线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过一点有且只有一条直线与已知直线垂直5.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为()A.0.86×104B.8.6×102C.8.6×103D.86×1026.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP 交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=35,其中正确结论的个数是( )A.0 B.1 C.2 D.37.在数轴上表示不等式组10240xx+≥⎧⎨-<⎩的解集,正确的是()A.B.C.D.8.9的值是()A.±3 B.3 C.9 D.819.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.35B.725C.45D.242510.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A.中位数不变,方差不变B.中位数变大,方差不变C.中位数变小,方差变小D.中位数不变,方差变小11.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=()A.40°B.110°C.70°D.140°12.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8 B.9 C.10 D.12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是_______.14.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.15.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.16.如图,在平面直角坐标系中,已知A (﹣2,1),B (1,0),将线段AB 绕着点B 顺时针旋转90°得到线段BA′,则A′的坐标为_____.17.如图放置的正方形ABCD ,正方形11DCC D ,正方形1122D C C D ,…都是边长为3的正方形,点A 在y 轴上,点12,,,B C C C ,…,都在直线33y x 上,则D 的坐标是__________,n D 的坐标是______.18.图,A ,B 是反比例函数y=k x图象上的两点,过点A 作AC ⊥y 轴,垂足为C ,AC 交OB 于点D .若D 为OB 的中点,△AOD 的面积为3,则k 的值为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米.每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元.分别求每台A 型, B 型挖掘机一小时挖土多少立方米?若不同数量的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?20.(6分)如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC .求证:CD 是⊙O 的切线;若∠D=30°,BD=2,求图中阴影部分的面积.21.(6分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC 于点F,求证:AE=AF.22.(8分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.53m的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理13m污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:(1)求出y与x的函数关系式.(纯利润=总收入-总支出)(2)当y=106000时,求该厂在这个月中生产产品的件数.23.(8分)(1)计算:3tan30°+|2﹣3|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化简,再求值:(x﹣22xy yx-)÷222x yx xy-+,其中x=2,y=2﹣1.24.(10分)如图,一次函数y=kx+b的图象与反比例函数ayx=的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数ayx=的图象于点N,若NM=NP,求n的值.25.(10分)已知一次函数y=x+1与抛物线y=x2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1.(1)写出抛物线的函数表达式;(2)判断△ABC的形状,并证明你的结论;(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由.26.(12分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.求∠APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.27.(12分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】解:,故选C.2.B【解析】【分析】根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.【详解】Q二次函数y=a(x﹣h)2+k(a<0)∴二次函数开口向下.即B成立.故答案选:B.【点睛】本题考查的是简单运用二次函数性质,解题的关键是熟练掌握二次函数性质.3.C【解析】【分析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【详解】Q()29-=1m-2m∴m2-9=0或m-2= ±1即m= ±3或m=3,m=1∴m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.4.B【解析】【分析】本题要根据过平面上的两点有且只有一条直线的性质解答.【详解】根据两点确定一条直线.故选:B.【点睛】本题考查了“两点确定一条直线”的公理,难度适中.5.C【分析】科学记数法就是将一个数字表示成a×10的n 次幂的形式,其中1≤|a|<10,n 表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.【详解】数据8 600用科学记数法表示为8.6×103 故选C .【点睛】用科学记数法表示一个数的方法是(1)确定a :a 是只有一位整数的数;(2)确定n :当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).6.C【解析】【分析】由四边形ABCD 是正方形,得到AD=BC,90DAB ABC ∠=∠=︒,根据全等三角形的性质得到∠P=∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据勾股定理求出5,AQ ==,DFO BAQ ∠=∠直接用余弦可求出.【详解】详解:∵四边形ABCD 是正方形,∴AD=BC,90DAB ABC ∠=∠=o ,∵BP=CQ ,∴AP=BQ , 在△DAP 与△ABQ 中, AD AB DAP ABQ AP BQ =⎧⎪∠=∠⎨⎪=⎩,∴△DAP ≌△ABQ ,∴∠P=∠Q ,∵90Q QAB ∠+∠=o,∴90P QAB ∠+∠=o ,∴90AOP ∠=o ,∴AQ ⊥DP ;②无法证明,故错误.∵BP=1,AB=3,∴4BQ AP ==,5,AQ ==,DFO BAQ ∠=∠ ∴3cos cos .5AB DFO BAQ AQ ∠=∠== 故③正确, 故选C .【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.7.C【解析】【分析】解不等式组,再将解集在数轴上正确表示出来即可【详解】解1+x≥0得x≥﹣1,解2x -4<0得x <2,所以不等式的解集为﹣1≤x <2,故选C.【点睛】本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.8.C【解析】3=3故选C.9.A【解析】【分析】由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE ∥BC 知AC=2AE=10,∠EDC=∠BCD ,再根据正弦函数的概念求解可得.【详解】∵△ABC 中,AC =BC ,过点C 作CD ⊥AB ,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=63105 BDBC==,故选:A.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.10.D【解析】【分析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.【详解】∵原数据的中位数是=3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;∵新数据的中位数为3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;所以新数据与原数据相比中位数不变,方差变小,故选:D.【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.11.B【解析】【分析】先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.【详解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=12∠BAC=12×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故选B.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.12.A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2 3【解析】共有3种等可能的结果,它们是:3,2,3;4, 2, 3;5, 2, 3;其中三条线段能够成三角形的结果为2,所以三条线段能构成三角形的概率=23.故答案为23.14.-1【解析】【分析】根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.【详解】解:∵方程3x1-5x+1=0的一个根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.1【解析】【详解】试题分析:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=12BG=12(AB﹣AG)=12(AB﹣AC)=1.16.(2,3)【解析】【分析】作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.【详解】如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,∵点A、B的坐标分别为(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴点A′的坐标为(2,3).故答案为(2,3).【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.17.33,2 2⎛⎫+⎪⎪⎝⎭3333,222n n⎛⎫+++⎪⎪⎝⎭【解析】【分析】先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到nD的坐标即可.【详解】分别过点12,,D D D L作y轴的垂线交y轴于点12,,E E E L,∵点B在33y x=上设3(,)3B mtan333AOBm∴∠==∴60AOB∠=︒3AB=Q2sin 60AB OA ∴===︒ 90AOB OAB ∠+∠=︒Q30OAB ∴∠=︒90,90EAD OAB EAD EDA ∠+∠=︒∠+∠=︒Q30EDA OAB ∴∠=∠=︒同理,1122,n n AD E AD E AD E V V L V 都是含30°的直角三角形∵32ED AD ==,12AE AD ==22OE OA AE ∴=+=+∴3(,2)22D +同理,点n D的横坐标为31)(1)2n n n x E D AD n n ===+=+纵坐标为1122(1)21)22n n AO AE AD n n +=+=++=+ 故点n D的坐标为3322222n n ⎛⎫+++ ⎪ ⎪⎝⎭故答案为:3,222⎛⎫+ ⎪ ⎪⎝⎭;33,22222n n ⎛⎫+++ ⎪ ⎪⎝⎭. 【点睛】本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.18.1.【解析】先设点D 坐标为(a ,b ),得出点B 的坐标为(2a ,2b ),A 的坐标为(4a ,b ),再根据△AOD 的面积为3,列出关系式求得k 的值.解:设点D 坐标为(a ,b ),∵点D 为OB 的中点,∴点B 的坐标为(2a ,2b ),∴k=4ab ,又∵AC ⊥y 轴,A 在反比例函数图象上,∴A 的坐标为(4a ,b ),∴AD=4a ﹣a=3a ,∵△AOD 的面积为3, ∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案为1“点睛”本题主要考查了反比例函数系数k 的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD 的面积为1列出关系式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米;(2)共有三种调配方案.方案一: A 型挖据机7台,B 型挖掘机5台;方案二: A 型挖掘机8台,B 型挖掘机4台;方案三: A 型挖掘机9台,B 型挖掘机3台.当A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.详解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得35165,47225,x y x y +=⎧⎨+=⎩ 解得30,15.x y =⎧⎨=⎩所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米.(2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有()12m -台.根据题意,得43004180W m =⨯+⨯ ()124808640m m -=+,因为()()430415121080430041801212960m m m m ⎧⨯+⨯-≥⎪⎨⨯+⨯-≤⎪⎩,解得69m m ≥⎧⎨≤⎩, 又因为12m m ≠-,解得6m ≠,所以79m ≤≤.所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台;方案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台;方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800Q >,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.20.(1)证明见解析;(2)阴影部分面积为43π【解析】【分析】(1)连接OC ,易证∠BCD=∠OCA ,由于AB 是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD 是⊙O 的切线;(2)设⊙O 的半径为r ,AB=2r ,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:△OAC 的面积以及扇形OAC 的面积即可求出阴影部分面积.【详解】(1)如图,连接OC ,∵OA=OC ,∴∠BAC=∠OCA ,∵∠BCD=∠BAC ,∴∠BCD=∠OCA ,∵AB 是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC 是半径,∴CD 是⊙O 的切线(2)设⊙O 的半径为r ,∴AB=2r ,∵∠D=30°,∠OCD=90°,∴OD=2r ,∠COB=60°∴r+2=2r ,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23,易求S△AOC=12×23×1=3S扇形OAC=12044 3603ππ⨯=,∴阴影部分面积为43 3π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.21.见解析【解析】【分析】根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.【详解】∵BF 平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【点睛】本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.22.(1)y=19x-1(x>0且x是整数) (2)6000件【解析】【分析】(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量-产品的成本价×产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;(2)根据(1)中得出的式子,将y的值代入其中,求出x即可.【详解】(1)依题意得:y=80x-60x-0.5x•2-1,化简得:y=19x-1,∴所求的函数关系式为y=19x-1.(x>0且x是整数)(2)当y=106000时,代入得:106000=19x-1,解得x=6000,∴这个月该厂生产产品6000件.【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.23.(1)3;(2) x﹣y,1.【解析】【分析】(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【详解】(1)3tan30°(13)-1-(3-π)0-(-1)2018+3-1-1,=,=3;(2)(x﹣22xy yx-)÷222x yx xy-+,=()()() 222•x x yx xy yx x y x y+-++-,=()()()()2•x y x x yx x y x y-++-=x-y,当,-1时,原式+1=1.【点睛】本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.24.20(1)y=2x-5, y=12x;(2)n=-4或n=1【解析】【分析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案.【详解】解:(1)∵点A的坐标为(4,3),∴OA=5,∵OA=OB,∴OB=5,∵点B在y轴的负半轴上,∴点B的坐标为(0,-5),将点A(4,3)代入反比例函数解析式y=ax中,∴反比例函数解析式为y=12x,将点A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,∴一次函数解析式为y=2x-5;(2)由(1)知k=2,则点N的坐标为(2,6),∵NP=NM,∴点M坐标为(2,0)或(2,12),分别代入y=2x-n可得:n=-4或n=1.【点睛】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用.25.(1)y=x2﹣7x+1;(2)△ABC为直角三角形.理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).【解析】【分析】(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;(2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=,BN=,从而得到∠ABC =90°,所以△ABC为直角三角形;(3)利用勾股定理计算出AC=,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI×=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣12x+13,然后分别求出P、Q、G的坐标即可.【详解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得64+8+91b cc=⎧⎨=⎩,解得-71bc=⎧⎨=⎩,∴抛物线解析式为y=x2﹣7x+1;故答案为y=x2﹣7x+1;(2)△ABC为直角三角形.理由如下:当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=,BN=,∴∠ABC=90°,∴△ABC为直角三角形;(3)∵AB=BN=,∴AC=,∴Rt△ABC设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,∵I为△ABC的内心,∴AI、BI为角平分线,∴BI⊥y轴,而AI⊥PQ,∴PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,它们到直线AB、BC、AC距离相等,BI×=4,而BI⊥y轴,∴I(4,1),设直线AI的解析式为y=kx+n,则41 89k nk n+=⎧⎨+=⎩,解得27 kn=⎧⎨=-⎩,∴直线AI的解析式为y=2x﹣7,当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);设直线AP的解析式为y=﹣12x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直线AP的解析式为y=﹣12x+13,当y=1时,﹣12x+13=1,则P(24,1)当x=0时,y=﹣12x+13=13,则Q(0,13),综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键.26.(1)30°;(2)海监船继续向正东方向航行是安全的.【解析】【分析】(1)根据直角的性质和三角形的内角和求解;(2)过点P作PH⊥AB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【详解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)过点P作PH⊥AB于点H在Rt△APH中,∠PAH=30°,3PH在Rt△BPH中,∠PBH=30°,BH=33PH∴AB=AH-BH=33PH=50解得325,因此不会进入暗礁区,继续航行仍然安全. 考点:解直角三角形27.(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得:x 2y 3.5{2x y 2.5+=+=,解得:x 0.5{y 1.5==。