TSS721A的管脚说明
全中文芯片资料TSS721A仪表总线收发器
仪表总线收发器
1、概述
TSS721A 是满足仪表总线标准(EN1434-3)的单芯片收发器,内部接口电路可以适应仪表总线 结构中主从机之间的不同电平,与总线的连接是无极性的,且支持使用光耦与从机间进行全电隔离。 芯片可由总线供电,对从机不增加功率需求,并内置总线电压故障指示。接收器有动态电平识别功 能,发送器有可编程电流沉。片内集成 3.3v 稳压源,当总线发生故障时将会延时关断。该电路广泛 应用于 M-BUS 远程抄表、安防、智能家居等领域。
第 4 页,共 9 页
650 μA
350 μA
0.5 μA
0.5 μA
3.4
V
5
Ω
6.4
4.3
V
7.5
2.4 mA
1.1
1.33 V
VSTC
V
1
MΩ
VBAT
0.6
V
0.9
3
s
QQ:37056373 V.1.0
TSS721A 仪表总线收发集成电路
注 2:输入端 RX/RXI 及输出端 TX/TXI 端悬空,ICC=ICI1+ICI2。 3.4 接收模块直流参数
2.2 引脚说明
引脚 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
符号 BUSL2
VB STC RIDD PF SC TXI TX BAT VS VDD RX RXI RIS GND BUSL1
功能描述 连接仪表总线 整流后总线信号端 外接电源维持电容 外接 CS1 电流值调节电阻 欠压指示输出端 外接采样电容 数据信号反相输出端 数据信号输出端 逻辑电平调整输入端 总线/电池供电模式切换输出端 稳压电源输出端 数据信号输入端 数据信号反相输入端 外接调制电流值调节电阻
TSS721A技术资料总结
TSS721A技术资料总结一,芯片简介TSS721A是一种用于仪表总线的收发器集成芯片,其内含的接口电路可以调节仪表总线结构中主从机的电平,可通过光耦等隔离器件与总线连接,通过数据收发器由总线供电。
芯片封装采用DIP16封装,将整个数据发送功能集成于一体,内部功能框图如图1所示,管脚功能介绍如下:图11,满足国际EN1434-3标准2,具有动态电平识别的接收电流3,通过限流电阻可调接收电流4,无极性连接5,放掉电功能6,可提供3.3.V稳压源7,支持远程供电,从机可由总线或电池供电8,半双工下可达9600 Baud rate9,支持UART协议,只在数据传输时总线有效二,管脚功能管脚号 管脚定义 功能1 BUSL2 仪表总线接入端2 VB 整流后总线电压差连接端3 STC 供电电容接入端4 RIDD 电流调节接入端5 PF 掉电信号输出端6 SC 采样电容连接端7 TXI 数据输出端8 TX 数据输出端9 BAT 逻辑电平调节端10 VS 总线或电池供电输出选择端11 VDD 稳压输入端12 RX 数据输出端13 RXI 数据输出端14 RIS 调制电流调节输入端15 GND 接地端16 BUSL1 仪表总线接入端三,数据传输模式MBUS传输原理1,主——>从此模式下采用电压调制传输数据,总线电流保持不变。
即主机发送的数据码流是一种电压脉冲序列,用+36V标识逻辑‘1’,用+24V标识逻辑‘0’。
在稳态时,线路将保持‘1’状态。
如图2所示:图2总线电压Vbus=MARK(标识值)是由从机BUSL1和BUSL2间压差定义的,连接在管脚SC上的电容Csc的充放电流是不同的,存在以下关系:ISCcharge =ISCdischarge/40这个比例关系是独立于数据内容运行任意UART协议所必须的条件(例如传输采用11位UART协议,当所有数据只有停止位是1.其他都是0),必须有足够的时间对电容Csc进行再充电,内部电压比较器TC3检测来自主机的调制电压,并根据电压VBUS=SPACE(空值)或MARK(标识值)来开关正端输出TX和反向端输出TXI,输出数据给从机。
MODEL7211A协议转换器引脚定义与接线指引
目录第一章.MODEL7211A产品接线方式 (1)1.1以太网口引脚定义 (1)1.2以太网口接线 (1)1.3ITU-TG.703(75Ω)接口引脚定义 (2)1.4ITU-TG.703(75Ω)接口接线 (2)1.5ITU-TG.703(120Ω/RJ45)接口引脚定义 (3)1.6ITU-TG.703(120Ω/RJ45)接口接线 (3)第一章.MODEL7211A产品接线方式1.1以太网口引脚定义以太网接口:(10/100M)注:“TX±”为发送数据±,“RX±”为接收数据±,“—”为未用。
1.2以太网口接线直通线(MDI):注100M一端(T568B):白橙/橙/白绿/蓝/白蓝/绿/白棕/棕另一端(T568B):白橙/橙/白绿/蓝/白蓝/绿/白棕/棕交叉线(MDI-X):注:100M采用了1-3,2-6交换的方式,也就是一头使用T568A制作,另外一头使用T568B制作一端(T568A):白绿/绿/白橙/蓝/白蓝/橙/白棕/棕另一端(T568B):白橙/橙/白绿/蓝/白蓝/绿/白棕/棕引脚号MDI信号MDI-X信号1TX+RX+2TX-RX-3RX+TX+6RX-TX-4、5、7、8——181.3ITU-TG.703(75Ω)接口引脚定义ITU-TG.703(75Ω)引脚定义引脚引脚定义IN信号输入OUT信号输出1.4ITU-TG.703(75Ω)接口接线ITU-TG.703(75Ω)接口接线:1.5ITU-TG.703(120Ω/RJ45)接口引脚定义ITU-TG.703(120Ω/RJ45)引脚定义、1.6ITU-TG.703(120Ω/RJ45)接口接线引脚ITU-TG.703(120Ω/RJ45)引脚ITU-TG.703(120Ω/RJ45)2RX+(接收数据正)接6TX+(发送数据正)3RX-(接收数据负)接7TX-(发送数据负)6TX+(发送数据正)接2RX+(接收数据正)7TX-(发送数据负)接3RX-(接收数据负)接线示意图:引脚号功能定义信号方向1NC(空)2RX+(接收数据正)输入3RX-(接收数据负)输入4GND (地)5GND (地)6TX+(发送数据正)输出7TX-(发送数据负)输出8NC (空)18想了解更多产品咨询,行业咨询,请关注一下二维码。
MS721说明书V1_2
杭州瑞盟科技有限公司
版本号:1.2 2013.4.18 共12页 第4页
MS721
从站电源
MS721 内部集成一个 3.3V 的稳压源,该稳压源的电源由 STC 管脚的存储电容 CSTC 提供,而 STC 脚的存储电容 CSTC 由电流源 CS1 的恒定电流 ISTC_use 进行充电,最大的 STC 电压被限定为 REF1,充电电流 ISTC_use 由管脚 RIDD 连接的外部电阻决定。电阻 RRIDD 大小可以通过下面的公式计 算得出。
杭州瑞盟科技有限公司
版本号:1.2 2013.4.18 共12页 第5页
电源上电/掉电
VBUS
ton VSTC VDDon
VVS
VVB = VSTC + 0.6V
MS721
电源掉电输出管脚PF 的典型阈值电压
VDDoff
VVDD VPF
toff
toff
=
CSTCVISVTDCD-
VBUS = 0 V, VSTC=0
-IVDD = 1 mA, VSTC = 6.5 V
-IVDD = 2 to 8 mA, VSTC = 4.5 V
VDD = on, VS = on
VDD = off, VS = off
IVDD < ISTC_use
VSTC = 5 V
RRIDD = 30 kΩ RRIDD = 13 kΩ
RRIDD = 30 kΩ
VVS
VS端输出电压
VDD = on, IVS = –5 µA
RVS
VS端输出阻抗
VDD = off
VVB = VSTC+ 0.8 V, IPF = -100 µA
MS721说明书V1_2
开启时间
VVB = VSTC+ 0.3 V, IPF = 5 µA CSTC = 50 µF, Bus voltage slew rate:1 V/µs
注:1. 所有的电压都是相对 GND 测量的,除非另有说明。
2. 输入 RX/RXI 和输出 TX/TXI 开路,ICC=ICI1+ICI2。
-0.5
RRIDD = 30 kΩ
VVS
VS端输出电压
VDD = on, IVS = –5 µA
RVS
VS端输出阻抗
VDD = off
VVB = VSTC+ 0.8 V, IPF = -100 µA
VPF
PF端输出电压
VSTC = 6.5 V VVB = VSTC+ 0.3 V, IPF = 1 µA
ton
杭州瑞盟科技有限公司
版本号:1.2 2013.4.18 共12页 第4页
MS721
从站电源
MS721 内部集成一个 3.3V 的稳压源,该稳压源的电源由 STC 管脚的存储电容 CSTC 提供,而 STC 脚的存储电容 CSTC 由电流源 CS1 的恒定电流 ISTC_use 进行充电,最大的 STC 电压被限定为 REF1,充电电流 ISTC_use 由管脚 RIDD 连接的外部电阻决定。电阻 RRIDD 大小可以通过下面的公式计 算得出。
因为 MS721 为半双工设计,所以 RX 或 RXI 的输入数据由 ECHO 反馈到输出端 TX 和 TXI。如果 从站或者主站同时通过总线发送数据,TX 和 TXI 输出信号就为主站和从站输入信号叠加,表明从 站发生了数据冲突(见图一)。总线需要一个恒定电流,这个电流被总线上连接的每一个从站所 消耗。通过图四中的公式,可以计算出可编程电阻 RRIS 的大小。
SF6断路器微水在线监测仪系统毕业设计说明书
摘要SF6断路器微水在线监测仪以PIC16F877单片机作为处理器,来实现实时监测SF6气体的温度、湿度及压力,从而得知断路器的运行状态。
对由于SF6气体本身原因引起的绝缘故障做出有效应对,进而保证电网的运行安全。
本次设计的SF6断路器微水在线监测系统的基本原理为:将湿度、温度、压力传感器通过连接器件连接到SF6气室,测量气室内SF6气体的湿度、温度、压力。
所测模拟量送入PIC16F877单片机,通过A/D转换,数据分析,实施数据越限报警,并用LCD显示温度、压力以及湿度。
下位机与上位机的通讯遵循MODBUS通讯协议,生成标准通信数据包。
数据包通过M-BUS总线送入上位机,进行计算机实时监控。
关键字:PIC16F877单片机;M-BUS总线;软件编程;AbstractSF6 circuit breakers monitor online system uses the PIC16F877 microcontroller as a processor, to achieve real-time monitoring of SF6gas’s temp erature, humidity and pressure, and to kown the running state of circuit breakers so that people could effectively deal with the insulation fault caused by SF6 gas itself, and ensure the safty of the power supply system.In this design,the basic principles of SF6circuit breaker can be summarized as that the humidity sensor, temperature sensor and pressure sensor are connected to the SF6gas room by the jointer,which can survey the humidity, temperature, pressure of SF6 gas. the measured analog go through the A / D conversion, data analysis in the PIC16F877 microcontroller, to implement data overrun alarm and demonstrate temperature, pressure and humidity.The information transmission between slaves and the master generates a standard communication packets based on MODBUS protocol to achieve real-time control.Keyword:PIC16F877 microcontroller; M-BUS bus; software programming;目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1选题背景 (1)1.2主要设计(研究)内容 (3)1.3系统主要技术指标 (3)1.4解决的关键问题 (3)第二章系统总体结构方案设计 (5)2.1系统总体结构及其功能 (5)2.2方案设计 (5)2.2.1方案一 (5)2.2.2方案二 (6)2.3方案论证 (7)2.4方案的确定 (7)第三章系统的硬件设计 (9)3.1单片机 (10)3.1.1 PIC16F877单片机特点 (10)3.1.2外围电路 (11)3.2温度传感器 (12)3.2.1温度传感器的选型 (12)3.2.2 温度传感器接口电路 (14)3.2.3 小结 (14)3.3湿度传感器 (14)3.3.1湿度传感器的选型 (15)3.3.2 接口电路 (16)3.3.3 小结 (17)3.4压力传感器 (18)3.4.1压力传感器的选型 (18)3.4.2 接口电路 (19)3.4.3 小结 (19)3.5键盘电路 (19)3.6报警电路 (20)3.7LCD显示模块 (20)3.7.1 LCD显示模块的选型 (21)3.7.2 接口电路 (21)3.7.3 小结 (21)3.8掉电保护模块 (22)3.8.1掉电保护的选型 (22)3.9M-BUS通讯模块 (22)3.9.1M-BUS总线介绍 (23)3.10通讯接口电路的设计 (24)3.10.1 TSS721A芯片介绍 (25)3.10.2 TSS721A芯片与单片机接口电路设计 (27)3.10.3小结 (29)3.11电源的设计 (29)3.11.1电源选择 (29)3.11.2 接线电路 (30)3.11.3电源的抗干扰技术 (31)3.11.4小结 (32)第四章软件设计 (33)4.1系统软件的设计思想 (33)4.2系统主程序的设计 (33)4.3系统子程序的设计 (33)4.3.1定时器/计数器子程序 (33)4.3.2 AD转换子程序 (36)4.3.3 LCD显示子程序 (37)4.3.4 中断服务子程序 (39)4.3.5 键盘子程序 (40)4.3.6 解除报警子程 (41)4.3.7 串行通信子程序 (41)第五章总结 (47)5.1毕业设计的主要工作情况及创新之处 (47)5.2系统改进及发展前景 (47)参考文献 (48)英文原文及翻译 (49)原文 (49)翻译 (57)致谢 (63)附录 (64)程序清单 (64)第一章绪论目前,社会对电力的需求越来越大。
电磁炉常用开关电源芯片介绍
电磁炉常用开关电源芯片介绍电磁炉虽然品牌厂家众多,但其内部构成原理都大同小异,今天我来给大家扒一扒电磁炉中常用的几种开关电源管理芯片,希望对从事此方面维修的师傅有所帮助。
•VIPER12AVPIER 12A是采用电流模式PWM控制方式的功率开关芯片,集成高压启动电路和高压功率管,为低成本开关电源系统提供高性价比的解决方案。
芯片VDD的工作电压范围宽,很方便的应用于充龟器领域。
另外还提供了过温、过流、过压等保护功能,保证了解系统的可靠性。
管脚示意图如下。
其中4脚VDD为芯片电源供电端,1、2脚为芯片内部MOS管的源极,同时也是芯片地。
3脚FB为反馈输入端,5678脚为芯片的启动端,同时作为内部MOS管的漏极。
维修时,可以用VIPER22A替换使用。
•THX203HTHX203H为高效能电流模式PWM控制器。
专为高性价比AC/DC转换器设计。
在85V-265V的宽电压范围内提供高达12W的连续输出功率,峰值输出功率更可以达到18W。
该电源控制器可工作于典型的反激电路拓扑中,构成简洁的AD/DC转换器。
其管脚示意图如下其中2脚和3脚为别为芯片供电端和接地端。
1脚OB为启动电流输入端,外接启动电阻。
4脚CT为振荡电容端,外接定时电容。
5脚FB为反馈端。
6脚IS为开关电流取样端口,外接取样电阻。
7脚和8脚为输出端,接开关变压器。
FSD200该芯片为双列直插7脚封装,内含700V耐压 SenseFET功率开关管。
工作电压230VAC,±15%时,输出功率5W;工作电压85-265VAC时,输出功率4W。
最高开关频率134kHz。
该控制芯片由一个耐压700V 的功率MOSFET 开关管和电源控制器两部分组成。
其控制方式不同于传统的PWM 型开关电源,采用简单的开/关控制输出电压,其瞬态响应时间比传统的PWM型要快,而且具有线电压欠压保护功能。
管脚图见下图。
其5脚VCC为供电脚,123脚GND为接地端,4脚VFB为电压反馈引脚,7脚DRAIN为内部MOS管的漏极,8脚VSTR为启动引脚。
TSS721A技术资料总结
TSS721A技术资料总结一,芯片简介TSS721A是一种用于仪表总线的收发器集成芯片,其内含的接口电路可以调节仪表总线结构中主从机的电平,可通过光耦等隔离器件与总线连接,通过数据收发器由总线供电。
芯片封装采用DIP16封装,将整个数据发送功能集成于一体,内部功能框图如图1所示,管脚功能介绍如下:图11,满足国际EN1434-3标准2,具有动态电平识别的接收电流3,通过限流电阻可调接收电流4,无极性连接5,放掉电功能6,可提供3.3.V稳压源7,支持远程供电,从机可由总线或电池供电8,半双工下可达9600 Baud rate9,支持UART协议,只在数据传输时总线有效二,管脚功能三,数据传输模式MBUS传输原理1,主——>从此模式下采用电压调制传输数据,总线电流保持不变。
即主机发送的数据码流是一种电压脉冲序列,用+36V标识逻辑‘1’,用+24V标识逻辑‘0’。
在稳态时,线路将保持‘1’状态。
如图2所示:图2总线电压Vbus=MARK(标识值)是由从机BUSL1和BUSL2间压差定义的,连接在管脚SC上的电容Csc的充放电流是不同的,存在以下关系:I SCcharge =ISCdischarge/40这个比例关系是独立于数据内容运行任意UART协议所必须的条件(例如传输采用11位UART协议,当所有数据只有停止位是1.其他都是0),必须有足够的时间对电容Csc进行再充电,内部电压比较器TC3检测来自主机的调制电压,并根据电压VBUS=SPACE(空值)或MARK(标识值)来开关正端输出TX和反向端输出TXI,输出数据给从机。
2,从——>主在此模式下使用总线电流调制传输据,总线电压保持不变,即从机发送的数据码流是一种电流脉冲序列,通常用1.5mA表示逻辑‘1’,当传输‘0’时,由从机控制使电流值增加到11~20mA。
在稳态时,线路值持续‘1’状态,当从机接收信号时,其电流应处于稳态‘1’,在接收信号时,其电压值的变化所导致的电流变化不应超过0.2%/V。
3a021引脚说明
3a021引脚说明摘要:一、引脚说明概述二、3a021引脚的具体说明1.电源引脚2.信号输入引脚3.信号输出引脚4.控制引脚三、引脚说明在实际应用中的意义正文:【引言】3a021是一款广泛应用于各种电子设备的集成电路,了解其引脚说明对于电路设计和使用具有重要意义。
本文将对3a021的引脚进行详细说明。
【引脚说明概述】3a021引脚说明主要包括电源引脚、信号输入引脚、信号输出引脚和控制引脚。
这些引脚分别承担着不同的功能,共同保证了3a021的正常工作。
【3a021引脚的具体说明】1.电源引脚:3a021的电源引脚负责接收外部电源供应,为整个电路提供稳定的电压。
一般情况下,电源引脚需要接入一个稳定的直流电压源,其电压范围应在3a021的技术参数要求内。
2.信号输入引脚:信号输入引脚用于接收外部传感器或其他设备传输过来的信号。
根据具体应用场景和需求,信号输入引脚的数量和类型可能有所不同。
通常情况下,信号输入引脚需要接入一个阻抗匹配的负载,以确保信号传输的效率和稳定性。
3.信号输出引脚:信号输出引脚负责将3a021处理后的信号传输给外部设备。
根据不同的电路设计,信号输出引脚可以采用推挽输出、开漏输出等形式。
在实际应用中,应根据外部设备的接口要求选择合适的信号输出引脚。
4.控制引脚:控制引脚主要用于接收外部设备或电路对3a021的控制信号。
这些控制信号可以用于设置3a021的工作模式、参数配置等。
在实际应用中,应根据具体需求选择合适的控制引脚,并确保控制信号的稳定性和可靠性。
【引脚说明在实际应用中的意义】了解3a021引脚说明对于设计和使用电路具有重要意义。
正确连接引脚可以确保电路正常工作,提高系统性能和稳定性。
同时,熟悉引脚说明也有助于分析和排查电路故障,提高维修效率。
7133-1稳压管
上海集驰电子有限公司50mA,高输入电压LDO 线性稳压器低压差CMOS 电压稳压器Low Dropout CMOS Voltage Regulator 71XX-1 系列71XX-1 Series71XX-1 系列是使用CMOS 技术开发的低压差型正电压稳压电路。
具有高输出电压精度,低静态功耗电流,且最高工作电压可达24V 的特点。
The 71XX-1 series is a family of Low Dropout Positive regulators developed using CMOS technology. These ICS perform with high output voltage accuracy, low quiescent current ,The allow operation voltage as high as 24V.产品特点:·高输出电压精度·低输入输出电压差·低功耗电流·高输入耐压精度±2%典型值40mV 典型值2uA 最大24V产品·high output voltageaccuracy ·low dropoutvoltage ·low quiescentcurrent·Max input voltage±2%40mV2uA24V选录:Selection table7144-1#/SOT-89 4.4V ±2%7150-1#/SOT-89 5.0V ±2%上海集驰电子有限公司型号(Part NO.) 输出电压(Output voltage)误差(Tolerance)7130-1#/SOT-23 3.0V ±2%7133-1#/SOT-23 3.3V ±2%7136-1#/SOT-23 3.6V ±2%7144-1#/SOT-23 4.4V ±2%7150-1#/SOT-23 5.0V ±2%注:可提供客户半定制产品,选择范围1.5~12V 每0.1V 步进细分。
tss721a中文手册
123413141516RXIRISGNDBUSL1RIDDSTCVBBUSL2D PACKAGE(TOP VIEW)567101112VSVDDRXTXISCPF89BA TTXTSS721A SLAS222B–APRIL1999–REVISED NOVEMBER2010METER-BUS TRANSCEIVERCheck for Samples:TSS721AFEATURES•Meter-Bus Transceiver(for Slave)MeetsStandard EN1434-3•Receiver Logic With Dynamic LevelRecognition•Adjustable Constant-Current Sink via Resistor•Polarity Independent•Power-Fail Function•Module Supply Voltage Switch• 3.3-V Constant Voltage Source•Remote Powering•Up to9600Baud in Half Duplex for UARTProtocol•Slave Power Support–Supply From Meter-Bus via Output VDD–Supply From Meter-Bus via Output VDD orFrom Backup Battery–Supply From Battery–Meter-Bus Active forData Transmission OnlyDESCRIPTIONTSS721A is a single chip transceiver developed for Meter-Bus standard(EN1434-3)applications.The TSS721A interface circuit adjusts the different potentials between a slave system and the Meter-Bus master.The connection to the bus is polarity independent and supports full galvanic slave isolation with optocouplers.The circuit is supplied by the master via the bus.Therefore,this circuit offers no additional load for the slave battery.A power-fail function is integrated.The receiver has dynamic level recognition,and the transmitter has a programmable current sink.A3.3-V voltage regulator,with power reserve for a delayed switch off at bus fault,is integrated.Table1.ORDERING INFORMATION(1)(2)T A PACKAGE ORDERABLE PART NUMBER 0°C to70°C SOIC–D Reel of2500TSS721ADR(1)For the most current package and ordering information,see the Package Option Addendum at the end of this document,or see the TIweb site at .(2)Package drawings,thermal data,and symbolization are available at /packaging.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright©1999–2010,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters.BAT RIDDSTCVS VDD VBPF BUSL1 TXGND RIS BUSL2 TXIRX RXI SCTSS721ASLAS222B–APRIL1999–REVISED FUNCTIONAL DESCRIPTIONFigure1.Functional SchematicTable2.Terminal FunctionsTERMINALDESCRIPTIONNAME NO.BUSL21Meter-BusVB2Differential bus voltage after rectifierSTC3Support capacitorRIDD4Current adjustment inputPF5Power fail outputSC6Sampling capacitorTXI7Data output invertedTX8Data outputBAT9Logic level adjustVS10Switch for bus or battery supply outputVDD11Voltage regulator outputRX12Data inputRXI13Data input invertedRIS14Adjust input for modulation currentGND15GroundBUSL116Meter-Bus2Submit Documentation Feedback Copyright©1999–2010,Texas Instruments IncorporatedProduct Folder Link(s):TSS721AVBBUSL1BUSL2V TV V TXV I SC C = 30 pF typ BUSL1-BUSL2V = 25V ,f = 1 MHzB meas I =SCdisharge I SCcharge40 (typ)TSS721ASLAS222B –APRIL 1999–REVISED NOVEMBER 2010Data Transmission,Master to SlaveThe mark level on the bus lines V BUS =MARK is defined by the difference of BUSL1and BUSL2at the slave.It is dependent on the distance of Master to Slave,which affects the voltage drop on the wire.To make the receiver independent,a dynamic reference level on the SC pin is used for the voltage comparator TC3(see Figure 2).Figure 2.Data Transmission,Master to SlaveA capacitor C SC at pin SC is charged by a current I SCcharge and is discharged with a current I SCdischarge where:(1)This ratio is necessary to run any kind of UART protocol independent of the data contents.(for example,if an 11-bit UART protocol is transmitted with all data bits at 0and only the stop bit at 1).There must be sufficient time to recharge the capacitor C SC .The input level detector TC3detects voltage modulations from the master,V BUS =SPACE/MARK conditions,and switches the inverted output TXI and the non-inverted output TX.Copyright ©1999–2010,Texas Instruments Incorporated Submit Documentation Feedback3Product Folder Link(s):TSS721AVBBUSL1GNDBUSL2R RISRISRX RXI V I BUSV RXIV RXI = I + I MC MS CS3I MC )RIS W V =Voltage on pin RIS R = Programming resistor I = Programmable current I = Modulation currentI = Modulation supply current (220 µA typ)RIS RIS CS3MC MS R =RIS=V RIS I CS3V RISI –I MC MSTSS721ASLAS222B –APRIL 1999–REVISED NOVEMBER 2010Data Transmission,Slave to MasterThe device uses current modulation to transmit information from the slave to the master while the bus voltage remains constant.The current source CS3modulates the bus current and the master detects the modulation.The constant current source CS3is controlled by the inverted input RXI or the non-inverted input RX.The current source CS3can be programmed by an external resistor R RIS .The modulation supply current I MS flows in addition to the current source CS3during the modulation time.Figure 3.Data Transmission,Slave to MasterBecause the TSS721A is configured for half-duplex only,the current modulation from RX or RXI is repeated concurrently as ECHO on the outputs TX and TXI.If the slave,as well as the master,is trying to send information via the lines,the added signals appear on the outputs TX and TXI,which indicates the data collision to the slave (see Figure 1).The bus topology requires a constant current consumption by each connected slave.To calculate the value of the programming resistor R RIS ,use the formula shown in Figure 4.Figure 4.Calculate Programming Resistor R RIS4Submit Documentation FeedbackCopyright ©1999–2010,Texas Instruments IncorporatedProduct Folder Link(s):TSS721AR= 25 RID VRIDDISTC= 25VRIDDI+ ISTC_use IC1I(BUS34567(V)STC812TSS721A SLAS222B–APRIL1999–REVISED NOVEMBER2010 Slave Supply,3.3VThe TSS721A has an internal3.3-V voltage regulator.The output power of this voltage regulator is supplied by the storage capacitor C STC at pin STC.The storage capacitor C STC at pin STC is charged with constant current I STC_use from the current source CS1.The maximum capacitor voltage is limited to REF1.The charge current I STC has to be defined by an external resistor at pin RIDD.The adjustment resistor R RIDD can be calculated using Equation2.(2)Where,I STC=current from current source CS1I STC_use=charge current for support capacitorI CI=internal currentV RIDD=voltage on pin RIDDR RIDD=value of adjustment resistorThe voltage level of the storage capacitor C STC is monitored with comparator TC1.Once the voltage V STC reaches V VDD_on,the switch S VDD connects the stabilized voltage V VDD to pin VDD.VDD is turned off if the voltage V STC drops below the V VDD_off level.Voltage variations on the capacitor C STC create bus current changes(see Figure5).Figure5.Single Mode Bus LoadAt a bus fault the shut down time of VDD(t off)in which data storage can be performed depends on the system current I VDD and the value of capacitor C STC.See Figure6,which shows a correlation between the shutdown of the bus voltage V BUS and V DD_off and t off for dimensioning the capacitor.The output VS is meant for slave systems that are driven by the bus energy,as well as from a battery should the bus line voltage fail.The switching of VS is synchronized with VDD and is controlled by the comparator TC1.An external transistor at the output VS allows switching from the Meter-Bus remote supply to battery.Copyright©1999–2010,Texas Instruments Incorporated Submit Documentation Feedback5Product Folder Link(s):TSS721AV V V V V V STCVDDoffoff STC VDD CI1V –V t =C I +I TSS721ASLAS222B –APRIL 1999–REVISED NOVEMBER 2010Power On/OffFigure 6.Power On/Off TimingPower Fail FunctionBecause of the rectifier bridge BR at the input,BUSL1,and BUSL2,the TSS721A is polarity independent.The pin VB to ground (GND)delivers the bus voltage V VB less the voltage drop over the rectifier BR.The voltage comparator TC2monitors the bus voltage.If the voltage V VB >V STC +0.6V,then the output PF =1.The output level PF =0(power fail)provides a warning of a critical voltage drop to the microcontroller to save the data immediately.6Submit Documentation FeedbackCopyright ©1999–2010,Texas Instruments IncorporatedProduct Folder Link(s):TSS721ATSS721A SLAS222B–APRIL1999–REVISED NOVEMBER2010ABSOLUTE MAXIMUM RATINGSover operating free-air temperature range(unless otherwise noted)V MB Voltage,BUSL1to BUSL2±50VRX and RXI–0.3V to5.5VV I Input voltage rangeBAT–0.3V to5.5VT J Operating junction temperature range–25°C to150°CT A Operating free-air temperature range–25°C to85°CT STG Storage temperature range–65°C to150°C Power derating factor,junction to ambient8mW/°C RECOMMENDED OPERATING CONDITIONS(1)MIN MAX UNITReceiver10.842V MB Bus voltage,|BUSL2–BUSL1|VTransmitter1242VB(receive mode)9.3V I Input voltage VBAT(2) 2.5 3.8R RIDD RIDD resistor1380kΩR RIS RIS resistor100ΩT A Operating free-air temperature–2585°C(1)All voltage values are measured with respect to the GND terminal unless otherwise noted.(2)V BAT(max)≤V STC–1VELECTRICAL CHARACTERISTICS(1)over operating free-air temperature range(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ΔV BR Voltage drop at rectifier BR I BUS=3mA 1.5VVoltage drop at currentΔV CS1R RIDD=13kΩ 1.8V source CS1R RIDD=13kΩ3V STC=6.5V,I BUS BUS current mAI MC=0mA R=30kΩ 1.5RIDDΔI BUS BUS current accuracyΔV BUS=10V,I MC=0mA,R RIDD=13kΩto30kΩ2%I CC Supply current V STC=6.5V,I MC=0mA,V BAT=3.8V,R RIDD=13kΩ(2)650µAV STC=6.5V,I MC=0mA,V BAT=3.8V,R RIDD=13kΩ,I CI1CI1current350µAV BUS=6.5V,RX/RXI=off(2)I BAT BAT current–0.50.5µAI BAT+I VDD BAT plus VDD current V BUS=0V,V STC=0V–0.50.5µAV VDD VDD voltage–I VDD=1mA,V STC=6.5V 3.1 3.4VR VDD VDD resistance–I VDD=2to8mA,V STC=4.5V5ΩV DD=on,VS=on 5.6 6.4V STC STC voltage V DD=off,VS=off 3.8 4.3VI VDD<I STC_use 6.57.5R RIDD=30kΩ0.65 1.1I STC_use STC current V STC=5V mAR RIDD=13kΩ 1.85 2.4V RIDD RIDD voltage R RIDD=30kΩ 1.23 1.33VV VS VS voltage V DD=on,I VS=–5µA V STC–0.4V STC VR VS VS resistance V DD=off0.31MΩV VB=V STC+0.8V,I PF=–100µA V BAT–0.6V BATV PF PF voltage V STC=6.5V V VB=V STC+0.3V,I PF=1µA00.6VV VB=V STC+0.3V,I PF=5µA00.9(1)All voltage values are measured with respect to the GND terminal,unless otherwise noted.(2)Inputs RX/RXI and outputs TX/TXI are open,I CC=I CI1+I CI2Copyright©1999–2010,Texas Instruments Incorporated Submit Documentation Feedback7Product Folder Link(s):TSS721ATSS721ASLAS222B–APRIL1999–REVISED ELECTRICAL CHARACTERISTICS(1)(continued)over operating free-air temperature range(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNIT t on Turn-on time C STC=50µF,Bus voltage slew rate:1V/µs3sRECEIVER SECTION ELECTRICAL CHARACTERISTICS(1)over operating free-air temperature range(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNITMARK MARK–V T See Figure2V–8.2 5.7V SC SC voltage V VB VI SCcharge SC charge current V SC=24V,V VB=36V–15–40µA–0.033×I SCdischarge SC discharge current V SC=V VB=24V0.3µAI SCchargeHigh-level output voltage V BAT–V OH I TX/I TXI=–100µA(see Figure2)V BAT V (TX,TXI)0.6I TX/I TXI=100µA00.5Low-level output voltageV OL V (TX,TXI)I=1.1mA0 1.5TXI TXTX,TXI current V TX=7.5,V VB=12V,V STC=6V,V BAT=3.8V10µAI TXI(1)All voltage values are measured with respect to the GND terminal,unless otherwise noted.TRANSMITTER SECTION ELECTRICAL CHARACTERISTICS(1)over operating free-air temperature range(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNIT I MC MC voltage R RIS=100Ω11.519.5mAR RIS=100Ω 1.4 1.7V RIS RIS voltage VR RIS=1000Ω 1.5 1.8V BAT–V IH High-level input voltage(RX,RXI)See Figure3,see(2) 5.5V0.8V IL Low-level input voltage(RX,RXI)See Figure300.8VV RX=V BAT=3V,V VB=V STC=0V-0.50.5I RX RX currentµAV RX=0V,V BAT=3V,V STC=6.5V-10-40V RXI=V BAT=3V,V VB=V STC=0V1040I RXI RXI currentµAV RXI=V BAT=3V,V STC=6.5V1040(1)All voltage values are measured with respect to the GND terminal,unless otherwise noted.(2)V IH(max)=5.5V is valid only when V STC>=6.5V.8Submit Documentation Feedback Copyright©1999–2010,Texas Instruments IncorporatedProduct Folder Link(s):TSS721AMeter-BusC - system stabilising capacitor C - support capacitor C - sampling capacitorC - stabilising capacitor (100 nF)C :C >= 4:1SSC STC SC VDD STC VDD R - slave-current adjustment resistor R - modulation-current resistor RL1,RL2 - protection resistorsR - discharge resistor (100 k recommended)RIDD RIS load W TSS721ASLAS222B –APRIL 1999–REVISED NOVEMBER 2010APPLICATION INFORMATIONNOTE:Transistor T1should be a BSS84.Figure 7.Basic Application Circuit Using Support Capacitor C STC >50µFFigure 8.Basic Application Circuit for Supply From BatteryCopyright ©1999–2010,Texas Instruments Incorporated Submit Documentation Feedback9Product Folder Link(s):TSS721ATSS721ASLAS222B–APRIL1999–REVISED Meter-Bus NOTE:R DSon of the transistor T1(BSS84)at low battery voltage must be considered during application design.Figure9.Basic Applications for Different Supply ModesFigure10.Basic Optocoupler Application10Submit Documentation Feedback Copyright©1999–2010,Texas Instruments IncorporatedProduct Folder Link(s):TSS721A18-Dec-2015 PACKAGING INFORMATION(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check /productcontent for the latest availability information and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement thatlead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used betweenthe die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weightin homogeneous material)(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuationof the previous line and the two combined represent the entire Device Marking for that device.(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finishvalue exceeds the maximum column width.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.18-Dec-2015 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,enhancements,improvements and other changes to its semiconductor products and services per JESD46,latest issue,and to discontinue any product or service per JESD48,latest issue.Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All semiconductor products(also referred to herein as“components”)are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its components to the specifications applicable at the time of sale,in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by applicable law,testing of all parameters of each component is not necessarily performed.TI assumes no liability for applications assistance or the design of Buyers’products.Buyers are responsible for their products and applications using TI components.To minimize the risks associated with Buyers’products and applications,Buyers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any patent right,copyright,mask work right,or other intellectual property right relating to any combination,machine,or process in which TI components or services are rmation published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Buyer acknowledges and agrees that it is solely responsible for compliance with all legal,regulatory and safety-related requirements concerning its products,and any use of TI components in its applications,notwithstanding any applications-related information or support that may be provided by TI.Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures,monitor failures and their consequences,lessen the likelihood of failures that might cause harm and take appropriate remedial actions.Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.In some cases,TI components may be promoted specifically to facilitate safety-related applications.With such components,TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.Nonetheless,such components are subject to these terms.No TI components are authorized for use in FDA Class III(or similar life-critical medical equipment)unless authorized officers of the parties have executed a special agreement specifically governing such use.Only those TI components which TI has specifically designated as military grade or“enhanced plastic”are designed and intended for use in military/aerospace applications or environments.Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk,and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI has specifically designated certain components as meeting ISO/TS16949requirements,mainly for automotive use.In any case of use of non-designated products,TI will not be responsible for any failure to meet ISO/TS16949.Products ApplicationsAudio /audio Automotive and Transportation /automotiveAmplifiers Communications and Telecom /communicationsData Converters Computers and Peripherals /computersDLP®Products Consumer Electronics /consumer-appsDSP Energy and Lighting /energyClocks and Timers /clocks Industrial /industrialInterface Medical /medicalLogic Security /securityPower Mgmt Space,Avionics and Defense /space-avionics-defense Microcontrollers Video and Imaging /videoRFID OMAP Applications Processors /omap TI E2E Community Wireless Connectivity /wirelessconnectivityMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2015,Texas Instruments Incorporated。
M-BUS仪表总线标准详细说明及应用
TC3
VS
I VDD
TC1 I MS
VDD
VVDD 3.3V R VS
REF2 1.3V
REF1 7V
CS3
ECHO
TC4
RX RXI RIS GND
HeCh / 02-99/ 6-13
MSP430
DESIGN
SEMINAR
13 13
从机的远程供电模式
M SP 43 0
Ultra-low power design with
tss721ameterbus从机收发器接收vmark发送imarkconstantispaceimc异步半双工3009600baud对从机供电经vdd供电用电池作后备电源用电池供电meterbus仅用于数据发送vvdd33v7vref1echocs2tc1cs1brtc3tc2tc4batcs3vfriddstcvsvddstcusevbpfbusl1txgndrisbusl2txirxrxisc13vref2ms1414ultraultralowpowerdesignlowpowerdesign0299614从机的远程供电模式rl11510111213141516busl1busl2vbpfvsvddbatrxrxitxtxitss721risscgndriddstcrl2sensorsystemeg
用简单的双绞线电缆,极性无关,拓朴结构无关 实现异步通信,300 至 9600 bps 半双工协议 数据能可靠远传 从机远程供电
e.g. 电表 热表 水表
M
info:
HeCh / 02-99/ 6-1
M
MSP430
DESIGN
SEMINAR
1 1
Ultra-low power design with
072芯片引脚脚参数
072芯片引脚脚参数1.引言1.1 概述072芯片引脚脚参数是指072芯片所具备的引脚脚参数信息。
在这篇文章中,我们将详细探讨072芯片的引脚脚参数,并介绍其在电子设备中的应用。
072芯片是一种常用的电子元件,具有多种功能和用途。
在不同的电子设备中,芯片的引脚脚参数可能会有所不同。
因此,了解和掌握072芯片的引脚脚参数对于电子工程师来说是非常重要的。
在本文中,我们将重点介绍072芯片的引脚脚参数。
引脚脚参数是指芯片上每个引脚的功能和定义。
通过了解每个引脚的作用,我们可以更好地设计和布局电路板,确保芯片在电子设备中的正常运行。
072芯片通常具有多个引脚,每个引脚都承担着不同的任务。
例如,其中一些引脚可能用于供电或接地,而其他引脚则用于数据传输或与其他设备进行通信。
了解每个引脚的功能和定义,有助于我们正确连接和配置芯片,确保其按照预期工作。
在下面的章节中,我们将详细介绍072芯片的引脚脚参数。
通过对每个引脚的功能和定义进行分析和解释,我们将帮助读者更好地理解和掌握072芯片的引脚脚参数。
通过深入研究072芯片的引脚脚参数,我们可以更好地应用这一技术于实际工程中。
了解072芯片的引脚脚参数,不仅有助于我们进行电路设计和布局,还有助于我们解决电子设备中可能出现的问题和故障。
因此,本文对于电子工程师和对072芯片感兴趣的读者来说,都具有一定的参考价值。
总而言之,本文将围绕072芯片的引脚脚参数展开,详细介绍每个引脚的功能和定义。
通过了解和掌握这些信息,我们可以更好地应用072芯片于电子设备中,确保其正常运行。
对于对这一领域感兴趣的读者来说,本文将提供有价值的参考和指导。
1.2 文章结构文章结构部分的内容主要是对整篇文章的框架进行介绍和说明。
在这一部分,我们可以简要说明文章的组织结构以及每个章节的主要内容。
以下是文章结构部分的内容示例:2. 文章结构本文主要分为引言、正文和结论三个部分。
2.1 引言引言部分主要对本文研究的背景和目的进行介绍。
mw7211a芯片原理
mw7211a芯片原理MW7211A芯片原理1. 介绍MW7211A芯片是一款先进的集成电路芯片,广泛应用于各种电子设备中。
本文将深入探讨MW7211A芯片的原理及其相关知识。
2. 架构MW7211A芯片采用先进的架构设计,实现了多种功能的集成。
其主要组成部分包括:•中央处理器(CPU):负责执行指令和控制芯片的运行。
•存储器:包括内部存储器和外部存储器,用于存储程序和数据。
•输入输出接口:用于与外部设备进行通信。
•模拟电路:用于处理模拟信号。
•数字信号处理器(DSP):用于数字信号的处理和计算。
3. 工作原理MW7211A芯片的工作原理涉及多个方面,以下是其主要原理的简要说明:中央处理器MW7211A芯片的中央处理器(CPU)是芯片的核心。
它通过执行一系列的指令来控制芯片的运行。
CPU包括控制单元和算术逻辑单元(ALU),其中控制单元负责解析指令、控制数据流向和流出芯片,而ALU负责执行算术和逻辑运算。
存储器MW7211A芯片的存储器包括内部存储器和外部存储器。
内部存储器用于存储程序和数据,包括RAM(随机存储器)和ROM(只读存储器)。
外部存储器用于扩展芯片的存储容量,常见的外部存储器包括SD卡、EEPROM等。
输入输出接口MW7211A芯片的输入输出接口用于与外部设备进行通信。
例如,它可以通过串口与计算机进行数据传输,通过GPIO口与外部传感器进行数据交互,或通过音频接口与音频设备进行音频数据的输入输出。
模拟电路MW7211A芯片的模拟电路用于处理模拟信号。
它可以将外部的模拟信号转换为数字信号进行处理,或将数字信号转换为模拟信号输出。
这一部分通常包括模数转换器(ADC)和数模转换器(DAC)等模块。
数字信号处理器MW7211A芯片还配备了数字信号处理器(DSP),用于数字信号的处理和计算。
它能够高效地处理数字信号,执行一系列的算法和计算来满足特定需求,如音频处理、图像处理等。
4. 应用领域由于MW7211A芯片具有先进的性能和多种功能的集成,因此在许多应用领域得到了广泛的应用,包括但不限于:•智能手机:MW7211A芯片可以作为智能手机的核心处理器,提供强大的性能和高效的能耗管理。
TSS721A的管脚说明
TSS721A将整个数据发送与接收功能集成于一体,其内部功能框图如图5.4所示。
芯片的外形封装如图5.5所示。
图5.6为各个管脚功能的简单说明。
该芯片具有以下主要功能:(1) 满足国际EN1434-3标准;(2) 具有动态电平识别的接收逻辑;(3) 通过电阻可调接收电流;(4) 无极性连接;(5) 防掉电功能;(6) 可提供3.3V稳压源;(7) 支持远程供电;(8) 半双工下通信速率可达9600波特率,支持UART协议;(9) 从机可由总线或后备电池供电;(10) 只在数据传输时总线有效。
图5.4 TSS721A内部功能框图图5.5 TSS721A外形封装图5.6TSS721A管脚功能说明5.3.4.2 TSS721A的工作原理(1) 从机接收电路:TSS721A在此模式下采用总线电压调制传输数据,而总线电流保持恒定。
总线电压U BUS=U MARK(标识值)是由从机管脚BUSL1和BUSL2之间的电压差定义的。
主从机间距离会影响该电压差。
为使接收与距离无关,将管脚SC上的动态参考电平引入电压比较器TC3,见图5.7。
连接在管脚SC上的电容C SC的充电电流I SCcharge和放电电流I SCdischarge不同,一般有如下关系:I SCdischarge= I SCcharge/40。
图5.7主机到从机的数据传输这个比例关系是独立于数据内容运行任意UART协议所必需的条件(例如,如果传输采用11位UART协议,当所传数据只有停止位为“1”,其它位都为“0"的情况),必须有足够的时间来对电容C SC进行再充电。
电压比较器TC3检测来自主机的调制电压,并根据该电压U BUS=U SPACE(空值)或U MARK(标识值)来开关正端输出TX和反端输出TX1。
(2) 从机发送电路:TSS721A在此模式下使用总线电流调制传输数据,而总线电压保持恒定。
芯片内电流源电流I CS3调制总线电流,由主机检测调制电流。
TSS721电气特性
查询TSS721供应商T EXAS I NSTRUMENTSQualification Notification for the TSS721AMeter-Bus Transceiver DeviceMay 10, 1999AbstractTexas Instruments has qualified the TSS721A device, to replace the TSS721 device. This device was redesigned in order to apply to the EN1434-3 requirements, to reflect the 8 points wishes of the Meter-Bus Users Group Meeting inputs from September 23rd, 1996 in Frankfurt and additional, general parameter improvement as like higher input impedance and lower output impedance of the voltage regulator. Revision to the “A” device is necessary because of the changes to some electrical parameter conditions or limits.Data sheet changes are attached and in underlined bold italics. The device nomenclature has changed due to the data sheet adjustments. For details on function, functional schematic, electrical characteristics and applications see also the TSS721A data sheet.AnalysisChanges included an all-level change in design to incorporate device performance improvement.Device nomenclature has changed due to data sheet adjustments as shown in Table 1.Table 2 summarizes the construction details for the test devices.Table 3 shows the reliability results.Tables 4 to 8 show the electrical characteristic data sheet changes with bold italics.Conversion ScheduleTexas Instruments started manufacturing of the affected devices. Customers may begin receiving TSS721A products after the issue of this notification.Sample DevicesSample devices are available on request. Please contact your local Field Sales Office.ContactIf you should have questions or wish additional information, please contact your local Field Sales Office or the contacts listed below.Contact Location Title Telephone E-Mail Guenter Gutwein Europe MSLP Customer Engineering(+49) 8161 80 4253ggut@Table 1: Nomenclature Change for the TSS721AOld NewDevice Name Device NameTSS721TSS721ATable 2: TSS721A, Tested Device InformationReason for Qualification:Product RedesignProduct Affected:TSS721A ‘E’ATTRIBUTESDevice Specific InfoDevice Name TSS721ADDie Revision EDie Dimension080 x 140 milsWafer Fab InfoFab Site SFabFab Technology BipolarWafer Thickness11 milsMetal 1AlCu 0.25%Metal 2AlCu 0.25%Passivation10KA CNAssy/Test InfoAssy Site TaiwanMold PF9ASMount Comp Hit EN-4088ZBond Type/Matl 1.0 AuPackage InfoPackage Type D (SOIC)Pin Count16Leadframe Finish Pd PlateLeadframe Comp CuTable 3: TSS721A, Reliability Test ResultsTSS721AD Qualification Results Act. SS/ #Fails Operating Life Dyn. Test (150°C, 300 hrs.)120/0 Temperature Cycle Test (-65°C to 150°C, 1000 Cycles)120/0 Latch Up5/0 Electrical Characterization Pass Machine Model (EIAJ-ESD 200 pF,0 Ohm , 150V)3/0 Human Body Model (MIL-STD ESD 100 pF, 1500 Ohm,3/0 2000V) CLASS 2 (1,2,3)Charged Device Model ESD - (1000V)3/0Table 4: Comparison of TSS721 and TSS721AAbsolute maximum ratingsTSS721TSS721AParameter unit Input voltage at pin UBAT- 0.3 to 5.5VTable 5: Comparison of TSS721 and TSS721ARecommended operating conditionsTSS721TSS721AParameter min max min max unit Receiver11.34010.842.0V Bus voltage|BUSL2-BUSL1|Transmitter12401242.0V V B voltage (receive mode)9.3V V BAT,(see Note 1) 2.5 3.8 2.5 3.8V NOTE 1: V BATmax≤ V STC – 1VTable 6: Comparison of TSS721 and TSS721AElectrical characteristics at recommended ranges (unless otherwise noted)TSS721 max TSS721AmaxParameter Test conditions min max min max unit V drop Rectifier BR I BUS=3mA 1.5V V drop current source CS1R IDD=13kΩ 1.8V ∆I BUS∆V BUS=10V; R IDD=13kΩ;I MC=0mA20µA∆I BUS∆V BUS=10V; I MC=0mA;R IDD=13 – 30 kΩ2%I CC V STC=6.5V; I MC=0mA;V BAT=3.8V; R IDD=13kΩ;(See Note 2)650µAI CI1V STC=6.5V; I MC=0mA;V BAT=3.8V; R IDD=13kΩ;V BUS=6.5V; RX/RXI=off(See Note 2)350µA NOTE 2:Inputs RX/RXI and outputs TX/TXI are open; I CC=I CI1+I CI2Table 6: Comparison of TSS721 and TSS721A (continue)Electrical characteristics at recommended ranges (unless otherwise noted)TSS721max TSS721A max ParameterTest conditionsmin max min max unit I BAT-22-0.50.5µA I BAT + I VDD V BUS =0V; V STC =0V -22-0.50.5µA V VDD -I VDD =1mA; V STC =6.5V 3.2 3.4 3.13.4V R VDD -I VDD =2 to 8mA; V STC =4.5V5.0ΩV RIDD R IDD =30k Ω 1.23 1.32 1.23 1.33V R VS V DD =off4008003001000k ΩV STC =6V; I PF =-100µA V BAT -0.6V BAT V V VB =V STC +0.3V; I PF =1µA 00.6V V PFV VB =V STC +0.3V; I PF =5µA0.6V V VB =V STC +0.8V I PF =-100µAV BAT -0.6V BAT V I PF =1µA00.6V V PF V STC =6.5V V VB =V STC +0.3V I PF =5µA0.6V t on C STC =50µF, (See Note 4)3sNOTE 4:Bus voltage slew rate: 1V/µsTable 7: Comparison of TSS721 and TSS721AElectrical characteristics at recommended ranges (unless otherwise noted)RECEIVER SECTIONTSS721max TSS721A max Parameter Test conditionsmin max min maxunit V T MARK -7.9MARK -5.7MARK-8.2MARK -5.7V I TX ; I TXIV TX =7.5V; V VB =12V;V STC =6.0V; V BAT =3.8V1010µATable 8: Comparison of TSS721 and TSS721AElectrical characteristics at recommended ranges (unless otherwise noted)TRANSMITTER SECTIONTSS721max TSS721Amax ParameterTest conditionsmin max min max unit V RX =V BAT =3V; V VB =V STC =0V -11-0.50.5µA I RX V RX =0V; V BAT =3V; V STC =6.5V -10-30-10-40µA V RX =V BAT =3V; V VB =V STC =0V 10301040µA I RXIV RX =0V; V BAT =3V; V STC =6.5V10301040µA。
MODEL7211A协议转换器引脚定义与接线指引
目录第一章.MODEL7211A产品接线方式 (1)1.1以太网口引脚定义 (1)1.2以太网口接线 (1)1.3ITU-TG.703(75Ω)接口引脚定义 (2)1.4ITU-TG.703(75Ω)接口接线 (2)1.5ITU-TG.703(120Ω/RJ45)接口引脚定义 (3)1.6ITU-TG.703(120Ω/RJ45)接口接线 (3)第一章.MODEL7211A产品接线方式1.1以太网口引脚定义以太网接口:(10/100M)注:“TX±”为发送数据±,“RX±”为接收数据±,“—”为未用。
1.2以太网口接线直通线(MDI):注100M一端(T568B):白橙/橙/白绿/蓝/白蓝/绿/白棕/棕另一端(T568B):白橙/橙/白绿/蓝/白蓝/绿/白棕/棕交叉线(MDI-X):注:100M采用了1-3,2-6交换的方式,也就是一头使用T568A制作,另外一头使用T568B制作一端(T568A):白绿/绿/白橙/蓝/白蓝/橙/白棕/棕另一端(T568B):白橙/橙/白绿/蓝/白蓝/绿/白棕/棕引脚号MDI信号MDI-X信号1TX+RX+2TX-RX-3RX+TX+6RX-TX-4、5、7、8——181.3ITU-TG.703(75Ω)接口引脚定义ITU-TG.703(75Ω)引脚定义引脚引脚定义IN信号输入OUT信号输出1.4ITU-TG.703(75Ω)接口接线ITU-TG.703(75Ω)接口接线:1.5ITU-TG.703(120Ω/RJ45)接口引脚定义ITU-TG.703(120Ω/RJ45)引脚定义、1.6ITU-TG.703(120Ω/RJ45)接口接线引脚ITU-TG.703(120Ω/RJ45)引脚ITU-TG.703(120Ω/RJ45)2RX+(接收数据正)接6TX+(发送数据正)3RX-(接收数据负)接7TX-(发送数据负)6TX+(发送数据正)接2RX+(接收数据正)7TX-(发送数据负)接3RX-(接收数据负)接线示意图:引脚号功能定义信号方向1NC(空)2RX+(接收数据正)输入3RX-(接收数据负)输入4GND (地)5GND (地)6TX+(发送数据正)输出7TX-(发送数据负)输出8NC (空)18想了解更多产品咨询,行业咨询,请关注一下二维码。
自动增益控制放大器芯片引脚及功能
1.CD40511- A4 2- A6 3-Y 4-A7 5-A5 6-INH 7-VCC 8-VSS9-C 10-B 11-A 12-A3 13-A0 14-A1 15-A2 16-VDD用于:传输数字信号,或模拟信号从1路到8路或从8路到1路的开关切换.CD4051有A、B和C三个二进制控制输入端以及INH共4个输入,具有低导通阻抗和很低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰峰值至20V的模拟信号。
例如,若VDD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。
这些开关电路在整个VDD-VSS和VDD-VEE 电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。
当INH输入端=“1”时,所有的通道截止。
只有当INH=0 时,三位二进制信号才可以选通8通道中的一个通道,连接该输入端至输出。
其中VEE可以接负电压,也可以接地。
当输入电压有负值时,VEE必须接负电压,其他时候可以接地。
CD4051引脚功能说明引脚号符号功能1 2 4 5 12 13 14 15 IN/OUT 输入/输出端9 10 11 A B C 地址端3 OUT/IN 公共输出/输入端6 INH 禁止端7 VEE 负电压端8 Vss 数字信号接地端16 VDD 电源+2真值表输入状态接通通道INH C B A 输出0 0 0 0 “0”0 0 0 1 “1”0 0 1 0 “2”0 0 1 1 “3”0 1 0 0 “4”0 1 0 1 “5”0 1 1 0 “6”0 1 1 1 “7”1 x x x 均不接通CD4051功能及使用概述:CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。
INH”是禁止端,当“INH”=1时,各通道均不接通。
此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的 CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TSS721A将整个数据发送与接收功能集成于一体,其内部功能框图如图5.4所示。
芯片的外形封装如图5.5所示。
图5.6为各个管脚功能的简单说明。
该芯片具有以下主要功能:
(1) 满足国际EN1434-3标准;
(2) 具有动态电平识别的接收逻辑;
(3) 通过电阻可调接收电流;
(4) 无极性连接;
(5) 防掉电功能;
(6) 可提供3.3V稳压源;
(7) 支持远程供电;
(8) 半双工下通信速率可达9600波特率,支持UART协议;
(9) 从机可由总线或后备电池供电;
(10) 只在数据传输时总线有效。
图5.4 TSS721A内部功能框图
图5.5 TSS721A外形封装
图5.6TSS721A管脚功能说明
5.3.4.2 TSS721A的工作原理
(1) 从机接收电路:TSS721A在此模式下采用总线电压调制传输数据,而总线电流保持恒定。
总线电压U BUS=U MARK(标识值)是由从机管脚BUSL1和BUSL2之间的电压差定义的。
主从机间距离会影响该电压差。
为使接收与距离无关,将管脚SC上的动态参考电平引入电压比较器TC3,见图5.7。
连接在管脚SC上的电容C SC的充电电流I SCcharge和放电电流I SCdischarge不同,一般有如下关系:I SCdischarge= I SCcharge/40。
图5.7主机到从机的数据传输
这个比例关系是独立于数据内容运行任意UART协议所必需的条件(例如,如果传输采用11位UART协议,当所传数据只有停止位为“1”,其它位都为“0"的情况),必须有足够的时间来对电容C SC进行再充电。
电压比较器TC3检测来自主机的调制电压,并根据该电压U BUS=U SPACE(空值)或U MARK(标识值)来开关正端输出TX和反端输出TX1。
(2) 从机发送电路:TSS721A在此模式下使用总线电流调制传输数据,而总线电压保持恒定。
芯片内电流源电流I CS3调制总线电流,由主机检测调制电流。
恒流源CS3受输入RX或RX1控制,也可通过外部电阻R RIS调节。
在调制过程中调制电路部分供电电流I MS和电流源电流I CS3一起流入内部电路,如图5.8所示。
图5.8从机到主机的数据传输。