高数复习资料 1

合集下载

高数复习资料

高数复习资料

《高等数学》课程复习资料一、填空题:1.设2)(xx a a x f -+=,则函数的图形关于 对称。

2.若2sin x x y x x <<=+≤<⎧⎨⎩-20102,则=)2(πy .3.极限limsinsin x x x x→=021。

4.已知22lim 222=--++→x x bax x x ,则=a ,=b 。

5.已知0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数a = 6.设)(22y z y z x ϕ=+,其中ϕ可微,则yz∂∂= 。

7.设2e yz u x =,其中),(y x z z =由0=+++xyz z y x 确定的隐函数,则=∂∂)1,0(xu 。

8.设ϕϕ,),()(1f y x y xy f x z ++=具有二阶连续导数,则=∂∂∂yx z 2 。

9.函数y x xy xy y x f 22),(--=的可能极值点为 和 。

10.设||)1(sin ),(22xy x y x y x f -+=则'y f =(1,0) 。

11.=⎰xdx x 2sin 212.[0,]cos ,sin y x y x π==在区间上曲线之间所围图形的面积为 。

13.若21d e 0=⎰∞+-x kx ,则k = 。

14.设D:221x y +≤,则由估值不等式得 ⎰⎰≤++≤Ddxdy y x)14(2215.设D 由22,,,y x y x y y ====212围成(0x ≥),则(),Df x y d σ⎰⎰在直角坐标系下的两种积分次序为 和 。

16.设D 为01,01y x x ≤≤-≤≤,则Dfdxdy ⎰⎰的极坐标形式的二次积分为 。

17.设级数∑∞=+121n pn收敛,则常数p 的最大取值范围是 。

18.=+-+-⎰10 642)!3!2!11(dx x x x x 。

19.方程01122=-+-ydy xdx 的通解为 。

高数(一)00020所有章节总复习

高数(一)00020所有章节总复习

第一章 函 数1. 1预备知识一元二次函数、方程和不等式不等式: 1大于取两边,大于大的,小于小的; 2 小于取中间。

绝对值不等式:|x|>a(a>0) x>a 或x<-a|x|<a 等价于 -a<x<a一元二次方程的两个根分别为x1,x2则有韦达定理:x 1+x 2= b a - x 1*x 2= c a 2b a-为曲线对称轴 不等式:算术平均值大于等于几何平均值:2a b+≥ a=b 时才相等. 因式分解与乘法公式22222222332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2)n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 等差数列和等比数列()()()11111 22n n n n a a n d n a a n n n S S na d=+-+-==+1.等差数列 通项公式: 前项和公式或()()1100n n n GP a a qa q -=≠≠2.等比数列 通项公式,()()()11.1111n n n a q q S qna q ⎧-⎪≠=-⎨⎪=⎩前项和公式 求定义域:1:分式的分母不能为0 2:根号内的大于等于0 3:对数内的要大于0 (对数为分母时真数不等于1)y=sinx, 奇函数 y=cosx, 偶 定义域(-∞,+∞) 值域:-1 <= x <= 1y=tanx, 定义域{x | x ∈R, X ≠k π+2π} k 为整数 值域:(-∞,+∞)奇函数y=cotx 定义域{x | x ∈R, X ≠k π} k 为整数 值域:(-∞,+∞)奇函数判断奇偶性:f(-x)=f(x) 偶cosx,secx F(-x)=- f(x) 奇 sinx tanx cotx 等反函数:1先解出一个干净的Y , 2 再把Y 写成X ,X 写成Y 就成了,复合函数要会看,谁是外衣,谁是内衣,P36页的公式要记住,初等函数的几个常见的图形要记住,初等数学基础知识 一、三角函数1.公式同角三角函数间的基本关系式:·平方关系: sin 2(α)+cos 2 (α)=1; tan 2 (α)+1=sec 2 (α); cot 2 (α)+1=csc^2(α) ·商的关系:tanα=sinα/cosα cotα=cosα/sinα ·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1 三角函数恒等变形公式: ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 倍角公式:sin(2x)=2sinx·cosxcos(2x)=cos 2(x)-sin 2 (α)=2cos 2(x)-1=1-2sin 2 (x) tan(2x)=2tanx / [1-tan^2(x)] ·半角公式:sin 2 (α/2)=(1-cosα)/2 cos 2 (α/2)=(1+cosα)/2tan 2 (α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα ·万能公式:sinα=2tan(α/2)/[1+tan 2 (α/2)] cosα=[1-tan 2 (α/2)]/[1+tan 2 (α/2)] tanα=2tan(α/2)/[1-tan 2 (α/2)] ·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]六边形记忆法:1:对角线上两个函数的乘积为12:阴影三角形上两顶点的三角函数值的平方和等于下顶点三角函数值的平方如:tan 2x+1= sec 2x 3:任意一顶点的三角函数值等于相邻两个顶点的三角函数值和乘积。

高数复习资料

高数复习资料

《高等数学》课程复习资料一、填空题:1.设2)(xx aaxf-+=,则函数的图形关于对称。

2.若2sin x xyx x<<=+≤<⎧⎨⎩-20102,则=)2(πy.3.极限limsinsinxxxx→=21。

4.已知22lim222=--++→xxbaxxx,则=a ,=b。

5.已知0→x时,1)1(312-+ax与1cos-x是等价无穷小,则常数a=6.设)(22yzyzxϕ=+,其中ϕ可微,则yz∂∂= 。

7.设2e yzu x=,其中),(yxzz=由0=+++xyzzyx确定的隐函数,则=∂∂)1,0(xu。

8.设ϕϕ,),()(1f y x y xy f x z ++=具有二阶连续导数,则=∂∂∂yx z 2 。

9.函数y x xy xy y x f 22),(--=的可能极值点为 和 。

10.设||)1(sin ),(22xy x y x y x f -+=则'y f =(1,0) 。

11.=⎰xdx x 2sin 212.[0,]cos ,sin y x y x π==在区间上曲线之间所围图形的面积为 。

13.若21d e 0=⎰∞+-x kx ,则k = 。

14.设D:221x y +≤,则由估值不等式得 ⎰⎰≤++≤Ddxdy y x)14(2215.设D 由22,,,y x y x y y ====212围成(0x ≥),则(),Df x y d σ⎰⎰在直角坐标系下的两种积分次序为 和 。

16.设D 为01,01y x x ≤≤-≤≤,则Dfdxdy ⎰⎰的极坐标形式的二次积分为 。

17.设级数∑∞=+121n pn收敛,则常数p 的最大取值范围是 。

18.=+-+-⎰10 642)!3!2!11(dx x x x x 。

19.方程01122=-+-ydy xdx 的通解为 。

20.微分方程0y y '''-+=42025的通解为 。

高等数学A(1)复习资料精选全文

高等数学A(1)复习资料精选全文

可编辑修改精选全文完整版高数A (1)复习资料一、极限计算:常用方法包括等价无穷小替换,洛必达法则,两个重要极限。

解题思路:首先判断是否为未定式,否则化成未定式类型(特别注意幂指函数情形利用对数函数性质转化;加减法类型一般通分;如果无穷多项相加则要先求和,如果不能直接求和可能需要利用夹逼准则放缩后后再求和;),对于未定式类型先考虑利用等价无穷小替换后再利用洛必达法则。

注意:函数中如果出现幂指函数类型也可以考虑直接利用第二个重要极限处理,注意处理技巧。

如果出现变上限函数类型,注意变上限函数的导数如何计算,特别是上限为x 的函数,也就是积分上限函数为复合函数时求导要利用链式法则;如果积分上限函数被积函数不是积分变量的一元函数,则将其他变量提出到积分号外面,或者利用换元法化到积分限上。

常用等价无穷小:2~cos 1~arctan ,~arcsin ,~tan ,~sin 2x x x x x x x x x x -,,x x x e x x x αα~1)1(,~1,~)1ln(-+-+(0→x )练习题:1. 设822lim =⎪⎭⎫⎝⎛-+∞→xx a x a x ,则___________=a ; 2. ____________________arctan lim 21=⎪⎭⎫ ⎝⎛∞→x x x x ;3.=+→xx x sin 2)31(lim .4. 0tan sin lim sin x x x x x→-- 5. 0ln sin 5lim ln sin 2x x x →+ 6. 2013sin coslim(1cos )ln(1)x x x x x x →+++ 7. 2220(1)limxtx x t e dtx-→+∞+⎰2220(1)1[lim]2xt xx t e dt xe →+∞+==⎰二、无穷小比较:高阶,同阶,等价的定义处理思路:转化为求极限问题,特别是同阶无穷小;注意如果分式极限存在,分母为无穷小量,则分子也一定为无穷小量。

高数知识点复习资料

高数知识点复习资料
2 lim x 1 2 x 1 2 x 1
x 1
tan x s)
2 x 1 2 x 1 2 x1 2 2 lim 1 2 x 1 2 x 1
x3 x 3 x 2 9 【求解示例】解:因为 x 3 ,从而可得 x 3 ,所以原 x 3 x 3 1 1 式 lim 2 lim lim x 3 x 9 x 3 x 3 x 3 x 3 x 3 6
【题型示例】求值 lim (其中 x 3 为函数 f x
1 第二个重要极限: lim1 e x x
(一般地, lim f x lim f x 0 )
g x
x
1.由 xn a 化简得 n g , 2.即对 0 , N g ,当 n N 时,始终 有不等式 xn a 成立, ∴ limxn a
e 2 x1 2 x 1 e1 e
第五节 函数的连续性 ○函数连续的定义
x x0 x x0
2 x2 lim
lim f x lim f x f x0
○间断点的分类
跳越间断点(不等) 第一类间断点(左右极 限存在) 可去间断点(相等) 第二类间断点 ) 无穷间断点(极限为 (特别地,可去间断点能在分式中约去相应公因式)
x2 a2 1

(或:过 y f x 图像上点 a, f a 处的切线与法线 方程) 【求解示例】 1. y f x , y |x a f a 2.切线方程: y f a f a x a 法线方程: y f a

高数一考纲

高数一考纲

一、函数、极限和连续(一)函数1. 知识范围(1)函数的概念:函数的定义函数的表示法分段函数(2)函数的简单性质:单调性奇偶性有界性周期性(3)反函数:反函数的定义反函数的图象(4)函数的四则运算与复合运算(5)基本初等函数:幂函数指数函数对数函数三角函数反三角函数(6)初等函数2. 要求(1)理解函数的概念,会求函数的定义域、表达式及函数值。

会求分段函数的定义域、函数值,并会作出简单的分段函数图像。

(2)理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。

(3)了解函数y=ƒ(x)与其反函数y=ƒ-1(x)之间的关系(定义域、值域、图象),会求单调函数的反函数。

(4)理解和掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

(5)掌握基本初等函数的简单性质及其图象。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

(二)极限1. 知识范围(1)数列极限的概念:数列数列极限的定义(2)数列极限的性质:唯一性有界性四则运算定理夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系 x趋于无穷(x→∞,x→+∞,x →-∞)时函数的极限函数极限的几何意义(4)函数极限的定理:唯一性定理夹逼定理四则运算定理(5)无穷小量和无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量与无穷大量的性质两个无穷小量阶的比较(6)两个重要极限sinx 1lim =1 lim(1+ )x = e x→0 x x→∞ x2. 要求(1)理解极限的概念(对极限定义中“ε- N”、“ε- δ”、“ε- M”的描述不作要求),能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

高数总复习1

高数总复习1
(4) lim( x→ 0 (6) lim x→ ∞
x 1 ctg x
1 x
( a>0 , a≠1 )
(7) lim(1+ ln sin )x x→ 2 x
π
1+3x − 1+ x (8) lim x→ 0 2x
tan x2 (9) lim x→ 0 x 1−cos 2
(ex −1 ctgx ) (10) lim x→ 0 cos x
在 (, 两 线 ) 7. 求曲线 xey + y =1 点 10 处 切 ,
法 的 程 线 方
x = cos(t2) 1 d2 y , cosudu,求 8. 设 , t2 2 dx y = tan x(t ) −∫ 2 u 1
9. 已知 y = f (x
x
[
1 2 x
)] , 其中f为可微正值函数,求 dy
15. 一、填空
定积分的几何意义
1 x
lim lim 1、设f(x)=cosx+ e ,则 x→0 f(x)= 0, x→0+ f(x)= +∞。 1 ⋅ sin x 的水平渐近线为 y = 0 , 2、曲线y = x −1 垂直渐近线为 x =1。

n 3、已知 lim b 3 =A(A =A A ≠ 0 ,A A n→ n −(n −1 k ∞ )
ln cos x dx 2. ∫ 2 cos x 1 x dx 3. ∫ 2 1+ x
1 dx 4. ∫ 2 x(1+ ln x) 1 dx 5. ∫ 2 2 (1+ x )
6. ∫ 0 7.
ln2
ex −1 dx

π
2 0
xsin 2 xdx

高等数学1复习资料

高等数学1复习资料

高等数学1复习资料高等数学1是大学本科数学一门重要的基础课程。

本篇文章提供一些高等数学1的重要知识点和复习方法,帮助同学们更好地复习和备考。

一、函数与极限函数是高等数学1的重要概念,其余的内容都是建立在函数的基础之上。

在复习函数时,需要掌握函数的定义和一些基本性质(如奇偶性、单调性、周期性等)。

此外,要学习反函数、复合函数和初等函数的定义和性质。

为了理解函数的极限这个概念,需要了解极限的定义和一些基本性质((如唯一性、保号性等)。

在复习时,需要掌握常见函数的极限((如正弦函数、余弦函数、指数函数等),以及利用夹逼准则和L'Hospital法则计算极限的方法。

二、导数与微分导数是函数的重要性质,它刻画了函数在某一点的局部变化率。

在复习导数时,需要掌握导数的定义和计算方法,还需要掌握相关定理和性质(如导数的代数运算法则、中值定理、极值定理等)。

微分是导数的应用,它主要用于计算函数在一点的局部变化量。

在复习微分时,需要了解微分的定义和计算方法,以及相关定理和性质(如微分的线性性、微分的逆运算等)。

三、积分与应用积分是函数的另一种性质,它表示函数在一段区间上的总变化量。

在复习积分时,需要掌握积分的定义和计算方法,还需要掌握相关定理和性质((如积分的线性性、牛顿-莱布尼茨公式、换元积分法等)。

积分的应用非常广泛,如计算面积和体积、求解微分方程、求解曲线的弧长和曲率等。

在复习积分的应用时,需要了解基本概念和计算方法,以及掌握具体的问题求解技巧。

四、矩阵与行列式矩阵和行列式是高等数学1中的代数工具,主要用于向量、线性方程组和本征值问题的求解。

在复习矩阵和行列式时,需要掌握它们的定义和基本性质,以及常见的矩阵变换和行列式计算方法。

五、向量与空间解析几何向量和空间解析几何是高等数学1中的几何工具,主要用于计算平面和空间向量的坐标、距离和夹角,以及平面和空间中的图形方程。

在复习向量和空间解析几何时,需要掌握它们的定义和基本性质,以及常见问题的计算方法和解题技巧。

(完整版)高等数学复习资料大全

(完整版)高等数学复习资料大全

《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

(完整word版)高等数学复习资料大全(word文档良心出品)

(完整word版)高等数学复习资料大全(word文档良心出品)

《高等数学复习》教程第一讲 函数、连续与极限一、理论要求 1.函数概念与性质 函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法 (1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法(5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法(7)洛必达法则与Taylor 级数法(8)其他(微积分性质,数列与级数的性质) 1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim0)(6sin limx x f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达) 3.121)12(lim ->-+x xx x x (重要极限)4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求1.导数与微分 导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用 会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导 1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题 4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

知识点总结高数一

知识点总结高数一

知识点总结高数一一、极限与连续1. 极限的概念及性质极限是数列或函数在趋于某个值时的性质,其定义包括数列极限和函数极限两种情况。

数列极限定义为:对于任意的ε>0,存在N∈N,使得当n>N时,|an-a|<ε成立。

函数极限定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-L|<ε成立。

极限的性质包括唯一性、有界性、局部性、夹逼性等。

2. 极限运算法则极限运算法则包括四则运算法则、复合函数极限法则、比较大小法则、夹逼定理等,通过这些法则可以简化极限运算的复杂性。

3. 无穷小与无穷大无穷小是指当自变量趋于某个值时,函数值无穷小于此值的函数。

无穷大则是指当自变量趋于某个值时,函数值无穷大于此值的函数。

在极限运算中,无穷小和无穷大的性质十分重要。

4. 连续的概念及性质连续函数的定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-f(a)|<ε成立。

连续函数的性质包括局部性、初等函数的连续性、复合函数的连续性等。

二、导数与微分1. 导数的概念与求导法则导数是函数在某一点处的变化率,导数的定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h。

求导法则包括基本导数公式、和差积商的求导法则、复合函数求导法则等。

2. 高阶导数与隐函数求导高阶导数为求导多次的结果,隐函数求导是指对于包含多个变量的函数,通过对某个变量求导来求得函数在该点的导数。

3. 微分的概念与微分公式微分是函数在某一点处的局部线性近似,微分的定义为:df(x)=f'(x)dx。

微分公式包括基本微分公式、换元法、分部积分法等。

4. 隐函数与参数方程的导数隐函数与参数方程的导数是指对于包含多个变量的方程,通过对某个变量求导来求得函数在该点的导数。

三、微分中值定理与泰勒公式1. 微分中值定理微分中值定理包括拉格朗日中值定理、柯西中值定理等,它们描述了函数在某些条件下的性质,对于函数的研究有重要意义。

(完整版)高等数学复习资料大全1,推荐文档

(完整版)高等数学复习资料大全1,推荐文档

x0
sin x x
x x et2 dt
3. lim 0
1
x0 1 ex2
(洛必达与微积分性质)
第二讲 导数、微分及其应用
一、理论要求
2
1.导数与微分 导数与微分的概念、几何意义、物理意义 会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程 2.微分中值定理 理解 Roll、Lagrange、Cauchy、Taylor 定理 会用定理证明相关问题 3.应用 会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)
x 0
6x
x0
6
216 3y''(0) 0 y''(0) 72 6
lim
x0
6
f (x) x2
lim
x0
y' 2x
lim
x0
y'' 2
72 2
36
(洛必达)
3. lim(
2x
2x
) x1
(重要极限)
x1 x 1
1
4.已知
a、b
为正常数, 求 lim( a x
bx
3
)x
x0
2
解:令 t
7.已知
f
(x)
ln(cos x)x 2 ,
a,
x
0
x
0

x=0
连续,求
a
解:令 a lim ln(cos x) / x2 1/ 2 (连续性的概念) x0
三、补充习题(作业)
1. lim e x 1 x 3 (洛必达) x0 1 x cos x
1 2. lim ctgx(

(完整版)高数一知识点

(完整版)高数一知识点

第一章~~第三章一、极限数列极限lim n n x ->∞函数极限lim ()x f x ->∞,lim ()x f x →+∞,lim ()x f x →-∞lim ()x x f x ->,0lim ()x x f x -->,0lim ()x x f x +->求极限(主要方法):(1)100sin 1lim1,lim(1),lim(1)x xx x x xe x e x x->->∞->=+=+=(2)等价无穷小替换(P76)。

当()0x ϕ→时,代换时要注意,只有乘积因子才可以代换。

(3)洛必达法则(000,,0,,0,1,0∞∞⋅∞∞-∞∞∞),只有0,0∞∞可以直接用罗比达法则。

幂指函数求极限:()lim ()ln ()lim ()v x v x u x u x e =;或,令()()v x y u x =,两边取对数ln ()ln ()y v x u x =,若lim ()ln ()v x u x a =,则()lim ()v x a u x e =。

结合变上限函数求极限。

二、连续 00lim ()()x x f x f x ->=左、右连续 000lim ()(),lim ()()x x x x f x f x f x f x -+->->==函数连续⇔函数既左连续又右连续闭区间上连续函数性质:最值,有界,零点(结合证明题),介值,推论。

三、导数 0000000()()()()'()limlim x x x f x f x f x x f x f x x x x->->-+-==-V V V 左导数 0000000()()()()'()lim lim x x x f x f x f x x f x f x x x x---->->-+-==-V V V右导数 0000000()()()()'()lim lim x x x f x f x f x x f x f x x x x+++->->-+-==-V V V 微分 ()'y A x z dy Adx y dx ο∆=⋅∆+==可导⇒连续 可导⇔可微 可导⇔既左可导又右可导求导数:(1) 复合函数链式法则[]()'[]'()dy dy du y f u u g x f u g x dx du dx====[()]''[()]'()'[()]([()])'y f g x y f g x g x f g x f g x ==≠(2) 隐函数求导法则两边对x 求导,注意y 、y '是x 的函数。

大学高数复习资料大全

大学高数复习资料大全

高等数学第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】36x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim limlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x(,0)-∞ 0(0,1) 1(1,2) 2(2,)+∞y '-++- y '' ++--y1 (1,3) 5 4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],ab 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= .(三行表)x1- ()1,1-1 (]1,3()f x ' 0+-()f x极小值极大值4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰。

(完整版)高等数学基本知识点大全大一复习,考研必备

(完整版)高等数学基本知识点大全大一复习,考研必备

大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。

变量x的变化范围叫做这个函数的定义域。

通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。

注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。

这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。

如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。

这里我们只讨论单值函数。

⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。

例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。

例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。

(完整word版)高等数学复习资料大全

(完整word版)高等数学复习资料大全

(完整word版)高等数学复习资料大全《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-x x x x x x x x (等价小量与洛必达) 2.已知2030) (6lim 0)(6sin limxx f x x xf x x x +=+>->-,求解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim 22=?>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a 解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-?x xt x edte x (洛必达与微积分性质)第二讲导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2.微分中值定理理解Roll 、Lagrange 、Cauchy 、Taylor 定理会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法A.导数微分的计算基本公式、四则、复合、高阶、隐函数、参数方程求导1.??=+-==52arctan )(2te ty y t x x y y 由决定,求dxdy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=13.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

高数一知识点

高数一知识点

第一章~~第三章一、极限数列极限lim n n x ->∞函数极限lim ()x f x ->∞,lim ()x f x →+∞,lim ()x f x →-∞lim ()x x f x ->,0lim ()x x f x -->,0lim ()x x f x +->三、导数 0000000()()()()'()limlim x x x f x f x f x x f x f x x x x->->-+-==- 左导数 0000000()()()()'()l i m l i mx x x f x f x f x xf x f xx x x ---->->-+-==-右导数 0000000()()()()'()l i m l i mx x x f x f x f x xf x f xx x x+++->->-+-==-微分 ()'y A x z d y A d x y d xο∆=⋅∆+==可导⇒连续 可导⇔可微可导⇔既左可导又右可导求导数:(1) 复合函数链式法则 (2) 隐函数求导法则两边对x 求导,注意y 、y '是x 的函数。

(3)参数方程求导 四、导数的应用(1)罗尔定理和拉格朗日定理(证明题)(9)2d csc cot x x x C =-+⎰(10)d s x ec tan sec x x x C =+⎰ (11)dx csc cot csc x x x C =-+⎰(12)arcsin x C =+(13)2arctan 1d xx C x=++⎰除了上述基本公式之外,还有几个常用积分公式1.tan ln |cos |;xdx x C =-+⎰2.cot ln |sin |;xdx x C =+⎰3.sec ln |sec tan |;xdx x x C =++⎰4.csc ln |csc cot |;xdx x x C =-+⎰5.2211arctan ;xdx C a x a a =++⎰6.arcsin ;x C a =+7.2211ln ;2x a dx C x a a x a -=+-+⎰8.2arcsin ;2a x C a =+9.ln |.x C =++(3).⎰⎰⎰+=bcc ab adx x f dx x f dx x f )()()(;(4). 若在[],a b 上,()0≥x f ,则0)(≥⎰badx x f ;推论1.若在[],a b 上,()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰推论2.⎰⎰≤bab adx x f dx x f |)(||)(|(a b <)(5).若函数()x f 在区间[]b a ,上可积,且()M x f m ≤≤,则(6).(定积分中值定理)设()x f 在区间[]b a ,上连续,则存在[]b a ,∈ξ,使()()a b f dx x f b a-=⎰ξ)(.3. 积分上限函数()x af t dt ⎰及其性质(1).()x f dt t f x a='⎰))((,或()x f dt t f dx d xa=⎰)(;(2).如果()⎰=)(0)(x dt t f x ϕφ,则()))(()(0'='⎰x dt t f x ϕφ()()()x x f ϕϕ'=.c 为瑕点则()⎰b adx x f 收敛⇔()⎰c adx x f 与()⎰bcdx x f 均收敛,并且在收敛时,有二、计算(一)定积分的计算1、微积分基本公式:设函数()x f 在区间[]b a ,上连续,且()()x f x F =',则()()a F b F dx x f b a-=⎰)( ,牛顿-莱布尼兹(N-L )公式2、换元法:设函数()x f 在区间[]b a ,上连续,函数()t x ϕ=满足: ①在区间[]βα,上可导,且()t ϕ'连续;②()αϕ=a ,()βϕ=b ,当[,]t αβ∈时,[]b a x ,∈,则 3、分部积分法:()|b bb a aauv dx uv u vdx ''=-⎰⎰,或()|bbba aaudv uv vdu =-⎰⎰.4、偶倍奇零:设函数()x f 在区间[]a a ,-上连续,则2、旋转体的体积(1)直角坐标:由曲线(),,,()y f x x a x b a b ===<与x 轴所围曲边梯形绕x 轴旋转一周的旋转体的体积22()().bbaaV f x dx f x dx ππ==⎰⎰由曲线(),,,()x y y c y d c d ϕ===<与y 轴所围曲边梯形绕y 轴旋转一周的旋转体的体积22()().ddccV y dy y dy πϕπϕ==⎰⎰(2)参数方程由()()x t y t ϕψ=⎧⎨=⎩与,x a x b ==及x 轴所围成的图形绕x 由旋转一周的旋转体的体积2()()V t t dt βαπψϕ'=⎰3、平面曲线的弧长(积分限从小到大) (1)直角坐标 as =⎰(2)参数方程 s βα=⎰ 齐次线性''()'()0(*)y P x y Q x y ++= 非齐次线性''()'()()(**)y P x y Q x y f x ++=1、12,y y 是(*)的解,则1122y C y C y =+也是(*)的解;若12,y y 线性无关,则1122y C y C y =+为(*)的通解)2、12*,*y y 是(**)的解,则12**y y -是对应齐次线性方程的解Y 是(*)的通解,*y 是(**)的解,则*Y y +是(**)的通解 (三)、解方程:判别类型,确定解法。

高数学习资料(含讲义及全部内容)(一)

高数学习资料(含讲义及全部内容)(一)

第一章 函数与极限函数和极限都是高等数学中最重要、最基本的概念,极值方法是最基本的方法,一切内容都将从这二者开始。

§1、 函 数一、集合、常量与变量1、集合:集合是具有某种特定性质的事物所组成的全体。

通常用大写字母A 、B 、C ……等来表示,组成集合的各个事物称为该集合的元素。

若事物a 是集合M 的一个元素,就记a ∈M (读a 属于M );若事物a 不是集合M 的一个元素,就记a ∉M 或a ∈M (读a 不属于M );集合有时也简称为集。

注 1:若一集合只有有限个元素,就称为有限集;否则称为无限集。

2:集合的表示方法:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+++======等。

中在点;为我校的学生;须有此性质。

如:中的元素必中,且,即:有此性质的必在所具有的某种性质合可表示为:,那么该集若知其元素有某种性质不到元素规律的集合,、列不出全体元素或找为全体偶数集;,,,然数集,为全体自,,,写出,如:元素的规律,也可类似、对无限集,若知道其;鸡一只猫,一只狗,一只的方法来表示,如:可用列举出其全体元素、若集合为有限集,就枚举法}),(),{(}{}0375{}{)(}642{}321{)(}{},10,,3,2,1{)(23D y x y x C x x B x x x x A A A x x A iii B A ii B A i 3:全体自然数集记为N,全体整数的集合记为Z,全体有理数的集合记为Q,全体实数的集合记为R 。

以后不特别说明的情况下考虑的集合均为数集。

4:集合间的基本关系:若集合A 的元素都是集合B 的元素,即若有A x ∈,必有B x ∈,就称A 为B 的子集,记为B A ⊂,或A B ⊃(读B 包含A)。

显然:R Q Z N ⊂⊂⊂.若B A ⊂,同时A B ⊂,就称A 、B 相等,记为A=B 。

5:当集合中的元素重复时,重复的元素只算一次.如:{1,2,2,3}={1,2,3}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
高数复习资料
高数复习资料 第六章常微分方程 1.微分方程定义:含有未知函数的导数或微分的等式,称为微分方程。 2. 通解:若果微分方程的解中含有任意常数,且相互独立的任意常数(是指他们不能通过和拼而 使得任意常数的个数有所减少)的个数与微分方程的阶数相同(微分方程中所出现的未知数 的最高阶导数的阶数,称为微分方程的阶数) ,那么,这样的解称为微分方程的通解 3.特解:确定通解中的任意常数之后,所得的解 4. 可分离变量的微分方程: F ( x, y, y) 0 做法:这种情况下 dx,dy 可以分离开,将它们分别移到等式两边,再在等式两边同时积分即可 p(x)dx=q(y)dy→P(x)=Q(y)+C
y1 ( x) y2 ( x) 可以用上面的 y1 ( x) y2 ( x), y1 ( x) y2 ( x) ,y2 ( x) y3 ( x) 任意互换,y1 ( x) 也
可以用 y1 ( x), y2 ( x), y3 ( x) 任意互换 14. 若二阶线性非齐次微分方程的右端为若干个函数之和, 即: y P( x) y Q( x) y f1 ( x) f 2 ( x) ,则
x
x
(C1 C2 x) cosx (D1 D2 x) sin x
y 齐次的通解 y ,齐次的通解依照(15)进行计算。
y x k Qm ( x)ex ,其中 Qm ( x) 是与 Pm ( x) 同次的多项式,即最高次数相等,k 按
① 不是 r pr q 0 的根,k 取 0
由曲面相交得到
2. 2 点向式:
x x0 y y0 z z0 s (m ,n , p )直线的方向向量 m n p
当 m,n,p 中有 0 时,对应的分子也为 0.如当 m=0 时 x
x0 0
x x 0 mt 3. 参数式: y y 0 nt z z pt 0
7.向量的向量积(即叉乘) ①a
b a b sin
为a与b的夹角

② a b 所得向量方向由右手法则确定③ a a 0 ④a b 0 ⑤a b
a // b a,b不为零向量


积 a b sin a与b 所确定的平行四边的面
⑥ a ห้องสมุดไป่ตู้ b a (反交换律) ⑦叉乘服从分配律与结合律
到齐次方程的通解 6. 一阶线性齐次微分方程:
为线性,其余全部不为线性)
p ( x ) dx 公式: y Ce (注意公式里面的负号不要掉了) (证明见:P263-P264)
7. 一阶线性非齐次微分方程:
dy P ( x) y Q ( x) 其中 y 的次数,决定方程是不是线性,一次为 dx
2
3
高数复习资料
y P( x) y Q( x) y f1 ( x) 与 y P( x) y Q( x) y f 2 ( x) 的 特 解 之 和 , 仍 为 原 方 程 y P( x) y Q( x) y f1 ( x) f 2 ( x) 的特解(叠加原理)
2
② 是 r pr q 0 的单根,k 取 1
2
③ 是 r pr q 0 的复根,k 取 2
2
17. y py qy x e
k x
Pl ( x) cosx Qn ( x) sin x型
y 齐次的通解 y ,齐次的通解依照(15)进行计算。
2 rx 2 r x
2. p 4q =0,即 r 有两相等的根 r1=r2,则 y 的通解为: y (C1 C2 x)e 1
2
rx
3. p 4q <0,即 r 存在复根 r1, 2 i ,则 y 的通解为: y ex (C1 cosx C2 sin x) 若 r1=r2,则 y 的通解为: y e 16. y py qy pm ( x)e 型

a (ax ,ay ,az ),b (bx ,by ,bz )则 a b


i
x x
j
y
k
z z
a a a b b b
x
0 0
平面方程 1. 点法式: n 平面l n
A,B ,C 且平面经过 x ,y ,z ,则平面方程为:
0
A(x x 0 ) B(y y 0 ) C z z0 =0
dx y ( ) dx x y dy du u x 做法:引入中间变量 u ,则 y=ux,所以 dy=dux,切记 u 中含有 x,所以 x dx dx
5. 齐次方程: ∴u x
du y du dx du dx (u ) → 便得 → ,求出积分后用 代替 u, dx x (u ) u x (u ) u x dy p ( x) y 0 (其中 y 的次数,决定方程是不是线性,一次 dx
n2 (法向量相互垂直) a b 0 即 A1A2 B1B 2 C 1C 2 0
4


5
高数复习资料
n1 n 2 π 面夹角的范围: 0, cos n1 n 2 2
直线方程: 1. 一般式
A1x B 1y C 1z D 1 0 A2x B 2y C 2z D 2 0
2. 一般式:将点法式化成 Ax 令
By Cz Ax 0 By 0 Cz 0 0
Ax
0
By 0 Cz 0 =D 即可 Ax By Cz D 0
3. 三点共面式,由三个点中任意两个构成两个向量,它们的叉乘即为该面的法向量,再代入三 个点中任意一点,即可求出面的方程 面面垂直 n1
������→������0
极限中没有一元中的左右极限
4. 两点式:利用两点坐标求出方向向量,再利用点向式
s1 s 2 π ) 两直线的夹角: l1与l2 的方向向量 s ,s 设夹角为 (0 cos 1 2 2 s1 s 2
线面夹角: l 的方向向量 s1 ,平面Ⅱ的法向量是 n1 ,设线面夹角 ,设 s1 与 n1 的夹角为
r与三轴的夹角,记为方 向角(,,), r (x ,y ,z )


① cos ,cos
x r
y z ,cos r r
0
②与 r 同向的单位向量 r (也可记为 e r )=( cos ,cos ,cos ) ,且


cos 2 cos 2 cos 2 1




cos sin
s 1 n1 s 1 n1



第八章 多元函数的微分学及其应用 1. 邻域:数轴中 邻域 平面上 圆邻域 空间中 球邻域 2. 二元函数的极限、连续性的定义、性质与一元类似,在此不给出 注意: lim������→������ 0 lim������→������0 ������(x,y)不等于lim������→������ 0 ������(x,y)
y P( x) y Q( x) y f ( x)
通解: y 本身的特解 加上齐次的通解 例如: y1 ( x), y2 ( x), y3 ( x) 是非齐次微分方程的三个特解,且这三个解之间线性无关,则这三 个特解任意两个之差为齐次的特解,如: y1 ( x) y2 ( x), y1 ( x) y2 ( x) , y2 ( x) y3 ( x) 都为 其齐次的特解 通 解 为 : y C1 ( y2 ( x) y3 ( x)) C2 ( y1 ( x) y2 ( x)) y1 ( x) 其 中 y2 ( x) y3 ( x) ,

y p( y)) 11. y f ( y, y) ,令 y p, (切记,p是关于y的函数,即 ,
y dp dp dy dp dp p f ( y, p ) , 两 边 积 分 即 可 得 到 ,∴原式可化为: p dx dy dx dx dy
dy dy ( y, C1 ) dx 两边积分得:公 dx ( y, C1 )
y x k ex Qm ( x) cosx Rm ( x) sin x ,其中 m 为 m=max{l,n},,k 按
① ②
i 不是 r 2 pr q 0 的根,则 k 取 0 i 是 r 2 pr q 0 的根,则 k 取 1
第七章空间解析几何与向量代数 1. 空间直角坐标系的建系要求:三轴方向服从右手螺旋法则 2. 卦限:x,y,z 轴正半轴所确定的卦限称为第一卦限,第二,三,四卦限在 xoy 面的上方, 按照逆时针方向确定,第五至八卦限在 xoy 面的下方,第五卦限在第一卦限下方,其余 按逆时针方向确定。
p ( y, C1 ) (因为 p 是关于 y 的函数)∴

(y, C )dy x C
1
1
2
12. 二阶线性齐次微分方程:
y P(x)y Q( x) y 0 ,设 y1 ( x), y2 ( x) 是 y 的两个解,且它们之间线性无关(即两个
解 y1 ( x), y2 ( x) 之商不为常数即可) 通解: y C1 y1 C2 y2 13. 二阶线性非齐次微分方程:
线性,其余全部不为线性) 公式: y
Q( x)e P ( x ) dx dx C e P ( x ) dx (注意公式里面的正负号) (证明和另一种形式见
P264), 8. 伯努利方程:
dy dy yn P( x) y Q( x) y n 左右除以 yn P( x) y1 n Q( x) ,令 z y1 n , dx dx dz dy dz (1 n) y n (1 n) P( x) z (1 n)Q( x) (很明显这是一个一 则 ,∴原式可化为 dx dx dx
相关文档
最新文档