树-顺序存储完全二叉树先、中、后序遍历-实验内容与要求

合集下载

数据结构二叉树实验报告

数据结构二叉树实验报告

一 、实验目的和要求(1)掌握树的相关概念,包括树、节点的度、树的度、分支节点、叶子节点、孩子节点、双亲节 点、树的深度、森林等定义。

(2)掌握树的表示,包括树形表示法、文氏图表示法、凹入表示法和括号表示法等。

(3)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。

(4)掌握二叉树的性质。

(5)重点掌握二叉树的存储结构,包括二叉树顺序存储结构和链式存储结构。

(6)重点掌握二叉树的基本运算和各种遍历算法的实现。

(7)掌握线索二叉树的概念和相关算法的实现。

(8)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码的产生方法。

(9)掌握并查集的相关概念和算法。

(10)灵活运用二叉树这种数据结构解决一些综合应用问题。

二、实验内容注:二叉树b 为如图7-123所示的一棵二叉树图7-123+实验7.1 编写一个程序algo7-1.cpp,实现二叉树的各种运算,并在此基础上设计一个程序exp7-1.cpp 完成如下功能:(1)输出二叉树b ;(2)输出H 节点的左、右孩子节点值; (3)输出二叉树b 的深度; (4)输出二叉树b 的宽度; (5)输出二叉树b 的节点个数;(6)输出二叉树b 的叶子节点个数。

实验7.2设计一个程序exp7-2.cpp,实现二叉树的先序遍历、中序遍历和后序遍历和非递归算法, 以及层次变量里的算法。

并对图7-123所示的二叉树b 给出求解结果。

b+ACF GIKL+NM+E+HdJD₄B臣1607-1.CPPif(b?-HULL)re3P4+;Qu[rear]-p-b;Qu[rear].1no=1;while(reart=front){Front++;b=Qu[front]-P;lnum-Qu[front].1no;if(b->Ichildt=NULL)rpar+t;Qu[rear]-p=b->1child;Qu[rear].Ino-lnun+1;if(D->rch11d?=NULL)1/根结点指针入队//根结点的层次编号为1 1/队列不为空1/队头出队1/左孩子入队1/右孩子入队redr+t;qu[rear]-p=b->rchild;Qu[rear].1no-lnun*1;}}nax-0;lnun-1;i-1;uhile(i<=rear){n=0;whdle(i<=rear ge Qu[1].1no==1num)n+t;it+;Inun-Qu[i].1n0;if(n>max)nax=n;}return max;田1607-1.CPPreturn max;}elsereturn o;口×int Modes(BTNode *D) //求二叉树D的结点个数int nun1,nun2;if(b==NULL)returng,else if(b->ichild==NULL&D->rchild==NULL)return 1;else{num1-Hodes(b->Ichild);num2=Nodes(b->rchild);return(num1+nun2+1);LeafNodes(BINode *D) //求二叉树p的叶子结点个数int num1,num2;1f(D==NULL)return 0;else if(b->1chi1d==NULLc& b->rch11d==NULL)return 1;else{num1-LeafModes(b->lchild);num2=LeafNodes(b->rchild);return(nun1+nun2);int程序执行结果如下:xCProrn FlslirosfViu l SudiollyPrjecslro7 LJebuglFoj7 ex<1)输出二叉树:A<B<D,E<H<J,K<L,M<,N>>>>),C<F,G<,I>>)<2)'H’结点:左孩子为J石孩子为K(3)二叉树b的深度:7<4)二叉树b的宽度:4(5)二叉树b的结点个数:14(6)二叉树b的叶子结点个数:6<?>释放二叉树bPress any key to continue实验7 . 2程序exp7-2.cpp设计如下:坠eTPT-2.EPP#include<stdio.h》winclude<malloc.h>deFn Masie 00typde chr ElemTyetypede sruct nde{ElemType data;stuc node *lclldstruct node rchild;》BTHode;extern vod reaeBNodeBTNode extrn void DispBTHode(BTNodeuoid ProrderBTNode *b)if(b?-NULL)- 回1 / 数据元素1 / 指向左孩子1 / 指向右孩子*eb car *str)xb1 / 先序遍历的递归算法1 / 访问根结点/ / 递归访问左子树1 7 递归访问右子树/ / 根结点入栈//栈不为空时循环/ / 退栈并访问该结点/ / 右孩子入栈{》v oidprintf(*c“,b->data); Preorder(b->lchild); Pre0rder(b->rchild);Preorder1(BTNode *b)BTNode xSt[Maxsize],*p;int top=-1;if(b!-HULL)top++;St[top]-b;uhle (op>-)p-St[top];top--;printf("%c“,p->data);if(p->rchild?-HULL)A约e程p7-2.CPPprintF(”后序逅历序列:\n");printf(" 递归算法=");Postorder(b);printf("\n");printf(“非递归算法:“);Postorder1(b);printf("\n");序执行结果如下:xCAPrograFleicsoftVisal SudlyrjecsProj 2Debuzlroj72ex"二叉树b:A(B(D,ECH<J,K(L,M<,N)>))),C(F,GC.I>))层次遍历序列:A B C D E F G H I J K L M N先序遍历序列:递归算法:A B D E H J K L M N C F G I非归算法:A B D E H J K L M N C F G I中序遍历序列:递归算法: D B J H L K M N E A F C G I非递归算法:D B J H L K M N E A F C G I后序遍历序列:递归算法: D J L N M K H E B F I G C A非递归算法:D J L N H K H E B F I G C APress any key to continue臼p7-3.CPP15Pp a t h[p a t h l e n]-b->d a t a;//将当前结点放入路径中p a t h l e n t+;/7路任长度培1Al1Path1(b->ichild,patn,pathlen);1/递归扫描左子树Al1Path1(b->rchild,path,pathlen); //递归扫描右子树pathlen-- ; //恢复环境uoid Longpath(BTNode *b,Elemtype path[1,int pathlen,Elemtype longpath[],int elongpatnien) int i;1f(b==NULL){if(pathlen>longpatnlen) //若当前路径更长,将路径保存在1ongpatn中for(i-pathlen-1;i>-8;i--)longpath[i]=path[1];longpathlen-pathlen;elsepath[pathlen]=b->data; pathlen4; //将当前结点放入路径中//路径长度增1iongPath(b->lchild,path₇pathlen,langpath,longpathien);//递归扫描左子树LongPath(b->rchiid,path,pathien,longpath,longpathien);//递归扫描石子树pathlen--; /7饮其环境oid DispLeaf(BTNode xb)- 口凶uoid DispLeaf(BTNode xb)iE(D!=NULL){ if(b->1child--HULL B& b->rchild--HULL)printf("3c“,b->data);elsepispLeaf(b->ichild);DispLeaf(b->rchild);oid nain()8TNodexb;ElenType patn[Maxsize],longpath[Maxsize];int i.longpathien-U;CreateBTNode(b,"A(B(D,E(H(J,K(L,H(,N))))),C(F,G(,I)))");printf("\n二灾树b:");DispBTNode(b);printf("\n\n*);printf(”b的叶子结点:");DispLeaf(b);printf("\n\n");printf("A11Path:");A11Path(b);printf("m");printf("AiiPath1:n");AliPath1(b.path.);printf("");LongPath(b,path,8,longpath,longpathlen);printf(”第一条量长路径长度=d\n”,longpathlen);printf(”"第一茶最长路径:");for(i=longpathlen;i>=0;i--)printf("c",longpatn[1]);printf("\n\n");。

实验报告:二叉树

实验报告:二叉树

实验报告:二叉树第一篇:实验报告:二叉树实验报告二叉树一实验目的1、进一步掌握指针变量,动态变量的含义;2、掌握二叉树的结构特性以及各种存储结构的特点及适用范围。

3、掌握用指针类型描述、访问和处理二叉树的运算。

4、熟悉各种存储结构的特征以及如何应用树结构解决具体问题。

二实验原理树形结构是一种应用十分广泛和重要的非线性数据结构,是一种以分支关系定义的层次结构。

在这种结构中,每个数据元素至多只有一个前驱,但可以有多个后继;数据元素之间的关系是一对多的层次关系。

树形结构主要用于描述客观世界中具有层次结构的数据关系,它在客观世界中大量存在。

遍历二叉树的实质是将非线性结构转为线性结构。

三使用仪器,材料计算机 2 Wndows xp 3 VC6.0四实验步骤【问题描述】建立一个二叉树,请分别按前序,中序和后序遍历该二叉树。

【基本要求】从键盘接受输入(按前序顺序),以二叉链表作为存储结构,建立二叉树(以前序来建立),并采用递归算法对其进行前序,中序和后序遍历,将结果输出。

【实现提示】按前序次序输入二叉树中结点的值(一个整数),0表示空树,叶子结点的特征是其左右孩子指针为空。

五实验过程原始记录基本数据结构描述; 2 函数间的调用关系;用类C语言描述各个子函数的算法;附录:源程序。

六试验结果分析将实验结果分析、实验中遇到的问题和解决问题的方法以及关于本实验项目的心得体会,写在实验报告上。

第二篇:数据结构-二叉树的遍历实验报告实验报告课程名:数据结构(C语言版)实验名:二叉树的遍历姓名:班级:学号:时间:2014.11.03一实验目的与要求1.掌握二叉树的存储方法2.掌握二叉树的三种遍历方法3.实现二叉树的三种遍历方法中的一种二实验内容• 接受用户输入一株二叉树• 输出这株二叉树的前根, 中根, 后根遍历中任意一种的顺序三实验结果与分析//*********************************************************** //头文件#include #include //*********************************************************** //宏定义#define OK 1 #define ERROR 0 #define OVERFLOW 0//*********************************************************** typedef struct BiTNode { //二叉树二叉链表存储结构char data;struct BiTNode *lChild,*rChild;}BiTNode,*BiTree;//******************************** *************************** int CreateBiTree(BiTree &T){ //按先序次序输入二叉中树结点的值,空格表示空树//构造二叉链表表示的二叉树T char ch;fflush(stdin);scanf(“%c”,&ch);if(ch==' ')T=NULL;else{ if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))return(OVERFLOW);T->data=ch;Creat eBiTree(T->lChild);CreateBiTree(T->rChild);} return(OK);} //********************************************************* void PreOrderTraverse(BiTree T){ //采用二叉链表存储结构,先序遍历二叉树的递归算法if(T){ printf(“%c”,T->data);PreOrderTraverse(T->lChild);PreOrd erTraverse(T->rChild);} } /***********************************************************/ void InOrderTraverse(BiTree T){ //采用二叉链表存储结构,中序遍历二叉树的递归算法if(T){ InOrderTraverse(T->lChild);printf(“%c”,T->data);InOrderT raverse(T->rChild);} }//*********************************************************** void PostOrderTraverse(BiTree T){ //采用二叉链表存储结构,后序遍历二叉树的递归算法if(T){ PostOrderTraverse(T->lChild);PostOrderTraverse(T->rChild) ;printf(“%c”,T->data);} }//*********************************************************** void main(){ //主函数分别实现建立并输出先、中、后序遍历二叉树printf(“please input your tree follow the PreOrder:n”);BiTNode *Tree;CreateBiTree(Tree);printf(“n先序遍历二叉树:”);PreOrderTraverse(Tree);printf(“n中序遍历二叉树:”);InOrderTraverse(Tree);printf(“n后序遍历二叉树:”);PostOrderTraverse(Tree);}图1:二叉树的遍历运行结果第三篇:数据结构二叉树操作验证实验报告班级:计算机11-2 学号:40 姓名:朱报龙成绩:_________实验七二叉树操作验证一、实验目的⑴ 掌握二叉树的逻辑结构;⑵ 掌握二叉树的二叉链表存储结构;⑶ 掌握基于二叉链表存储的二叉树的遍历操作的实现。

《数据结构及其应用》笔记含答案 第五章_树和二叉树

《数据结构及其应用》笔记含答案 第五章_树和二叉树

第5章树和二叉树一、填空题1、指向结点前驱和后继的指针称为线索。

二、判断题1、二叉树是树的特殊形式。

()2、完全二叉树中,若一个结点没有左孩子,则它必是叶子。

()3、对于有N个结点的二叉树,其高度为。

()4、满二叉树一定是完全二叉树,反之未必。

()5、完全二叉树可采用顺序存储结构实现存储,非完全二叉树则不能。

()6、若一个结点是某二叉树子树的中序遍历序列中的第一个结点,则它必是该子树的后序遍历序列中的第一个结点。

()7、不使用递归也可实现二叉树的先序、中序和后序遍历。

()8、先序遍历二叉树的序列中,任何结点的子树的所有结点不一定跟在该结点之后。

()9、赫夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。

()110、在赫夫曼编码中,出现频率相同的字符编码长度也一定相同。

()三、单项选择题1、把一棵树转换为二叉树后,这棵二叉树的形态是(A)。

A.唯一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子解释:因为二叉树有左孩子、右孩子之分,故一棵树转换为二叉树后,这棵二叉树的形态是唯一的。

2、由3个结点可以构造出多少种不同的二叉树?(D)A.2 B.3 C.4 D.5解释:五种情况如下:3、一棵完全二叉树上有1001个结点,其中叶子结点的个数是(D)。

A.250 B. 500 C.254 D.501解释:设度为0结点(叶子结点)个数为A,度为1的结点个数为B,度为2的结点个数为C,有A=C+1,A+B+C=1001,可得2C+B=1000,由完全二叉树的性质可得B=0或1,又因为C为整数,所以B=0,C=500,A=501,即有501个叶子结点。

4、一个具有1025个结点的二叉树的高h为(C)。

A.11 B.10 C.11至1025之间 D.10至1024之间解释:若每层仅有一个结点,则树高h为1025;且其最小树高为⎣log21025⎦ + 1=11,即h在11至1025之间。

数据结构-二叉树的存储结构和遍历

数据结构-二叉树的存储结构和遍历

return(p); }
建立二叉树
以字符串的形式“根左子树右子树”定义 一棵二叉树
1)空树 2)只含一个根 结点的二叉树 A 3)
B C
A
以空白字符“ ”表示
以字符串“A ”表示
D
以下列字符串表示 AB C D
建立二叉树 A B C C
T
A ^ B ^ C^ ^ D^
D
建立二叉树
Status CreateBiTree(BiTree &T) {
1 if (!T) return;
2 Inorder(T->lchild, visit); // 遍历左子树 3 visit(T->data); } // 访问结点 4 Inorder(T->rchild, visit); // 遍历右子树
后序(根)遍历
若二叉树为空树,则空操

左 子树
右 子树
作;否则, (1)后序遍历左子树; (2)后序遍历右子树; (3)访问根结点。
统计二叉树中结点的个数
遍历访问了每个结点一次且仅一次
设置一个全局变量count=0
将visit改为:count++
统计二叉树中结点的个数
void PreOrder (BiTree T){ if (! T ) return; count++; Preorder( T->lchild); Preorder( T->rchild); } void Preorder (BiTree T,void( *visit)(TElemType& e)) { // 先序遍历二叉树 1 if (!T) return; 2 visit(T->data); // 访问结点 3 Preorder(T->lchild, visit); // 遍历左子树 4 Preorder(T->rchild, visit);// 遍历右子树 }

数据结构-C语言-树和二叉树

数据结构-C语言-树和二叉树

练习
一棵完全二叉树有5000个结点,可以计算出其
叶结点的个数是( 2500)。
二叉树的性质和存储结构
性质4: 具有n个结点的完全二叉树的深度必为[log2n]+1
k-1层 k层
2k−1−1<n≤2k−1 或 2k−1≤n<2k n k−1≤log2n<k,因为k是整数
所以k = log2n + 1
遍历二叉树和线索二叉树
遍历定义
指按某条搜索路线遍访每个结点且不重复(又称周游)。
遍历用途
它是树结构插入、删除、修改、查找和排序运算的前提, 是二叉树一切运算的基础和核心。
遍历规则 D
先左后右
L
R
DLR LDR LRD DRL RDL RLD
遍历规则
A BC DE
先序遍历:A B D E C 中序遍历:D B E A C 后序遍历:D E B C A
练习 具有3个结点的二叉树可能有几种不同形态?普通树呢?
5种/2种
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
(a + b *(c-d)-e/f)的二叉树
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
二叉树的抽象数据类型定义
特殊形态的二叉树
只有最后一层叶子不满,且全部集中在左边

树和二叉树——精选推荐

树和二叉树——精选推荐

第6章 树和二叉树内容概要:本章主要介绍树,二叉树,最优二叉树的相关概念和操作,存储结构和相应的操作,并在综合应用设计中,给出了对应算法的C 语言实现。

教学目标1.理解各种树和森林与二叉树的相应操作。

2.熟练掌握二叉树的各种遍历算法,并能灵活运用遍历算法实现二叉树的其他操作。

3.熟练掌握二叉树和树的各种存储结构及其建立的算法。

4.掌握哈夫曼编码的方法。

5.通过综合应用设计,掌握各种算法的C 语言实现过程。

基本知识点:树和二叉树的定义、二叉树的存储表示、二叉树的遍历以及其它操作的实现、树和森林的存储表示、树和森林的遍历以及其它操作的实现、最优树和赫夫曼编码重点:二叉树的性质、二叉树的遍历及其应用,构造哈夫曼树。

难点:编写实现二叉树和树的各种操作的递归算法。

本章知识体系结构:课时安排:6个课时树的定义 树树的性质 树的逻辑表示法 树形表示法 树的存储结构 双亲存储结构 文氏表示法凹入表示法 括号表示法 孩子存储结构 孩子双亲存储结构二叉树二叉树的定义 二叉树的性质二叉树的逻辑表示法(采用树的逻辑表示法)二叉树的存储结构二叉树的顺序存储结构先序遍历 中序遍历 后序遍历二叉树的遍历 二叉树的链式存储结构(二叉链) 由先序序列和中序序列构造二叉树 由中序序列和后序序列构造二叉树二叉树的构造 二叉树的线索化 哈夫曼树二叉树和树之间的差别 二叉树与树、森林之间的转换二叉树和树课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握树、二叉树的基本概念和术语,二叉树的性质教学重点二叉树的定义、二叉树的性质、链式存储结构教学难点二叉树的性质、链式存储二叉树的基本操作组织教学一、树的定义二、树的基本概念三、二叉树的定义、性质四、二叉树的顺序存储结构和链式存储结构五、小结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握二叉树遍历的三种方法及二叉树的基本操作教学重点二叉树的遍历算法教学难点中序与后序遍历的非递归算法组织教学一、复习二叉树的定义二、遍历二叉树的三种方法三、递归法遍历二叉树四、二叉树的基本操作五、总结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标理解树与森林的转换,掌握哈夫曼树教学重点哈夫曼树教学难点树与森林的转换组织教学一、导入二、树与森林三、哈夫曼树四、小结作业习题6课堂情况及课后分析前面几章讨论的数据结构都属于线性结构,线性结构的特点是逻辑结构简单,易于进行查找、插入和删除等操作,可用于描述客观世界中具有单一前驱和后继的数据关系。

数据结构实验(使用版)

数据结构实验(使用版)

实验一顺序表的应用一.实验目的1、掌握线性表的顺序存储结构的基本操作的实现。

2、设计并实现顺序表的应用程序,提高编程能力。

二.实验内容编写程序实现:1、在原来的顺序表中将顺序表实现逆置。

2、要求顺序表的内容由用户输入,并分别显示出逆置前和逆置后的顺序表。

三.实验设备及实验环境实验设备:微机一台实验环境:C语言运行环境实验二单链表的应用三.实验目的1、掌握线性表的链式存储结构的基本操作的实现。

2、设计并实现单链表的应用程序,提高编程能力。

四.实验内容编写程序实现:1、在原有的单链表中,将单链表实现逆置。

(即不增加新的结点)2、程序要求单链表的内容由用户输入,并分别显示出逆置前和逆置后的单链表。

三.实验设备及实验环境实验设备:微机一台实验环境:C语言运行环境实验三栈和队列的应用一.实验目的1、掌握栈和队列的基本操作的实现。

2、利用栈和队列的特点解决实际问题,提高编程能力。

二.实验内容(1是必做题目,2和3可选其一)编写两个程序分别实现:1、进制之间的转换:如将10进制转换为2进制,10进制数n和要转换的进制d通过键盘输入。

2、利用栈解决火车调度问题,将本来杂乱无章的车厢排成软席(S)在前,硬席(H)在后。

车厢序列通过键盘输入,如HSHSHSSSH,输出SSSSSHHHH。

3、利用队列模拟医院排队系统。

三.实验设备及实验环境实验设备:微机一台实验环境:C语言运行环境实验四二叉树的操作(一)一、实验目的1、熟悉二叉树的概念和存储结构。

2、掌握二叉树的基本操作和实现方法。

二.实验内容1、利用栈并且采用非递归先序算法建立二叉树。

2、要求通过键盘输入二叉树的先序遍历顺序从而建立一棵二叉树。

三.实验设备及实验环境实验设备:微机一台实验环境:C语言运行环境实验五二叉树的基本操作(二)一、实验目的1.熟悉二叉树的遍历方法。

2.掌握非递归中序遍历、先序遍历和后序遍历算法的实现。

二.实验内容(中序非递归遍历必做、先序和后序可选其一)1、在前一实验的基础上,利用栈实现一棵二叉树的非递归遍历。

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

数据结构实验二叉树

数据结构实验二叉树

实验六:二叉树及其应用一、实验目的树是数据结构中应用极为广泛的非线性结构,本单元的实验达到熟悉二叉树的存储结构的特性,以及如何应用树结构解决具体问题。

二、问题描述首先,掌握二叉树的各种存储结构和熟悉对二叉树的基本操作。

其次,以二叉树表示算术表达式的基础上,设计一个十进制的四则运算的计算器。

如算术表达式:a+b*(c-d)-e/f三、实验要求如果利用完全二叉树的性质和二叉链表结构建立一棵二叉树,分别计算统计叶子结点的个数。

求二叉树的深度。

十进制的四则运算的计算器可以接收用户来自键盘的输入。

由输入的表达式字符串动态生成算术表达式所对应的二叉树。

自动完成求值运算和输出结果。

四、实验环境PC微机DOS操作系统或Windows 操作系统Turbo C 程序集成环境或Visual C++ 程序集成环境五、实验步骤1、根据二叉树的各种存储结构建立二叉树;2、设计求叶子结点个数算法和树的深度算法;3、根据表达式建立相应的二叉树,生成表达式树的模块;4、根据表达式树,求出表达式值,生成求值模块;5、程序运行效果,测试数据分析算法。

六、测试数据1、输入数据:2.2*(3.1+1.20)-7.5/3正确结果:6.962、输入数据:(1+2)*3+(5+6*7);正确输出:56七、表达式求值由于表达式求值算法较为复杂,所以单独列出来加以分析:1、主要思路:由于操作数是任意的实数,所以必须将原始的中缀表达式中的操作数、操作符以及括号分解出来,并以字符串的形式保存;然后再将其转换为后缀表达式的顺序,后缀表达式可以很容易地利用堆栈计算出表达式的值。

例如有如下的中缀表达式:a+b-c转换成后缀表达式为:ab+c-然后分别按从左到右放入栈中,如果碰到操作符就从栈中弹出两个操作数进行运算,最后再将运算结果放入栈中,依次进行直到表达式结束。

如上述的后缀表达式先将a 和b 放入栈中,然后碰到操作符“+”,则从栈中弹出a 和b 进行a+b 的运算,并将其结果d(假设为d)放入栈中,然后再将c 放入栈中,最后是操作符“-”,所以再弹出d和c 进行d-c 运算,并将其结果再次放入栈中,此时表达式结束,则栈中的元素值就是该表达式最后的运算结果。

数据结构实验报告-树(二叉树)

数据结构实验报告-树(二叉树)

实验5:树(二叉树)(采用二叉链表存储)一、实验项目名称二叉树及其应用二、实验目的熟悉二叉树的存储结构的特性以及二叉树的基本操作。

三、实验基本原理之前我们都是学习的线性结构,这次我们就开始学习非线性结构——树。

线性结构中结点间具有唯一前驱、唯一后继关系,而非线性结构中结点的前驱、后继的关系并不具有唯一性。

在树结构中,节点间关系是前驱唯一而后继不唯一,即结点之间是一对多的关系。

直观地看,树结构是具有分支关系的结构(其分叉、分层的特征类似于自然界中的树)。

四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和预定义2.创建二叉树3.前序遍历4.中序遍历5.后序遍历6.总结点数7.叶子节点数8.树的深度9.树根到叶子的最长路径10.交换所有节点的左右子女11.顺序存储12.显示顺序存储13.测试函数和主函数对二叉树的每一个操作写测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。

实验完整代码:#include <bits/stdc++.h>using namespace std;#define MAX_TREE_SIZE 100typedef char ElemType;ElemType SqBiTree[MAX_TREE_SIZE];struct BiTNode{ElemType data;BiTNode *l,*r;}*T;void createBiTree(BiTNode *&T){ElemType e;e = getchar();if(e == '\n')return;else if(e == ' ')T = NULL;else{if(!(T = (BiTNode *)malloc(sizeof (BiTNode)))){cout << "内存分配错误!" << endl;exit(0);}T->data = e;createBiTree(T->l);createBiTree(T->r);}}void createBiTree2(BiTNode *T,int u) {if(T){SqBiTree[u] = T->data;createBiTree2(T->l,2 * u + 1);createBiTree2(T->r,2 * u + 2); }}void outputBiTree2(int n){int cnt = 0;for(int i = 0;cnt <= n;i++){cout << SqBiTree[i];if(SqBiTree[i] != ' ')cnt ++;}cout << endl;}void preOrderTraverse(BiTNode *T) {if(T){cout << T->data;preOrderTraverse(T->l);preOrderTraverse(T->r);}}void inOrderTraverse(BiTNode *T) {if(T){inOrderTraverse(T->l);cout << T->data;inOrderTraverse(T->r);}}void beOrderTraverse(BiTNode *T){if(T){beOrderTraverse(T->l);beOrderTraverse(T->r);cout << T->data;}}int sumOfVer(BiTNode *T){if(!T)return 0;return sumOfVer(T->l) + sumOfVer(T->r) + 1;}int sumOfLeaf(BiTNode *T){if(!T)return 0;if(T->l == NULL && T->r == NULL)return 1;return sumOfLeaf(T->l) + sumOfLeaf(T->r);}int depth(BiTNode *T){if(!T)return 0;return max(depth(T->l),depth(T->r)) + 1;}bool LongestPath(int dist,int dist2,vector<ElemType> &ne,BiTNode *T) {if(!T)return false;if(dist2 == dist)return true;if(LongestPath(dist,dist2 + 1,ne,T->l)){ne.push_back(T->l->data);return true;}else if(LongestPath(dist,dist2 + 1,ne,T->r)){ne.push_back(T->r->data);return true;}return false;}void swapVer(BiTNode *&T){if(T){swapVer(T->l);swapVer(T->r);BiTNode *tmp = T->l;T->l = T->r;T->r = tmp;}}//以下是测试程序void test1(){getchar();cout << "请以先序次序输入二叉树结点的值,空结点用空格表示:" << endl; createBiTree(T);cout << "二叉树创建成功!" << endl;}void test2(){cout << "二叉树的前序遍历为:" << endl;preOrderTraverse(T);cout << endl;}void test3(){cout << "二叉树的中序遍历为:" << endl;inOrderTraverse(T);cout << endl;}void test4(){cout << "二叉树的后序遍历为:" << endl;beOrderTraverse(T);cout << endl;}void test5(){cout << "二叉树的总结点数为:" << sumOfVer(T) << endl;}void test6(){cout << "二叉树的叶子结点数为:" << sumOfLeaf(T) << endl; }void test7(){cout << "二叉树的深度为:" << depth(T) << endl;}void test8(){int dist = depth(T);vector<ElemType> ne;cout << "树根到叶子的最长路径:" << endl;LongestPath(dist,1,ne,T);ne.push_back(T->data);reverse(ne.begin(),ne.end());cout << ne[0];for(int i = 1;i < ne.size();i++)cout << "->" << ne[i];cout << endl;}void test9(){swapVer(T);cout << "操作成功!" << endl;}void test10(){memset(SqBiTree,' ',sizeof SqBiTree);createBiTree2(T,0);cout << "操作成功!" << endl;}void test11(){int n = sumOfVer(T);outputBiTree2(n);}int main(){int op = 0;while(op != 12){cout << "-----------------menu--------------------" << endl;cout << "--------------1:创建二叉树--------------" << endl;cout << "--------------2:前序遍历----------------" << endl;cout << "--------------3:中序遍历----------------" << endl;cout << "--------------4:后序遍历----------------" << endl;cout << "--------------5:总结点数----------------" << endl;cout << "--------------6:叶子节点数--------------" << endl;cout << "--------------7:树的深度----------------" << endl;cout << "--------------8:树根到叶子的最长路径----" << endl;cout << "--------------9:交换所有节点左右子女----" << endl;cout << "--------------10:顺序存储---------------" << endl;cout << "--------------11:显示顺序存储-----------" << endl;cout << "--------------12:退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl;if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1();break;case 2:test2();break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:cout << "测试结束!" << endl;break;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果测试用例:1.创建二叉树(二叉链表形式)2.前序遍历3.中序遍历4.后序遍历5.总结点数6.叶子结点数7.树的深度8.树根到叶子的最长路径9.交换所有左右子女10.顺序存储七、思考讨论题或体会或对改进实验的建议通过这次实验,我掌握了二叉树的顺序存储和链式存储,体会了二叉树的存储结构的特性,掌握了二叉树的树上相关操作。

数据结构实验报告--

数据结构实验报告--

数据结构实验报告--实验一、线性表的实现线性表是常用的数据结构之一,其中最常用的是顺序存储结构。

本实验使用C语言实现了顺序存储结构的线性表。

首先,定义了一个结构体来表示线性表:```#define MAXSIZE 100 //线性表最大长度typedef struct {int data[MAXSIZE]; //存放线性表元素int length; //线性表当前长度} SqList; //线性表类型定义```其中,data数组存放线性表元素,length表示线性表当前长度。

接着,定义了三个基本操作:1. 初始化线性表```void InitList(SqList *L) {L->length = 0;}```2. 插入元素```bool ListInsert(SqList *L, int i, int e) {if (i < 1 || i > L->length + 1) { //插入位置不合法}if (L->length >= MAXSIZE) { //线性表已满return false;}for (int j = L->length; j >= i; j--) { //将第i个位置之后的所有元素后移一位L->data[j] = L->data[j - 1];}L->data[i - 1] = e; //将元素e插入到第i个位置L->length++; //线性表长度加1return true;}```3. 删除元素以上三个操作就是线性表的基本操作,通过这三个操作就能完成线性表的所有操作。

实验二、栈和队列的实现2.1 栈的实现栈是一种后进先出(Last In First Out)的数据结构。

我们可以用线性表来实现栈,只需要对线性表的插入和删除操作进行限制就行了。

具体实现如下:void InitStack(Stack *S) {S->top = -1; //初始化栈顶指针}bool Push(Stack *S, int e) {if (S->top == STACK_SIZE - 1) { //栈已满,无法插入元素}S->top++; //栈顶指针加1S->data[S->top] = e; //插入元素e到栈顶return true;}以上代码实现了栈的初始化、入栈和出栈操作。

第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码

第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
或 2k-1 ≤ n < 2k
即 k-1 ≤ log2 n < k
因为 k 只能是整数,因此, k =log2n + 1
问题:
一棵含有n个结点的二叉树,可能达 到的最大深度和最小深度各是多少?
1
答:最大n,
2
最小[log2n] + 1
第六章 树和二叉树教案
二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
树是常用的数据结构
•家族 •各种组织结构 •操作系统中的文件管理 •编译原理中的源程序语法结构 •信息系统管理 •。。。。
2
6.1 树的类型定义 6.2 二叉树的类型定义
6.2.3 二叉树的存储结构 6.3 二叉树的遍历
二叉树上每个结点至多有两棵子树, 则第 i 层的结点数 = 2i-2 2 = 2i-1 。
性质 2 :
深度为 k 的二叉树上至多含 2k-1 个 结点(k≥1)。
证明:
基于上一条性质,深度为 k 的二叉
树上的结点数至多为
20+21+ +2k-1 = 2k-1 。
(等比数列求和)
k
k
(第i层的最大结点数) 2i1 2k
i 1
i 1
性质 3 :
对任何一棵二叉树,若它含有n0 个叶 子结点(0度节点)、n2 个度为 2 的结 点,则必存在关系式:n0 = n2+1。
证明:
设 二叉树上结点总数 n = n0 + n1 + n2 又 二叉树上分支总数 b = n1+2n2
而 b = n-1 = n0 + n1 + n2 - 1 由此, n0 = n2 + 1 。

数据结构C语言版第二版第5章树和二叉树答案

数据结构C语言版第二版第5章树和二叉树答案

第5章 树和二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树的形态是( )。

A .唯一的 B.有多种C .有多种,但根结点都没有左孩子 D.有多种,但根结点都没有右孩子 答案:A解释:因为二叉树有左孩子、右孩子之分,故一棵树转换为二叉树后,这棵二叉树的形态是唯一的。

(2)由3个结点可以构造出多少种不同的二叉树?( ) A .2 B .3 C .4 D .5 答案:D解释:五种情况如下:A CBACBA CBACBACB(3)一棵完全二叉树上有1001个结点,其中叶子结点的个数是( )。

A .250 B . 500 C .254 D .501 答案:D解释:设度为0结点(叶子结点)个数为A ,度为1的结点个数为B ,度为2的结点个数为C ,有A=C+1,A+B+C=1001,可得2C+B=1000,由完全二叉树的性质可得B=0或1,又因为C 为整数,所以B=0,C=500,A=501,即有501个叶子结点。

(4)一个具有1025个结点的二叉树的高h 为( )。

A .11B .10C .11至1025之间D .10至1024之间 答案:C解释:若每层仅有一个结点,则树高h 为1025;且其最小树高为 log 21025 + 1=11,即h 在11至1025之间。

(5)深度为h 的满m 叉树的第k 层有( )个结点。

(1=<k=<h) A .mk-1B .m k -1C .m h-1D .m h-1答案:A解释:深度为h 的满m 叉树共有m h-1个结点,第k 层有m k-1个结点。

(6)利用二叉链表存储树,则根结点的右指针是( )。

A .指向最左孩子B .指向最右孩子C .空D .非空 答案:C解释:利用二叉链表存储树时,右指针指向兄弟结点,因为根节点没有兄弟结点,故根节点的右指针指向空。

(7)对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用( )遍历实现编号。

数据结构专题实验

数据结构专题实验

上机实验要求及规范《数据结构》课程具有比较强的理论性,同时也具有较强的可应用性和实践性,因此上机实验是一个重要的教学环节。

一般情况下学生能够重视实验环节,对于编写程序上机练习具有一定的积极性,但是容易忽略实验的总结,忽略实验报告的撰写。

对于一名大学生必须严格训练分析总结能力、书面表达能力。

需要逐步培养书写科学实验报告以及科技论文的能力。

拿到一个题目,一般不要急于编程,而是应该按照面向过程的程序设计思路(关于面向对象的训练将在其它后继课程中进行),首先理解问题,明确给定的条件和要求解决的问题,然后按照自顶向下,逐步求精,分而治之的策略,逐一地解决子问题。

具体步骤如下:1.问题分析与系统结构设计充分地分析和理解问题本身,弄清要求做什么(而不是怎么做),限制条件是什么。

按照以数据结构为中心的原则划分模块,搞清数据的逻辑结构(是线性表还是树、图?),确定数据的存储结构(是顺序结构还是链表结构?),然后设计有关操作的函数。

在每个函数模块中,要综合考虑系统功能,使系统结构清晰、合理、简单和易于调试。

最后写出每个模块的算法头和规格说明,列出模块之间的调用关系(可以用图表示),便完成了系统结构设计。

2.详细设计和编码详细设计是对函数(模块)的进一步求精,用伪高级语言(如类C语言)或自然语言写出算法框架,这时不必确定很多结构和变量。

编码,即程序设计,是对详细设计结果的进一步求精,即用某种高级语言(如C/C++语言)表达出来。

尽量多设一些注释语句,清晰易懂。

尽量临时增加一些输出语句,便于差错矫正,在程序成功后再删去它们。

3.上机准备熟悉高级语言用法,如C语言。

熟悉机器(即操作系统),基本的常用命令。

静态检查主要有两条路径,一是用一组测试数据手工执行程序(或分模块进行);二是通过阅读或给别人讲解自己的程序而深入全面地理解程序逻辑,在这个过程中再加入一些注释和断言。

如果程序中逻辑概念清楚,后者将比前者有效。

4.上机调试程序调试最好分块进行,自底向上,即先调试底层函数,必要时可以另写一个调用驱动程序,表面上的麻烦工作可以大大降低调试时所面临的复杂性,提高工作效率。

完全二叉树操作演示

完全二叉树操作演示

安徽省巢湖学院计算机与信息工程学院课程设计报告课程名称《数据结构》课题名称完全二叉树操作演示专业班级计算机科学与技术专升本1班学号********、********、********姓名李鹏王帅李泳波联系方式指导教师严小燕完成日期: 2014年12月27 日目录1 数据结构课程设计任务书 (1)1.1题目 (1)1.2目的 (1)1.3要求 (1)2 总体设计 (1)2.1功能模块设计 (1)2.2所有功能模块流程图 (1)3 详细设计 (2)3.1程序中所采用的数据结构及存储结构的说明 (2)3.2算法设计思想 (3)3.3主要的功能函数 (3)4 调试与测试 (3)4.1调试方法与步骤 (4)4.2测试结果分析与讨论 (4)4.3测试过程中遇到的主要问题及采取的解决措施 (5)5 时间复杂度分析 (6)6 程序清单 (6)7 总结 (12)参考文献 (13)1 数据结构课程设计任务书1.1题目完全二叉树操作演示1.2目的(1)掌握二叉树的概念和性质。

(2)掌握完全二叉树存储结构。

(3)掌握完全二叉树的基本操作。

1.3 要求(1)创建完全二叉树(用字母表示节点)(用顺序方式存储)。

(2)求二叉树的深度和叶子结点数。

(3)实现二叉树的前序、中序、后序和层次遍历。

(4)查找给定结点的双亲、祖先和左右孩子节点。

2 总体设计2.1 功能模块设计根据课程设计题目的功能要求,各个功能模块的组成框图如图1:图 1 功能组成框图2.2 所有功能模块流程图设计好功能模块后,各个模块的关系如下图2:图 2 流程图3 详细设计3.1程序中所采用的数据结构及存储结构的说明(1)整个程序采用结构体与顺序表相结合的编程方法一共完成了7个功能。

在你输入错误时有报错消息,这样使整个程序运行起来更加完整。

程序中有若干个子函数被主函数调用执行。

结构体定义如下:#define MAX 100 //定义100个节点typedef struct{char dat; //节点信息}node;typedef struct Tree //节点组成树{int length;node *r; //指向根节点}Tree;3.2 算法设计思想完全二叉树具有以下几个性质,由此可设计出相应算法。

数据结构试卷带答案

数据结构试卷带答案

数据结构试卷(一)一、选择题(20分)1.组成数据的基本单位是( 1.C).(A)数据项(B)数据类型(C) 数据元素(D) 数据变量2.设数据结构A=(D,R),其中D={1,2,3,4},R={r},r={<1,2〉,<2,3〉,<3,4〉,<4,1>},则数据结构A是(C)。

(A) 线性结构(B) 树型结构(C) 图型结构(D) 集合3.数组的逻辑结构不同于下列(D)的逻辑结构。

(A)线性表(B) 栈(C) 队列(D)树4.二叉树中第i(i≥1)层上的结点数最多有(C)个。

(A) 2i(B) 2i(C) 2i—1(D) 2i-15.设指针变量p指向单链表结点A,则删除结点A的后继结点B需要的操作为(.A ).(A) p->next=p—>next->next (B) p=p->next(C) p=p—>next-〉next (D)p-〉next=p6.设栈S和队列Q的初始状态为空,元素E1、E2、E3、E4、E5和E6依次通过栈S,一个元素出栈后即进入队列Q,若6个元素出列的顺序为E2、E4、E3、E6、E5和E1,则栈S的容量至少应该是(.C )。

(A) 6 (B) 4 (C) 3 (D) 27.将10阶对称矩阵压缩存储到一维数组A中,则数组A的长度最少为(C )。

(A) 100 (B) 40 (C) 55 (D) 808.设结点A有3个兄弟结点且结点B为结点A的双亲结点,则结点B的度数数为(8.B(A) 3 (B) 4 (C) 5 (D) 19.根据二叉树的定义可知二叉树共有( B)种不同的形态.(A) 4 (B) 5 (C) 6 (D) 710.设有以下四种排序方法,则( B )的空间复杂度最大。

(A) 冒泡排序(B)快速排序(C) 堆排序(D) 希尔排序二、填空题(30分)1.设顺序循环队列Q[0:m-1]的队头指针和队尾指针分别为F和R,其中队头指针F指向当前队头元素的前一个位置,队尾指针R指向当前队尾元素所在的位置,则出队列的语句为F =____________;。

二叉树的顺序存储结构代码

二叉树的顺序存储结构代码

二叉树的顺序存储结构代码介绍二叉树是一种常用的数据结构,它由节点组成,每个节点最多有两个子节点。

在计算机中,我们通常使用顺序存储结构来表示二叉树。

顺序存储结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一个数组中。

本文将详细介绍二叉树的顺序存储结构代码,包括初始化、插入节点、删除节点以及遍历等操作。

二叉树的顺序存储结构代码实现初始化二叉树首先,我们需要定义一个数组来存储二叉树的节点。

假设数组的大小为n,则二叉树的最大节点数量为n-1。

# 初始化二叉树,将数组中所有元素置为空def init_binary_tree(n):binary_tree = [None] * nreturn binary_tree插入节点在二叉树的顺序存储结构中,节点的插入操作需要保持二叉树的特性,即左子节点小于父节点,右子节点大于父节点。

插入节点的算法如下:1.找到待插入位置的父节点索引parent_index。

2.如果待插入节点小于父节点,将其插入到父节点的左子节点位置,即数组索引2*parent_index+1处。

3.如果待插入节点大于父节点,将其插入到父节点的右子节点位置,即数组索引2*parent_index+2处。

# 插入节点def insert_node(binary_tree, node):index = 0 # 当前节点的索引值,初始值为根节点的索引值while binary_tree[index] is not None:if node < binary_tree[index]:index = 2 * index + 1 # 插入到左子节点else:index = 2 * index + 2 # 插入到右子节点binary_tree[index] = node删除节点删除节点需要保持二叉树的特性,即在删除节点后,仍然满足左子节点小于父节点,右子节点大于父节点的条件。

删除节点的算法如下:1.找到待删除节点的索引delete_index。

二叉树的先序,中序,后序遍历代码

二叉树的先序,中序,后序遍历代码

二叉树的先序,中序,后序遍历代码一、二叉树的先序、中序和后序遍历1、先序遍历先序遍历是根节点、左子树、右子树的顺序访问二叉树的一种遍历方法。

在先序遍历中,先访问根节点,然后递归访问左子树,最后递归访问右子树。

具体的代码如下:(1)//先序遍历法PreOrder(Tree T){if(T!=NULL){Visit(T);//访问根节点PreOrder(T->Left);//遍历左子树PreOrder(T->Right);//遍历右子树}}2、中序遍历中序遍历是左子树、根节点、右子树的顺序访问二叉树的一种遍历方法。

在中序遍历中,先递归访问左子树,然后访问根节点,最后递归访问右子树。

具体的代码如下:(2)//中序遍历法InOrder(Tree T){if(T!=NULL){InOrder(T->Left);//遍历左子树Visit(T);//访问根节点InOrder(T->Right);//遍历右子树}}3、后序遍历后序遍历是左子树、右子树、根节点的顺序访问二叉树的一种遍历方法。

在后序遍历中,先递归访问左子树,然后递归访问右子树,最后访问根节点。

具体的代码如下:(3)//后序遍历法PostOrder(Tree T){if(T!=NULL){PostOrder(T->Left);//遍历左子树PostOrder(T->Right);//遍历右子树Visit(T);//访问根节点}}二、先序、中序和后序遍历的应用(1)构造二叉树先序序列和中序序列是完全可以解决构造出一颗二叉树的,必要的条件是中序和先序的元素的个数必须相同。

后序序列无法实现这一点,只能确定根节点的位置。

(2)深度优先搜索深度优先搜索是一种图遍历算法,它使用栈来帮助用户访问一棵树,也就是深度优先算法。

先序遍历是先从根节点访问,中序遍历是在访问左子树后再访问根节点,而后序遍历是在访问右子树后再访问根节点。

(3)计算二叉树深度根据先序遍历和后序遍历可以知道二叉树的深度。

树的遍历题目

树的遍历题目

树的遍历题目以下是关于树的遍历的一些题目:
1. 二叉树的深度
2. 二叉树的遍历
3. 判断一棵二叉树是否为完全二叉树
4. 二叉树的层序遍历(广度优先遍历)
5. 二叉树的链式存储结构(单链表表示法)
6. 二叉树的顺序存储结构(数组表示法)
7. 二叉树的先序遍历(前序遍历)
8. 二叉树的中序遍历(中序遍历)
9. 二叉树的后序遍历(后序遍历)
10. 构建一棵二叉搜索树
11. 二叉搜索树的查找
12. 二叉搜索树的插入
13. 二叉搜索树的删除
14. 平衡二叉树(AVL树)的插入
15. 平衡二叉树(AVL树)的查找
16. 平衡二叉树(AVL树)的删除
17. 红黑树的插入
18. 红黑树的查找
19. 红黑树的删除
20. B树和B+树的查找、插入和删除操作
21. 判断一棵树是否为二叉树
22. 判断一棵树是否为满二叉树
23. 判断一棵树是否为完全二叉树
24. 判断一棵树是否为平衡二叉树
25. 判断一棵树是否为红黑树
26. 求一棵树的直径
27. 求一棵树的周长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构实验报告学号:2015111840 姓名:陈周擎 专业:计算机科学与技术知识范畴:树 完成日期:2016年04月28日实验题目:顺序存储完全二叉树先、中、后序遍历实验内容及要求:输入一个字符串,存储于一维数组。

以该一维数组作为完全二叉树的存储结构,实现先、中、后序遍历,输出遍历结果。

将该完全二叉树转换为二叉链表存储结构,然后基于二叉链表存储结构再次进行先、中、后序遍历并输出遍历结果。

实验目的:掌握完全二叉树的顺序存储与链式存储结构以及遍历算法。

数据结构设计简要描述:分别以一维数组和二叉链表为存储结构存储二叉树,并实现先序、中序、后序遍历。

算法设计简要描述:分别以一维数组和二叉链表为存储结构存储二叉树。

以一维数组存储时,假设双亲结点的下标为i ,则左儿子、右儿子的下标分别为2*i+1、2*i+2。

利用递归算法分别对左子树和右子树进行遍历。

以二叉链表为存储结构时,结点数据域存储结点数据,然后依次递归左子树和右子树。

输入/输出设计简要描述:本实验中输入和输出分别只有一次。

输入:输入一个字符串,存储到一维数组中输出:分别以一维数组和二叉链表为存储结构存储二叉树时,先序、中序、后序遍历结果。

编程语言说明:1.编程软件,Code Blocks 16.0;2.代码均用C++语言实现;3.输入输出采用C++语言的cout 和cin 函数;4.程序注释采用C/C++规范;5.动态存储分配采用C++的new 和delete 操作符实现主要函数说明:void preorder_array(char *s,int i,int count) //一维数组作为存储结构的前序遍历 void midorder_array(char *s,int i,int count) //一维数组作为存储结构的中序遍历 void lasorder_array(char *s,int i,int count) //一维数组作为存储结构的后序遍历 void trans_tree(BiT &bt,char *s,int count,int t) //将该完全二叉树存储结构转换 void preorder(BiT bt) //以二叉链表前序遍历void midorder(BiT bt) //以二叉链表中序遍历void lasorder(BiT bt) //以二叉链表后序遍历程序测试简要报告:(1) 测试实例1输入:Please input:abcde输出:Preorder_array: a b d e cMidorder_array: d b e a cLasorder_array: d e b c aPreorder: a b d e cMidorder: d b e a cLasorder: d e b c a运行界面:结论:程序输出结果与期望输出结果相符。

(2)测试实例1输入:Please input:abcjdhr输出:Preorder_array: a b j d c h rMidorder_array: j b d a h o rLasorder_array: j d b h r c aPreorder: a b j d c h rMidorder: j b d a h o rLasorder: j d b h r c a运行界面:结论:程序输出结果与期望输出结果相符。

(3)测试实例1输入:Please input:abdnjfkrie输出:Preorder_array:a b n r i j e d f kMidorder_array:r n I b e j a f d kLasorder_array:r I n e j b f k d aPreorder:a b n r i j e d f kMidorder:r n i b e j a f d kLasorder:r i n e j b f k d a运行界面:结论:程序输出结果与期望输出结果相符。

(4)测试实例1输入:Please input:abcdefghijk输出:Preorder_array:a b d h i e j k c f gMidorder_array:h d i b j e k a f c gLasorder_array:h i d j k e b f g c aPreorder:a b d h i e j k c f gMidorder:h d i b j e k a f c gLasorder:h i d j k e b f g c a运行界面:结论:程序输出结果与期望输出结果相符。

源程序代码:#include <iostream>#include <string.h>#include <stdio.h>using namespace std;typedef struct node{char data; //数据域struct node *lchild; //左指针struct node *rchild; //右指针}*BiT,BiTNode;void preorder_array(char *s,int i,int count) //一维数组作为存储结构的前序遍历{if(i>count) //遍历结束时,退出return;cout<<s[i]<<" ";preorder_array(s,2*i+1,count); //递归遍历左儿子preorder_array(s,2*i+2,count); //递归遍历右儿子}void midorder_array(char *s,int i,int count) //一维数组作为存储结构的中序遍历{if(i>count) //遍历结束时,退出return;midorder_array(s,2*i+1,count); //递归遍历左儿子cout<<s[i]<<" ";midorder_array(s,2*i+2,count); //递归遍历右儿子}void lasorder_array(char *s,int i,int count) //一维数组作为存储结构的后序遍历{if(i>count) //遍历结束时,退出return;lasorder_array(s,2*i+1,count); //递归遍历左儿子lasorder_array(s,2*i+2,count); //递归遍历右儿子cout<<s[i]<<" ";}void trans_tree(BiT &bt,char *s,int count,int t) //将该完全二叉树存储结构转换为二叉链表{if(t>count) //遍历结束时,退出return;bt=new BiTNode();bt->data=s[t]; //填充结点bt->lchild=NULL; //左儿子置空bt->rchild=NULL; //右儿子置空trans_tree(bt->lchild,s,count,t*2+1); //递归遍历左儿子trans_tree(bt->rchild,s,count,t*2+2); //递归遍历右儿子}void preorder(BiT bt) //以二叉链表前序遍历{if(bt) //树非空{cout<<bt->data<<" ";preorder(bt->lchild); //递归遍历左儿子preorder(bt->rchild); //递归遍历右儿子}}void midorder(BiT bt) //以二叉链表中序遍历{if(bt) //树非空{midorder(bt->lchild); //递归遍历左儿子cout<<bt->data<<" ";midorder(bt->rchild); //递归遍历右儿子}}void lasorder(BiT bt) //以二叉链表后序遍历{if(bt) //树非空{lasorder(bt->lchild); //递归遍历左儿子lasorder(bt->rchild); //递归遍历右儿子cout<<bt->data<<" ";}}int main(){int count=0,t=0;char *str=new char;cout<<"please input array:";cin>>str;count=strlen(str); //求数组长度cout<<"preorder_array:";preorder_array(str,0,count);cout<<endl;cout<<"midorder_array:";midorder_array(str,0,count);cout<<endl;cout<<"lasorder_array:";lasorder_array(str,0,count);cout<<endl;BiT bt;trans_tree(bt,str,count,t);cout<<endl;cout<<"preorder:";preorder(bt);cout<<endl;cout<<"midorder:";midorder(bt);cout<<endl;cout<<"lasorder:";lasorder(bt);cout<<endl;return 0;}。

相关文档
最新文档