高考椭圆几种题型
高考椭圆题型总结(最新整理)
高考椭圆题型总结(最新整理)椭圆题型总结一、椭圆的定义和方程问题(一)定义:PA+PB=2a>2c1.命题甲:动点到两点的距离之和命题乙: 的轨迹P B A ,);,0(2常数>=+a a PB PA P 是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知、是两个定点,且,若动点满足则动点的轨迹1F 2F 421=F F P 421=+PF PF P 是()A.椭圆B.圆C.直线D.线段3.已知、是椭圆的两个焦点, 是椭圆上的一个动点,如果延长到,使得1F 2F P P F 1Q ,那么动点的轨迹是( )2PF PQ =Q A.椭圆 B.圆 C.直线 D.点4.已知、是平面内的定点,并且,是内的动点,且1F 2F α)0(221>=c c F F M α,判断动点的轨迹.a MF MF 221=+M 5.椭圆上一点到焦点的距离为2,为的中点,是椭圆的中192522=+y x M 1F N 1MF O 心,则的值是。
ON (二)标准方程求参数范围若方程表示椭圆,求k 的范围.(3,4)U (4,5)13522=-+-k y k x 2.( )轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>A.充分而不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.已知方程表示焦点在Y 轴上的椭圆,则实数m 的范围是.112522=-+-m y m x 4.已知方程表示焦点在Y 轴上的椭圆,则实数k 的范围是 .222=+ky x 5.方程所表示的曲线是.231y x -=6.如果方程表示焦点在轴上的椭圆,求实数的取值范围。
222=+ky x y k 7.已知椭圆的一个焦点为,求的值。
06322=-+m y mx )2,0(m 8.已知方程表示焦点在X 轴上的椭圆,则实数k 的范围是.=+ky x (三)待定系数法求椭圆的标准方程1.根据下列条件求椭圆的标准方程:(1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点到两焦点的距离之和为26;P (2)长轴是短轴的2倍,且过点(2,-6);(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求)2,3(),1,6(21--P P 椭圆方程.2.以和为焦点的椭圆经过点点,则该椭圆的方程)0,2(1-F )0,2(2F )2,0(A 为。
高考椭圆几种题型
高考椭圆几种题型― 引言在高考之中占有比较重要的地位,并且占的分数也多。
分析历年的高考试题,在选择题,填空题,大题都有椭圆的题。
所以我们对知识必须系统的掌握。
对各种题型,基本的解题方法也要有一定的了解。
二 椭圆的知识 (一)、定义1 平面内与与定点F 1、F 2的距离之和等于定长2a(2a>|F 1F 2|)的点的轨迹叫做椭圆,其中F 1、F 2称为椭圆的焦点,|F 1F 2|称为焦距。
其复数形式的方程为|Z-Z 1|+| Z-Z 2|=2a(2a>|Z 1-Z 2|)2一动点到一个定点F 的距离和它到一条直线的距离之比是一个大于0小于1的常数,则这个动点的轨迹叫椭圆,其中F 称为椭圆的焦点,l 称为椭圆的准线。
(二)、方程1中心在原点,焦点在x 轴上:)0(12222>>=+b a b y a x2中心在原点,焦点在y 轴上:)0(12222>>=+b a bx a y3 参数方程:⎩⎨⎧==θθsin cos b y a x4 一般方程:)0,0(122>>=+B A By Ax (三)、性质1 顶点:),0(),0,(b a ±±或)0,(),0(b a ±±2 对称性:关于x ,y 轴均对称,关于原点中心对称。
3 离心率:)1,0(∈=ace 4 准线ca y c a x 22=±=或 5 焦半径:设),(00y x P 为)0(12222>>=+b a b y a x 上一点,F 1、F 2为左、右焦点,则01ex a PF +=,02ex a PF -=;设),(00y x P 为)0(12222>>=+b a bx a y 上一点,F 1、F 2为下、上焦点,则01ex a PF +=,02ex a PF -=。
三 椭圆题型(一)椭圆定义 1.椭圆定义的应用例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.例2 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.例3 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆. 例4 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈.说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0例5 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.2.关于线段长最值的问题一般两个方法:一种是借助图形,由几何图形中量的关系求最值,二是建立函数关系求最值,或用均值不等式来求最值。
椭圆中6种常考基础题型(解析版)--2024高考数学常考题型精华版
第19讲椭圆中6种常考基础题型【考点分析】考点一:椭圆的通径过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为22b a.考点二:椭圆中有关三角形的周长问题图一图二如图一所示:21F PF ∆的周长为c a 22+如图一所示:ABC ∆的周长为a 4考点三:椭圆上一点的有关最值①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点.②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a c +,距离的最小值为a c -.考点四:椭圆的离心率椭圆的离心率()10<<=e a c e ,222222221ab a b a ac e -=-==考点五:椭圆焦点三角形的面积为2tan2S b θ=⋅(θ为焦距对应的张角)考点六:中点弦问题(点差法)中点弦问题:若椭圆与直线l 交于AB 两点,M 为AB 中点,且AB k 与OM k 斜率存在时,则22ab K k OM AB -=⋅;(焦点在x 轴上时),当焦点在y 轴上时,22ba K k OMAB -=⋅若AB 过椭圆的中心,P 为椭圆上异于AB 任意一点,22ab K k PB P A -=⋅(焦点在x 轴上时),当焦点在y 轴上时,22ba K k PBP A -=⋅【题型目录】题型一:椭圆的定义有关题型题型二:椭圆的标准方程题型三:椭圆的离心率题型四:椭圆中焦点三角形面积题型五:椭圆中中点弦问题题型六:椭圆中的最值问题【典型例题】题型一:椭圆的定义有关题型【例1】已知△ABC 的周长为10,且顶点()2,0B -,()2,0C ,则顶点A 的轨迹方程是()A .221(0)95x y y +=≠B .221(0)59x y y +=≠C .221(0)64x y y +=≠D .221(0)46x y y +=≠【答案】A【解析】∵△ABC 的周长为10,顶点()2,0B -,()2,0C ,∴=4BC ,+=10464AB AC -=>,∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵3,2a c ==,∴2945b =-=,又因为,,A B C 三点构成三角形,∴椭圆的方程是()221095x y y +=≠.故选:A .【例2】如果点(),M x y =M 的轨迹是().A .不存在B .椭圆C .线段D .双曲线【答案】B=(),M x y 到点(0,3),(0,3)-的距离之和为3(3)6--=<M 的轨迹是椭圆,故选:B【例3】设1F ,2F 分别为椭圆2214x y +=的左、右焦点,点P 在椭圆上,且1223PF PF += ,则12F PF ∠=()A .6πB .4πC .3πD .2π【答案】D【解析】因32221==+PO PF PF ,所以213OF OF PO ===,所以︒=∠9021PF F 【例4】1F 、2F 是椭圆22:1259x yC +=的左、右焦点,点P 在椭圆C 上,1||6PF =,过1F 作12F PF ∠的角平分线的垂线,垂足为M ,则||OM 的长为()A .1B .2C .3D .4【答案】C【详解】如图,直线1F M 与直线2PF 相交于点N ,由于PM 是12F PF ∠的平分线,且PM ⊥1F N ,所以三角形1F PN 是等腰三角形,所以1PF PN =,点M 为1F N 中点,因为O 为12F F 的中点,所以OM 是三角形12F F N 的中位线,所以212OM F N =,其中212112226F N PF PF PF a PF =-=-=-,因61=PF ,所以62=N F ,所以3=OM ,所以选C【例5】已知椭圆22:12516x y C +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=()A .10B .15C .20D .25【答案】C【解析】设MN 的中点为G ,椭圆的左右焦点分别为21,F F ,则G 为MN 的中点,1F 为MA 的中点,所以12GF AN =,同理22GF BN =,所以()204221==+=+a GF GF BN AN【例6】方程x 2+ky 2=2表示焦点在x 轴上的椭圆的一个充分但不必要条件是()A .0k >B .12k <<C .1k >D .01k <<【答案】B【解析】方程x 2+ky 2=2可变形为:22122x y k+=,表示焦点在x 轴上的椭圆,则有:202k<<,解得k 1>.易知当12k <<时,k 1>,当k 1>时未必有12k <<,所以12k <<是k 1>的充分但不必要条件.故选B.【例7】点1F ,2F 为椭圆C :22143x y+=的两个焦点,点P 为椭圆C 内部的动点,则12PF F △周长的取值范围为()A .()2,6B .[)4,6C .()4,6D .[)4,8【答案】C【解析】由椭圆C :22143x y +=,得:2,1a c ==,当点P 在椭圆上时,12PF F △周长最大,为226a c +=,当点P 在x 轴上时,去最小值,为44c =,又因点P 为椭圆C 内部的动点,所以12PF F △周长的取值范围为()4,6.故选:C.【例8】椭圆22193x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,如果1PF 的中点在y 轴上,那么1||PF 是2||PF 的()A .7倍B .6倍C .5倍D .4倍【答案】C【解析】由题意知:212F F PF ⊥,所以13322===a b PF ,因6221==+a PF PF ,所以51=PF ,所以521=PF PF【题型专练】1.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是()A .2213620x y +=(x≠0)B .2212036x y +=(x≠0)C .221620x y +=(x≠0)D .221206x y +=(x≠0)【答案】B【解析】∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC =8,AB +AC =20﹣8=12,∵12>8∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵a =6,c =4∴b 2=20,∴椭圆的方程是()22102036x y x +=≠故选B .2.焦点在x 轴上的椭圆222125x y a +=焦距为8,两个焦点为12,F F ,弦AB 过点1F ,则2ABF ∆的周长为()A .20B .28C .D .【答案】D【解析】由题意知252=b ,因为222c b a +=,所以16252+=a ,解得41=a ,所以2ABF ∆的周长为4144=a ,故选:D3.(2021新高考1卷)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A.13B.12C.9D.6【答案】C【解析】因2121262MF MF a MF MF ⋅≥==+,所以921≤⋅MF MF 4.已知椭圆22192x y +=的左、右焦点分别为12,F F ,点M 在椭圆上,若1||4MF =,则12F MF ∠=()A .30°B .60︒C .120︒D .150︒【答案】C 【解析】【分析】根据椭圆方程求得12F F =1226MF MF a +==,求得1||4MF =,所以22MF =,在12F MF △中,再由余弦定理列出方程,求得121cos 2F MF ∠=-,即可求解.【详解】解:由题意,椭圆方程22192x y +=,可得3,a b c ===所以焦点12(F F ,又由椭圆的定义,可得1226MF MF a +==,因为1||4MF =,所以22MF =,在12F MF △中,由余弦定理可得222121212122cos F F MF MF MF MF F MF =+-∠,所以2221242242cos F MF =+-⨯⨯∠,解得121cos 2F MF ∠=-,又由12(0,180)F MF ∠∈,所以12120F MF ∠= .故选:C .5.设1F ,2F 为椭圆22194x y +=的两个焦点,点P 在椭圆上,若线段1PF 的中点在y 轴上,则21PF PF 的值为()A .513B .45C .27D .49【答案】C 【解析】【分析】由中位线定理以及椭圆方程得出243PF =,再由椭圆的定义得出1PF ,再求21PF PF 的值.【详解】由椭圆的定义可知,1226PF PF a +==,由中位线定理可知,212PF F F ⊥,将x =22194x y+=中,解得43y =±,即243PF =,1414633PF =-=,故214323147PF PF =⨯=故选:C6.已知曲线22:1C mx ny +=A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n >>,则C 是椭圆,其焦点在x 轴上C .若0m n =>,则CD .若0m =,0n >,则C 是两条直线【答案】AD【解析】由题意得:11122=+ny m x ,所以当0>>n m ,则nm 110<<,所以表示焦点在y 轴上的椭圆,所以A 对,B 错,当0>=n m 时,曲线C 为ny x 122=+,所以表示圆,半径为n 1,当0,0>=n m 时,曲线C 为ny 12=,所以n y 1±=,所以表示两条直线,故选:AD7.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是()AB.CD.【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.8.在平面直角坐标系xOy 中,若△ABC 的顶点(0,2)A -和(0,2)C ,顶点B 在椭圆181222=+xy 上,则sin sin sin A C B +的值是()AB .2C .D .4【答案】A 【解析】【分析】由题设易知,A C 为椭圆的两个焦点,结合椭圆定义及焦点三角形性质有||||2AB CB a +=,||2AC c =,最后应用正弦定理的边角关系即可求目标式的值.【详解】由题设知:,A C 为椭圆的两个焦点,而B 在椭圆上,所以||||2AB CB a +==||24AC c ==,由正弦定理边角关系知:|||||sin sin sin |A A CB CB A BC +=+故选:A9.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .6【答案】C【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .10.已知椭圆22143x y +=的左、右焦点分别为1F 、2F ,点P 在椭圆上且在x 轴的下方,若线段2PF 的中点在以原点O 为圆心,2OF 为半径的圆上,则直线2PF 的倾斜角为()A .6πB .4πC .3πD .23π【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.11.已知A 为椭圆2212516x y +=上一点,F 为椭圆一焦点,AF 的中点为P ,O 为坐标原点,若2OP =则AF =()A .8B .6C .4D .2【答案】B【解析】不妨设椭圆2212516x y +=左焦点为F ,右焦点为E ,因为AE 的中点为P ,EF 的中点为O ,所以24AE OP ==,又由210AE AF a +==,可得1046AF =-=.故选:B .12.已知椭圆C :22194x y +=的左右焦点分别是12,F F ,过2F 的直线与椭圆C 交于A ,B 两点,且118AF BF +=,则AB =()A .4B .6C .8D .10【答案】A【解析】由椭圆22:194x y C +=知:a =3,由椭圆的定义得:121226,26AF AF a BF BF a +==+==,所以11412AF BF AB a ++==,又因为118AF BF +=,所以AB 4=,故选:A题型二:椭圆的标准方程【例1】已知椭圆E :()222210x y a b a b+=>>右焦点为),其上下顶点分别为1C ,2C ,点()1,0A ,12AC AC ⊥,则该椭圆的标准方程为()A .22134x y +=B .22143x y +=C .2213y x +=D .2213x y +=【例2】已知椭圆C :()222210x y a b a b+=>>,椭圆C 的一顶点为A ,两个焦点为1F ,2F ,12AF F △焦距为2,过1F ,且垂直于2AF 的直线与椭圆C 交于D ,E 两点,则ADE ∆的周长是()A .B .8C .D .16【例3】如图,已知椭圆C 的中心为原点O ,(F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =,且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2214525x y +=C .2213010x y +=D .2213616x y +=故选:D【例4】阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C 的对称轴为坐标轴,焦点在y 轴上,且椭圆C 的离心率为53,面积为12π,则椭圆C 的方程为()A .221188x y +=B .22198y x +=C .221188y x +=D .22184y x +=【例5】过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【例6】已知12,F F 分别是椭圆221(0)x y a b a b +=>>的左、右焦点,A ,B 分别为椭圆的上,下顶点,过椭圆的右焦点2F 的直线交椭圆于C ,D 两点,1FCD 的周长为8,且直线AC ,BC 的斜率之积为14-,则椭圆的方程为()A .2212x y +=B .22132x y +=C .2214x y +=D .22143x y +=【例7】已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过F 2的直线与C 交于A ,B 两点.若22||3||AF F B =,15||4||AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【题型专练】1.已知1F 、2F 是椭圆C :22221x ya b+=()0a b >>的左、右焦点,A 为椭圆的上顶点,B 在x 轴上,20AB AF ⋅= 且122AF AB AF =+.若坐标原点O 到直线AB 的距离为3,则椭圆C 的方程为()A .2214x y +=B .22143x y +=C .221169x y +=D .2211612x y +=1612故选:D2.已知椭圆()2222:10x y C a b a b +=>>,其左、右焦点分别为1F ,2F ,离心率为12,点P 为该椭圆上一点,且满足12π3F PF ∠=,若12F PF △的内切圆的面积为π,则该椭圆的方程为()A .221129x y +=B .2211612x y +=C .2212418x y +=D .2213224x y +=3.已知椭圆的两个焦点为1(F ,2F ,M 是椭圆上一点,若12MF MF ⊥,128MF MF ⋅=,则该椭圆的方程是()A .22172x y +=B .22127x y +=C .22194x y +=D .22149x y +=4.已知1(1,0)F -,2(1,0)F 是椭圆C 的两个焦点,过2F 且垂直于x 轴的直线交椭圆C 于A ,B 两点,3AB =,则椭圆C 的标准方程为()A .2213y x +=B .2213x y +=C .22143x y +=D .22132x y +=方法二:由题意,设椭圆C 的标准方程为所以a =2或12a =-(舍去),所以2a 故椭圆C 的标准方程为22143x y +=.故选:C.5.已知椭圆C :()222210x y a b a b+=>>的右焦点为),右顶点为A ,O 为坐标原点,过OA 的中点且与坐标轴垂直的直线交椭圆C 于M ,N 两点,若四边形OMAN 是正方形,则C 的方程为()A .2213x y +=B .22153x y +=C .22175x y +=D.22197x y +=6.已知椭圆22:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -=与椭圆C 相交于不同的两点,A B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为()A .2213x y +=B .22142x y +=C .22153x y +=D .22163x y +=7.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近”的方法得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积.若椭圆C :()222210x y a b a b+=>>的左,右焦点分别是1F ,2F ,P 是C 上一点,213PF PF =,123F PF π∠=,C 的面积为12π,则C 的标准方程为()A .221364x y +=B .22112x y +=C .221169x y +=D .22143x y +=8.已知椭圆C :22=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为M ,N ,过F 2的直线l 交C 于A ,B 两点(异于M 、N ),△AF 1B 的周长为AM 与AN 的斜率之积为-23,则椭圆C的标准方程为()A .22=134y x +B .22=134x y +C .22=13x y +D .22=132x y +9.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线交于C 与A ,B ,若222AF F B =,1AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22198x y +=1F 题型三:椭圆的离心率【例1】已知1F ,2F 为椭圆22221x ya b+=(a >b >0)的左、右焦点,以原点O 为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A ,B ,若1ABF 为等边三角形,则椭圆的离心率为()A1B 1C .12D 又1290F AF ∠=,∴21,3AF c AF c ==,∴32c c a +=,可得2331c a ==+故选:B .【例2】已知椭圆C :()21024b b+=<<的左焦点为1F ,直线()0y kx k =≠与C 交于点M ,N .若1120MF N ︒∠=,1183MF NF ⋅=,则椭圆C 的离心率为()A .12B .22C D 因为O 为12,MN F F 的中点,所以四边形所以12MF NF =,12NF MF =,由椭圆的定义可得:又因为1183MF NF ⋅=,所以1MF 【例3】已知椭圆()22:10x y C a b a b+=>>上存在两点,M N 关于直线3310--=x y 对称,且线段MN 中点的纵坐标为53,则椭圆C 的离心率是()A B C .23D【例4】已知椭圆C :221a b+=()0a b >>的左右焦点分别为1F ,2F ,过点2F 做倾斜角为6π的直线与椭圆相交于A ,B 两点,若222,AF F B =,则椭圆C 的离心率e 为()AB .34C .35D【例5】设B 是椭圆()22:10C a b a b+=>>的上顶点,若C 上的任意一点P 都满足2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎝⎦【例6】12,F F 是椭圆C 的两个焦点,P 是椭圆C 上异于顶点的一点,I 是12PF F △的内切圆圆心,若12PF F △的面积等于12IF F △的面积的3倍,则椭圆C 的离心率为()A .13B .12C .2D .2a b如图,设()()()12,,,0,,0,P m n F c F c ∴-三角形由椭圆的定义可得22l a c=+122222PF F S cn cnr l a c a c∴===++ ,又2121113,2322P I F F F F cn S S c n a =∴⨯⨯=⨯⨯ 故选:B【例7】用平面截圆柱面,当圆柱的轴与α所成角为锐角时,圆柱面的截线是一个椭圆.著名数学家Dandelin 创立的双球实验证明了上述结论.如图所示,将两个大小相同的球嵌入圆柱内,使它们分别位于α的上方和下方,并且与圆柱面和α均相切.给出下列三个结论:①两个球与α的切点是所得椭圆的两个焦点;②椭圆的短轴长与嵌入圆柱的球的直径相等;③当圆柱的轴与α所成的角由小变大时,所得椭圆的离心率也由小变大.其中,所有正确结论的序号是()A .①B .②③C .①②D .①③【答案】C【分析】根据切线长定理可以证明椭圆上任意一点到12,F F 的距离之和为定值,即12,F F 是焦点再运用勾股定理证明短轴长,最后构造三角形,运用三角函数表示离心率即可.【详解】如图:在椭圆上任意一点P 作平行于12O O 的直线,与球1O 交于F 点,与球2O 交于E 点,则PE ,2PF 是过点P 作球2O 的两条公切线,2PE PF =,同理1PF PF =,是椭圆的焦点;①正确;【例8】国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆;某校体育馆的钢结构与“鸟巢”相同,其平面图如图2所示,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于34-,则椭圆的离心率为()A .34B .58C .12D .4【题型专练】1.直线:l y =与椭圆2222:1x y C a b+=交于,P Q 两点,F 是椭圆C 的右焦点,且0PF QF ⋅= ,则椭圆的离心率为()A .4-B .3C 1D .2【详解】的左焦点为F ',由对称性可知:四边形PF QF '为平行四边形,PF QF '∴=2PF PF QF a '=+=;2.设12,F F 分别是椭圆221x ya b+=的左、右焦点,若椭圆上存在点A ,使12120F AF ∠=︒且123AF AF =,则椭圆的离心率为()AB C D3.设椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点M ,N 在C 上(M 位于第-象限),且点M ,N 关于原点O 对称,若1222||,F F MN MF ==,则C 的离心率为()A .4B .37C .12D .377122a +故选:B4.如图,直径为4的球放地面上,球上方有一点光源P ,则球在地面上的投影为以球与地面切点F 为一个焦点的椭圆,已知是12A A 椭圆的长轴,1PA 垂直于地面且与球相切,16PA =,则椭圆的离心率为()A .12B .23C .13D .2【答案】A【分析】根据给定条件,结合球的性质作出截面12PA A ,再结合三角形内切圆性质求出12A A 长即可作答.【详解】依题意,平面12PA A 截球O 得球面大圆,如图,12Rt PA A 是球O 大圆的外切三角形,其中112,PA A A 切圆O 于点E ,F ,=5.如图圆柱12O O 的底面半径为1,母线长为6,以上下底面为大圆的半球在圆柱12O O 内部,现用一垂直于轴截面ABB A ''的平面α去截圆柱12O O ,且与上下两半球相切,求截得的圆锥曲线的离心率为()A .3B .3C D .3半径为1,12O O 平面α与底面夹角余弦值为圆柱的底面半径为1,∴又 椭圆所在平面与圆柱底面所成角余弦值为以G 为原点建立上图所示平面直角坐标系,12,332FH a EF a ∴===,则椭圆标准方程为2222c a b =-=,故离心率故选:A.6.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为坐标平面上一点,且满足120PF PF ⋅=的点P 均在椭圆C 的内部,则椭圆C 的离心率的取值范围为()A .2⎛ ⎝⎭B .10,2⎛⎫⎪⎝⎭C .,12⎛⎫ ⎪ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.已知点A ,P ,Q 为椭圆C :()222210x y a b a b +=>>上不重合的三点,且点P ,Q 关于原点对称,若12AP AQ k k ⋅=-,则椭圆C 的离心率为()A .2B C D8.已知椭圆22:1(0)x yC a ba b+=>>的一个焦点为F,椭圆C上存在点P,使得PF OP⊥,则椭圆C的离心率取值范围是()A.2⎛⎝⎦B.,12⎫⎪⎪⎣⎭C.10,2⎛⎤⎥⎝⎦D.1,12⎡⎫⎪⎢⎣⎭故选:B题型四:椭圆中焦点三角形面积【例1】已知椭圆()222210+=>>x y C a b a b:的左、右焦点分别为1F ,2F ,P 为C 上一点,12π3F PF ∠=,若12F PF △的面积为C 的短袖长为()A .3B .4C .5D .6【例2】(2021年全国高考甲卷数学(理)试题)已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.【题型专练】1.设P 为椭圆221259x y +=上一点,1,F 2F 为左右焦点,若1260F PF ︒∠=,则P 点的纵坐标为()A.4B.4±C.4D.4±【答案】B 【分析】根据椭圆中焦点三角形的面积公式2tan 2S b θ=求解即可.【详解】由题知12609tan2F PF S ︒=⨯= 设P 点的纵坐标为h则12421F F h h ⋅⋅=±⇒=.故选:B2.已知()()1200F c F c -,,,是椭圆E 的两个焦点,P 是E 上的一点,若120PF PF ⋅=,且122=△PF F S c ,则E 的离心率为()ABC .2D 3.已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅ 12,则12F PF △的面积为()A.B.CD .9题型五:椭圆中中点弦问题【例1】已知椭圆C :22221x y a b+=(0a b >>)的长轴为4,直线230x y +-=与椭圆C 相交于A 、B 两点,若线段AB 的中点为(1,1)M ,则椭圆C 的方程为()A .221168x y +=B .22142x y +=C .2211612x y +=D .22143x y +=【例2】平行四边形ABCD 内接于椭圆221x y a b +=()0a b >>,椭圆的离心率为2,直线AB 的斜率为1,则直线AD 的斜率为()A .1-4B .1-2C .2D .-1设E 为AD 中点,由于O 为BD 中点,所以因为1133(,),(,)A x y D x y 在椭圆上,【例3】椭圆2294144x y +=内有一点(2,3)P ,过点P 的弦恰好以P 为中点,那么这条弦所在的直线方程为()A .23120x y +-=B .32120x y +-=C .941440x y +-=D .491440x y +-=【例4】已知椭圆E :143+=上有三点A ,B ,C ,线段AB ,BC ,AC 的中点分别为D ,E ,F ,O为坐标原点,直线OD ,OE ,OF 的斜率都存在,分别记为1k ,2k ,3k ,且123k k k ++=直线AB ,BC ,AC 的斜率都存在,分别记为AB k ,BC k ,AC k ,则111AB BC ACk k k ++=()AB .C .-D .1-【例5】离心率为2的椭圆()222210x y a b a b +=>>与直线y kx =的两个交点分别为A ,B ,P 是椭圆不同于A 、B 、P 的一点,且PA 、PB 的倾斜角分别为α,β,若120αβ+=︒,则()cos αβ-=()A .16-B .13-C .13D .16【例6】(2022·全国·高考真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||MA NB MN ==l 的方程为___________.【例7】(2022·全国甲(理)T10)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.13【答案】A 【解析】【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.【详解】解:(),0A a -,设()11,P x y ,则()11,Q x y -,则1111,AP AQ y y k k x a x a==+-+,故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+,又2211221x y a b +=,则()2221212b a x y a -=,所以()2221222114b a x a x a -=-+,即2214b a =,所以椭圆C的离心率2c e a ===.故选:A.【例8】椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为椭圆的右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的最大值为__________.【答案】63【解析】因为,B A 关于原点对称,所以B 也在椭圆上,设左焦点为F ',根据椭圆的定义:||2AF AF a '+=,因为||BF AF'=,所以||||2AF BF a +=,O 是直角三角形ABF 斜边的中点,所以||2,||2sin ,||2cos AB c AF c BF c αα===,所以2(sin cos )2c a αα+=,所以11sin cos 4c a πααα==+⎛⎫+ ⎪⎝⎭,由于,124ππα⎡⎤∈⎢⎥⎣⎦,所以当12πα=时,离心率的最大值为63,故答案为63.【题型专练】1.已知椭圆()222210x y a b a b+=>>,()0,2P ,()0,2Q -过点P 的直线1l 与椭圆交于A ,B ,过点Q 的直线2l 与椭圆交于C ,D ,且满足12l l ∕∕,设AB 和CD 的中点分别为M ,N ,若四边形PMQN 为矩形,且面积为则该椭圆的离心率为()A .13B .23C.3D .32.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是()A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦D .314⎡⎤⎢⎥⎣⎦,【答案】B【详解】由题意,椭圆C :22143x y +=的左、右顶点分别为12(2,0),(2,0)A A -,设00(,)P x y ,则()2200344y x =-,又由1220002200034PA PA y y y k k x a x a x a ⋅=⨯=-+--,可得1234PA PA k k -=,因为[]12,1PA k ∈--,即23421PA k --≤≤-,可得23384PA k ≤≤,所以直线2PA 斜率的取值范围33,84⎡⎤⎢⎥⎣⎦.故选:B3.已知椭圆22:184x y C +=,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M ,则OM 的斜率与直线l 的斜率的乘积()A .1-B .1C .12D .12-【答案】D,进而联立方程求解中点4.点A ,B 在椭圆2212x y +=上,点11,2M ⎛⎫ ⎪⎝⎭,2OA OB OM +=,则直线AB 的方程是()A .12y x =-B .522y x =-+C .32y x =-+D .322y x =-5.已知椭圆143x y +=上有三个点A 、B 、C ,AB ,BC ,AC 的中点分别为D 、E 、F ,AB ,BC ,AC 的斜率都存在且不为0,若34OD OE OF k k k ++=-(O 为坐标原点),则111AB BC ACk k k ++=()A .1B .-1C .34-D .34【答案】A的斜率转化为6.直线:20l x y-=经过椭圆22+1(0)x y a ba b=>>的左焦点F,且与椭圆交于,A B两点,若M为线段AB中点,||||MF OM=,则椭圆的标准方程为()A.22+163x y=B.22+185x y=C.2214x y+=D.22+1129x y=7.已知三角形ABC 的三个顶点都在椭圆:143x y +=上,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在线的斜率分别为1k ,2k ,3k ,且1k ,2k ,3k 均不为0.O 为坐标原点,若直线OD ,OE ,OM 的斜率之和为1.则123111k k k ++=()A .43-B .3-C .1813-D .32-8.已知过点()1,1M 的直线l 与椭圆22184x y +=交于,A B 两点,且满足,AM BM =则直线l 的方程为()A .30x y -+=B .230x y +-=C .2230x y -+=D .230x y +-=题型六:椭圆中的最值问题【例1】已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别是1F ,2F ,点P 在椭圆C 上则下列结论正确的是()A .12PF PF ⋅有最大值无最小值B .12PF PF ⋅无最大值有最小值C .12PF PF ⋅既有最大值也有最小值D .12PF PF ⋅既无最大值也无最小值【例2】若点O 和点F 分别为椭圆()222210x y a b a b+=>>的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为()A .()a a c +B .()b a c +C .()a a c -D .()b ac -【例3】已知点P 是椭圆4x +2y =1上的动点(点P 不在坐标轴上),12F F 、为椭圆的左,右焦点,O 为坐标原点;若M 是12F PF ∠的角平分线上的一点,且1F M 丄MP ,则丨OM 丨的取值范围为()A .(0B .(0,2)C .(l ,2)D .2)【答案】A=因为1F M MP ⊥,因为PM 为12F PF ∠的角平分线,所以,PN 因为O 为12F F 的中点,所以,212OM F N =设点00(,)P x y ,由已知可得2a =,1b =,c 则022x -<<且00x ≠,且有220114y x =-,()2221000032331PF x y x x =++=+++-【例4】已知点P 在椭圆193x y +=上运动,点Q 在圆22(1)8x y -+=上运动,则PQ 的最小值为()A .2B .2C .24-D .4【答案】D【分析】先求出点P 到圆心(1,0)A 的距离的最小值,然后减去圆的半径可得答案。
高考数学十年真题专题解析—椭圆
椭圆年份题号考点考查内容2011理14椭圆方程椭圆的定义、标准方程及其几何性质文4椭圆的几何性质椭圆离心率的计算2012文理4椭圆的几何性质椭圆离心率的计算2013卷1理10椭圆方程直线与椭圆的位置关系,椭圆方程的求法文理20椭圆定义、标准方程及其几何性质椭圆的定义、标准方程及其几何性质,直线与椭圆位置关系卷2理20直线与椭圆位置关系椭圆的方程求法,直线与椭圆位置关系,椭圆最值问题的解法文5椭圆定义、几何性质椭圆的定义,椭圆离心率的求法2014卷1理20椭圆方程及几何性质椭圆的标准方程及其几何性质,直线与椭圆位置关系卷2理20椭圆方程及几何性质椭圆的标准方程及其几何性质,直线与椭圆位置关系2015卷1理14圆与椭圆椭圆的标准方程及其几何性质,过三点圆的方程的求法卷2理20直线与椭圆直线和椭圆的位置关系,椭圆的存在型问题的解法文20直线与椭圆椭圆方程求法,直线和椭圆的位置关系,椭圆的定值问题的解法2016卷1理20圆、直线与椭圆椭圆定义、标准方程及其几何性质,直线与圆、椭圆的位置关系卷2理20直线与椭圆椭圆的几何性质,直线与椭圆的位置关系文21直线与椭圆椭圆的几何性质,直线与椭圆的位置关系2017卷1理20直线与椭圆椭圆标准方程的求法,直线与椭圆的位置关系,椭圆的定点问题文12直线与椭圆椭圆的标准方程及其几何性质卷3文11理10直线与圆,椭圆的几何性质直线与圆的位置关系,椭圆的几何性质2018卷1理19直线与椭圆椭圆的几何性质,直线与椭圆的位置关系文4椭圆椭圆的几何性质2019卷1理10文12椭圆椭圆的定义、标准方程及其几何性质,椭圆标准方程的求法卷2理8文9椭圆与抛物线抛物线与椭圆的几何性质理21椭圆椭圆的标准方程及其几何性质,直线与椭圆的位置关系,椭圆的最值问题的解法文20椭圆椭圆的定义、标准方程及其几何性质卷3文理15椭圆椭圆的定义、标准方程及其几何性质2020卷1理20文21椭圆椭圆的标准方程及其几何性质,椭圆定点问题卷2理19椭圆、抛物线椭圆、抛物线方程的求法,椭圆离心率的求法,抛物线的定义考点89椭圆的定义及标准方程1.(2019全国Ⅰ文12)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n FAB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.222243,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .2.(2018高考上海13)设P 是椭圆 ²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为()A .22B .23C .25D .42【答案】C【解析】由椭圆的定义可知椭圆上任意点P 到两个焦点的距离之和为25a =,故选C .【考点分析】椭圆的定义,考查考生的识记及基本运算能力.3.(2013广东文)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 【答案】D 【解析】∵1,2,3c a b ===D .4.(2015新课标1理)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 的正半轴上,则该圆的标准方程为_________.【答案】22325()24-+=x y 【解析】由题意圆过(4,0),(0,2),(0,2)-三个点,设圆心为(,0)a ,其中0a >,由4-=a ,解得32a =,所以圆的方程为22325()24-+=x y .5.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --.【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c=1.又因为DF 1=52,AF 2⊥x 轴,所以DF 232==,因此2a=DF 1+DF 2=4,从而a=2.由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a=2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x=1代入圆F 2的方程(x−1)2+y 2=16,解得y=±4.因为点A 在x 轴上方,所以A(1,4).又F 1(−1,0),所以直线AF 1:y=2x+2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-.将115x =-代入22y x =+,得125y =-,因此1112(,55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =.又因为E 是线段BF 2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结E F 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∠BF 1E=∠B .因为F 2A=F 2B ,所以∠A=∠B ,所以∠A=∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-.因此3(1,2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.考点90椭圆的几何性质6.【2019年高考全国Ⅰ理】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.法二:由已知可设2F B n=,则212,3AF n BF AB n===,由椭圆的定义有121224,22a BF BF n AF a AF n=+=∴=-=.在12AF F△和12BF F△中,由余弦定理得2221222144222cos4422cos9n n AF F nn n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F∠∠互补,2121cos cos0AF F BF F∴∠+∠=,两式消去2121cos cosAF F BF F∠∠,,得223611n n+=,解得32n=.22224,,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.7.【2019年高考北京理】已知椭圆22221x ya b+=(a>b>0)的离心率为12,则A.a2=2b2B.3a2=4b2C.a=2b D.3a=4b【答案】B【解析】椭圆的离心率2221,2ce c a ba===-,化简得2234a b=,故选B.8.【2018·全国Ⅰ文】已知椭圆C:22214x ya+=的一个焦点为(20),,则C的离心率为A.13B.12C .22D .223【答案】C【解析】由题可得2c =,因为24b =,所以2228a b c =+=,即a =,所以椭圆C 的离心率22e ==,故选C .9.【2018·全国Ⅱ文】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .12-B .2-C .312-D 1-【答案】D【解析】在12F PF △中,122190,60F PF PF F ∠=∠=︒,设2PF m =,则12122,c F F m PF ===,又由椭圆定义可知1221)a PF PF m =+=+,则212c c e a a ====,故选D .10.(2018上海理)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为()A .B .C .D .【答案】C 【解析】由题意25=a ,=a .由椭圆的定义可知,P 到该椭圆的两个焦点的距离之和为2=aC .11.【2017·全国Ⅰ文】设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞ D .[4,)+∞【答案】A【解析】当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab≥= ,≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab ≥= ≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞ ,故选A .12.【2017·浙江卷】椭圆22194x y +=的离心率是()A .133B .53C .23D .59【答案】B【解析】椭圆22194x y +=的离心率94533e ==,故选B .13.(2015新课标1文)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB =A .3B .6C .9D .12【答案】B 【解析】∵抛物线C :28y x =的焦点坐标为(2,0),准线l 的方程为2x =-①,设椭圆E 的方程为22221(0)x y a b a b +=>>,所以椭圆E 的半焦距2c =,又椭圆的离心率为12,所以4,a b ==,椭圆E 的方程为2211612x y +=②,联立①②,解得(2,3),(2,3)A B ---或(2,3),(2,3)A B ---,所以||6AB =,故选B .14.(2015广东文)已知椭圆222125x y m+=(0m >)的左焦点为()14,0F -,则m =A .2B .3C .4D .9【答案】B 【解析】由题意得:222549m =-=,因为0m >,所以3m =,故选C .15.(2014福建文理)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .26【答案】D 【解析】由题意可设10,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为2222||(10cos )(sin 6)509(sin )50523CQ ααα=+-=-+=,当且仅当2sin 3α=-时取等号,所以max max ||||52262PQ CQ r +==≤,所以Q P ,两点间的最大距离是62.16.(2012新课标文理)设1F 、2F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆是底角为o30的等腰三角形,则E 的离心率为A .21B .32C .43D .54【答案】C 【解析】∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==,故选C .17.【2019·全国Ⅲ文】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(15【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又122201482415,4152MF F S y =⨯-=∴=△,解得015y =,2201513620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(15.18.【2019·浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x 轴的上方,求得315,22P ⎛⎫- ⎪ ⎪⎝⎭,所以15212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛⎫- ⎪ ⎪⎝⎭,所以212PF k ==19.(2012江西文理)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.【答案】55【解析】由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故55c e a ==.即椭圆的离心率为55.20.(2011浙江文理)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B = ;则点A 的坐标是.【答案】(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d.12(F F,可得1()F A m n =+,2()F B c d =,∵125F A F B = ,∴62,55m n c d +==,又点,A B 在椭圆上,∴2213m n +=,2262(5()135m n ++=,解得0,1m n ==±,∴点A 的坐标是(0,1)±.21.【2019年高考全国Ⅱ文】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(1)1-;(2)4b =,a的取值范围为)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF =,于是1221)a PF PF c =+=,故C的离心率是1ce a==-.(2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,①222x y c +=,②22221x y a b+=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥.当4b =,a ≥P ,所以4b =,a的取值范围为)+∞.22.(2015安徽理)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为510.(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.【解析】(1)由题设条件知,点M 的坐标为21(,)33a b,又10OM k =,从而210b a =,进而得,2a c b ==,故255c e a ==.(2)由题设条件和(I)的计算结果可得,直线AB1y b +=,点N 的坐标为51(,)22b b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T 的坐标为1517(,4244x b b +-+.又点T 在直线AB 上,且1NS ABk k ⋅=-,从而有151742441712252x b b b b ⎧+-+⎪+=⎨+⎪=⎪⎪⎪⎩,解得3b =,所以b =故椭圆E 的方程为221459x y +=.23.(2013安徽文理)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a ,b 的值.【解析】(Ⅰ)1216022c F AF a c e a ο∠=⇔=⇔==(Ⅱ)设2BF m =;则12BF a m =-,在12BF F ∆中,22212122122cos120BF BF F F BF F F ο=+-⨯⨯2223(2)5a m m a am m a ⇔-=++⇔=,1AF B ∆面积211133sin 60()10,5,2252S F F AB a a a a c b ο=⨯⨯⨯⇔⨯⨯+⨯=⇔===考点91直线与椭圆的位置关系24.【2018高考全国2理12】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △等腰三角形,12120F F P ∠= ,则C 的离心率为()A .23B .12C .13D .14【答案】D【解析】试题分析:先根据条件得22PF c =,再利用正弦定理得,a c 关系,即得离心率.试题解析:因为12PF F △为等腰三角形,12212120,2F F P PF F F c ∠=︒==,由AP 斜率为36得,222tan ,sin ,cos PAF PAF PAF ∠=∴∠=∴∠=,由正弦定理得22222sin 221,,4,sin 54sin 3PF PAF c a c e AF APF a c PAF ∠=∴==∴=∴=∠+-∠ ⎪⎝⎭,故选D .25.(2017新课标Ⅲ文理)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A .63B .33C .23D .13【答案】A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,63c e a ==,故选A .26.【2016·新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为()(A)13(B)12(C)23(D)34【答案】B【解析】如图,在椭圆中,11,,242OF c OB b OD b b ===⨯=,在Rt OFB △中,||||||||OF OB BF OD ⨯=⨯,且222a b c =+,代入解得224a c =,所以椭圆的离心率为12e =,故选B .27.(2016年全国III 文理)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .34【答案】A【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得||||()FM k a c =-,||||OE k a =,设OE 的中点为H ,由OBH FBM △∽△,得1||||2||||OE OB FM BF =,即||2||()k a a k a c a c=-+,整理得13c a =,所以椭圆离心率为13e =,故选A .28.(2016江苏理)如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是.【答案】3【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得0BF CF ⋅=,,22b BF c ⎛⎫=+- ⎪ ⎪⎝⎭,,22b CF c ⎛⎫=-- ⎪ ⎪⎝⎭ ,则22231044c a b -+=,由222b a c =-可得223142c a =,则3ce a ===.29.(2015福建文)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A.(0,2B .3(0,]4C.,1)2D .3[,1)4【答案】A 【解析】设椭圆的左焦点为1F ,半焦距为c ,连结1AF ,1BF ,则四边形1AF BF 为平行四边形,所以11||||||||4AF BF AF BF +=+=,根据椭圆定义,有11||||||||4AF AF BF BF a +++=,所以84a =,解得2a =.因为点M 到直线l :340x y +=的距离不小于45,即44,155b b ≥≥,所以21b ≥,所以2221,41a c c --≥≥,解得0c <所以02c a <≤,所以椭圆的离心率的取值范围为(0,2.30.(2013新课标1文理)已知椭圆22221(0)x y a b a b+=>>的右焦点为F(3,0),过点F 的直线交椭圆于A .B两点.若AB 的中点坐标为(1,-1),则E 的方程为A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=1【答案】D 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b +=①2222221x y a b +=②①-②得1212121222()()()()0x x x x y y y y a b +-+-+=,∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D .31.【2020年高考上海卷10】已知椭圆22:143x y C +=,直线l 经过椭圆右焦点F ,交椭圆C 于,P Q 两点(点P 在第二象限),若Q 关于x 轴对称的点为'Q ,且满足'PQ FQ ⊥,则直线l 的方程为.【答案】1y x =-+【解析】由条件可知FQQ ' 是等腰直角三角形,所以直线l 的倾斜角是135 ,所以直线l 的斜率是tan1351=- ,且过点()1,0F ,得到直线l 的方程为()1y x =--,即1y x =-+.故答案为:1y x =-+.32.(2018浙江理)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB = ,则当m =___时,点B 横坐标的绝对值最大.【答案】5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =得122x x -=,1212(1)y y -=-,所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=,所以224x +22324(m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤,当且仅当5m =时取最大值.33.(2018浙江文)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB = ,则当m =___时,点B 横坐标的绝对值最大.【答案】5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB = ,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤,所以当5m =时,点B 横坐标的绝对值最大,最大值为2.34.(2015浙江文)椭圆22221x y a b +=(0a b >>)的右焦点(),0F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是.【答案】22【解析】设左焦点为1F ,由F 关于直线by x c=的对称点Q 在椭圆上,得||||OQ OF =,又1||||OF OF =,所以1F Q QF ⊥,不妨设1||QF ck =,则||QF bk =,1||F F ak =,因此2c ak =,又2a ck bk =+,由以上二式可得22c a k a b c ==+,即c a a b c=+,即22a c bc =+,所以bc =,22e =.35.(2014江西文理)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b+=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于.【答案】22【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得1212121222()()()()0x x x x y y y y a b-+-++=,根据题意有12122,2x x y y +=+=,且121212y y x x -=--,所以22221(02a b +⨯-=,得222a b =,整理222a c =,所以22e =.36.(2014辽宁文)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=.【答案】12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.37.(2014江西文)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.【答案】33【解析】由题意可得2(,b A c a ,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,2b a -,由B F AD 1⊥,所以11AD F B k k ⋅=-232b ac =,解得33e =.38.(2014安徽文)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为____.【答案】22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b --将点B 坐标带入椭圆方程得22221()53()13b c b--+=,又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩,∴椭圆方程为22312x y +=.39.(2013福建文)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于.【答案】13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==ac e ,故答案为13-.40.【2020年高考全国Ⅲ文21理数20】已知椭圆()222:10525x y C m m +=<<的离心率为4,,A B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且,BP BQ BP BQ =⊥,求△APQ 的面积.【解析】解法一:(1)由c e a =,得2221b e a =-,即21511625m =-,∴22516m =,故C 的方程为221612525x y +=.(2)设点P 的坐标为(,)s t ,点Q 的坐标为(6,)n ,根据对称性,只需考虑0n >的情形,此时55s -<<,504t < .∵||||BP BQ =,∴有222(5)1s t n -+=+①.又∵BP BQ ⊥,∴50s nt -+=②.又221612525s t +=③.联立①、②、③,可得,312s t n =⎧⎪=⎨⎪=⎩或318s t n =-⎧⎪=⎨⎪=⎩.当312s t n =⎧⎪=⎨⎪=⎩时,(8,1)AP = ,(11,2)AQ =,∴15|82111|22APQ S ==⨯-⨯=△.同理可得,当318s t n =-⎧⎪=⎨⎪=⎩时,52APQ S =△.综上所述,可得APQ △的面积为52.解法二:(1) 222:1(05)25x y C m m +=<<,∴5a =,b m =,根据离心率4c e a ====,解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=.(2) 点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N,根据题意画出图形,如图,||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=.设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=, PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图,(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+,根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:15555252⨯=.②当P 点为(3,1)-时,故5+38MB ==, PMB BNQ ≅△△,∴||||8MB NQ==,可得:Q 点为(6,8),画出图象,如图,(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P到直线AQ 的距离为:()22831114055185185811d ⨯--⨯+===+,根据两点间距离公式可得:()()226580185AQ =++-=∴APQ 面积为:1518522185=.综上所述,APQ 面积为:52.41.【2020年高考天津卷18】已知椭圆22221(0)x y a b a b +=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【解析】(Ⅰ) 椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,所以椭圆的方程为221189x y +=.(Ⅱ) 直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在,设直线AB 的斜率为k ,则直线AB 的方程为3y kx +=,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+.将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++,所以点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭,由3OC OF = ,得点C 的坐标为()1,0,所以直线CP 的斜率为222303216261121CP k kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-.42.【2019年高考天津理】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55.(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.【解析】(1)设椭圆的半焦距为c ,依题意,524,5c b a ==,又222a b c =+,可得a =,2,b =1c =.所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P kx k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P p y k x k-=-.在2y kx =+中,令0y =,得2M x k=-.由题意得()0,1N -,所以直线MN 的斜率为2k -.由OP MN ⊥,得2451102k k k-⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而2305k =±.所以,直线PB 的斜率为2305或2305-.43.【2019年高考天津文】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,左顶点为A ,上顶点为B.已知|2||OA OB =(O 为原点).(1)求椭圆的离心率;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x=4上,且OC AP ∥,求椭圆的方程.【解析】(1)设椭圆的半焦距为c,由已知有2b =,又由222a b c =+,消去b 得22232a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =,所以椭圆的离心率为12.(2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221,433(),4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-.代入到l 的方程,解得1239,214y c y c ==-.因为点P 在x 轴上方,所以3,2P c c ⎛⎫ ⎪⎝⎭.由圆心C 在直线4x =上,可设(4, )C t .因为OC AP ∥,且由(1)知(2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l相切,得2=,可得=2c .所以,椭圆的方程为2211612x y +=.44.【2018高考全国III 文20】(12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0 .证明:2FP FA FB =+.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)设而不求,利用点差法进行证明;(2)解出m ,进而求出点P 的坐标,得到FP,再由两点间距离公式表示出,FA FB,得到直l 的方程,联立直线与椭圆方程由韦达定理进行求解.试题解析:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m =-.由题设得302m <<,故12k <-.(2)由题意得F(1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uur .于是1||22x FA ==-uur .同理2||=22x FB -uur .所以1214()32FA FB x x +=-+=uur uur ,故2FA FB FP +=uur uur uur .45.【2018高考天津文19】(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B.已知椭圆的离心率为3,AB =.(I)求椭圆的方程;(II)设直线():0l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点,P M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.【解析】试题分析:(I)由题意结合几何关系可求得3,2a b ==.则椭圆的方程为22194x y +=.(I I)设点P 的坐标为()11,x y ,点M 的坐标为()22,x y ,由题意可得215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩可得2632x k =+.由方程组221,94,x y y kx ⎧+=⎪⎨⎪=⎩可得1x =215x x =,可得89k =-,或12k =-.经检验 的值为12-.试题解析:(I)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由AB ==3,2a b ==.所以,椭圆的方程为22194x y +=.(II)设点P 的坐标为()11,x y ,点M 的坐标为()22,x y ,由题意,210x x >>,点 的坐标为()11,x y --.由BPM △的面积是BPQ △面积的2倍,可得2PM PQ =,从而()21112x x x x -=--⎡⎤⎣⎦,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+=⎪⎨⎪=⎩消去y,可得1x =.由215x x =,可得()532k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,211212,5x x ==,符合题意.所以,k 的值为12-.46.【2018高考江苏18】如图,在平面直角坐标系xOy 中,椭圆C过点12⎫⎪⎭,焦点())12,0,0F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为l的方程.【解析】试题分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得,a b ,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.试题解析:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b+=>>.又点12在椭圆C 上,2222311,43,a ba b ⎧+=⎪∴⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=,所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+.由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 直线l 与椭圆C 有且只有一个公共点,222222000000()()() 24443640(482)x x y y y x ∴∆=--+-=-=.0000,0,,1x y x y >∴== .因此,点P的坐标为),1.②OAB △,所以1 2AB OP ⋅=,从而427AB =.设1122,,()(),A x y B x y ,由(*)得001,2x =2221212()()AB y x x y ∴=-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.22003x y += ,22022016(2)32(1)49x AB x -∴==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P的坐标为(22.综上,直线l的方程为y =+.47.【2018高考全国1理19】(本小题满分12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为()2,0.(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.【解析】试题分析:(1)首先根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为1x =,代入椭圆方程求得点A 的坐标为21,2⎛⎫ ⎪ ⎪⎝⎭或21,2⎛⎫- ⎪ ⎪⎝⎭,利用两点式求得直线AM 的方程;(2)分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.试题解析:(1)由已知得()1,0F ,l 的方程为1x =.由已知可得,点A 的坐标为21,2⎛⎫ ⎪ ⎪⎝⎭或21,2⎛⎫- ⎪ ⎪⎝⎭.所以AM 的方程为222y x =-+222y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,OMA OMB ∴∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则122,2x x <<,直线MA MB ,的斜率之和为212122MA MB x x y yk k +=+--.由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.2212121333221222422441284,,23()40212121k k k k k k kk x x x x x x k k k k x x k ---+++==∴-++=∴=+++.从而0MA MB k k +=,故MA MB ,的倾斜角互补,OMA OMB ∴∠=∠.综上,OMA OMB ∠=∠.48.【2018高考全国3理20】(12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++= 0.证明:,,FA FP FB成等差数列,并求该数列的公差.【解析】试题分析:(1)设而不求,利用点差法进行证明;(2)解出m ,进而求出点P 的坐标,得到FP,再由两点间距离公式表示出,FA FB,得到直l 的方程,联立直线与椭圆方程由韦达定理进行求解.试题解析:(1)设()()1122,,,A x y B x y ,则222211221,14343x y x y +=+=.两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知12121,22x x y y m ++==,于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得()1,0F ,设()33,P x y ,则()()()()3311221,1,1,0,0x y x y x y -+-+-=.由(1)及题设得()()31231231,20x x x y y y m =-+==-+=-<.又点P 在C 上,34m ∴=,从而331,,22P FP ⎛⎫-= ⎪⎝⎭ .于是122xFA ==-= .同理222x FB =- ,()121432FA FB x x +=-+=∴ .2FP FA FB =+∴ ,即,,FA FP FB成等差数列.设该数列的公差为d ,则12122d FB FA x x =-=-=②将34m =代入①得1k =-,l ∴的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得28d=49.【2018高考天津理19】(本小题满分14分)设椭圆22221x x a b +=(a>b>0)的左焦点为F ,上顶点为B .已知椭圆的离心率为53,点A 的坐标为(,0)b ,且FB AB ⋅=.(I)求椭圆的方程;(II)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点),求k 的值.【解析】试题分析:(Ⅰ)由题意结合椭圆的性质可得,32a b ==.则椭圆的方程为22194x y +=.(Ⅱ)设点P 的坐标为()11,x y ,点Q 的坐标为()22,x y .由题意可得1259y y =.由方程组22{ 194y kx x y =+=,,可得1y =.由方程组{20y kx x y =+-=,,可得221ky k =+.据此得到关于k 的方程,解方程可得k 的值为12或1128试题解析:(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由222a b c =+,可得23a b =.由已知可得,FB a =,AB =,由FB AB ⋅=,可得6ab =,从而,32a b ==,∴椭圆的方程为22194x y +=.(Ⅱ)设点P 的坐标为()11,x y ,点Q 的坐标为()22,x y .由已知有120y y >>,故12PQ sin AOQ y y ∠=-.又2y AQ sin OAB =∠ ,而∠OAB=π4,故2AQ =.由sin 4AQ AOQ PQ =∠,可得1259y y =.由方程组22,194y kx x y =⎧⎪⎨+=⎪⎩消去x,可得1y =易知直线AB 的方程为20x y +-=,由方程组{20y kx x y =+-=,,消去x ,可得221ky k =+.由1259y y =,可得()15k +=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =,k ∴的值为12或1128.50.(2017天津文)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i)求直线FP 的斜率;(ii)求椭圆的方程.【解析】(Ⅰ)设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b ac =-,可得2220c ac a +-=,即2210e e +-=.又因为01e <<,解得12e =.所以,椭圆的离心率为12.(Ⅱ)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m.由(Ⅰ)知2a c =,可得直线AE 的方程为12x yc c+=,即220x y c +-=,与直线FP 的方程联立,可解得(22)3,22m c c x y m m -==++,即点Q 的坐标为(22)3(,)22m c cm m -++.。
备战2022年高考数学复习之解析几何知识讲解专练05 椭圆(原卷版)
专题05 椭圆一相关知识点1.椭圆的定义把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数.(1)当2a>|F1F2|时,P点的集合是椭圆;(2)当2a=|F1F2|时,P点的集合是线段;(3)当2a<|F1F2|时,P点不存在.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)x2b2+y2a2=1(a>b>0)图形性质范围-a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a 对称性对称轴:坐标轴,对称中心:(0,0)顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长轴A1A2的长为2a,短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca,e∈(0,1)a,b,c的关系c2=a2-b23.i.点P(x0,y0)和椭圆的位置关系(1)点P(x0,y0)在椭圆内⇔x20a2+y20b2<1.(2)点P(x0,y0)在椭圆上⇔x20a2+y20b2=1.(3)点P(x0,y0)在椭圆外⇔x20a2+y20b2>1.ii.焦点三角形椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.r1=|PF1|,r2=|PF2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:(1)当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;(2)S =b 2ta n θ2=c |y 0|,当|y 0|=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .(3) S △PF 1F 2=12|PF 1||PF 2|·sin θ,当|y 0|=b ,即P 为短轴端点时,S △PF 1F 2取最大值为bc .(4)焦半径公式:|PF 1|=a +ex 0,|PF 2|=a -ex 0. (5)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ. (6)a -c ≤|PF 1|≤a +c .(7)焦点三角形的周长为2(a +c ). (8)过点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b2=1.(9)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边长,a 2=b 2+c 2. (10)已知过焦点F 1的弦AB ,则△ABF 2的周长为4a . 4.椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆x 2a 2+y 2b 2=1(a >b >0)的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =-b 2a 2,即k AB =-b 2x 0a 2y 0.5.弦长公式:直线与圆锥曲线相交所得的弦长 (1)|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2] =1+1k2|y 1-y 2|=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). (2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a,最长为 2a .题型一 椭圆的定义及其应用1.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为2.已知动点P (x ,y )的坐标满足x 2+(y +7)2+x 2+(y -7)2=16,则动点P 的轨迹方程为________.3.如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆题型二 椭圆的标准方程类型一 利用椭圆定义求椭圆的标准方程1.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为2.在△ABC 中,A (-4,0),B (4,0),△ABC 的周长是18,则顶点C 的轨迹方程是A.x 225+y 29=1(y ≠0) B .y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D .y 216+x 29=1(y ≠0)3.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为4.与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为_______.5.已知A (-1,0),B 是圆F :x 2-2x +y 2-11=0(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为7.已知A ⎝⎛⎭⎫-12,0,B 是圆⎝⎛⎭⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.8.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且椭圆G 上一点到两个焦点的距离之和为12,则椭圆G 的方程为9.已知点P 是圆F 1:(x +1)2+y 2=16上任意一点(F 1是圆心),点F 2与点F 1关于原点对称.线段PF 2的垂直平分线m 分别与PF 1,PF 2交于M ,N 两点.求点M 的轨迹C 的方程.类型二 利用待定系数法求椭圆标准方程1.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为________.2.已知椭圆C 经过点A (2,3),且点F (2,0)为其右焦点,则椭圆C 的标准方程为____________.3.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为4.设椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点与抛物线y 2=16x 的焦点相同,离心率为63,则此椭圆的方程为________.5.已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是6.已知椭圆C 的中心在原点,一个焦点F (-2,0),且长轴长与短轴长的比是2∶3,则椭圆C 的方程是________________.7.过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________.8.过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆的方程为9.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程为10.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝⎛⎭⎫-32,52,(3,5),则椭圆方程 为11.与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3)的椭圆方程为12.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为10,一个焦点的坐标是(-5,0),则椭圆的标准方程为________.13.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为43,则C 的方程为14.椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E 的标准方程为15.已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点的椭圆的标准方程为________.16.已知中心在坐标原点的椭圆过点A (-3,0),且离心率e =53,则椭圆的标准方程为________.17.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过P (-5,4),则椭圆的方程为________.18.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为19.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的标准方程为20.设F 1,F 2为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB是面积为43的等边三角形,则椭圆C 的方程为__________.21.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.22.如图,已知椭圆C 的中心为原点O ,F (-5,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=6,则椭圆C 的方程为23.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.题型三 椭圆的几何性质类型一 识别椭圆相关性质概念1.椭圆x 216+y 225=1的焦点坐标为2.已知椭圆的标准方程为x 2+y 210=1,则椭圆的焦点坐标为 3.椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于4.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为________.5.曲线C 1:x 225+y 29=1与曲线C 2:x 225-k +y 29-k=1(k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等6.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为____________.7.椭圆x 29+y 24+k =1的离心率为45,则k 的值为8.椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于9.椭圆mx 2+ny 2+mn =0(m <n <0)的焦点坐标是10.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.类型二 求离心率的值(或范围)1.椭圆x 29+y 24=1的离心率是2.若椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为3.已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为________.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)和直线l :x 4+y3=1,若过C 的左焦点和下顶点的直线与直线l 平行,则椭圆C 的离心率为5.若椭圆x 24+y 2m =1上一点到两焦点的距离之和为m -3,则此椭圆的离心率为6.焦点在x 轴上的椭圆方程为x 2a 2+y 2b 2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为7.若一个椭圆长轴的长、短轴的长和焦距成等比数列,则该椭圆的离心率是8.如图,F 1,F 2是双曲线C 1:x 2-y 28=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限内的交点,若|F 1F 2|=|F 1A |,则C 2的离心率是A.23B.45C.35D.259.已知F 是椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点,A 为右顶点,P 是椭圆上的一点,PF ⊥x 轴,若|PF |=34|AF |,则该椭圆的离心率是________.10.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y轴于点P .若AP ―→=2PB ―→,则椭圆的离心率是11.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为12.已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为13.P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,A 为左顶点,F 为右焦点,PF ⊥x 轴,若tan ∠P AF =12,则椭圆的离心率e 为14.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为15.如图,底面直径为12 cm 的圆柱被与底面成30°角的平面所截,截口是一个椭圆,则这个椭圆的离心率为16.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay+2ab =0相切,则C 的离心率为17.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B ,C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin B sin C=________.18.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM ―→·NF ―→=0,则椭圆的离心率为19.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A ,B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M ,N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为20.已知F 1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为21.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为22.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,AF →=2FB →.则椭圆C 的离心率是________.23.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点, 且PF 1―→·(OF 1―→+OP ―→)=0(O 为坐标原点),若|PF 1―→|=2|PF 2―→|,则椭圆的离心率为24.椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2为椭圆的左、右焦点,O 为坐标原点,点P 为椭圆上一点, |OP |=24a ,且|PF 1|,|F 1F 2|,|PF 2|成等比数列,则椭圆的离心率为25.椭圆C 的两个焦点分别是F 1,F 2,若C 上的点P 满足|PF 1|=32|F 1F 2|,则椭圆C 的离心率e 的取值范围是26.在椭圆x 2a 2+y 2b2=1(a >b >0)中,F 1,F 2分别是其左、右焦点,若|PF 1|=2|PF 2|,则该椭圆离心率的取值范围是27.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F 2,若13<k <12,则椭圆的离心率的取值范围是__________.28.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1P A 2为钝角,则此椭圆的离心率的取值范围为______.29.已知F 1,F 2是椭圆的两个焦点,满足MF →1·MF →2=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.30.已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆上存在点P 使得PF 1⊥PF 2,则该椭圆的离心率的取值范围是31.设椭圆C :x 2a 2+y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点E (0,t )(0<t <b ).已知动点P 在椭圆上,且点P ,E ,F 2不共线,若△PEF 2的周长的最小值为4b ,则椭圆C 的离心率为32.已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=2π3,记椭圆和双曲线的离心率分别为e 1,e 2,则3e 21+1e 22=33.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是34.已知椭圆x 2a 2+y 2b2=1(a >b >c >0,a 2=b 2+c 2)的左、右焦点分别为F 1,F 2,若以F 2为圆心,b -c 为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且|PT|的最小值不小于32(a-c),则椭圆的离心率e的取值范围是____.35.已知F1,F2分别是椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A,B 上下两点,若△ABF2是锐角三角形,则该椭圆的离心率e的取值范围是36.如图,椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(1)若|PF1|=2+2,|PF2|=2-2,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.37.已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在点P使1-cos 2∠PF1F21-cos 2∠PF2F1=a2c2,求该椭圆的离心率的取值范围.38.已知椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,右顶点为A,上顶点为B,O为坐标原点,M为椭圆上任意一点.过F ,B ,A 三点的圆的圆心坐标为(p ,q ).(1)当p +q ≤0时,求椭圆的离心率的取值范围;(2)若点D (b +1,0),在(1)的条件下,当椭圆的离心率最小时,(MF →+OD →)·MO →的最小值为72,求椭圆的方程.类型三 求参数的值(或范围)1.若焦点在y 轴上的椭圆x 2m +y 22=1的离心率为12,则m 的值为________.2.若方程x 25-m +y 2m +3=1表示椭圆,则m 的取值范围是3.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是4.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是5.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是________.6.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.7.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件8.已知椭圆mx 2+4y 2=1的离心率为22,则实数m 等于9.设e 是椭圆x 24+y 2k =1的离心率,且e =23,则实数k 的值是________.10.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 11.已知椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点, 若|BF 2|+|AF 2|的最大值为5,则b 的值是12.设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是13.椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________.14.已知动点M 到定点F 1(-2,0)和F 2(2,0)的距离之和为4 2.(1)求动点M 的轨迹C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交C 于不同于N 的两点A ,B ,直线NA ,NB 的斜率分别为k 1,k 2,求k 1+k 2的值.类型四 焦点三角形1.椭圆C :x 225+y 216=1的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A ,B 两点,则△F 1AB 的周长为________.2.过椭圆x 24+y 2=1的左焦点F 1作直线l 交椭圆于A ,B 两点,F 2是椭圆右焦点,则△ABF 2的周长为3.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.4.已知点F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,若点P 在椭圆C 上,且∠F 1PF 2=60°,则|PF 1|·|PF 2|=5.F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为6.如图,椭圆x 2a 2+y 24=1(a >2)的左、右焦点分别为F 1,F 2,点P 是椭圆上的一点,若∠F 1PF 2=60°,那么△PF 1F 2的面积为7.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________.8.设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为9.已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为10.已知F 1,F 2是长轴长为4的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点, 则△PF 1F 2面积的最大值为________.11.P 为椭圆x 225+y 29=1上一点,F 1,F 2分别是椭圆的左焦点和右焦点,过P 点作PH ⊥F 1F 2于点H ,若PF 1⊥PF 2,则|PH |=12.设F 1,F 2分别为椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上,且|PF 1→+PF 2→|=23,则∠F 1PF 2等于13.设P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为 点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为14.设椭圆x 29+y 25=1的左、右焦点分别为F 1,F 2,过焦点F 1的直线交椭圆于A (x 1,y 1),B (x 2,y 2)两点,若△ABF 2的内切圆的面积为π,则|y 1-y 2|=15.设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为16.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是17.椭圆x 29+y 22=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则∠F 1PF 2的大小为18.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0).(1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.19.已知F 1,F 2分别为椭圆x 22+y 2=1的左、右焦点,过F 1的直线l 与椭圆交于不同的两点A ,B ,连接AF 2和BF 2.(1)求△ABF 2的周长;(2)若AF 2⊥BF 2,求△ABF 2的面积.类型五 与椭圆的几何性质有关的最值问题1.以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为2.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则|P A |+|PF |的最大值为 ,最小值为 .3.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为________.4.在平面直角坐标系xOy 中,P 是椭圆y 24+x 23=1上的一个动点,点A (1,1),B (0,-1), 则|P A |+|PB |的最大值为5.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4), 则|PM |+|PF 1|的最大值为________.6.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点, 则|PM |+|PN |的最小值、最大值分别为________.7.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为8.已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是9.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为________.。
椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)
专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。
椭圆中的定点、定值问题
解析几何中的椭圆是高考中的热点,常见的有求最值、过定点、定值等,这类题型中以直线与椭圆相交为基本模型,处理问题的方法可以是设直线,运用韦达定理求出坐标之间的关系,过椭圆上一点的直线与椭圆相交是可以解出另一个交点的,而过椭圆外一点的直线与椭圆相交只能找到两个交点坐标的关系,不适宜解,再运用题目中的条件整体化简。
也可以是设点的坐标,运用坐标在椭圆上或直线上整体代入化简,到底设什么需要根据题目的条件,因题而异。
例1、(2017盐城高三三模18)已知A 、F 分别是椭圆2222:1(0)x y C a b a b +=>>的左顶点、右焦点,点P 为椭圆C 上一动点,当PF x ⊥轴时,2AF PF =.(1)求椭圆C 的离心率;(2)若椭圆C 存在点Q ,使得四边形AOPQ 是平行四边形(点P 在第一象限),求直线AP 与OQ 的斜率之积;(3)记圆2222:abO x y a b+=+为椭圆C 的“关联圆”.若b =P 作椭圆C 的“关联圆”的两条切线,切点为M 、N ,直线MN 的横、纵截距分别为m 、n ,求证:2234m n+为定值.学科*网解:(1)由PF x ⊥轴,知P x c =,代入椭圆C 的方程,得22221P y c a b +=,解得2P b y a=±. 又2AF PF =,所以22b a c a +=,解得12e =.(2)因为四边形AOPQ 是平行四边形,所以PQ a =且//PF x 轴,所以2P a x =,代入椭圆C的方程,解得P y =, 因为点P在第一象限,所以2P y =,同理可得2Q a x =-,2Q y b =所以2222()22AP OQbk k a a a a =⋅=----,由(1)知12c e a ==,得2234b a =,所以34AP OQ k k =-. (3)由(1)知12c e a ==,又b =2a =,所以椭圆C 方程为22143x y +=, 圆O的方程为22x y +=①. 连接,OM ON ,由题意可知,OM PM ⊥, ON PN ⊥, 所以四边形OMPN 的外接圆是以OP 为直径的圆,设00(,)P x y ,则四边形OMPN 的外接圆方程为222200001()()()224x y x y x y -+-=+, 即22000x xx y yy -+-= ②.(注:以OP 为直径的圆的方程可以直接写出0))(0())(0(00=--+--y y y x x x )由①-②,得直线MN的方程为00xx yy +=, 令0y =,则0m =;令0x =,则0n =所以2200223449()43x y m n +=+, 因为点P 在椭圆C 上,所以2200143x y +=,所以223449m n +=. 例2、(2018苏锡常镇高三二模)如图,椭圆22221(0)x y a b a b +=>>的离心率为2,焦点到相应准线的距离为1,点A ,B ,C 分别为椭圆的左顶点、右顶点和上顶点,过点C 的直线l 交椭圆于点D ,交x 轴于点1(0)M x ,,直线AC 与直线BD 交于点22()N x y ,. (1)求椭圆的标准方程;(2)若2CM MD =,求直线l 的方程; (3)求证:12x x ⋅为定值.解:(1)由椭圆的离心率为2得 21c a a c c⎧=⎪⎪⎨⎪-=⎪⎩,解得1a c ⎧⎪⎨=⎪⎩,所以,椭圆的标准方程为2212x y +=.(3)设D 坐标为(x 3,y 3),由(0,1)C ,M (x 1,0)可得直线CM 的方程111y x x =-+,联立椭圆方程得:1221112y x x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,,解得132142x x x =+,2132122x y x -=+由B ,得直线BD的方程:2y x =- ①直线AC方程为1y =+ ② 联立①②得212x x =, 即12x x =2 法2:设D 坐标为(x 3,y 3), 由C ,M ,D 三点共线得31311y x x x =--,所以3131x x y =- ① 由B ,D ,N221y x =+代入可得2x = ②①和②相乘得,231231x x x y =-2333323333222)2x y x xx y x +-==-+-. 例3、(2018苏北四市高三一模18)如图,在平面直角坐标系xOy 中,已知椭圆)0(12222>>=+b a by a x 的离心率为12,且过点312(,).F 为椭圆的右焦点,,A B 为椭圆上关于原点对称的两点,连接,AF BF 分别交椭圆于,C D 两点.(1)求椭圆的标准方程; (2)若AF FC =,求BFFD的值; (3)设直线AB ,CD 的斜率分别为21,k k ,是否存在实数m ,使得12mk k =,若存在,求出m 的值;若不存在,请说明理由.解:(1)设椭圆方程为22221(0)x ya b a b +=>>, 由题意知:22121914c a a b ⎧=⎪⎪⎨⎪+=⎪⎩解得:2a b =⎧⎪⎨⎪⎩,所以椭圆方程为:2243x y +=(2)若AF FC =,由椭圆对称性,知3(1,)2 A ,所以3(1,)2B --, 此时直线BF 方程为3430x y --=由223430,1,43x y x y --=⎧⎪⎨+=⎪⎩,得276130x x --=,解得137x =(1x =-舍去)故1(1)713317BF FD --==-(3)设00,)A x y (,则00(,)B x y --,直线AF 的方程为00(1)1y y x x =--,代入椭圆方程22143x y +=,得 2220000(156)815240x x y x x ---+=,因为0x x =是该方程的一个解,所以C 点的横坐标08552C x x x -=-,又(,)c C C x y 在直线00(1)1y y x x =--上,所以00003(1)152C c y y y x x x -=-=--, 同理,D 点坐标为0085(52x x ++,003)52y x +, 所以000002100000335552528585335252y y y x x k k x x x x x --+-===+--+-,即存在53m =,使得2153k k =. 例4、(2016泰州高三期末19)如图,在平面直角坐标系xOy 中, 已知圆:O 224x y +=,椭圆:C 2214x y +=, A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于,B C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中6(,0)5D -.设直线,AB AC 的斜率分别为12,k k .(1)求12k k 的值;(2)记直线,PQ BC 的斜率分别为,PQ BC k k ,是否存在常数λ,使得PQ BC k k λ=?若存在,求λ值;若不存在,说明理由;(3)求证:直线AC 必过点Q .解:(1)设00(,)B x y ,则00(,)C x y --,220014x y += 所以22000012220000111422424x y y y k k x x x x -=⋅===--+--.(2)联立122(2)4y k x x y =-⎧⎨+=⎩得2222111(1)44(1)0k x k x k +-+-=,解得211122112(1)4,(2)11P P P k k x y k x k k --==-=++,联立122(14y k x x y ⎧=⎪⎨+=⎪⎩得2222111(14)164(41)0k x k x k +-+-=, 解得211122112(41)4,(1414B B Bk k x y k x k k --===++, 所以121241B BC B y kk x k -==-,121122112141562(1)641515P PQP k y k k k k k x k -+-===--+++,所以52P Q B Ck k =,故存在常数52λ=,使得52P Q B C k k =.法二:设直线AC 方程:)2(411--=x k y 与圆:O 224x y +=联立方程组,运用韦达定理解出'Q 坐标,证明'Q 在直线PD 上,即可说明AC 必过点Q (请同学们自己去尝试)注:对于任意的椭圆 2222:1(0)x y C a b a b+=>>,过原点的任意一直线与椭圆交于B A ,两点,P 为椭圆上任意一动点,假设直线PB PA ,斜率都存在,则有22ab k k BPAP -=⋅证明:设),(11y x A ,则),(11y x B --,),(00y x P ,因为P B A 、、在椭圆上所以1221221=+b ya x ① ,1220220=+by a x ②由①-②得0))(())((2010120101=+-++-b y y y y a x x x x ,化简得22a b k k BPAP -=⋅例5、(2017苏锡常镇高三一模18)已知椭圆1222=+y x 右顶点为A .过点)2,2(-D 作直线PQ 交椭圆于两个不同点Q P 、求证:直线AQ AP ,的斜率之和为定值.分析:法一:先考虑过D 的直线斜率不存在满不满足题意。
椭圆的几何性质及综合问题
椭圆的几何性质一、概念及性质1.椭圆的“范围、对称性、顶点、轴长、焦距、离心率及范围、a ,b ,c 的关系”;2.椭圆的通经:3.椭圆的焦点三角形的概念及面积公式:4.椭圆的焦半径的概念及公式:主要用来求离心率的取值范围,对于此问题也可以用下列性质求解:c a PF c a +≤≤-1.5.直线与椭圆的位置关系:6.椭圆的中点弦问题:【注】:椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大,高考对椭圆几何性质的考查主要有以下三个命题角度:(1)根据椭圆的性质求参数的值或范围; (2)由性质写椭圆的标准方程; (3)求离心率的值或范围.题型一:根据椭圆的性质求标准方程、参数的值或范围、离心率的值或范围. 【典例1】求适合下列条件的椭圆的标准方程:(1)经过点)2,0(),0,3(--Q P ;(2)长轴长等于20,离心率等于53. 【典例2】求椭圆400251622=+y x 的长轴和短轴长、离心率、焦点坐标和顶点坐标.【典例3】已知A ,P ,Q 为椭圆C :)0(12222>>=+b a b y a x 上三点,若直线PQ 过原点,且直线AP ,AQ 的斜率之积为21-,则椭圆C 的离心率为( )A.22B.21C.42D.41【练习】(1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)(2)椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D .1925或21(3)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.【典例4】已知F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点,P 为椭圆上任意一点,且215PF PF =,则该椭圆的离心率的取值范围是练习:如图,把椭圆1162522=+y x 的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分与P 1,P 2,…,P 7七个点,F 是椭圆的一个焦点,则721PF PF PF +++ =【典例5】若 “过椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点F 1,F 2的两条互相垂直的直线l 1,l 2的交点在椭圆的内部”,求离心率的取值范围.【典例6】已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.【方法归纳】:1.在利用椭圆的性质求解椭圆的标准方程时,总体原则是“先定位,再定量”.2.求解与椭圆几何性质有关的问题时,其原则是“数形结合,定义优先,几何性质简化”,一定要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系,充分利用平面几何的性质及有关重要结论来探寻参数a ,b ,c 之间的关系,以减少运算量.3.在求解有关圆锥曲线焦点问题时,结合图形,注意动点到两焦点距离的转化.4. 求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式(或不等式),利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围;有时也可利用正弦、余弦的有界性求解离心率的范围.5.在探寻a ,b ,c 的关系时,若能充分考虑平面几何的性质,则可使问题简化,如典例5. 【本节练习】1.已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( )A .x 216+y 27=1B .x 216+y 27=1或x 27+y 216=1C .x 216+y 225=1D .x 216+y 225=1或x 225+y 216=12.设e 是椭圆x 24+y 2k =1的离心率,且e ∈(12,1),则实数k 的取值范围是( )A .(0,3)B .(3,163)C .(0,3)∪(163,+∞) D .(0,2)3.已知椭圆短轴上的两个顶点分别为B 1,B 2,焦点为F 1,F 2,若四边形B 1F 1B 2F 2是正方形,则这个椭圆的离心率e 等于( )A .22B .12C .32D .334.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.5.已知椭圆C :)0(12222>>=+b a by a x 的左、右焦点为21,F F ,离心率为33,过F 2的直线l 交C 于A,B 两点,若△AF 1B 的周长为34,则C 的方程为( )A.12322=+y x B.1322=+y x C.181222=+y x D.141222=+y x6.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________.7.设21,F F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23ax =上一点,12PF F ∆是底角为300的等腰三角形,则E 的离心率为( )A.21B. 32C.43D. 548.过椭圆)0(12222>>=+b a b y a x 的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若02160=∠PF F ,则椭圆的离心率为( )A.25B.33C.21D.319.已知椭圆)0(12222>>=+b a by a x 的左焦点为F ,右顶点为A ,上顶点为B ,若BA BF ⊥,则称其为“优美椭圆”,那么“优美椭圆”的离心率为10.已知1F 为椭圆的左焦点,A ,B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当A F PF 11⊥,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为11.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A .(12,2)B .(1,+∞)C .(1,2)D .(12,1)12.矩形ABCD 中,|AB |=4,|BC |=3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为( )A .2 3B .2 6C .4 2D .4 313.一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆方程为( )A .x 28+y 26=1B .x 216+y 26=1C .x 28+y 24=1D .x 216+y 24=114.如图,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F ,且这两条曲线交点的连线过点F ,则该椭圆的离心率为________.15.已知抛物线42x y =与椭圆)0(118222>=+a y ax 在第一象限相交于A 点,F 为抛物线的焦点,AB ⊥y 轴于B 点,当∠BAF =300时,a =16. 设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.17.椭圆x 236+y 29=1上有两个动点P 、Q ,E (3,0),EP ⊥EQ ,则EP →·QP →的最小值为( )A .6B .3- 3C .9D .12-6 318.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,则这个椭圆方程为________.19.若一个椭圆长轴的长度,短轴的长度和焦距依次成等差数列,则该椭圆的离心率是________.20.已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为( )A .4B .3C .2D .114. 椭圆()01:2222>>=+Γb a by a x 的左右焦点分别为21,F F ,焦距为c 2,若直线()c x y +=3与椭圆的一个交点满足12212F MF F MF ∠=∠,则该椭圆的离心率等于_____设F 1(-c , 0), F 2(c , 0)是椭圆12222=+by a x (a >b >0)的两个焦点,P 是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2=5∠PF 2F 1,则该椭圆的离心率为 (A )316 (B )23 (C )22 (D )32若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是21.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 1,左焦点为F 2,若椭圆上存在一点P ,满足线段PF 1相切于以椭圆的短轴为直径的圆,切点为线段PF 1的中点,则该椭圆的离心率为( )A .53 B .23 C .22 D .5922. 已知,,A P Q 为椭圆:C 22221(0)x y a b a b+=>>上三点,若直线PQ 过原点,且直线,AP AQ 的斜率之积为12-,则椭圆C 的离心率等于( )A .2B .12C .4D .14题型二:直线与椭圆的位置关系的判定.【典例1】当m 为何值时,直线m x y l +=:与椭圆14416922=+y x 相切、相交、相离?【典例2】已知椭圆192522=+y x ,直线04054:=+-y x l ,椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?反馈:(2012福建)如图,椭圆E :)0(12222>>=+b a by a x 的左右焦点分别为F 1、F 2,离心率21=e ,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)设动直线l :m kx y +=与椭圆E 有且只有一个公共点P ,且与直线x =4交于Q ,试探究:在坐标平面内,是否存在定点M ,使得以PQ 为直径的圆恒过定点M ,若存在,求出点M 的坐标,若不存在,请说明理由.【方法归纳】:直线与椭圆位置关系判断的步骤: ①联立直线方程与椭圆方程;②消元得出关于x (或y )的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.注:对比直线与圆的位置关系的判断,它们之间有何联系与区别?题型三:直线与椭圆相交(及中点弦)问题该问题属高考中对圆锥曲线考查的热点和重点问题,其主要方法是数形结合、判别式、根与系数的关系、整体代换.【典例1】已知斜率为1的直线l 过椭圆1422=+y x 的右焦点,交椭圆于A ,B 两点,求弦AB 的长及1ABF ∆的周长、面积.【典例2】已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点(0,3),离心率为12,左,右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.【典例3】已知一直线与椭圆369422=+y x 相交于A ,B 两点,弦AB 的中点坐标为M (1,1),求直线AB 的方程.变式:过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为【典例4】(2015新课标文)已知椭圆()2222:10x y C a b a b+=>> 的离心率为,点(在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.【典例5】已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【典例6】已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线l :m kx y +=与椭圆C 相交于A ,B 两点(A ,B 均不在左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.【方法归纳】:(1)解决直线与椭圆相交问题的原则有两个:一是数形结合;二是一条主线:“斜率、方程组、判别式、根与系数的关系”.利用根与系数的关系整体代换,以减少运算量.(2)如果题设中没有对直线的斜率的限定,一定要讨论斜率是否存在,以免漏解;这里又有两个问题需要注意:①若已知直线过y 轴上的定点P (0,b ),可将直线设为斜截式,即纵截距式,即y =kx +b ,但要讨论斜率是否存在;②若已知直线过x 轴上的定点P (a ,0),可以直接将直线方程设为横截距式,即x =my +a ,这样可避免讨论斜率是否存在,但此时求弦长时,需将下面弦长公式中的k 用m1替换. (3)直线被椭圆截得的弦长公式设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).【本节练习】1.(2014·高考安徽卷)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.2. (2015·豫西五校联考)已知椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1、F 2,过F 1的直线l 交椭圆于A 、B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1B . 2C .32 D . 33.(2015·宜昌调研)过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.4.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△PAB 的面积.5.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.5’.已知椭圆)0(12222>>=+b a by a x 的离心率为23,右焦点到直线06=++y x 的距离为32. (1)求椭圆的方程;(2)过点)1,0(-M 作直线l 交椭圆于A ,B 两点,交x 轴于N 点,满足57-=,求直线l 的方程.6.已知椭圆)0(12222>>=+b a by a x 的离心率为23,且长轴长为12,过点P(4,2)的直线l 与椭圆交于A,B 两点.(1)求椭圆方程;(2)当直线l 的斜率为21时,求AB 的值;(3)当点P 恰好为线段AB 的中点时,求直线l 的方程.7. 平面直角坐标系xoy 中,过椭圆M :)0(12222>>=+b a b y a x 的右焦点F 作直线03=-+y x 交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为21. (Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.8. 设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线l与E 相交于,A B 两点,且22,,AF AB BF 成等差数列. (1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程.9. 设F 1 ,F 2分别是椭圆C :12222=+by a x (a >b >0)的左,右焦点,M 是C 上一点且MF 2与x轴垂直,直线MF 1与C 的另一个交点为N . (I )若直线MN 的斜率为43,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .10. 如图,点F 1(-c ,0),F 2(c ,0)分别是椭圆C :x 2a 2+y 2b2=1(a >b>0)的左,右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.11.已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB , (文)求线段AB 长度的最小值.(理)试判断直线AB 与圆222=+y x 的位置关系.圆锥曲线在高考中的考查主要体现“一条主线,五种题型”,所谓一条主线:是指直线与圆锥曲线的综合.五种题型是指“最值问题;定点问题;定值问题;参数的取值范围问题;存在性问题”. 一、 最值问题 【规律方法】:(1)最值问题有两大类:距离、面积的最值以及与之有关的一些问题;求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种常见方法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解题;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法;若是分式函数则可先分离常数,再求最值;若是二次函数,可用配方法;若是更复杂的函数,还可用导数法. (3)圆锥曲线的综合问题要四重视: ①重视定义在解题中的作用;②重视平面几何知识在解题中的作用;③重视根与系数的关系在解题中的作用;④重视曲线的几何特征与方程的代数特征在解题中的作用.如定值中2014江西文科考题,范围中的题6、7.1.已知椭圆C :1222=+y ax (a >0)的焦点在x 轴上,右顶点与上顶点分别为A 、B .顶点在原点,分别以A 、B 为焦点的抛物线C 1、C 2交于点P (不同于O 点),且以BP 为直径的圆经过点A .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若与OP 垂直的动直线l 交椭圆C 于M 、N 不同两点,求△OMN 面积的最大值和此时直线l 的方程.2.已知椭圆C :)0(12222>>=+b a by a x 的上顶点为(0,1),且离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)证明:过椭圆)0(12222>>=+n m ny m x 上一点),(00y x Q 的切线方程为12020=+nyy m x x ; (Ⅲ)从圆1622=+y x 上一点P 向椭圆C 引两条切线,切点分别为A 、B ,当直线AB 分别与x 轴、y 轴交于M 、N 两点时,求MN 的最小值.3.已知动点P 到定点F (1,0)和到定直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :n mx y +=与曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合). (Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆122=+y x 相切时,四边形ACBD 的面积是否有最大值.若有,求出其最大值及相应的直线l 的方程;若没有,请说明理由.4. 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>F 是椭圆的右焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.5.平面直角坐标系xOy 中,已知椭圆)0(1:2222>>=+b a by a x C 的离心率为23,且点)21,3(在椭圆C 上,(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆144:2222=+by a x E ,P 为椭圆C 上任意一点,过点P 的直线m kx y +=交椭圆E 于B A ,两点,射线PO 交椭圆E 于点Q .(ⅰ)求OPOQ 的值;(ⅱ)求ABQ ∆面积的最大值。
高考椭圆最常考的题型(140分推荐)
高考椭圆最常考的题型(140分推荐)一、单选题(本大题共8小题,共40.0分)1. 已知椭圆:x 24+y 2b2=1(0<b <2) ,左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A,B 两点,若|BF 2⃗⃗⃗⃗⃗⃗⃗ |+|AF 2⃗⃗⃗⃗⃗⃗⃗ |的最大值为5,则b 的值是( )A. 1B. √2C. 32D. √32. 已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的离心率为√22,直线x =√2与椭圆C 交于A ,B 两点,O 为坐标原点,且OA ⊥OB ,则椭圆的方程为( )A.x 22+y 2=1B.x 24+y 22=1C.x 28+y 24=1D.x 26+y 23=13. 已知直线y =kx(k ≠0)与椭圆C :x 2a2+y 2=1(a >1)交于P ,Q 两点,点F ,A 分别是椭圆C 的右焦点和右顶点,若|FP|+|FQ|+|FA|=52a ,则a =( )A. 4B. 2C. 43D. 2√334. 已知直线2x +y −4=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 2,且与椭圆在第一象限的交点为A ,与y 轴的交点为B ,F 1是椭圆的左焦点,且|AB |=|AF 1|,则椭圆的方程为( )A. x 240+y 236=1B. x 220+y 216=1C. x 210+y 26=1D.x 25+y 2=15. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P ,若AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则椭圆的离心率为( )A. √32B. √22C. 12D. 136. 已知椭圆方程为x 2+ky 2=5的一个焦点是(0,2),那么k =( )A. 59B. 97C. 1D. 537. 已知焦点在x 轴上的椭圆C :x 2a 2+y 24=1的焦距为4,则C 的离心率( )A. 13B. 12C. √22D. 2√238. 已知椭圆C :x 2a 2+y 2b2=1 (a >b >0)的左、右焦点分别为F 1,F 2,离心率为√33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为4√3,则椭圆C 的方程为( )A. x 23+y 2=1B. x 23+y 22=1 C. x 212+y28=1 D. x 212+y24=1二、单空题(本大题共2小题,共10.0分)9.已知椭圆C的焦点在x轴上,且离心率为12,则C的方程可以为.10.椭圆E:x2a2+y23=1的右焦点为F2,直线y=x+m与椭圆E交于A,B两点.若△F2AB周长的最大值是8,则m的值等于________.三、解答题(本大题共20小题,共240.0分)11.设椭圆C∶x2a2+y2b2=1(a>b>0)过点(0,4),离心率为35.(1)求C的方程;(2)求过点(3,0)且斜率为45的直线被C所截线段的中点坐标.12.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√33,短轴一个端点到右焦点的距离为√3.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆的左焦点且斜率为1的直线l交椭圆于A,B两点,求|AB|.13.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P(1,√32)在椭圆C上,且△PF1F2的面积为32.(1)求椭圆C的标准方程;(2)若椭圆C上存在A,B两点关于直线x=my+1对称,求m的取值范围.14.已知点P(3,4)是椭圆x2a2+y2b2=1(a>b>0)上的一点,F1,F2为椭圆的两焦点,若PF1⊥PF2,试求:(1)椭圆的方程;(2)△PF1F2的面积.15.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,短轴长为2√3.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若斜率为k(k≠0)的直线l与椭圆C交于不同的两点A,B,且线段AB的垂直平分线过定点(13,0),求k的取值范围.16.已知椭圆x2a2+y2b2=1(a>b>0)和直线l:xa−yb=1,椭圆的离心率e=√63,坐标原点到直线l的距离为√32.(1)求椭圆的方程;(2)已知定点E(−1,0),若直线y=kx+2(k≠0)与椭圆相交于C,D两点,试判断是否存在实数k,使以CD为直径的圆过定点E?若存在,求出k的值,若不存在,说明理由.17.已知椭圆E:x2a2+y2b2=1(a>b>0)经过两点(0,1),(√3,12).(I)求椭圆E的方程;(II)若直线l:x−y−1=0交椭圆E于两个不同的点A,B,O是坐标原点,求△AOB 的面积S.18.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,M(√3,−12)是椭圆C上的一点.(1)求椭圆C的方程;(2)过点P(−4,0)作直线l与椭圆C交于不同两点A、B,A点关于x轴的对称点为D,问直线BD是否过定点?若是,求出该定点的坐标;若不是,请说明理由.19.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,短轴的一个端点到右焦点的距离为3√2.(1)求椭圆的方程;(2)若直线y=x−1与椭圆相交于不同两点A、B,求|AB|.20.已知椭圆C1的方程为x24+y23=1,椭圆C2的短轴为C1的长轴且离心率为√32.(1)求椭圆C2的方程;(2)如上图,M,N分别为直线l与椭圆C1,C2的交点,P为椭圆C2与y轴的交点,△PON 的面积为△POM的面积的2倍,若直线l的方程为y=kx(k>0),求k的值.21.如图,在平面直角坐标系xOy中,已知A,B两点分别为椭圆x2a2+y2b2=1(a>b>0)的右顶点和上顶点,且AB=√7,右准线l的方程为x=4.(1)求椭圆的标准方程;(2)过点A的直线交椭圆于另一点P,交l于点Q.若以PQ为直径的圆经过原点,求直线PQ的方程.22.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.23.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,长轴长为4,直线y=kx+2与椭圆C交于A,B两点且∠AOB为直角,O为坐标原点.(1)求椭圆C的方程;(2)求AB的长度.24.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.25.如图,在平面直角坐标系xOy中,已知圆C:(x−3)2+y2=1,椭圆E:x2a2+y2b2=1(a>b>0)的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当AN=127AM时,求直线l的方程.26.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.27.如图,在平面直角坐标系xOy中,椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆E上.(1)若F1F2=2√2,点P的坐标为(√3,√2),求椭圆E的方程;(2)若点P横坐标为a2,点M为PF1中点,且OP⊥F2M,求椭圆E的离心率.28.如图,在直角坐标系xOy中,设椭圆C:x2a2+y2b2=1 (a>b>0)的左右两个焦点分别为F1、F2过右焦点F2且与x轴垂直的直线l与椭圆C相交,其中一个交点为M( √2, 1 )(1)求椭圆C的方程;(2)设椭圆C的一个顶点为B( 0,−b ),直线BF2交椭圆C于另一点N,求△F1BN的面积29.如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,且经过点(1,32),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C 于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若ΔAEF与ΔBDF的面积比为1:7,求直线l的方程.30.已知椭圆E:x2a2+y2b2=1(a>b>0)的左右焦点坐标为F1(−√3,0),F2(√3,0),且椭圆E经过点P(−√3,12).(1)求椭圆E的标准方程;(2)设点M是椭圆E上位于第一象限内的动点,A,B分别为椭圆E的左顶点和下顶点,直线MB与x轴交于点C,直线MA与y轴交于点D,求四边形ABCD的面积.答案和解析1.【答案】D【解析】【分析】本题主要考查椭圆的定义的应用,做题时要善于发现规律,进行转化,三角形AF2B为焦点三角形,周长等于两个长轴长,再根据椭圆方程,即可求出三角形AF2B的周长,欲使|BF2|+|AF2|的最大,只须|AB|最小,利用椭圆的性质即可得出答案.【解析】解:由椭圆的方程可知:长半轴长为a=2,由椭圆的定义可知:|AF2|+|BF2|+|AB|=4a=8,所以|AB|=8−(|AF2|+|BF2|)≥3,由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b2a=3,可求得b2=3,即b=√3.故选D.2.【答案】D【解析】【分析】本题考查椭圆的方程和离心率,属于简单题.结合已知条件建立关系式求得a2=6,b2=3,即可得到椭圆方程.【解答】解:因为椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,所以ca =√22①又因为直线x=√2与椭圆C交于A,B两点,O为坐标原点,且OA⊥OB,所以A(√2,√2)代入x2a2+y2b2=1得2a2+2b2=1②又因为a2=b2+c2③联立①②③解得a2=6,b2=3,所以椭圆的方程为x26+y23=1.故选D.3.【答案】D【解析】【分析】本题主要考查了椭圆的概念与标准方程、椭圆的几何性质、直线与椭圆的位置关系,属于基础题.取椭圆的左焦点F′,由三角形全等知|PF|=|QF′|,由椭圆的概念及集合性质知|FP|+ |FQ|=|F′Q|+|FQ|=2a,|FA|=a−c,b=1,代入条件及利用a,b,c的关系式求得a.【解答】解:取椭圆的左焦点F′,因为直线过原点,∴|OP|=|OQ|,|OF|=|OF′|,由椭圆的对称性,∴|PF|=|QF′|,∴|FP|+|FQ|=|F′Q|+|FQ|=2a,∵|FP|+|FQ|+|FA|=52a,|FA|=a−c,所以2a+a−c=52a,即a=2c,∵a2=b2+c2=1+14a2,a=2√33.故选D.4.【答案】D【解析】【分析】本题考查椭圆的定义、标准方程以及简单的几何性质,属于基础题.由直线2x+y−4=0经过椭圆x2a2+y2b2=1(a>b>0)的右焦点F2,可求得c=2,由椭圆定义可求得即a=√5,故a2=5,b2=1,椭圆方程可解.【解答】解:直线2x +y −4=0与x 轴和y 轴的交点分别为F 2(2,0),B(0,4), 所以c =2,又2a =|AF 1|+|AF 2|=|AB|+|AF 2|=|BF 2|=2√5, 所以a =√5,从而b 2=5−4=1, 所以椭圆方程x 25+y 2=1.故选D .5.【答案】C【解析】 【分析】本题考查椭圆的几何性质,涉及向量的线性关系,属基础题.根据向量关系得出|AP ⃗⃗⃗⃗⃗ |=2|PB ⃗⃗⃗⃗⃗ |,根据平行线截线段成比例定理得出|AO||AF|的值,得到a ,c 的关系,求得离心率. 【解答】 解:如图所示:∵AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ , ∴|AP ⃗⃗⃗⃗⃗ |=2|PB ⃗⃗⃗⃗⃗ |,∴|PA||AB|=23, 又∵PO//BF , ∴|AO||AF|=|PA||AB|=23, 即aa+c =23, ∴e =ca =12. 故选C .6.【答案】A【解析】 【分析】本题考查椭圆的标准方程及椭圆的简单性质,利用待定系数法求参数的值,属于基础题. 把椭圆x 2+ky 2=5的方程化为标准形式,得到c 2的值等于4,解方程求出k . 【解答】解:椭圆x 2+ky 2=5,即x 25+y 25k=1,∵焦点坐标为(0,2),c 2=4, ∴5k −5=4,∴k =59, 故选:A .7.【答案】C【解析】 【分析】本题主要考查椭圆的离心率,属于基础题.根据题意求出c =2,a =2√2,由e =ca 即可求出结果. 【解答】 解:∵椭圆C :x 2a 2+y 24=1的焦点在x 轴上,且焦距为4,∴a 2>4,c =2, ∴a 2−4=4, ∴a =2√2, ∴e =ca =2√2=√22. 故选C .8.【答案】B【解析】 【分析】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题. 利用△AF 1B 的周长为4√3,求出a =√3,根据离心率为√33,可得c =1,求出b ,即可得出椭圆的方程. 【解答】解:∵△AF 1B 的周长为4√3,∵△AF 1B 的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=2a +2a =4a , ∴4a =4√3, ∴a =√3, ∵离心率为√33,∴ca =√33,c =1,∴b =√a 2−c 2=√2, 即椭圆C 的方程为x 23+y 22=1.故选B .9.【答案】x 24+y 23=1(答案不唯一)【解析】 【分析】本题主要考查了椭圆的标准方程以及椭圆的几何性质,解题的关键是熟练掌握椭圆标准方程中a ,b 和c 之间的关系,属于基础题. 利用离心率为12,可得b =√32a ,即可求解.【解答】解:设椭圆的标准方程为 x 2a2+y 2b 2=1(a >b >0),∵离心率为12, ∴e =ca =√a 2−b 2a=12, ∴b =√32a , 令a =2,则b =√3,∴椭圆的标准方程为x 24+y 23=1.故答案为x 24+y 23=1(答案不唯一).10.【答案】1【解析】 【分析】本题考查的知识要点:椭圆的定义和方程的应用,属于基础题型.首先利用椭圆的定义建立周长的等式,进一步利用三角形的边长关系建立等式,求出相应的值,最后求出结果. 【解答】 解:椭圆E :x 2a 2+y 23=1的右焦点为F 2,N 为左焦点,直线y =x +m 与椭圆E 交于A ,B 两点,则△F 2AB 周长l =AB +BF 2+AF 2=AB +2a −NB +2a −NA =4a +(AB −NA −NB), 由于NA +NB ≥AB ,所以当N 、A 、B 三点共线时,△F 2AB 的周长l =4a =8, 所以a =2, 所以椭圆的方程为x 24+y 23=1,直线y =x +m 经过左焦点,所以m =1. 故答案为1.11.【答案】解:(1)将(0,4)代入C 的方程得16b 2=1,则b =4,∵e =ca =35,∴a 2−b 2a 2=925,即1−16a 2=925,∴a =5,∴椭圆C 的方程为x 225+y 216=1. (2)过点(3,0)且斜率为45的直线方程为y =45(x −3), 设直线与C 的交点为A(x 1,y 1),B(x 2,y 2). 将直线方程y =45(x −3)代入C 的方程,得x 225+(x−3)225=1,即x 2−3x −8=0,故x 1+x 2=3.设线段AB 的中点坐标为(x′,y′),则x′=x 1+x 22=32,y′=y 1+y 22=25(x 1+x 2−6)=−65,即所求中点坐标为(32,−65).【解析】本题考查椭圆的标准方程及性质,以及直线与椭圆的综合应用,属于中档题目. (1)将(0,4)代入椭圆方程求出b ,再由椭圆的离心率求出a ,得到椭圆方程; (2)写出直线方程联立椭圆方程,利用中点坐标公式结合韦达定理得出.12.【答案】解:(Ⅰ)由题意:e =c a =√33,即a =√3c ,短轴一个端点到右焦点的距离为√3, 即b 2+c 2=(√3)2=3, 而a 2=b 2+c 2, 所以a 2=3,b 2=2, 所以椭圆的方程:x 23+y 22=1;(Ⅱ)由(Ⅰ),左焦点(−1,0),直线l 的方程:y =x +1, 设A(x,y),B(x′,y′),联立直线l 与椭圆的方程,消去y 整理得:5x 2+6x −3=0, 所以x +x′=−65,xx′=−35,∴|AB|=√1+k 2√(x +x′)2−4xx′ =√1+1×√(−65)2−4×(−35)=8√35.【解析】本题考查直线与椭圆的交点弦长,属于基础题.(Ⅰ)由题意得离心率及长半轴长及a ,b ,c 之间的关系,求出椭圆的方程;(Ⅱ)由题意写出直线l 的方程与椭圆联立写出两根之和及之积,再由弦长公式求出弦长.13.【答案】解:(1)由题意可得{ 1a 2+34b 2=1,√3c 2=32,c 2=a 2−b 2解得a =2,b =1,故椭圆C 的标准方程为x 24+y 2=1..(2)设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为M(x 0,y 0). 因为直线x =my +1过定点(1,0),所以(x 1−1)2+y 12=(x 2−1)2+y 22.因为A ,B 在椭圆上,所以x 124+y 12=1,x 224+y 22=1,所以(x 1−1)2+1−x 124=(x 2−1)2+1−x 224,整理得x 12−x 224=(x 1−x 2)(x 1+x 2−2),所以x 1+x 2=83,所以x 0=43.因为点M 在直线x =my +1上,所以x 0=my 0+1,则y 0=13m .由{x 24+y 2=1,x =43,得y =±√53, 则−√53<13m <0或0<13m <√53,解得m <−√55或m >√55.故m 的取值范围为(−∞,−√55)⋃(√55,+∞).【解析】本题考查椭圆的性质和标准方程,直线与椭圆的位置关系,属于中档题. (1)由题意得{ 1a 2+34b 2=1,√3c 2=32,c 2=a 2−b 2,解出a ,b ,进而求出答案.(2)设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为M(x 0,y 0),由条件求出x 1+x 2=83,x 0=43,进而由条件求出y =±√53,进而求出答案.14.【答案】解:(1) 令F 1(−c,0),F 2(c,0),∵PF 1⊥PF 2,∴k PF 1·k PF 2=−1,即43+c ·43−c =−1,解得c =5,∴椭圆的方程为x 2a 2+y 2a 2−25=1.∵点P(3,4)在椭圆上,∴9a 2+16a 2−25=1,解得a 2=45,或a 2=5, 又a >c ,∴a 2=5舍去, 故所求椭圆方程为x 245+y 220=1.(2)P 点纵坐标的值即为F 1F 2边上的高,∴△PF1F2=12|F1F2|×4=12×10×4=20.【解析】本题考查椭圆的简单性质的应用,以及用待定系数法求椭圆的标准方程的方法.(1)设出焦点的坐标,利用垂直关系求出c值,椭圆的方程化为x2a2+y2a2−25=1,把点P的坐标代入,可解得a2的值,从而得到所求椭圆方程.(2)P点纵坐标的值即为F1F2边上的高,由S△PF1F2=12|F1F2|×4求得△PF1F2的面积.15.【答案】解:(Ⅰ)由题意可知:{2b=2√3ca=12a2=b2+c2,得{a=2b=√3c=1,故椭圆C的标准方程为x24+y23=1;(Ⅱ)设直线l:y=kx+m,A(x1,y1),B(x2,y2),将y=kx+m代入椭圆方程,消去y得(3+4k2)x2+8kmx+4m2−12=0,所以,即m2<4k2+3…………①由根与系数关系得x1+x2=−8km3+4k2,则y1+y2=k(x1+x2)+2m=6m3+4k2,所以线段AB的中点P的坐标为(−4km3+4k2,3m3+4k2).又线段AB的垂直平分线l′的方程为y=−1k (x−13),由点P在直线l′上,得3m3+4k2=−1k(−4km3+4k2−13),即4k2+3km+3=0,所以m=−13k(4k2+3)…………②由①②得(4k2+3)29k2<4k2+3,∵4k2+3>0,∴4k2+3<9k2所以k2>35,即k<−√155或k>√155,所以实数k的取值范围是.【解析】本题考查了椭圆方程的求法,考查了直线和圆锥曲线间的关系,考查了直线和圆锥曲线的关系问题,常采用联立直线方程和圆锥曲线方程,利用根与系数的关系求解,属于中档题.(Ⅰ)由离心率得到a ,c ,b 的关系,再代入椭圆的标准方程中即可求解.(Ⅱ)设出A ,B 的坐标,联立直线方程和椭圆方程,由判别式大于0得到m 2<4k 2+3,再结合根与系数关系得到AB 中点P 的坐标为(−4km3+4k 2,3m3+4k 2).求出AB 的垂直平分线l′方程,由P 在l′上,得到4k 2+3km +3=0.结合m 2<4k 2+3求得k 的取值范围.16.【答案】解:(Ⅰ)直线l 方程为bx −ay −ab =0,依题意可得:{ca=√63ab√a 2+b 2=√32,又a 2=b 2+c 2,解得:a 2=3,b =1, ∴椭圆的方程为x 23+y 2=1;(Ⅱ)假设存在这样的k ,使以CD 为直径的圆过定点E , 联立直线与椭圆方程得(1+3k 2)x 2+12kx +9=0, ∴△=(12k)2−36(1+3k 2)>0,∴k >1或设C(x 1,y 1),D(x 2,y 2), 则{x 1+x 2=−12k1+3k 2x 1·x 2=91+3k2,② 而y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4,EC ⃗⃗⃗⃗⃗ =(x 1+1,y 1),ED ⃗⃗⃗⃗⃗ =(x 2+1,y 2),要使以CD 为直径的圆过点E(−1,0),当且仅当CE ⊥DE 时,故EC ⃗⃗⃗⃗⃗ ·ED ⃗⃗⃗⃗⃗ =0, 则y 1y 2+(x 1+1)(x 2+1)=0,∴(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=0,③ 将②代入③整理得k =76>1, 经验证使得①成立,综上可知,存在k =76,使得以CD 为直径的圆过点E .【解析】本题考查椭圆的方程及直线与椭圆的位置关系,注意合理地进行等价转化,属于中档题.(Ⅰ)直线l 方程为bx −ay −ab =0,依题意可得:{ca =√63√a 2+b 2=√32,由此能求出椭圆的方程;(Ⅱ)假设存在这样的值,联立方程得(1+3k 2)x 2+12kx +9=0,再由根的判别式和根与系数的关系进行求解即可.17.【答案】解:(1)由题意得{b 2=13a2+14b2=1,解得{a =2b =1,所以椭圆E 的方程为x 24+y 2=1.(2)记A(x 1,y 1),B(x 2,y 2),由{x 24+y 2=1x =y +1, 消去x 得5y 2+2y −3=0. 所以y 1,2=−1或35,直线l 与x 轴的交点为(1,0),记为点P ,S =12|OP||y 1−y 2|=45.【解析】本题主要考查了椭圆的概念及标准方程,椭圆的性质及几何意义,直线与椭圆的位置关系,三角形面积的应用,属于简单题.(1)根据已知及椭圆的概念及标准方程,椭圆的性质及几何意义的计算,求出椭圆E 的方程;(2)根据已知及直线与椭圆的位置关系,三角形面积的计算,求出△AOB 的面积S .18.【答案】解:(1)∵c a =√32,a 2=b 2+c 2,∴a 2=4b 2,∴x 24b 2+y 2b 2=1,将M (√3,−12)代入椭圆C ,∴b 2=1, ∴椭圆C 方程为:x 24+y 2=1.(2)显然AB 斜率存在,设AB 为:y =k(x +4),{x 24+y 2=1,y =k(x +4)⇒(1+4k 2)x 2+32k 2x +64k 2−4=0,Δ=16−192k 2>0,∴k 2<112. 设A(x 1,y 1),B(x 2,y 2),D(x 1,−y 1), ∴x 1+x 2=−32k 21+4k2,x 1x 2=64k 2−41+4k 2,∵BD :y +y 1=y 2+y1x 2−x 1(x −x 1),∴y =0时x =x 1+x 2y 1−x 1y 1y 1+y 2=2kx 1x 2+4k(x 1+x 2)k(x 1+x 2)+8k=2k(64k 2−41+4k 2)+4k(−32k 21+4k 2)k(−32k 21+4k 2)+8k =128k 3−8k−128k 3−32k 3+8k+32k 3=−1,∴直线BD 过定点(−1,0).【解析】本题考查椭圆方程的求法,直线与椭圆的位置关系,直线的斜率的应用,考查转化思想以及计算能力.(1)根据点在椭圆上得3a 2+14b 2=1,与离心率联立方程组解得a 2=2,b 2=1,即得太严方程;(2)设直线l 的方程为y =k(x +4),A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=−32k 21+4k 2,x 1x 2=64k 2−41+4k 2求出BD 的方程,令y =0,解得横坐标,结合韦达定理化简可得横坐标为定值,即可证明直线BD 过定点.19.【答案】解:(1)根据题意,椭圆C 的短轴一个端点到右焦点的距离为3√2,则有a =3√2, 又由椭圆C 的离心率为√22,则有e =ca =√22,则有c=3,则b2=a2−c2=18−9=9,则椭圆的标准方程为:x218+y29=1;(2)设A(x1,y1),B(x2,y2).由(1)可得:椭圆的标准方程为:x218+y29=1,直线l的方程为:y=x−1,联立{x218+y29=1y=x−1,消去y得3x2−4x−16=0,则有x1+x2=43,x1x2=−163,|AB|=√1+12√(x1+x2)2−4x1x2=√2√169+643=4√263.【解析】本题考查椭圆的几何性质,直线与椭圆的位置关系,椭圆的标准方程,属基础题.(1)根据题意,由椭圆的几何性质可得e=ca =√22且a=3√2,解可得c的值,进而计算可得b的值,将a、b的值代入椭圆的标准方程,即可得答案;(2)联立直线与椭圆的方程,可得方程3x2−4x−16=0,结合根与系数的关系由弦长公式计算可得答案.20.【答案】解:(1)椭圆C1的方程为x24+y23=1的长轴长为4,设椭圆C2的方程为y2a2+x2b2=1(a>b>0),由题意可得b=2,e=ca =√32,a2−c2=4,解得a=4,b=2,c=2√3,可得椭圆C2的方程为y216+x24=1;(2)设M(x1,y1),N(x2,y2),△PON面积为△POM面积的2倍,可得|ON|=2|OM|,即有|x2|=2|x1|,联立{y =kx 3x 2+4y 2=12,消去y 可得x =±√123+4k2,即|x 1|=√123+4k 2,同样求得|x 2|=√164+k 2, 由√164+k 2=2√123+4k 2,解得k =±3, 由k >0,得k =3.【解析】本题考查椭圆的方程和性质及直线与椭圆位置关系,考查联立方程求交点,考查化简整理的运算能力,属于中档题. (1)由题意设椭圆C 2的方程为y 2a 2+x 2b 2=1(a >b >0),运用离心率公式和a ,b ,c 的关系,解方程即可得到所求方程;(2)设M(x 1,y 1),N(x 2,y 2),由题意可得|x 2|=2|x 1|,联立直线y =kx 和椭圆方程,求得交点的横坐标,解方程即可得到所求值.21.【答案】解:(1)设椭圆的焦距为2c(c >0).由题意得{a 2c=4,a 2=b 2+c 2,√a 2+b 2=√7,解得a 2=4,b 2=3. 所以椭圆的标准方程为:x 24+y 23=1.(2)方法一:由题意得直线PQ 不垂直于x 轴,设PQ 的方程为y =k(x −2),联立{y =k(x −2),x 24+y 23=1,消y 得(4k 2+3)x 2−16k 2x +16k 2−12=0. 又直线PQ 过点A(2,0),则方程必有一根为2,则x P =8k 2−64k 2+3. 代入直线y =k(x −2),得点P (8k 2−64k 2+3,−12k4k 2+3).联立{y =k(x −2),x =4,所以Q(4,2k).又以PQ 为直径的圆过原点,所以OP ⊥OQ , 则OP ⃗⃗⃗⃗⃗ ⋅OQ⃗⃗⃗⃗⃗⃗ =4⋅8k 2−64k 2+3+2k ⋅−12k 4k 2+3=8k 2−244k 2+3=0,解得k 2=3,所以k =±√3.所以直线PQ 的方程为√3x −y −2√3=0或√3x +y −2√3=0.方法二:设点P(x 0,y 0)(x 0≠2),所以直线PQ 方程为y =yx 0−2(x −2),与右准线x =4联立,得Q(4,2y 0x0−2).又以PQ 为直径的圆过原点,所以OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0, 所以4x 0+2y 02x0−2=0 ①,又x 024+y 023=1 ②,联立①②,解得x 0=65或x 0=2(舍),所以P (65,−4√35)或P (65,4√35). 所以直线PQ 的斜率为±√3,从而直线PQ 的方程为√3x −y −2√3=0或√3x +y −2√3=0.【解析】本题考查椭圆的标准方程,椭圆的性质以及直线与椭圆的位置关系,属于难题. (1)由题意列出关于a ,b ,c 的方程组,求解即可;(2)方法一:由题意得直线PQ 不垂直于x 轴,设PQ 的方程为y =k(x −2),联立{y =k(x −2),x 24+y23=1,求出P (8k 2−64k 2+3,−12k 4k 2+3),Q(4,2k).利用OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =4⋅8k 2−64k 2+3+2k ⋅−12k4k 2+3=8k 2−244k 2+3=0,求出k 即可求解;方法二:设点P(x 0,y 0)(x 0≠2),所以直线PQ 方程为y =yx 0−2(x −2),与右准线x =4联立,得Q(4,2y 0x−2).又以PQ 为直径的圆过原点,所以OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0,求出x 0=65,得到P (65,−4√35)或P (65,4√35).所以直线PQ 的斜率为±√3,即可求解.22.【答案】解:(1)由椭圆C:x 2a 2+y2b 2=1的离心率为12,右焦点与右准线的距离为3, 得c a =12,a 2c−c =3,解得c =1,a =2,所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),四边形OAQB 是平行四边形时OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ ; 当直线I 的斜率不存在时,直线l 过原点O ,此时OAB 三点共线,不符合题意: 当直线I 的斜率存在时,设直线l 的方程为y =k +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2, 将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意,所以Q 的坐标是(1,32),(−1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系. (1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =k +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.23.【答案】解:(1)由题意2a =4,∴a =2,∴ca =√32,∴c =√3,b 2=a 2−c 2=1,∴椭圆C 的方程为x 24+y 2=1;(2)设A(x 1,y 1),B(x 2,y 2), 把y =kx +2代入x 24+y 2=1,得(4k 2+1)x 2+16kx +12=0,Δ=(16k)2−4×12×(4k 2+1)=64(k 2−3)>0,即k 2>3, ∴x 1+x 2=−16k 1+4k 2,x 1x 2=121+4k 2,∵∠AOB 为直角,∴OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=0, ∴x 1x 2+(kx 1+2)(kx 2+2)=0, 即(k 2+1)x 1x 2+2k(x 1+x 2)+4=0, ∴12(k 2+1)1+4k 2−32k 21+4k 2+4=0,∴−4k 2+16=0,∴k 2=4,∴x 1+x 2=−16k1+4k 2=±3217,x 1x 2=121+4k 2=1217,∴|AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√5⋅√(3217)2−4817=4√6517, 故|AB|的长度4√6517.【解析】本题考查了椭圆方程与几何性质、直线与椭圆的位置关系等基础知识,属于中档题.(1)根据离心率和长轴长,可得a ,b ,然后即可写出椭圆方程;(2)联立直线与椭圆,利用韦达定理以及∠AOB =90°,求出k.再用弦长公式求出弦长|AB|.24.【答案】解:(1)由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,右焦点到右准线的距离为3.得{e =c a =12,a 2c −c =3解得{a =2,c =1所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),因为OAQB 为平行四边形,所以OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ , 则Q(x 1+x 2,y 1+y 2),当直线l 的斜率不存在时,直线l 过原点O ,此时O 、A 、B 三点共线,不符合题意: 当直线l 的斜率存在时,设直线l 的方程为y =kx +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2,将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意, 所以Q 的坐标是(±1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系,属于较难题.(1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =kx +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.25.【答案】解:(1)记椭圆E 的焦距为2c(c >0).因为右顶点A (a , 0)在圆C 上,右准线x =a 2c与圆C :(x −3)2+y 2=1相切.所以{(a −3)2+02=1 , | a 2c−3 |=1 ,解得{a =4 ,c =8,(舍去) { a =2 ,c =1 .于是b 2=a 2−c 2=3,所以椭圆方程为:x 24+y 23=1.(2)法1:设N (x N , y N ) , M (x M , y M ),显然直线l 的斜率存在,设直线l 的方程为:y =k (x −2). 由方程组 {y =k (x −2) , x 24+y 23=1消去y 得,(4k 2+3)x 2−16k 2x +16k 2−12=0.所以x N ⋅2=16k 2−124k 2+3,解得x N =8k 2−64k 2+3. 由方程组{ y =k (x −2) ,(x −3)2+y 2=1 ,消去y 得(k 2+1)x 2−(4k 2+6)x +4k 2+8=0 , 所以x M ⋅2=4k 2+8k 2+1,解得x M =2k 2+4k 2+1.因为AN =127AM ,所以2−x N =127(x M −2).即124k 2+3=127⋅21+k 2,解得 k =±1,所以直线l 的方程为x −y −2=0或 x +y −2=0.法2:设N (x N , y N ) , M (x M , y M ),当直线l 与x 轴重合时,不符题意. 设直线l 的方程为:x =ty +2 (t ≠0).由方程组{x =ty +2 , x 24+y 23=1消去x 得,(3t 2+4)y 2+12ty =0,所以y N =−12t3t 2+4 , 由方程组 {x =ty +2 ,(x −3)2+y 2=1消去x 得(t 2+1)y 2−2ty =0, 所以y M =2tt 2+1, 因为AN =127AM ,所以y N =−127y M ,即−12t3t 2+4=−127⋅2t t 2+1,解得 t =±1,所以直线l 的方程为x −y −2=0或 x +y −2=0.【解析】本题主要考查了椭圆的概念及标准方程,直线与椭圆的位置关系,直线与圆的位置关系及判定,直线的一般式方程,考查学生的计算能力和推理能力,属于较难题. (1)记椭圆E 的焦距为2c ,根据题意可知{ (a −3)2+02=1 ,| a 2c −3 |=1 ,从而即可得a ,c 的值,进而求得椭圆E 的方程.(2)法1:设N (x N , y N ) , M (x M , y M )且直线l 的方程为:y =k (x −2),从而联立直线和椭圆方程消去y 后可得x N =8k 2−64k 2+3,同理联立直线和圆可得x M =2k 2+4k 2+1,再根据AN =127AM 即可求得k 的值,从而求得直线l 的方程.法2:设N (x N , y N ) , M (x M , y M )且设直线l 的方程为:x =ty +2 (t ≠0),联立直线和椭圆方程消去x 可得y N =−12t3t 2+4,再联立直线和圆可得y M =2tt 2+1,从而据AN =127AM 即可求得t 的值,从而求得直线l 的方程.26.【答案】解:(1)由椭圆C:x 2a 2+y2b 2=1的离心率为12,右焦点与右准线的距离为3, 得c a =12,a 2c−c =3,解得c =1,a =2,所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),四边形OAQB 是平行四边形时OQ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ ; 当直线I 的斜率不存在时,直线l 过原点O ,此时OAB 三点共线,不符合题意: 当直线I 的斜率存在时,设直线l 的方程为y =k +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2, 将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意,所以Q 的坐标是(±1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系. (1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =k +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.27.【答案】解:(1)设椭圆E 焦距为2c ,则2c =|F 1F 2|=2√2,所以c 2=a 2−b 2=2, ① 又点(√3,√2)在椭圆E :x 2a 2+y 2b 2=1上,所以3a 2+2b 2=1,②联立①②解得{a 2=6b 2=4或{a 2=1b 2=−1(舍去),所以椭圆E 的方程为x 26+y 24=1;(2)设椭圆E 焦距为2c ,则F 1(−c,0),F 2(c,0),将x =a2代入x 2a 2+y 2b 2=1,得y 2=3b24,不妨设点P 在x 轴上方, 故点P 坐标为(a2,√3b2), 又点M 为PF 1中点,故点M 坐标为(a−2c 4,√3b4), 所以F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =(a−6c 4,√3b 4),OP ⃗⃗⃗⃗⃗ =(a 2,√3b2),由,得OP ⃗⃗⃗⃗⃗ ⋅F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =0, 即a−6c 4⋅a2+√3b4⋅√3b 2=0,化简得a 2−6ac +3b 2=0,将b 2=a 2−c 2代入得3c 2+6ac −4a 2=0, 即3(ca )2+6⋅ca −4=0, 所以3e 2+6⋅e −4=0, 解得e =−1±√213,因为e ∈(0,1),所以椭圆E 的离心率为e =√213−1.【解析】本题考查向量的数量积、椭圆的概念及标准方程、椭圆的性质及几何意义、直线与椭圆的位置关系,为基础题.(1)把点(√3,√2)代入椭圆方程,求出a ,b ,即可求出结果; (2)将x =a2代入x 2a2+y 2b 2=1,得出点P 坐标为(a 2,√3b2),得出点M 的坐标和相应向量的坐标,利用数量积,即可求出结果.28.【答案】解:(1)因为l ⊥x 轴,所以F 2(√2,0),由题意可得{2a 2+1b 2=1a 2−b 2=2,解得{a 2=4b 2=2,∴椭圆C 的方程为x 24+y 22=1.(2)直线BF 2的方程为y =x −√2. 由{y =x −√2x 24+y 22=1得点N 的纵坐标为√23.又| F 1F 2 |=2√2, ∴S △F 1BN =12×(√2+√23)×2√2=83.【解析】本题考查求椭圆的方程,三角形的面积,是直线与椭圆位置关系,属于基础题(1)由题意可得F 2(√2,0),进而得到{2a 2+1b 2=1a 2−b 2=2,求解即可得到椭圆C 的方程;(2)根据题意可得直线BF 2的方程为y =x −√2.联立直线方程和椭圆方程即可得到N 的纵坐标为√23.再根据| F 1F 2 |=2√2和三角形的面积公式即可得解.29.【答案】解:(1)设椭圆的半焦距长为c ,∴{ c a =121a 2+94b 2=1, 又∵a 2=b 2+c 2,∴{a =2b =√3,∴椭圆C 的方程为x 24+y 23=1;(2)设直线DE 的方程为x =ky −1,D(x 1,y 1),E(x 2,y 2),,联立{x =ky −13x 2+4y 2=12⇒3(ky −1)2+4y 2=12 ∴(3k 2+4)y 2−6ky −9=0 ∴{y 1+y 2=6k3k 2+4 ①y 1y 2=−93k 2+4 ②y 2=−37y 1 ③,由①③得{y 1=21k2(3k 2+4)y 2=−9k 2(3k 2+4)代入 ②21⋅9⋅k 24(3k 2+4)2=93k 2+4⇒k =±43综合图象知k =43∴l 的方程为3x −4y +3=0【解析】本题考查了椭圆的概念及标准方程、椭圆的性质及几何意义、直线与椭圆的位置关系和圆锥曲线中的面积问题,是中档题.(1)由离心率为12和(1,32)在椭圆上,再结合a 2=b 2+c 2,可得a 、b ,从而得出椭圆方程;(2)设直线DE 的方程为x =ky −1,由ΔAEF 与ΔBDF 的面积比为1:7,可得y 2y 1=−37,直线DE与椭圆联立,计算可得k的值,即可得出直线l的方程.30.【答案】解:(1)因为椭圆焦点坐标为F1(−√3,0),F2(√3,0),且过点P(−√3,12),所以2a=PF1+PF2=12+√494=4,所以a=2,从而b=√a2−c2=√4−3=1,故椭圆的方程为x24+y2=1;(2)设点M(x0,y0)(0<x0<2,0<y0<1),C(m,0),D(0,n),因为A(−2,0),且A,D,M三点共线,所以y0x0+2=n2,解得n=2y0x0+2,所以BD=1+2y0x0+2=x0+2y0+2x0+2,同理得AC=x0+2y0+2y0+1,因此,S ABCD=12AC⋅BD=12⋅x0+2y0+2x0+2⋅x0+2y0+2y0+1=(x0+2y0+2)2 2(x0+2)(y0+1)=x02+4y02+4x0y0+4x0+8y0+42(x0y0+x0+2y0+2),因为点M(x0,y0)在椭圆上,所以x024+y02=1,即x02+4y02=4,代入上式得:S ABCD=4x0y0+4x0+8y0+82(x0y0+x0+2y0+2)=2,∴四边形ABCD的面积为2.【解析】本题考查的是椭圆的标准方程和计划意义,直线与椭圆的位置关系,属于较难题.(1)由2a=PF1+PF2=12+√494=4得到a,再由焦点坐标可得到c,利用b=√a2−c2,即可得到b,从而得到椭圆E的标准方程;(2)设点M(x0,y0)(0<x0<2,0<y0<1),C(m,0),D(0,n),A,D,M三点共线,所以y0x0+2=n2,从而得到BD=1+2y0x0+2=x0+2y0+2x0+2,AC=x0+2y0+2y0+1,由S ABCD=12AC⋅BD,即可得到四边形ABCD的面积.。
椭圆问题的类型与解法
椭圆问题的类型与解法椭圆问题是近几年高考的热点内容之一。
可以这样毫不夸张地说,高考试卷中,每卷必有椭圆问题。
从题型上看,可能是选择题或填空题,也可能是大题,难度为中档或高档。
纵观近几年高考试卷,归结起来椭圆问题主要包括:①求椭圆的标准方程;②椭圆定义与几何性质的运用;③求椭圆离心率的值或取值范围;④与椭圆相关的最值问题;⑤直线与椭圆位置关系问题等几种类型。
各种类型问题结构上具有一定的特征,解答方法也有一定的规律可寻。
那么在实际解答椭圆问题时到底应该如何抓住问题的结构特征,快捷,准确的解答问题呢?下面通过典型例题的详细解析来回答这个问题。
【典例1】解答下列问题: D 1、如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 相交于点P ,则点P的轨迹是( )A 椭圆B 双曲线C 抛物线D 圆【解析】【知识点】①椭圆的定义与性质;②圆的定义与性质;③求点的轨迹方程的基本方法。
【解题思路】设点P (x ,y ),运用椭圆的定义与性质,结合问题条件可知点P 的轨迹是一个椭圆,从而得出选项。
【详细解答】设点P (x ,y ),纸片折叠后M 与F 重合,折痕为CD ,CD 与OM 相交于点P ,∴|PM|=|PF|,⇒|PF|+|PO|=|PM|+|PO|=|OM|是圆O 的半径为一个定值,∴点P 的轨迹是以2c=|OF|,2a=|OM|的椭圆,⇒A 正确,∴选A 。
2、根据下列条件求椭圆的标准方程:(1)焦点在x 轴上,且过点(2,0)和点(0,1); (2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近一个焦点的距离等于2; (3)已知P 点在以坐标轴为对称轴的椭圆上,点P 过P 作长轴的垂线恰好过椭圆的一个焦点;(4)已知椭圆的长轴长是短轴长的3倍,且过点A (3,0),并且以坐标轴为对称轴,求椭圆的标准方程。
椭圆与双曲线12个常考二级结论与模型(学生版)
椭圆与双曲线12个常考二级结论与模型本份讲义以选填中档题和压轴题为主近4年考情(主要以新高考为主)考题示例考点分析关联考点2023年新高考I卷,第16题求双曲线离心率,焦点三角形+几何性质双曲线的焦点三角形问题2023年新高考II卷,第5题椭圆的焦点三角形面积比椭圆的焦点三角形面积2022年新高考I卷,第16题椭圆焦点弦公式,双焦点三角形模型椭圆的定义,离心率,垂直平分线性质2022年新高考II卷,第16题椭圆中点弦问题(点差法)由弦长关系求直线方程2021年新高考I卷,第5题椭圆中的最值问题由基本不等式求最值,椭圆的定义2020年新高考,第22题平移+齐次化(手电筒模型)由斜率积为定值求直角过定点2022年甲卷(理),第10题椭圆第三定义(点差法)斜率积为定值求离心率2023乙卷·理11·文12题点差法,验证双曲线弦中点是否存在点差法求直线斜率,判断直线与双曲线是否有2个交点【题型1】点差法(弦中点模型)【题型2】点差法(第三定义)【题型3】双曲线焦点三角形内切圆【题型4】焦点弦长与焦半径公式【题型5】焦点弦被焦点分为定比【题型6】 焦点三角形+几何性质求离心率【题型7】 利用对称性【题型8】渐近线的垂线模型【题型9】双焦点三角形倒边模型【题型10】利用邻补角余弦值为相反数构造方程(2次余弦)【题型11】取值范围问题【题型12】椭圆与双曲线共焦点问题2023·新高考1卷T 161已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ⊥F 1B ,F 2A =-23F 2B ,则C 的离心率为.2022·新高考2卷16题2已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且|MA |=|NB |,|MN |=23,则l 的方程为.2022年新高考I 卷第16题3已知椭圆C :x 2a 2+y 2b2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE |=6,则△ADE 的周长是.4(2023·全国·高考真题)已知椭圆C :x 23+y 2=1的左、右焦点分别为F 1,F 2,直线y =x +m 与C 交于A ,B 两点,若△F 1AB 面积是△F 2AB 面积的2倍,则m =( ).A.23B.23C.-23D.-232022年全国甲卷(理)T 10--第三定义5椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.132023全国乙卷·理11·文126设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.1,1B.-1,2C.1,3D.-1,-47(2021·全国·高考真题)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则MF 1 ⋅MF 2 的最大值为()A.13B.12C.9D.6【题型1】点差法(弦中点模型)中点弦模型(圆锥曲线中的垂径定理)k AB ⋅k OM =e 2-1k AB ⋅k OM =-1½椭圆垂径定理(中点弦模型):已知A ,B 是椭圆x 2a 2+y 2b2=1a >b >0 上任意2点,且弦AB 不平行x 轴,M 为线段AB 中点,则有k AB ⋅k OM =-b 2a2=e 2-1证明(点差法):设A (x 1,y 1),B (x 2,y 2),则M x 1+x 22,y 1+y 22,k OM =y 1+y 2x 1+x 2,k AB =y 1-y 2x 1-x 2,k AB ⋅k OM =y 12-y 22x 12-x 22∵A ,B 在椭圆上,代入A ,B 坐标得x 12a 2+y 12b2=1①x 22a 2+y 22b2=1②两式相减得:x 12-x 22a 2+y 12-y 22b 2=0,整理得y 12-y 22x 12-x 22=-b 2a 2∴k AB ⋅k OM =-b 2a2=e 2-1【思考】(1)椭圆焦点在y 轴上时,结论是否仍然成立?;(2)在双曲线中是否有类似的性质?(1)设A (x 1,y 1),B (x 2,y 2),则Mx 1+x 22,y 1+y 22 ,仍有k OM =y 1+y 2x 1+x 2,k AB =y 1-y 2x 1-x 2,k AB ⋅k OM =y 12-y 22x 12-x 22∵A ,B 在椭圆x 2b 2+y 2a2=1上,代入A ,B 坐标得①:x 12b 2+y 12a 2=1②:x 22b 2+y 22a2=1两式相减得:x 12-x 22b 2+y 12-y 22a 2=0,整理得y 12-y 22x 12-x 22=-a 2b 2∴k AB ⋅k OM =-a 2b2(2)∵A ,B 在双曲线x 2a 2-y 2b2=1上,代入A ,B 坐标得x 12a 2-y 12b 2=1①x 22a 2-y 22b2=1②两式相减得:x 12-x 22a 2=y 12-y 22b 2,整理得y 12-y 22x 12-x 22=b 2a2可以看到,这一等式建立了二次曲线弦的斜率与弦的中点坐标之间关系式.也就是说,已知弦的中点,可求弦的斜率;已知斜率,可求弦的中点坐标.同时也不难得出这样的经验,当题目问题涉及到弦的斜率与弦的中点时,就可以考虑“点差法”.诸如求中点弦的方程,弦中点的轨迹,垂直平分线等等,这些都是较为常见题型.注:抛物线中同样存在类似性质:k AB ⋅y M =p2024·江西鹰潭·一模1已知椭圆E :x 2a 2+y 2b2=1a >b >0 的左焦点为F ,如图,过点F 作倾斜角为60°的直线与椭圆E 交于A ,B 两点,M 为线段AB 的中点,若5FM =OF (O 为坐标原点),则椭圆E 的离心率为()A.33B.63C.223D.2772024·湖南邵阳·二模1已知直线l :x -2y -2=0与椭圆C :x 2a 2+y 2b2=1(a >b >0)相交于A ,B 两点.若弦AB 被直线m :x +2y =0平分,则椭圆C 的离心率为()A.12B.24C.32D.542024·宁波十校·3月适应性考试1已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 ,斜率为-19的直线与E 的左右两支分别交于A ,B 两点,点P 的坐标为-1,1 ,直线AP 交E 于另一点C ,直线BP 交E 于另一点D .若直线CD 的斜率为-19,则E的离心率为.2024·福建龙岩·一模1斜率为-1的直线与椭圆C :x 2a 2+y 2b2=1(a >b >0)交于A ,B 两点,点T 是椭圆上的一点,且满足TA ⊥TB ,点P ,Q 分别是△OAT ,△OBT 的重心,点R 是△TAB 的外心.记直线OP ,OQ ,OR 的斜率分别为k 1,k 2,k 3,若k 1k 2k 3=-18,则椭圆C 的离心率为.2024·浙江温州·一模1斜率为1的直线与双曲线E :x 2a 2-y 2b2=1(a >0,b >0)交于两点A ,B ,点C 是曲线E 上的一点,满足AC ⊥BC ,△OAC 和△OBC 的重心分别为P ,Q ,△ABC 的外心为R ,记直线OP ,OQ ,OR 的斜率为k 1,k 2,k 3,若k 1k 2k 3=-8,则双曲线E 的离心率为.2024·吉林白山·一模1不与坐标轴垂直的直线l 过点N x 0,0 ,x 0≠0,椭圆C :x 2a 2+y 2b2=1a >b >0 上存在两点A ,B 关于l 对称,线段AB 的中点M 的坐标为x 1,y 1 .若x 1=2x 0,则C 的离心率为()A.33B.12C.22D.322024·浙江省强基联盟联考1(多选)已知抛物线E :y 2=4x 上的两个不同的点A x 1,y 1 ,B x 2,y 2 关于直线x =ky +4对称,直线AB 与x 轴交于点C x0,0 ,下列说法正确的是()A.E 的焦点坐标为1,0B.x +xC.x 1x 2是定值D.x 0∈-2,2【题型2】点差法(第三定义)第三定义k PA ⋅k PB =-1k PA ⋅k PB =e 2-1½点差法是不是只能解决同时与中点和斜率有关的问题呢?其实不然.其实点差法的内核还是“设而不求、整体代换”的思想,建立的是曲线上两点横纵坐标和差之间的联系,这其实也是第三定义的体现.第三定义:平面内与两个定点A 1(-a ,0),A 2(a ,0)的斜率乘积等于常数e 2-1的点的轨迹叫做椭圆或双曲线(不含两个顶点).其中两定点分别为椭圆或双曲线的顶点.当常数大于-1小于0时为椭圆,此时e 2-1=-b 2a 2;当常数大于0时为双曲线,此时e 2-1=b 2a 2.【第三定义推广】:平面内与两个关于原点对称的点A (m ,n ),B (-m ,-n )的斜率乘积等于常数e 2-1的点的轨迹叫做椭圆或双曲线.当常数大于-1小于0时为椭圆,此时e 2-1=-b 2a2;当常数大于0时为双曲线,此时e 2-1=b 2a2.【证明】A ,B 是椭圆x 2a 2+y 2b 2=1a >b >0 上的一组对称点,P 为椭圆上任意点,则有k PA ⋅k PB =-b 2a2=e 2-1证明(点差法):设P x1,y 1 ,A (x 2,y 2),B (-x 2,-y 2),k PA =y 1-y 2x 1-x 2,k PB =y 1+y 2x 1+x 2,k PA ⋅k PB =y 12-y 22x 12-x 22∵P ,A 在椭圆上,代入坐标得x 12a 2+y 12b2=1①x 22a 2+y 22b2=1②两式相减得:x 12-x 22a 2+y 12-y 22b 2=0,整理得y 12-y 22x 12-x 22=-b 2a 2∴k PA ⋅k PB =y 12-y 22x 12-x 22=-b 2a2=e 2-1法二:通过椭圆的垂径定理转换中点弦和第三定义本质上是一样的k PA ⋅k PB =k OM ⋅k PB =-b 2a2=e 2-1【思考1】在双曲线中是否有类似的性质?设P x 1,y 1 ,A (x 2,y 2),B (-x 2,-y 2),k PA =y 1-y 2x 1-x 2,k PB =y 1+y 2x 1+x 2,k PA ⋅k PB =y 12-y 22x 12-x 22x 12a 2-y 12b2=1①x 22a 2-y 22b2=1②两式相减得:x 12-x 22a 2-y 12-y 22b 2=0,整理得y 12-y 22x 12-x 22=b 2a2∴k PA ⋅k PB =y 12-y 22x 12-x 22=b 2a2=e 2-1法二:构造中位线设P x ,y ,B (x ,y )∵P ,B 在双曲线x 2a 2-y 2b2=1上,代入双曲线方程得x 12a 2-y 12b2=1①x 22a 2-y 22b2=1②两式相减得:x 12-x 22a 2=y 12-y 22b 2,整理得y 12-y 22x 12-x 22=b 2a2∴k PA ⋅k PB =k PB ⋅k OM =b 2a2=e 2-1同理可得,当焦点在y 轴上时,椭圆有:k PA ⋅k PB =-a 2b 2;双曲线有:k PA ⋅k PB =a 2b21已知M 为双曲线x 2a 2-y 2b2=1(a >0,b >0)的右顶点,A 为双曲线右支上一点,若点A 关于双曲线中心O 的对称点为B ,设直线MA 、MB 的倾斜角分别为α、β,且tan α⋅tan β=14,则双曲线的离心率为()A.5B.3 C.62D.522已知双曲线C 1:x 220-y 210=1的左、右顶点分别为A ,B ,抛物线C 2:y 2=4x 与双曲线C 1交于C ,D 两点,记直线AC ,BD 的斜率分别为k 1,k 2,则k 1k 2为.3已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1-2,0 ,F 22,0 ,A 为椭圆C 的左顶点,以F 1F 2为直径的圆与椭圆C 在第一、二象限的交点分别为M ,N ,若直线AM ,AN 的斜率之积为13,则椭圆C 的标准方程为()A.x 23+y 2=1B.x 26+y 22=1C.x 29+y 25=1D.x 28+y 24=12024·浙江绍兴·二模1已知点A ,B ,C 都在双曲线Γ:x 2-y 2=1a >0,b >0 上,且点A ,B 关于原点对称,∠CAB =90°.过A 作垂直于x 轴的直线分别交Γ,BC 于点M ,N .若AN =3AM,则双曲线Γ的离心率是()A.2B.3C.2D.232024届·河南天一大联考(六)·T 141已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点为F ,左、右顶点分别为A 1、A 2,点M 在C 上运动(与A 1、A 2枃不重合),直线MA 2交直线x =54a 于点N ,若FN ⋅MA 1 =0恒成立,则C 的离心率为.2024·江苏镇江·开学考试1已知过坐标原点O 且异于坐标轴的直线交椭圆x 2a 2+y 2b2=1(a >b >0)于P ,M 两点,Q 为OP 中点,过Q 作x 轴垂线,垂足为B ,直线MB 交椭圆于另一点N ,直线PM ,PN 的斜率分别为k 1,k 2,若k 1k 2=-12,则椭圆离心率为()A.12B.33C.32D.632024届·湖北省腾云联盟高三联考1已知A ,B 是椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点,P 是双曲线x 2a 2-y 2b2=1在第一象限上的一点,直线PA ,PB 分别交椭圆于另外的点M ,N .若直线MN 过椭圆的右焦点F ,且tan ∠AMN =3,则椭圆的离心率为.江苏省盐城中学2023届高三三模数学试题2已知A 、B 是椭圆x 2a 2+y 2b 2=1a >b >0 与双曲线x 2a 2-y 2b2=1a >0,b >0 的公共顶点,P 是双曲线上一点,PA ,PB 交椭圆于M ,N .若MN 过椭圆的焦点F ,且tan ∠AMB =-3,则双曲线的离心率为()A.2B.3C.2D.233【题型3】双曲线焦点三角形内切圆一、单个焦点三角形的内切圆:圆心在直线x=±a上证明:不妨设点P在双曲线C右支上的任意一点,设ΔPF1F2的内切圆的圆心I在三边上的投影分别为B,E,D因为|PD|=|PE|,|F1D|=|F1B|,|F2B|=|F2E|,由双曲线定义,可知:2a=|PF1|-|PF2|=|PD|+|F1D|-(PE|+|F2E|)=|F1D|-|F2E|=|F1B|-|F2B|又因为|F1B|+|F2B|=2c,所以|F1B|=a+c=|F1O|+|OB|,所以|OB|=a。
高考数学专题《椭圆》习题含答案解析
专题9.3 椭圆1.(浙江高考真题)椭圆的离心率是( )ABC .D .【答案】B 【解析】,选B .2.(2019·北京高考真题)已知椭圆22221x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B.3.(上海高考真题)设p 是椭圆2212516x y+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A.4B.5C.8D.10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .4.(2020·四川资阳�高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( )A .22143x y +=B .22186x y +=C .22142x y +=D .22184x y +=22194x y +=2359e ==练基础【答案】A 【解析】依题意,可得2131412a ⎧+=⎪⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=.故选:A5.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b+=>>,焦距为2c,直线:l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( )AB .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A,则y x =由2AB c =,可知OA c ==c =,解得x =,所以1,3A c ⎫⎪⎪⎭把点A 代入椭圆方程得到22221331c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=,因01e <<,所以可得e =故选A 项.6.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆2211615y x+=的上、下焦点,在椭圆上是否存在点P ,使11PF ,121F F ,21PF 成等差数列?若存在求出1PF 和2PF 的值;若不存在,请说明理由.【答案】不存在;理由见解析.【分析】假设存在点P 满足题设,解方程组1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩得1PF 和2PF 的值,再检验即得解.【详解】解:假设存在点P 满足题设,则由2211615y x +=及题设条件有1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩,即121288PF PF PF PF ⎧+=⎪⎨=⎪⎩,解得1244PF PF ⎧=+⎪⎨=-⎪⎩,或1244PF PF ⎧=-⎪⎨=+⎪⎩由2211615y x +=,得4a =,1c =.则135a c PF a c -=≤≤+=,235a c PF a c -=≤≤+=.∵45+>,43-,∴不存在满足题设要求的点P .7.(2021·全国高三专题练习)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点i P (1i =,2,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,求a 的取值范围.【答案】11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦ 【分析】分情况讨论等差数列是递增,还是递减,分别列出不等式求解范围.【详解】解:注意到椭圆的对称性及i FP 最多只能两两相等,可知题中的等差数列可能是递增的,也可能是递减的,但不可能为常数列,即0d ≠.先考虑一般情形,由等差数列的通项公式有()11n FP FP n d =+-,(n *∈N ),因此11n FP FP n d-=+.对于椭圆2222x y a b+(0a b >>),其焦半径的最大值是a c +,最小值是a c -(其中c =.当等差数列递增时,有n FP a c ≤+,1FP a c ≥-.从而()12n FP FP a c a c c -≤+--=.再由题设知1c =,且21n ≥,故2211d ≤+,因此1010d <≤.同理,当等差数列递减时,可解得1010d -≤<,故所求d 的取值范围为11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.8.(2021·全国高三专题练习)已知定点()2,2A -,点2F 为椭圆2212516x y +=的右焦点,点M 在椭圆上移动时,求2AM MF +的最大值;【答案】10+【分析】由椭圆定义,转化1121010A MF M MF AM AF ≤+=-++,即得解【详解】如图所示,设1F 是左焦点,则()13,0F -,1121010A MF M MF AM AF ≤+=-++,=∴10AM MF +≤+当点F 1在线段AM 上时,等号成立,即AM MF +的最大值为10.9.(2021·云南师大附中高三月考(理))椭圆C : 22221(0)x y a b a b +=>>,且点A (2,1)在椭圆C 上,O 是坐标原点.(1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA ,若l 与椭圆C 交于B , D 两点,求弦BD 的长度.【答案】(1)22182x y C +=:;(2【分析】(1)利用离心率和点在椭圆上可求出椭圆的标准方程;(2)先利用直线垂直的判定得到直线l 的斜率和方程,联立直线和椭圆的方程,消元得到关于x 的一元二次方程,进而求出交点坐标,再利用两点间的距离公式进行求解.【详解】(1)由e =得:12c b a ==,,又点(21)A ,在椭圆上,所以224114a a +=,得a =b =所以椭圆的方程是22182x y C +=:.(2)直线OA 的方程是12y x =,因为l OA ⊥,且l 过点O ,所以直线l 的方程是2y x =-,与椭圆联立,得:2178x =,即x =所以B D ⎛ ⎝,,则||BD =10.(2021·南昌大学附属中学高二月考)已知()()122,0,2,0F F -是椭圆()222210x y a b a b+=>>两个焦点,且2259a b =.(1)求此椭圆的方程;(2)设点P 在椭圆上,且123F PF π∠=,求12F PF △的面积.【答案】(1)此椭圆的方程为22195x y +=;(2)12F PF △【分析】(1)由已知条件求出椭圆中229,5a b ==即可得到椭圆方程;(2)结合椭圆的定义以及余弦定理的知识求出12PF PF ⋅的值,运用三角形面积公式即可求解.【详解】(1)因为()()122,0,2,0F F -是椭圆()222210x y a b a b+=>>两个焦点,所以2224c a b =-=,①又因为2259a b =,②所以由①②可得229,5a b ==,所以此椭圆的方程为22195x y +=.(2)设()12,,,0PF m PF n m n ==>,由椭圆定义可知26m n a +==,③在12F PF △中,由余弦定理得()2222cos23m n mn c π+-=,即2216m n mn +-=,④由③④式可得,203mn =,所以121120sin 2323F PF S mn π==⨯=△即12F PF △1.(2021·全国高二课时练习)已知椭圆()22122:10x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得过点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是()A .1,12⎡⎫⎪⎢⎣⎭B.C.⎫⎪⎪⎭D.⎫⎪⎭【答案】C练提升【分析】若长轴端点P ',由椭圆性质:过P 的两条切线互相垂直可得45AP O α'=∠≤︒,结合sin b aα=求椭圆离心率的范围.【详解】在椭圆1C 的长轴端点P '处向圆2C 引两条切线P A ',P B ',若椭圆1C 上存在点P ,使过P 的两条切线互相垂直,则只需90AP B '∠≤︒,即45AP O α'=∠≤︒,∴sin sin 45b a α=≤︒=222a c ≤,∴212e ≥,又01e <<,1e ≤<,即e ⎫∈⎪⎪⎭.故选:C2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,经过原点的直线与C 交于A ,B 两点,总有120AFB ∠≥︒,则椭圆C 离心率的取值范围为______.【答案】10,2⎛⎤ ⎥⎝⎦【解析】如图,设椭圆右焦点为2F ,由对称性知2AFBF 是平行四边形,22AF F BFF ∠=∠,∵120FB ∠≥︒,∴260FAF ∠≤︒,设AF m =,2AF n =,由椭圆定义知2m n a +=,则22()4m n mn a +≤=,当且仅当m n =时等号成立,在2AFF V 中,由余弦定理得2222222222222()244444cos 11122222m n FF m n mn c a c a c FAF emn mn mn a +-+----∠===-≥-=-,又260FAF ∠≤︒,21cos 2FAF ∠≥,∴21122e -≥,解得102e <≤.故答案为:10,2⎛⎤ ⎥⎝⎦.3.(2019·浙江高三月考)已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B =,则k =___.1 【解析】由于点2F 关于直线y x =对称的点Q 在椭圆上,由于y x =的倾斜角为π4,画出图像如下图所示,由于O 是坐标原点,根据对称性和中位线的知识可知12QF F ∆为等腰直角三角形,且Q为短轴的端点,故离心率πcos 4c a ==.不妨设,a b c t ===,则椭圆方程化为222220x y t +-=,设直线AB 的方程为10x my t m k ⎛⎫=-=> ⎪⎝⎭,代入椭圆方程并化简得()222220my mty t +--=.设()()1122,,,A x y B x y ,则12222mty y m +=+①,21222t y y m -⋅=+②.由于113AF F B = ,故123y y =-③.解由①②③组成的方程组得1m =,即11,1k k==.故填:(1;(2)1.4.(2019·浙江温州中学高三月考)已知点P 在圆22680x y y +-+=上,点Q 在椭圆()22211x y a a+=>上,且PQ 的最大值等于5,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为F ,则PQ QF +的最大值等于__________.5+【解析】22680x y y +-+=化简为22(3)1x y +-=,圆心(0,3)A .PQ 的最大值为5等价于AQ 的最大值为4设(,)Q x y ,即22(3)16x y +-≤,又()22211xy a a+=>化简得到222(1)670(11)a y y a y --+-≤-≤≤ 当1y =-时,验证等号成立对称轴为231x a =-满足231,21x a a =≤-≤-故12a <≤22222211314c a e e a a a -===-≤∴≤当2a =时,离心率有最大值,此时椭圆方程为2214x y +=,设左焦点为1F11141455PQ QF PQ QF AQ QF AF +=+-≤++-≤+=+当1,,,A F P Q 共线时取等号.和5+5.(2020·浙江高三月考)已知P 是椭圆2222111x y a b +=(110>>a b )和双曲线2222221x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123F PF π∠=,则12e e ⋅的最小值为________..【解析】根据椭圆与双曲线的对称性,不妨设点P 在第一象限,那么12PF PF >,因为椭圆与双曲线有公共焦点,设椭圆与双曲线的半焦距为c ,根据椭圆与双曲线的定义,有:1212+=PF PF a ,1222-=PF PF a ,解得112=+PF a a ,212=-PF a a ,在12F PF ∆中,由余弦定理,可得:2221212122cos3π=+-F F PF PF PF PF ,即222121212124()()()()=++--+-c a a a a a a a a ,整理得2221243=+c a a ,所以22121134+=e e ,又2212113+≥e e ,所以12≥e e .6.(2020·浙江高三其他)已知当动点P 到定点F (焦点)和到定直线0x x =的距离之比为离心率时,该直线便是椭圆的准线.过椭圆2214x y +=上任意一点P ,做椭圆的右准线的垂线PH(H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是___.【答案】⎫⎪⎪⎭【解析】由题可知:椭圆2214x y +=的右准线方程为x =设()()00,,,P x y Q x y,所以点0⎫⎪⎭H y 由λ=HQ PH ,所以λ=HQPH0⎛⎫=-- ⎪⎝⎭ HQ x y y,0,0⎫=⎪⎭PH x 又λ= HQ PH,所以00,0λ⎛⎫⎫-=- ⎪⎪⎝⎭⎭x y y x所以00x y y==由220014x y +=221=y 则点Q221+=y 设点Q 的轨迹的离心率e则2222411144λλλ-==-e 由1λ≥,所以213144λ-≥所以234e ≥,则e ≥,又1e <所以⎫∈⎪⎪⎭e故答案为:⎫⎪⎪⎭7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z 轴上,离心率e =知点30,2P ⎛⎫⎪⎝⎭,求椭圆方程,并求椭圆上到点O 的距离的点的坐标.【答案】2214x y +=;12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.【分析】设以P 点为圆心的圆与椭圆相切,结合判别式等于零,参数值可确定,符合条件的两个点的坐标也可求得.【详解】∵e =c a =2234c a =.∵222a c b -=,∴2214a b =,224a b =,∴设椭圆方程为222214x y b b+=①又∵30,2P ⎛⎫⎪⎝⎭,则可构造圆22372x y ⎛⎫+-= ⎪⎝⎭. ②此圆必与椭圆相切,如图所示,由①②整理得221933404y y b ++-=.∵椭圆与圆相切,∴219912404b ⎛⎫∆=--= ⎪⎝⎭,③ ∴1b =,则2a =.则所求椭圆方程为2214x y +=. ④把1b =代入方程③可得12y =-,把12y =-代入④得x =∴椭圆上到点P的点的坐标为12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.8.(2021·全国高三专题练习)椭圆22194x y +=的焦点为1F 、2F ,点P 为其上动点,当12F PF ∠为钝角时,求点P 横坐标的取值范围.【答案】⎛ ⎝【分析】当12F PF ∠为直角时,作以原点为圆心,2OF 为半径的圆,若该圆与已知椭圆相交,则圆内的椭圆弧所对应的x 的取值范围即为所求点P 横坐标的取值范围.【详解】22194x y +=的焦点为1(F、2F ,如图所示:A 、B 、C 、D 四点,此时12F AF ∠、12F BF ∠、12F CF ∠、12F DF ∠都为直角,所以当角的顶点P 在圆内部的椭圆弧上时,12F PF ∠为钝角,由22221945x y x y ⎧+=⎪⎨⎪+=⎩,解得x x ==.因为椭圆和圆都关于坐标轴对称,所以点P横坐标的取值范围是⎛ ⎝.9.(2021·全国)(1)已知1F ,2F 是椭圆22110064x y+=的两个焦点,P是椭圆上一点,求12PF PF ⋅的最大值;(2)已知()1,1A ,1F 是椭圆225945x y +=的左焦点,点P 是椭圆上的动点,求1PA PF +的最大值和最小值.【答案】(1)100;(2)1||||PA PF +的最大值为66【分析】(1)利用椭圆定义和基本不等式求12||||PF PF ⋅的最值;(2)求1||||PA PF +的最值时,利用椭圆的定义将其转化为求2||||PF PA -的最值,显然当P ,A ,2F 三点共线时取得最值.【详解】(1)∵10a =,1220||||PF PF =+≥,当且仅当12||||PF PF =时取等号,∴12||||100PF PF ⋅≤,当且仅当12||||PF PF =时取等号,∴12||||PF PF ⋅的最大值为100.(2)设2F 为椭圆的右焦点,225945x y +=可化为22195x y +=,由已知,得12||||26PF PF a +==,∴12||6||PF PF =-,∴()12||||6||||PA PF PF PA +=--.①当2||||PA PF >时,有220||||||PA PF AF <-≤,等号成立时,1||||PA PF +最大,此时点P 是射线2AF 与椭圆的交点,1||||PA PF +的最大值是6+②当2||||PA PF <时,有220||||||PF PA AF <-≤,等号成立时,1||||PA PF +最小,此时点P 是射线2F A 与椭圆的交点,1||||PA PF +的最小值是6综上,可知1||||PA PF +的最大值为6610.(2021·贵州高三月考(文))已知椭圆C :22221(0)x y a b a b +=>>,直线l经过椭圆C 的右焦点F 与上顶点,原点O 到直线l (1)求椭圆C 的方程;(2)斜率不为0的直线n 过点F ,与椭圆C 交于M ,N 两点,若椭圆C 上一点P 满足MN = ,求直线n 的斜率.【答案】(1)2212x y +=;(2)±1.【分析】(1)由已知条件可得c a bc a⎧=⎪⎪⎨⎪=⎪⎩再结合222a b c =+,可求出,a b ,从而可求得椭圆方程,(2)设直线n 的方程为1x my =+,设点()()1122,,,M x y N x y ,将直线方程与椭圆方程联立方程组,消去x,利用根与系数的关系,结合MN =表示出点P 的坐标,再将其坐标代入椭圆方程中可求得直线n 的斜率【详解】(1)由题意可得椭圆C 的右焦点(c,0)F 与上顶点(0,)b ,所以直线l 为1x yc b+=,即0bx cy bc +-=,因为椭圆C,原点O 到直线0bx cy bc +-=,所以c a bc a⎧=⎪⎪⎨⎪=⎪⎩且222a b c =+,解得1b c ==,a =所以椭圆C 的方程为2212x y +=.(2)因为直线n 的斜率不为0,所以可设直线n 的方程为1x my =+.设点()()1122,,,M x y N x y ,联立方程22220,1,x y x my ⎧+-=⎨=+⎩得()222210my my ++-=,则12122221,22m y y y y m m +=-=-++.因为MN =,所以))2121P x x y y ⎫--⎪⎪⎭, 将点P 的坐标代入椭圆方程得1212223x x y y +=-,即()()121221123my my y y +++=-,解得21m =, 故直线n 的斜率为±1.练真题1.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A.⎫⎪⎪⎭B .1,12⎡⎫⎪⎢⎣⎭C.⎛ ⎝D .10,2⎛⎤ ⎥⎝⎦【答案】C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .2.(2018·全国高考真题(理))已知,是椭圆的左,右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为( )A .B .C .D .【答案】D 【解析】因为为等腰三角形,,所以PF 2=F 1F 2=2c,由得,,1F 2F 22221(0)x y C a b a b+=>>:A C P A 12PF F △12120F F P ∠=︒C 2312131412PF F △12120F F P ∠=︒AP 222tan sin cos PAF PAF PAF ∠=∴∠=∠=由正弦定理得,所以,故选D.3.(2019·全国高考真题(文))已知椭圆C 的焦点为,过F 2的直线与C 交于A ,B 两点.若,,则C 的方程为( )A. B. C. D.【答案】B 【解析】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得.所求椭圆方程为,故选B .法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B .4.(2019·全国高考真题(文))设为椭圆的两个焦点,为上2222sin sin PF PAF AF APF ∠=∠22214,π54sin(3c a c e a c =∴==+121,01,0F F -(),()222AF F B =││││1AB BF =││││2212x y +=22132x y +=22143x y +=22154x y +=2F B n =212,3AF n BF AB n ===121224,22a BF BF n AF a AF n =+=∴=-=1AF B △22214991cos 2233n n n F AB n n +-∠==⋅⋅12AF F △2214422243n n n n +-⋅⋅⋅=n =22224,,312,a n a b a c ∴==∴=∴=-=-=∴22132x y +=2F B n =212,3AF n BF AB n ===121224,22a BF BF n AF a AF n =+=∴=-=12AF F △12BF F △2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩2121,AF F BF F ∠∠2121cos cos 0AF F BF F ∴∠+∠=2121cos cos AF F BF F ∠∠,223611n n +=n =22224,,312,a n a b a c ∴==∴=∴=-=-=∴22132x y +=12F F ,22:+13620x y C =M C一点且在第一象限.若为等腰三角形,则的坐标为___________.【答案】【解析】由已知可得,.∴.设点的坐标为,则,又,解得,,解得(舍去),的坐标为.5.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>(1)证明:a;(2)若点9,10M ⎛ ⎝在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程;②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【分析】(1)由ba=可证得结论成立;(2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程;②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程.【详解】12MF F △M (2222236,20,16,4a b c a b c ==∴=-=∴=11228MF F F c ∴===24MF =M ()()0000,0,0x y x y >>121200142MF F S F F y y =⋅⋅=△12014,42MF F S y =⨯=∴=△0y =20136x ∴=03x =03x =-M \((1)c e a =====b a ∴=a ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝,可得b >设点()11,P x y 、()22,Q x y,则121292102x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y y x x +=+由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=,所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝,所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝,即y =所以,直线l0y -=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥ ,而()11,OP x y = ,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.6. (2020·天津高考真题)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-.【解析】(Ⅰ) 椭圆()222210x ya b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ) 直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在,设直线AB 的斜率为k ,则直线AB 的方程为3y kx +=,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+.将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++,所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-.。
椭圆的几何性质及其综合问答
椭圆的几何性质一、概念及性质1.椭圆的“范围、对称性、顶点、轴长、焦距、离心率及范围、a ,b ,c 的关系”;2.椭圆的通经:3.椭圆的焦点三角形的概念及面积公式:4.椭圆的焦半径的概念及公式:主要用来求离心率的取值范围,对于此问题也可以用下列性质求解:c a PF c a +≤≤-1.5.直线与椭圆的位置关系:6.椭圆的中点弦问题:【注】:椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大,高考对椭圆几何性质的考查主要有以下三个命题角度:(1)根据椭圆的性质求参数的值或范围; (2)由性质写椭圆的标准方程; (3)求离心率的值或范围.题型一:根据椭圆的性质求标准方程、参数的值或范围、离心率的值或范围.【典例1】求适合下列条件的椭圆的标准方程:(1)经过点)2,0(),0,3(--Q P ;(2)长轴长等于20,离心率等于53. 【典例2】求椭圆400251622=+y x 的长轴和短轴长、离心率、焦点坐标和顶点坐标.【典例3】已知A ,P ,Q 为椭圆C :)0(12222>>=+b a b y a x 上三点,若直线PQ 过原点,且直线AP ,AQ 的斜率之积为21-,则椭圆C 的离心率为( )A.22B.21C.42D.41【练习】(1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)(2)椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D .1925或21(3)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.【典例4】已知F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点,P 为椭圆上任意一点,且215PF PF =,则该椭圆的离心率的取值范围是练习:如图,把椭圆1162522=+y x 的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分与P 1,P 2,…,P 7七个点,F 是椭圆的一个焦点,则721PF PF PF +++Λ=【典例5】若 “过椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点F 1,F 2的两条互相垂直的直线l 1,l 2的交点在椭圆的内部”,求离心率的取值范围.【典例6】已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.【方法归纳】:1.在利用椭圆的性质求解椭圆的标准方程时,总体原则是“先定位,再定量”.2.求解与椭圆几何性质有关的问题时,其原则是“数形结合,定义优先,几何性质简化”,一定要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系,充分利用平面几何的性质及有关重要结论来探寻参数a ,b ,c 之间的关系,以减少运算量.3.在求解有关圆锥曲线焦点问题时,结合图形,注意动点到两焦点距离的转化.4. 求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式(或不等式),利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围;有时也可利用正弦、余弦的有界性求解离心率的范围.5.在探寻a ,b ,c 的关系时,若能充分考虑平面几何的性质,则可使问题简化,如典例5. 【本节练习】1.已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( )A .x 216+y 27=1B .x 216+y 27=1或x 27+y 216=1C .x 216+y 225=1D .x 216+y 225=1或x 225+y 216=12.设e 是椭圆x 24+y 2k =1的离心率,且e ∈(12,1),则实数k 的取值范围是( )A .(0,3)B .(3,163)C .(0,3)∪(163,+∞) D .(0,2)3.已知椭圆短轴上的两个顶点分别为B 1,B 2,焦点为F 1,F 2,若四边形B 1F 1B 2F 2是正方形,则这个椭圆的离心率e 等于( )A .22B .12C .32D .334.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为________.5.已知椭圆C :)0(12222>>=+b a by a x 的左、右焦点为21,F F ,离心率为33,过F 2的直线l 交C 于A,B 两点,若△AF 1B 的周长为34,则C 的方程为( )A.12322=+y x B.1322=+y x C.181222=+y x D.141222=+y x6.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________.7.设21,F F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23ax =上一点,12PF F ∆是底角为300的等腰三角形,则E 的离心率为( )A.21B. 32C.43D. 548.过椭圆)0(12222>>=+b a b y a x 的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若02160=∠PF F ,则椭圆的离心率为( )A.25B.33C.21 D.319.已知椭圆)0(12222>>=+b a by a x 的左焦点为F ,右顶点为A ,上顶点为B ,若BA BF ⊥,则称其为“优美椭圆”,那么“优美椭圆”的离心率为10.已知1F 为椭圆的左焦点,A ,B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当A F PF 11⊥,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为11.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A .(12,2)B .(1,+∞)C .(1,2)D .(12,1)12.矩形ABCD 中,|AB |=4,|BC |=3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为( )A .2 3B .2 6C .4 2D .4 313.一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆方程为( )A .x 28+y 26=1B .x 216+y 26=1C .x 28+y 24=1D .x 216+y 24=114.如图,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F ,且这两条曲线交点的连线过点F ,则该椭圆的离心率为________.15.已知抛物线42x y =与椭圆)0(118222>=+a y ax 在第一象限相交于A 点,F 为抛物线的焦点,AB ⊥y 轴于B 点,当∠BAF =300时,a =16. 设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.17.椭圆x 236+y 29=1上有两个动点P 、Q ,E (3,0),EP ⊥EQ ,则EP →·QP →的最小值为( )A .6B .3- 3C .9D .12-6 318.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,则这个椭圆方程为________.19.若一个椭圆长轴的长度,短轴的长度和焦距依次成等差数列,则该椭圆的离心率是________.20.已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为( )A .4B .3C .2D .114. 椭圆()01:2222>>=+Γb a by a x 的左右焦点分别为21,F F ,焦距为c 2,若直线()c x y +=3与椭圆的一个交点满足12212F MF F MF ∠=∠,则该椭圆的离心率等于_____设F 1(-c , 0), F 2(c , 0)是椭圆12222=+by a x (a >b >0)的两个焦点,P 是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2=5∠PF 2F 1,则该椭圆的离心率为(A )316 (B )23 (C )22 (D )32若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是21.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 1,左焦点为F 2,若椭圆上存在一点P ,满足线段PF 1相切于以椭圆的短轴为直径的圆,切点为线段PF 1的中点,则该椭圆的离心率为( )A .53B .23C .22D .5922. 已知,,A P Q 为椭圆:C 22221(0)x y a b a b+=>>上三点,若直线PQ 过原点,且直线,AP AQ 的斜率之积为12-,则椭圆C 的离心率等于( )A B .12 C D .14题型二:直线与椭圆的位置关系的判定.【典例1】当m 为何值时,直线m x y l +=:与椭圆14416922=+y x 相切、相交、相离?【典例2】已知椭圆192522=+y x ,直线04054:=+-y x l ,椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?反馈:(2012福建)如图,椭圆E :)0(12222>>=+b a by a x 的左右焦点分别为F 1、F 2,离心率21=e ,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8. (1)求椭圆E 的方程;(2)设动直线l :m kx y +=与椭圆E 有且只有一个公共点P ,且与直线x =4交于Q ,试探究:在坐标平面内,是否存在定点M ,使得以PQ 为直径的圆恒过定点M ,若存在,求出点M 的坐标,若不存在,请说明理由.【方法归纳】:直线与椭圆位置关系判断的步骤: ①联立直线方程与椭圆方程;②消元得出关于x (或y )的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.注:对比直线与圆的位置关系的判断,它们之间有何联系与区别?题型三:直线与椭圆相交(及中点弦)问题该问题属高考中对圆锥曲线考查的热点和重点问题,其主要方法是数形结合、判别式、根与系数的关系、整体代换.【典例1】已知斜率为1的直线l 过椭圆1422=+y x 的右焦点,交椭圆于A ,B 两点,求弦AB 的长及1ABF ∆的周长、面积.【典例2】已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点(0,3),离心率为12,左,右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.【典例3】已知一直线与椭圆369422=+y x 相交于A ,B 两点,弦AB 的中点坐标为M (1,1),求直线AB 的方程.变式:过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为【典例4】(2015新课标文)已知椭圆()2222:10x y C a b a b+=>> 的离心率为22,点()2,2在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.【典例5】已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为32,F 是椭圆的焦点,直线AF 23O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【典例6】已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线l :m kx y +=与椭圆C 相交于A ,B 两点(A ,B 均不在左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.【方法归纳】:(1)解决直线与椭圆相交问题的原则有两个:一是数形结合;二是一条主线:“斜率、方程组、判别式、根与系数的关系”.利用根与系数的关系整体代换,以减少运算量.(2)如果题设中没有对直线的斜率的限定,一定要讨论斜率是否存在,以免漏解;这里又有两个问题需要注意:①若已知直线过y 轴上的定点P (0,b ),可将直线设为斜截式,即纵截距式,即y =kx +b ,但要讨论斜率是否存在;②若已知直线过x 轴上的定点P (a ,0),可以直接将直线方程设为横截距式,即x =my +a ,这样可避免讨论斜率是否存在,但此时求弦长时,需将下面弦长公式中的k 用m1替换. (3)直线被椭圆截得的弦长公式设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).【本节练习】1.(2014·高考安徽卷)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.2. (2015·豫西五校联考)已知椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1、F 2,过F 1的直线l 交椭圆于A 、B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1B . 2C .32 D . 33.(2015·宜昌调研)过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.4.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△P AB 的面积.5.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.5’.已知椭圆)0(12222>>=+b a by a x 的离心率为23,右焦点到直线06=++y x 的距离为32. (1)求椭圆的方程;(2)过点)1,0(-M 作直线l 交椭圆于A ,B 两点,交x 轴于N 点,满足57-=,求直线l 的方程.6.已知椭圆)0(12222>>=+b a by a x 的离心率为23,且长轴长为12,过点P(4,2)的直线l 与椭圆交于A,B 两点.(1)求椭圆方程;(2)当直线l 的斜率为21时,求AB 的值;(3)当点P 恰好为线段AB 的中点时,求直线l 的方程.7. 平面直角坐标系xoy 中,过椭圆M :)0(12222>>=+b a b y a x 的右焦点F 作直线03=-+y x 交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为21. (Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.8. 设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线l 与E 相交于,A B 两点,且22,,AF AB BF 成等差数列.(1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程.9. 设F 1 ,F 2分别是椭圆C :12222=+by a x (a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (I )若直线MN 的斜率为43,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .10. 如图,点F 1(-c ,0),F 2(c ,0)分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.11.已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB , (文)求线段AB 长度的最小值.(理)试判断直线AB 与圆222=+y x 的位置关系.圆锥曲线在高考中的考查主要体现“一条主线,五种题型”,所谓一条主线:是指直线与圆锥曲线的综合.五种题型是指“最值问题;定点问题;定值问题;参数的取值范围问题;存在性问题”.一、 最值问题 【规律方法】:(1)最值问题有两大类:距离、面积的最值以及与之有关的一些问题;求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种常见方法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解题;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法;若是分式函数则可先分离常数,再求最值;若是二次函数,可用配方法;若是更复杂的函数,还可用导数法. (3)圆锥曲线的综合问题要四重视: ①重视定义在解题中的作用;②重视平面几何知识在解题中的作用;③重视根与系数的关系在解题中的作用;④重视曲线的几何特征与方程的代数特征在解题中的作用.如定值中2014江西文科考题,范围中的题6、7.1.已知椭圆C :1222=+y ax (a >0)的焦点在x 轴上,右顶点与上顶点分别为A 、B .顶点在原点,分别以A 、B 为焦点的抛物线C 1、C 2交于点P (不同于O 点),且以BP 为直径的圆经过点A .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若与OP 垂直的动直线l 交椭圆C 于M 、N 不同两点,求△OMN 面积的最大值和此时直线l 的方程.2.已知椭圆C :)0(12222>>=+b a by a x 的上顶点为(0,1),且离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)证明:过椭圆)0(12222>>=+n m ny m x 上一点),(00y x Q 的切线方程为12020=+nyy m x x ; (Ⅲ)从圆1622=+y x 上一点P 向椭圆C 引两条切线,切点分别为A 、B ,当直线AB 分别与x 轴、y 轴交于M 、N 两点时,求MN 的最小值.3.已知动点P 到定点F (1,0)和到定直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :n mx y +=与曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合). (Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆122=+y x 相切时,四边形ACBD 的面积是否有最大值.若有,求出其最大值及相应的直线l 的方程;若没有,请说明理由.4. 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的右焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.5.平面直角坐标系xOy 中,已知椭圆)0(1:2222>>=+b a by a x C 的离心率为23,且点)21,3(在椭圆C 上,(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆144:2222=+b y a x E ,P 为椭圆C 上任意一点,过点P 的直线m kx y +=交椭圆E 于B A ,两点,射线PO 交椭圆E 于点Q .(ⅰ)求OPOQ 的值;(ⅱ)求ABQ ∆面积的最大值。
高考数学复习考点知识与题型专题讲解58---椭圆及其性质
高考数学复习考点知识与题型专题讲解8.5椭圆考试要求1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用.2.经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义、标准方程及简单几何性质.1.椭圆的定义(1)定义:平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹.(2)焦点:两个定点F1,F2.(3)焦距:两焦点间的距离|F1F2|;半焦距:焦距的一半.2.椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1 (a>b>0)范围-a≤x≤a且-b≤y≤b-b≤x≤b且-a≤y≤a顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b) A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)轴长短轴长为2b,长轴长为2a焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c对称性 对称轴:x 轴和y 轴,对称中心:原点离心率 e =ca (0<e <1) a ,b ,c 的关系a 2=b 2+c 2微思考1.在椭圆的定义中,若2a =|F 1F 2|或2a <|F 1F 2|,动点P 的轨迹如何?提示当2a =|F 1F 2|时,动点P 的轨迹是线段F 1F 2;当2a <|F 1F 2|时动点P 的轨迹是不存在的.2.椭圆的离心率的大小与椭圆的扁平程度有怎样的关系? 提示由e =ca =1-⎝⎛⎭⎫b a 2知,当a 不变时,e 越大,b 越小,椭圆越扁平;e 越小,b 越大,椭圆越接近于圆.3.焦点弦的弦长最短是什么?提示焦点弦中通径(垂直于轴的焦点弦)最短,弦长为2b 2a.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.(×) (2)椭圆是轴对称图形,也是中心对称图形.(√)(3)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).(√)(4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相等.(√) 题组二教材改编2.已知F 1(-3,0),F 2(3,0),若点P 到F 1,F 2的距离之和为10,则P 点的轨迹方程是____________. 答案x 225+y 216=1解析因为|PF 1|+|PF 2|=10>|F 1F 2|=6,所以点P 的轨迹是以F 1,F 2为焦点的椭圆,其中a =5,c =3,b =a 2-c 2=4,故点P 的轨迹方程为x 225+y 216=1.3.若椭圆x 210-m +y 2m -2=1的焦距为4,则m =________.答案4或8解析当焦点在x 轴上时,10-m >m -2>0, 10-m -(m -2)=4,∴m =4.当焦点在y 轴上时,m -2>10-m >0,m -2-(10-m )=4,∴m =8.∴m =4或8.4.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________. 答案x 216+y 28=1解析如图,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的定义可知,|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,又△ABF 2的周长为16, 所以|AF 1|+|AF 2|+|BF 1|+|BF 2|=16, 即4a =16,a =4,又e =c a =22,则c =22,b =a 2-c 2=22,故椭圆C 的方程为x 216+y 28=1.5.已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为__________________. 答案⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 解析设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1, 所以c =1,则F 1(-1,0),F 2(1,0). 由题意可得点P 到x 轴的距离为1, 所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152, 所以点P 的坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1.题组三易错自纠6.若方程x 2m +y 22m -1=1表示椭圆,则m 满足的条件是____________________.答案⎩⎨⎧⎭⎬⎫m ⎪⎪m >12且m ≠1 解析由方程x 2m +y 22m -1=1表示椭圆,知⎩⎪⎨⎪⎧m >0,2m -1>0,m ≠2m -1,解得m >12且m ≠1.7.已知椭圆x 25+y 2m =1(m >0)的离心率e =105,则m 的值为________.答案3或253解析若a 2=5,b 2=m ,则c =5-m ,由c a =105,即5-m 5=105,解得m =3. 若a 2=m ,b 2=5, 则c =m -5.由c a =105,即m -5m=105,解得m =253.综上,m =3或253.8.已知点A (-2,0),B (0,1)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,则椭圆C 的方程为________;若直线y=12x 交椭圆C 于M ,N 两点,则|MN |=________. 答案x 24+y 2=110解析由题意可知,椭圆C :x 2a 2+y 2b 2=1(a >b >0)中,由点A (-2,0),B (0,1)且焦点在x 轴上,得a =2,b =1, ∴椭圆C 的方程为x 24+y 2=1;设M ()x 1,y 1,N ()x 2,y 2(x 1>0),则⎩⎨⎧x 24+y 2=1,y =12x ,解得x 1=2,y 1=22,x 2=-2,y 2=-22,则|MN |=(2+2)2+⎝⎛⎭⎫22+222=10.第1课时椭圆及其性质题型一椭圆的定义及应用例1(1)如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是()A .椭圆B .双曲线C .抛物线D .圆 答案A解析连接QA (图略). 由已知得|QA |=|QP |.所以|QO |+|QA |=|QO |+|QP |=|OP |=r .又因为点A 在圆内,所以|OA |<|OP |,根据椭圆的定义知,点Q 的轨迹是以O ,A 为焦点,r 为长轴长的椭圆.(2)设点P 为椭圆C :x 2a 2+y 24=1(a >2)上一点,F 1,F 2分别为C 的左、右焦点,且∠F 1PF 2=60°,则△PF 1F 2的面积为________. 答案433解析由题意知,c =a 2-4.又∠F 1PF 2=60°,|F 1P |+|PF 2|=2a ,|F 1F 2|=2a 2-4,∴|F 1F 2|2=(|F 1P |+|PF 2|)2-2|F 1P ||PF 2|-2|F 1P |·|PF 2|cos60°=4a 2-3|F 1P |·|PF 2|=4a 2-16, ∴|F 1P |·|PF 2|=163,∴12PF F S △=12|F 1P |·|PF 2|sin60°=12×163×32=433.若将本例(2)中“∠F 1PF 2=60°”改成“PF 1⊥PF 2”,求△PF 1F 2的面积.解∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2=4(a 2-4)=4a 2-16, 又|PF 1|+|PF 2|=2a , ∴|PF 1|·|PF 2|=8, ∴12PF F S △=4.思维升华椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常将定义和余弦定理结合使用求解关于焦点三角形的周长和面积问题.跟踪训练1 (1)设P 是椭圆x 216+y 29=1上一点,F 1,F 2分别是椭圆的左、右焦点,若|PF 1|·|PF 2|=12,则∠F 1PF 2的大小为________. 答案60°解析由椭圆x 216+y 29=1,可得2a =8,设||PF 1=m ,||PF 2=n ,可得⎩⎪⎨⎪⎧m +n =2a =8,mn =12,4c 2=28=m 2+n 2-2mn cos ∠F 1PF 2,化简可得cos ∠F 1PF 2=12,∴∠F 1PF 2=60°.(2)已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则|P A |+|PF |的最大值为________,最小值为________. 答案6+26- 2解析椭圆方程化为x 29+y 25=1,设F 1是椭圆的右焦点,则F 1(2,0), ∴|AF 1|=2,∴|P A |+|PF |=|P A |-|PF 1|+6,又-|AF 1|≤|P A |-|PF 1|≤|AF 1|(当P ,A ,F 1共线时等号成立), ∴|P A |+|PF |的最大值为6+2,最小值为6- 2.题型二椭圆的标准方程例2 (1)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是()A.x 23+y 24=1B.x 24+y 23=1C.x 24+y 22=1D.x 24+y 23=1 答案D解析由题意可知椭圆焦点在x 轴上,所以设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由题意可知c =1,e =c a =12,可得a =2,又a 2=b 2+c 2,可得b 2=3, 所以椭圆方程为x 24+y 23=1.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________.答案y 220+x 24=1解析方法一(待定系数法)设所求椭圆方程为y 225-k +x 29-k =1(k <9),将点(3,-5)的坐标代入可得(-5)225-k +(3)29-k=1,解得k =5(k =21 舍去),所以所求椭圆的标准方程为y 220+x 24=1.方法二(定义法)椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5.由c 2=a 2-b 2可得b 2=4.所以所求椭圆的标准方程为y 220+x 24=1.思维升华 (1)利用定义法求椭圆方程,要注意条件2a >|F 1F 2|;利用待定系数法要先定形(焦点位置),再定量,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式. (2)椭圆的标准方程的两个应用①方程x 2a 2+y 2b 2=1与x 2a 2+y 2b2=λ(λ>0)有相同的离心率.②与椭圆x 2a 2+y 2b 2=1(a >b >0)共焦点的椭圆系方程为x 2a 2+k +y 2b 2+k=1(a >b >0,k +b 2>0),恰当运用椭圆系方程,可使运算简便.跟踪训练2 (1)(多选)已知椭圆的长轴长为10,其焦点到中心的距离为4,则这个椭圆的标准方程可以为()A.x 2100+y 284=1B.x 225+y 29=1 C.x 284+y 2100=1D.x 29+y 225=1 答案BD解析因为椭圆的长轴长为10,其焦点到中心的距离为4,所以⎩⎪⎨⎪⎧2a =10,c =4,解得a =5,b 2=25-16=9.所以当椭圆的焦点在x 轴上时,椭圆方程为x 225+y 29=1;当椭圆的焦点在y 轴上时,椭圆方程为x 29+y 225=1.(2)(2020·泉州模拟)已知椭圆的两个焦点为F 1(-5,0),F 2(5,0),M 是椭圆上一点,若MF 1⊥MF 2,|MF 1|·|MF 2|=8,则该椭圆的方程是() A.x 27+y 22=1B.x 22+y 27=1 C.x 29+y 24=1D.x 24+y 29=1 答案C解析设|MF 1|=m ,|MF 2|=n ,因为MF 1⊥MF 2,|MF 1|·|MF 2|=8,|F 1F 2|=25, 所以m 2+n 2=20,mn =8,所以(m +n )2=36,所以m +n =2a =6,所以a =3. 因为c =5,所以b =a 2-c 2=2.所以椭圆的方程是x 29+y 24=1.题型三椭圆的简单几何性质命题点1离心率例3 (1)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为() A.23B.12C.13D.14 答案D解析如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1, 由∠F 1F 2P =120°, 可得|PB |=3,|BF 2|=1, 故|AB |=a +1+1=a +2, tan ∠P AB =|PB ||AB |=3a +2=36,解得a =4,所以e =c a =14.(2)过椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点作x 轴的垂线,交C 于A ,B 两点,直线l 过C 的左焦点和上顶点.若以AB 为直径的圆与l 存在公共点,则C 的离心率的取值范围是() A.⎝⎛⎦⎤0,55 B.⎣⎡⎭⎫55,1 C.⎝⎛⎦⎤0,22 D.⎣⎡⎭⎫22,1 答案A解析由题设知,直线l :x -c +yb =1,即bx -cy +bc =0,以AB 为直径的圆的圆心为(c ,0),根据题意,将x =c 代入椭圆C 的方程,得y =±b 2a ,即圆的半径r =b 2a.又圆与直线l 有公共点,所以2bcb 2+c 2≤b 2a ,化简得2c ≤b ,平方整理得a 2≥5c 2,所以e =c a ≤55.又0<e <1,所以0<e ≤55.故选A. 思维升华求椭圆离心率或其范围的方法解题的关键是借助图形建立关于a ,b ,c 的关系式(等式或不等式),转化为e 的关系式,常用方法如下:(1)直接求出a ,c ,利用离心率公式e =ca求解.(2)由a 与b 的关系求离心率,利用变形公式e =1-b 2a2求解. (3)构造a ,c 的齐次式.离心率e 的求解中可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e .命题点2与椭圆有关的最值(或范围)问题例4设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是()A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞) 答案A解析方法一设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N ,则N (x ,0).故tan ∠AMB =tan(∠AMN +∠BMN )=3+x |y |+3-x|y |1-3+x |y |·3-x |y |=23|y |x 2+y 2-3.又tan ∠AMB =tan120°=-3, 且由x 23+y 2m =1,可得x 2=3-3y 2m ,则23|y |3-3y 2m +y 2-3=23|y |⎝⎛⎭⎫1-3m y 2=- 3. 解得|y |=2m 3-m.又0<|y |≤m ,即0<2m3-m ≤m ,结合0<m <3解得0<m ≤1.对于焦点在y 轴上的情况,同理亦可得m ≥9. 则m 的取值范围是(0,1]∪[9,+∞).故选A. 方法二当0<m <3时,焦点在x 轴上, 要使C 上存在点M 满足∠AMB =120°, 则a b ≥tan60°=3,即3m≥3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°, 则a b ≥tan60°=3,即m 3≥3,解得m ≥9. 故m 的取值范围为(0,1]∪[9,+∞). 故选A.思维升华利用椭圆的简单几何性质求值或范围的思路(1)将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系. (2)将所求范围用a ,b ,c 表示,利用a ,b ,c 自身的范围、关系求范围.跟踪训练3 (1)(2020·济南质检)设椭圆E 的两焦点分别为F 1,F 2,以F 1为圆心,|F 1F 2|为半径的圆与E 交于P ,Q 两点.若△PF 1F 2为直角三角形,则E 的离心率为() A.2-1B.5-12 C.22D.2+1 答案A解析不妨设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),如图所示,∵△PF 1F 2为直角三角形,∴PF 1⊥F 1F 2,又|PF 1|=|F 1F 2|=2c ,∴|PF 2|=22c ,∴|PF 1|+|PF 2|=2c +22c =2a ,∴椭圆E 的离心率e =ca =2-1.故选A.(2)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大. 答案5解析设B (x 0,y 0),A (x 1,y 1),∴AP →=(-x 1,1-y 1),PB →=(x 0,y 0-1). ∵AP →=2PB →,∴⎩⎪⎨⎪⎧ -x 1=2x 0,1-y 1=2(y 0-1),解得⎩⎪⎨⎪⎧x 1=-2x 0,y 1=3-2y 0,将A ,B 两点的坐标代入x 24+y 2=m ,得⎩⎪⎨⎪⎧x 204+y 20=m ,(-2x 0)24+(3-2y 0)2=m ,即⎩⎪⎨⎪⎧x 20+4y 20=4m ,x 20+(3-2y 0)2=m ,两式相减,得y 0=14m +34.∴x 20=4m -4y 20=-14m 2+52m -94,m >1, ∴当m =-522×⎝⎛⎭⎫-14=5时,x 20取得最大值,此时|x 0|最大. 课时精练1.与椭圆9x 2+4y 2=36有相同焦点,且满足短半轴长为25的椭圆方程是() A.x 225+y 220=1B.x 220+y 225=1C.x 220+y 245=1D.x 280+y 285=1 答案B解析由9x 2+4y 2=36可得x 24+y 29=1,所以所求椭圆的焦点在y 轴上,且c 2=9-4=5,b =25,a 2=25,所以所求椭圆方程为x 220+y 225=1.2.若椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为()A.12B.33C.22D.24答案C解析依题意可知,c =b , 又a =b 2+c 2=2c ,∴椭圆的离心率e =c a =22.3.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为() A.x 264-y 248=1B.x 248+y 264=1 C.x 248-y 264=1D.x 264+y 248=1 答案D解析设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16>8=|C 1C 2|,所以M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8,所以a =8,c =4,b =a 2-c 2=43,故所求动圆圆心M 的轨迹方程为x 264+y 248=1.4.(2021·广东华附、省实、广雅、深中联考)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是()A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33 C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1 答案D解析设P ⎝⎛⎭⎫a2c ,m ,F 1(-c ,0),F 2(c ,0), 由线段PF 1的中垂线过点F 2得|PF 2|=|F 1F 2|,即⎝⎛⎭⎫a 2c -c 2+m 2=2c , 得m 2=4c 2-⎝⎛⎭⎫a 2c -c 2=-a 4c 2+2a 2+3c 2≥0, 即3c 4+2a 2c 2-a 4≥0,得3e 4+2e 2-1≥0,解得e 2≥13,又0<e <1,故33≤e <1. 5.(多选)(2021·湖南省衡阳八中月考)对于曲线C :x 24-k +y 2k -1=1,下面四个说法正确的是()A .曲线C 不可能是椭圆B .“1<k <4”是“曲线C 是椭圆”的充分不必要条件C .“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件D .“曲线C 是焦点在x 轴上的椭圆”是“1<k <2.5”的充要条件 答案CD解析对于A ,当1<k <4且k ≠2.5时,曲线C 是椭圆,所以A 错误;对于B ,当k =2.5时,4-k =k-1,此时曲线C 是圆,所以B 错误;对于C ,若曲线C 是焦点在y 轴上的椭圆,则⎩⎪⎨⎪⎧4-k >0,k -1>0,k -1>4-k ,解得2.5<k <4,所以“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件,所以C 正确;对于D ,若曲线C 是焦点在x 轴上的椭圆,则⎩⎪⎨⎪⎧k -1>0,4-k >0,4-k >k -1,解得1<k <2.5,所以D 正确.6.(多选)(2020·海南模拟)设椭圆x 29+y 23=1的右焦点为F ,直线y =m ()0<m <3与椭圆交于A ,B 两点,则()A .|AF |+|BF |为定值B .△ABF 的周长的取值范围是[]6,12C .当m =32时,△ABF 为直角三角形 D .当m =1时,△ABF 的面积为 6 答案ACD解析设椭圆的左焦点为F ′,则|AF ′|=|BF |, ∴|AF |+|BF |=|AF |+|AF ′|=6为定值,A 正确; △ABF 的周长为|AB |+|AF |+|BF |,因为|AF |+|BF |为定值6,∴|AB |的取值范围是(0,6), ∴△ABF 的周长的取值范围是(6,12),B 错误;将y =32与椭圆方程联立,可解得A ⎝⎛⎭⎫-332,32,B ⎝⎛⎭⎫332,32,又∵F (6,0),∴AF →·BF →=⎝⎛⎭⎫6+332⎝⎛⎭⎫6-332+⎝⎛⎭⎫322=0,∴AF ⊥BF , ∴△ABF 为直角三角形,C 正确;将y =1与椭圆方程联立,解得A (-6,1),B (6,1), ∴S △ABF =12×26×1=6,D 正确.7.已知椭圆C :x 225+y 216=1,P 为椭圆上任意一点.点A (3,m )⎝⎛⎭⎫m >165,B (-3,0),则|P A |+|PB |的最小值为________. 答案36+m 2解析如图,点P 为线段AB 与椭圆的交点时|P A |+|PB |最小,其最小值为|AB |=62+m 2=36+m 2.8.已知椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________________. 答案(-3,0)或(3,0)解析记椭圆的两个焦点分别为F 1,F 2, 由题意知a =5,b =3,|PF 1|+|PF 2|=2a =10.则m =|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=25,当且仅当|PF 1|=|PF 2|=5时,等号成立, 即点P 位于椭圆的短轴的顶点处时,m 取得最大值25. 所以此时点P 的坐标为(-3,0)或(3,0).9.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 为椭圆的右焦点,AB 为过原点O 的弦,则△ABF 面积的最大值为________. 答案b a 2-b 2解析如图,设E 为椭圆的左焦点,则S △ABF =S △AOF +S △BOF =S △AOF +S △AOE =S △AEF ≤ba 2-b 2.10.(2019·全国Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________. 答案(3,15)解析不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20=4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y 220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎪⎨⎪⎧x =3,y =15, 所以M 的坐标为(3,15).11.如图所示,已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若椭圆的焦距为2,且AF 2→=2F 2B →,求椭圆的方程.解(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有|OA |=|OF 2|,即b =c .所以a =2c ,e =c a =22. (2)由题意知A (0,b ),F 2(1,0),设B (x ,y ),由AF 2→=2F 2B →,得⎩⎪⎨⎪⎧ 2(x -1)=1,2y =-b ,解得x =32,y =-b 2. 代入x 2a 2+y 2b 2=1,得94a 2+b 24b2=1. 即94a 2+14=1,解得a 2=3. 所以椭圆方程为x 23+y 22=1.12.已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.(1)解设椭圆方程为x 2a 2+y 2b2=1(a >b >0),|PF 1|=m ,|PF 2|=n ,则m +n =2a . 在△PF 1F 2中,由余弦定理可知,4c 2=m 2+n 2-2mn cos60°=(m +n )2-3mn=4a 2-3mn ≥4a 2-3·⎝ ⎛⎭⎪⎫m +n 22=4a 2-3a 2=a 2(当且仅当m =n 时取等号),∴c 2a 2≥14, 即e ≥12.又0<e <1,∴e 的取值范围是⎣⎡⎭⎫12,1.(2)证明由(1)知mn =43b 2,∴12PF F S △=12mn sin60°=33b 2,即△PF 1F 2的面积只与椭圆的短轴长有关.13.已知F 1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为()A.3-1B .2-3C.22D.32 答案A解析∵过F 1的直线MF 1是圆F 2的切线,∴∠F 1MF 2=90°,|MF 2|=c ,∵|F 1F 2|=2c ,∴|MF 1|=3c ,由椭圆定义可得|MF 1|+|MF 2|=3c +c =2a ,∴椭圆的离心率e =21+3=3-1. 14.已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________.答案15解析如图,左焦点F (-2,0),右焦点F ′(2,0).线段PF 的中点M 在以O (0,0)为圆心,2为半径的圆上,因此|OM |=2.在△FF ′P 中,OM 綊12PF ′,所以|PF ′|=4.根据椭圆的定义,得|PF |+|PF ′|=6,所以|PF |=2.又因为|FF ′|=4,所以在Rt △MFF ′中,tan ∠PFF ′=|MF ′||MF |=|FF ′|2-|MF |2|MF |=15, 即直线PF 的斜率是15.15.(多选)(2020·德州模拟)1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开始了人造卫星的新篇章.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论正确的是()A .卫星向径的取值范围是[]a -c ,a +cB .卫星在左半椭圆弧上的运行时间大于其在右半椭圆弧上的运行时间C .卫星向径的最小值与最大值的比值越大,椭圆轨道越扁D .卫星运行速度在近地点时最大,在远地点时最小答案ABD解析根据椭圆定义知卫星向径的取值范围是[]a -c ,a +c ,A 正确;当卫星在左半椭圆弧上运行时,对应的面积更大,根据面积守恒规律,速度更慢,运行时间更长,B 正确; a -c a +c =1-e 1+e =21+e-1,当比值越大,则e 越小,椭圆轨道越圆,C 错误. 根据面积守恒规律,卫星在近地点时向径最小,故速度最大,在远地点时向径最大,故速度最小,D 正确.16.(2021·商洛模拟)如图,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PF 1|=|PQ |,求椭圆的离心率e .解(1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2.设椭圆的半焦距为c ,由已知PF 1⊥PF 2,因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=()2+22+()2-22=23,所以c =3,从而b =22-()32=1,故所求椭圆的标准方程为x 24+y 2=1. (2)连接F 1Q ,如图所示,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a . 从而由|PF 1|=|PQ |=|PF 2|+|QF 2|, 有|QF 1|=4a -2|PF 1|.设|PF 1|=m ,所以|QF 1|=4a -2m ,|QF 2|=2m -2a , |PF 2|=2a -m ,又由PF 1⊥PQ ,|PF 1|=|PQ |,所以⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2=|F 1F 2|2,|QF 1|=2|PF 1|, 即⎩⎪⎨⎪⎧m 2+()2a -m 2=4c 2,4a -2m =2m , 解得⎩⎪⎨⎪⎧ c =64m ,a =2+24m ,所以e =c a =64m 2+24m =6- 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考椭圆几种题型― 引言在高考之中占有比较重要的地位,并且占的分数也多。
分析历年的高考试题,在选择题,填空题,大题都有椭圆的题。
所以我们对知识必须系统的掌握。
对各种题型,基本的解题方法也要有一定的了解。
二 椭圆的知识 (一)、定义1 平面内与与定点F 1、F 2的距离之和等于定长2a(2a>|F 1F 2|)的点的轨迹叫做椭圆,其中F 1、F 2称为椭圆的焦点,|F 1F 2|称为焦距。
其复数形式的方程为|Z-Z 1|+| Z-Z 2|=2a(2a>|Z 1-Z 2|)2一动点到一个定点F 的距离和它到一条直线的距离之比是一个大于0小于1的常数,则这个动点的轨迹叫椭圆,其中F 称为椭圆的焦点,l 称为椭圆的准线。
(二)、方程1中心在原点,焦点在x 轴上:)0(12222>>=+b a b y a x2中心在原点,焦点在y 轴上:)0(12222>>=+b a bx a y3 参数方程:⎩⎨⎧==θθsin cos b y a x4 一般方程:)0,0(122>>=+B A By Ax (三)、性质1 顶点:),0(),0,(b a ±±或)0,(),0(b a ±±2 对称性:关于x ,y 轴均对称,关于原点中心对称。
3 离心率:)1,0(∈=ace 4 准线ca y c a x 22=±=或 5 焦半径:设),(00y x P 为)0(12222>>=+b a b y a x 上一点,F 1、F 2为左、右焦点,则01ex a PF +=,02ex a PF -=;设),(00y x P 为)0(12222>>=+b a bx a y 上一点,F 1、F 2为下、上焦点,则01ex a PF +=,02ex a PF -=。
三 椭圆题型(一)椭圆定义 1.椭圆定义的应用例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.例2 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.例3 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆. 例4 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈.说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方.(2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0 例5 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.2.关于线段长最值的问题一般两个方法:一种是借助图形,由几何图形中量的关系求最值,二是建立函数关系求最值,或用均值不等式来求最值。
例(1):点P 为为椭圆)0(12222>>=+b a by a x 上一点,F 1、F 2是椭圆的两个焦点,试求:21PF PF ⋅取得最值时的P 点坐标。
解:(1)设),(00y x P ,则],[0a a x -∈。
由椭圆第二定义知:002021)(2,)(0ex a a ex a PF a ex e c a x PF -=+-=+=⎥⎦⎤⎢⎣⎡--=。
∴21PF PF ⋅0222x e a -=。
当00=x 时, 21PF PF ⋅取最大值2a ,此时点P(0,±b);当a x ±=0时,21PF PF ⋅取最小值b 2,此时点P(±a ,0)。
(二).焦半径及焦三角的应用例1 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积.解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ②,则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan 2αb =.例2. 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点. 求1PF PA +的最大值、最小值及对应的点P 坐标;分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(三)、直线与椭圆相交问题(1) 常用分析一元二次议程解的情况,仅有△还不够,且用数形结合的思想。
(2) 弦的中点,弦长等,利用根与系数的关系式,但△>0这一制约条件不同意。
ak AB ∆+=21 ⎩⎨⎧+2121x x x x 例1. 已知直线l 过椭圆729822=+y x 的一个焦点,斜率为2,l 与椭圆相交于M 、N 两点,求弦MN 的长。
解:由⎩⎨⎧=+-=7298)1(222y x x y 得0918112=--x x 。
方法一:由弦长公式1160119114185122=⨯⨯+=∆+=a kAB 方法二:)(2)()(212212x x a e x ca e x c a NF MF MN +-=-+-=+= 11603111186=⨯-=例2 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求. 解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122. 在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ; 所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标. 再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=(四)、“点差法”解题。