高考椭圆题型总结

合集下载

(完整版)高考椭圆题型总结

(完整版)高考椭圆题型总结

椭圆题型总结一、 椭圆的定义和方程问题 (一) 定义:PA+PB=2a>2c1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( )A 。

充分不必要条件 B.必要不充分条件 C 。

充要条件 D.既不充分又不必要条件2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( )A 。

椭圆 B.圆 C.直线 D.线段3. 已知1F 、2F是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动点Q的轨迹是( )A.椭圆B.圆C.直线D.点4. 已知1F 、2F 是平面α内的定点,并且)0(221>=c c F F ,M 是α内的动点,且a MF MF 221=+,判断动点M 的轨迹。

5. 椭圆192522=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 。

(二) 标准方程求参数范围1. 若方程13522=-+-k y k x 表示椭圆,求k 的范围。

(3,4)U(4,5) 2.轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A.充分而不必要条件 B 。

必要不充分条件 C 。

充要条件 D 。

既不充分又不必要条件3. 已知方程112522=-+-m y m x 表示焦点在Y 轴上的椭圆,则实数m 的范围是 。

4. 已知方程222=+ky x 表示焦点在Y 轴上的椭圆,则实数k 的范围是 . 5. 方程231y x -=所表示的曲线是 .6. 如果方程222=+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围. 7. 已知椭圆06322=-+m y mx 的一个焦点为)2,0(,求m 的值。

高考椭圆大题知识点总结

高考椭圆大题知识点总结

高考椭圆大题知识点总结椭圆是高中数学中的一个重要内容,也是高考中常出现的考点。

椭圆是平面几何中的一种特殊曲线,它具有许多有趣的性质和特点。

在解题过程中,我们应该了解椭圆的定义、性质和相关公式,从而灵活运用椭圆的知识来解答高考试题。

一、椭圆的定义和基本性质椭圆是指平面上到两个定点的距离之和等于常数的点的轨迹。

这两个定点称为焦点,两焦点间的距离称为焦距。

椭圆的形状由焦距和离心率决定,离心率小于1时,椭圆比较扁,离心率等于1时,椭圆退化为圆。

椭圆的主要性质有:对称性、切点和法线、焦点和直线的性质等。

在解题时,我们需要根据具体情况运用这些性质,简化计算步骤,提高解题效率。

二、椭圆的标准方程和一般方程椭圆的标准方程可以表示为:(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心坐标,a为椭圆的长半轴长度,b为椭圆的短半轴长度。

当椭圆的中心在原点时,方程可以简化为x²/a²+y²/b²=1。

而一般方程则可以表示为:Ax²+Bxy+Cy²+Dx+Ey+F=0。

在解题时,我们常常需要将椭圆的方程进行转化,使其符合标准方程的形式,以便于进行求解和分析。

三、椭圆的焦点和直线的关系椭圆的焦点是反映椭圆性质的重要元素之一。

根据焦点和椭圆的关系,我们可以推导出椭圆的两个焦点与椭圆上的点的连线的交点分别位于椭圆的法线和切线上的性质。

根据焦点和直线的关系,我们可以解决一些有关焦点和直线的题目,如:已知一个点在椭圆上,连接该点和椭圆的两个焦点,然后以该点为圆心,过两个焦点的直线为半径画圆,证明所得的圆和椭圆相切等。

四、椭圆的参数方程和极坐标方程除了直角坐标系表示椭圆外,我们还可以使用参数方程和极坐标方程来描述椭圆。

在解题时,椭圆的参数方程和极坐标方程常常能够简化计算步骤,提高解题效率。

椭圆的参数方程可以表示为:x = a*cosθ,y = b*sinθ。

高考数学中涉及椭圆的问题考什么

高考数学中涉及椭圆的问题考什么

可 以 求 椭 圆上 的 点 与 焦 点 的 有 关 距 离 。 2 . 求 椭 圆 的 准 线
俩 I ,
” ‘

一 一、 、



m2 — 1一
” / ,


求 椭 圆 的 标 准 方 程

点 P到其 左焦 点 的距 离为 3 , 到 右焦 点 的距
) 。 5
二 .考点 题 型糯讲
1 . 考 查 椭 圆 的 定 义
侧 , 如图 1 , 椭
一 丢 , 一 2 { P F l = = = 2 , 故 选B 。
点评 : 解本题 的关键是 椭 圆的 两个定义
圆 + 等 地 点 M
划 N为M E: 。 二 \ \ 、 巧0 / / 的 中 点 , 则 \\ /

一 :: :

常 考 查 椭 圆 的定 义 、 椭 圆 的标 准 方程 、 椭 圆 的几 何 性 质 及 其 应 用 , 以 及 椭 圆 与 直 线 的 有 关 知识 , 还 会 涉 及 求 解 椭 圆 中 有 关 元 素 的 最值、 有关 长度 和 面积等 问题 。

由椭 圆第 二 定 义 得 :
, . 。
故 一√ 2。, 解
义, 即 l
l l + l F2 = = = 2
量 等 式 得 “ 一
点评 : 解 本题 的 关键 是挖 吐 : 图 形 中 的 隐 含 关 系, 圆 的 半 径 是 椭 圆 的 长 半 轴 长 , 所 以 容 易得 出基 本 量 之 间 的 关 系 , 求 出 离心 率 。
C . 8
D . _ 兰 _
且 互相 垂直 , 则 离心 率 e 一 分析 : 本题 先作 出 图形

椭圆与双曲线常见题型总结(附答案)

椭圆与双曲线常见题型总结(附答案)
解:(Ⅰ) 离心率 , ,即 (1);
又椭圆过点 ,则 ,(1)式代入上式,解得 , ,椭圆方程为 。
(Ⅱ)设 ,弦MN的中点A
由 得: , 直线 与椭圆交于不同的两点, ,即 ………………(1)
由韦达定理得: ,则 ,
直线AG的斜率为: ,
由直线AG和直线MN垂直可得: ,即 ,代入(1)式,可得 ,即 ,则 。
由 消y整理,得
由直线和抛物线交于两点,得 即
由韦达定理,得: 。则线段AB的中点为 。
线段的垂直平分线方程为:
令y=0,得 ,则 为正三角形, 到直线AB的距离d为 。
解得 满足 式此时 。
思维规律:直线过定点设直线的斜率k,利用韦达定理法,将弦的中点用k表示出来,再利用垂直关系将弦的垂直平分线方程写出来,求出了横截距的坐标;再利用正三角形的性质:高是边长的 倍,将k确定,进而求出 的坐标。
解:(I)∵a2=2,b2=1,∴c=1,F(-1,0),l:x=-2.∵圆过点O、F,∴圆心M在直线x=-
设M(- ),则圆半径:r=|(- )-(-2)|=
由|OM|=r,得 ,解得t=± ,∴所求圆的方程为(x+ )2+(y± )2= .
(II)由题意可知,直线AB的斜率存在,且不等于0,设直线AB的方程为y=k(x+1)(k≠0),
本题解决过程中,有一个消元技巧,就是直线和抛物线联立时,要消去一次项,计算量小一些,也运用了同类坐标变换——韦达定理,同点纵、横坐标变换-------直线方程的纵坐标表示横坐标。其实解析几何就这么点知识,你发现了吗?
题型三:过已知曲线上定点的弦的问题
若直线过的定点在已知曲线上,则过定点的直线的方程和曲线联立,转化为一元二次方程(或类一元二次方程),考察判断式后,韦达定理结合定点的坐标就可以求出另一端点的坐标,进而解决问题。下面我们就通过例题领略一下思维过程。

高中数学_椭圆,知识题型总结

高中数学_椭圆,知识题型总结

陈氏优学教学课题椭圆知识点一:椭圆的定义 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形.讲练结合一.椭圆的定义1.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是 知识点二:椭圆的标准方程1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有和;3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。

讲练结合二.利用标准方程确定参数1.椭圆2214x y m+=的焦距为2,则m = 。

2.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

知识点三:椭圆的简单几何性质椭圆的的简单几何性质(1)对称性对于椭圆标准方程,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方程都不变,所以椭圆是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围椭圆上所有的点都位于直线x=±a 和y=±b 所围成的矩形内,所以椭圆上点的坐标满足|x|≤a ,|y|≤b 。

(3)顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0),A2(a,0),B1(0,―b),B2(0,b)。

③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。

a和b分别叫做椭圆的长半轴长和短半轴长。

(4)离心率①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。

高中数学椭圆知识题型总结,高二升高三的你们复习必备

高中数学椭圆知识题型总结,高二升高三的你们复习必备

高中数学椭圆知识题型总结,高二升高三的你们复习必备
高中数学:椭圆知识题型总结,高二升高三的你们复习必备!-
或许,这就是数学的魅力吧,只需一二定理,三四公式,就可以制出成百上千道不同的题目。

今天来说说高中数学重要章节——圆锥曲线椭圆相关知识点。

椭圆题在高中数学中占据比较重要的位置,占的分数也比较多。

分析历年高考题可知,选择题、填空题、大题中都有椭圆相关的题型。

所以一定要系统的掌握知识,对各类题型和基本解题方法有一定的了解。

关于椭圆的复习指导:
1、熟悉椭圆的定义及其几何性质,能求出椭圆的标准方程。

2、掌握常见的几种数学思想方法—函数与方程、数形结合、转化与回归等。

体会解析几何的本质问题(用代数的方法解决几何问题)
为了帮助同学们更好地复习,边肖为大家整理了高中数学椭圆中的几种题型汇总。

高二高三的孩子就趁这个假期好好复习。

相信对你的数学会有帮助。

想要完整版打印出来学习的同学可以点击头像后私信学姐【数学椭圆题型】,即可免费领取!还有免费提分的试听课程等着你~。

椭圆中6种常考基础题型(解析版)--2024高考数学常考题型精华版

椭圆中6种常考基础题型(解析版)--2024高考数学常考题型精华版

第19讲椭圆中6种常考基础题型【考点分析】考点一:椭圆的通径过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为22b a.考点二:椭圆中有关三角形的周长问题图一图二如图一所示:21F PF ∆的周长为c a 22+如图一所示:ABC ∆的周长为a 4考点三:椭圆上一点的有关最值①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点.②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a c +,距离的最小值为a c -.考点四:椭圆的离心率椭圆的离心率()10<<=e a c e ,222222221ab a b a ac e -=-==考点五:椭圆焦点三角形的面积为2tan2S b θ=⋅(θ为焦距对应的张角)考点六:中点弦问题(点差法)中点弦问题:若椭圆与直线l 交于AB 两点,M 为AB 中点,且AB k 与OM k 斜率存在时,则22ab K k OM AB -=⋅;(焦点在x 轴上时),当焦点在y 轴上时,22ba K k OMAB -=⋅若AB 过椭圆的中心,P 为椭圆上异于AB 任意一点,22ab K k PB P A -=⋅(焦点在x 轴上时),当焦点在y 轴上时,22ba K k PBP A -=⋅【题型目录】题型一:椭圆的定义有关题型题型二:椭圆的标准方程题型三:椭圆的离心率题型四:椭圆中焦点三角形面积题型五:椭圆中中点弦问题题型六:椭圆中的最值问题【典型例题】题型一:椭圆的定义有关题型【例1】已知△ABC 的周长为10,且顶点()2,0B -,()2,0C ,则顶点A 的轨迹方程是()A .221(0)95x y y +=≠B .221(0)59x y y +=≠C .221(0)64x y y +=≠D .221(0)46x y y +=≠【答案】A【解析】∵△ABC 的周长为10,顶点()2,0B -,()2,0C ,∴=4BC ,+=10464AB AC -=>,∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵3,2a c ==,∴2945b =-=,又因为,,A B C 三点构成三角形,∴椭圆的方程是()221095x y y +=≠.故选:A .【例2】如果点(),M x y =M 的轨迹是().A .不存在B .椭圆C .线段D .双曲线【答案】B=(),M x y 到点(0,3),(0,3)-的距离之和为3(3)6--=<M 的轨迹是椭圆,故选:B【例3】设1F ,2F 分别为椭圆2214x y +=的左、右焦点,点P 在椭圆上,且1223PF PF += ,则12F PF ∠=()A .6πB .4πC .3πD .2π【答案】D【解析】因32221==+PO PF PF ,所以213OF OF PO ===,所以︒=∠9021PF F 【例4】1F 、2F 是椭圆22:1259x yC +=的左、右焦点,点P 在椭圆C 上,1||6PF =,过1F 作12F PF ∠的角平分线的垂线,垂足为M ,则||OM 的长为()A .1B .2C .3D .4【答案】C【详解】如图,直线1F M 与直线2PF 相交于点N ,由于PM 是12F PF ∠的平分线,且PM ⊥1F N ,所以三角形1F PN 是等腰三角形,所以1PF PN =,点M 为1F N 中点,因为O 为12F F 的中点,所以OM 是三角形12F F N 的中位线,所以212OM F N =,其中212112226F N PF PF PF a PF =-=-=-,因61=PF ,所以62=N F ,所以3=OM ,所以选C【例5】已知椭圆22:12516x y C +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=()A .10B .15C .20D .25【答案】C【解析】设MN 的中点为G ,椭圆的左右焦点分别为21,F F ,则G 为MN 的中点,1F 为MA 的中点,所以12GF AN =,同理22GF BN =,所以()204221==+=+a GF GF BN AN【例6】方程x 2+ky 2=2表示焦点在x 轴上的椭圆的一个充分但不必要条件是()A .0k >B .12k <<C .1k >D .01k <<【答案】B【解析】方程x 2+ky 2=2可变形为:22122x y k+=,表示焦点在x 轴上的椭圆,则有:202k<<,解得k 1>.易知当12k <<时,k 1>,当k 1>时未必有12k <<,所以12k <<是k 1>的充分但不必要条件.故选B.【例7】点1F ,2F 为椭圆C :22143x y+=的两个焦点,点P 为椭圆C 内部的动点,则12PF F △周长的取值范围为()A .()2,6B .[)4,6C .()4,6D .[)4,8【答案】C【解析】由椭圆C :22143x y +=,得:2,1a c ==,当点P 在椭圆上时,12PF F △周长最大,为226a c +=,当点P 在x 轴上时,去最小值,为44c =,又因点P 为椭圆C 内部的动点,所以12PF F △周长的取值范围为()4,6.故选:C.【例8】椭圆22193x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,如果1PF 的中点在y 轴上,那么1||PF 是2||PF 的()A .7倍B .6倍C .5倍D .4倍【答案】C【解析】由题意知:212F F PF ⊥,所以13322===a b PF ,因6221==+a PF PF ,所以51=PF ,所以521=PF PF【题型专练】1.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是()A .2213620x y +=(x≠0)B .2212036x y +=(x≠0)C .221620x y +=(x≠0)D .221206x y +=(x≠0)【答案】B【解析】∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC =8,AB +AC =20﹣8=12,∵12>8∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵a =6,c =4∴b 2=20,∴椭圆的方程是()22102036x y x +=≠故选B .2.焦点在x 轴上的椭圆222125x y a +=焦距为8,两个焦点为12,F F ,弦AB 过点1F ,则2ABF ∆的周长为()A .20B .28C .D .【答案】D【解析】由题意知252=b ,因为222c b a +=,所以16252+=a ,解得41=a ,所以2ABF ∆的周长为4144=a ,故选:D3.(2021新高考1卷)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A.13B.12C.9D.6【答案】C【解析】因2121262MF MF a MF MF ⋅≥==+,所以921≤⋅MF MF 4.已知椭圆22192x y +=的左、右焦点分别为12,F F ,点M 在椭圆上,若1||4MF =,则12F MF ∠=()A .30°B .60︒C .120︒D .150︒【答案】C 【解析】【分析】根据椭圆方程求得12F F =1226MF MF a +==,求得1||4MF =,所以22MF =,在12F MF △中,再由余弦定理列出方程,求得121cos 2F MF ∠=-,即可求解.【详解】解:由题意,椭圆方程22192x y +=,可得3,a b c ===所以焦点12(F F ,又由椭圆的定义,可得1226MF MF a +==,因为1||4MF =,所以22MF =,在12F MF △中,由余弦定理可得222121212122cos F F MF MF MF MF F MF =+-∠,所以2221242242cos F MF =+-⨯⨯∠,解得121cos 2F MF ∠=-,又由12(0,180)F MF ∠∈,所以12120F MF ∠= .故选:C .5.设1F ,2F 为椭圆22194x y +=的两个焦点,点P 在椭圆上,若线段1PF 的中点在y 轴上,则21PF PF 的值为()A .513B .45C .27D .49【答案】C 【解析】【分析】由中位线定理以及椭圆方程得出243PF =,再由椭圆的定义得出1PF ,再求21PF PF 的值.【详解】由椭圆的定义可知,1226PF PF a +==,由中位线定理可知,212PF F F ⊥,将x =22194x y+=中,解得43y =±,即243PF =,1414633PF =-=,故214323147PF PF =⨯=故选:C6.已知曲线22:1C mx ny +=A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n >>,则C 是椭圆,其焦点在x 轴上C .若0m n =>,则CD .若0m =,0n >,则C 是两条直线【答案】AD【解析】由题意得:11122=+ny m x ,所以当0>>n m ,则nm 110<<,所以表示焦点在y 轴上的椭圆,所以A 对,B 错,当0>=n m 时,曲线C 为ny x 122=+,所以表示圆,半径为n 1,当0,0>=n m 时,曲线C 为ny 12=,所以n y 1±=,所以表示两条直线,故选:AD7.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是()AB.CD.【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.8.在平面直角坐标系xOy 中,若△ABC 的顶点(0,2)A -和(0,2)C ,顶点B 在椭圆181222=+xy 上,则sin sin sin A C B +的值是()AB .2C .D .4【答案】A 【解析】【分析】由题设易知,A C 为椭圆的两个焦点,结合椭圆定义及焦点三角形性质有||||2AB CB a +=,||2AC c =,最后应用正弦定理的边角关系即可求目标式的值.【详解】由题设知:,A C 为椭圆的两个焦点,而B 在椭圆上,所以||||2AB CB a +==||24AC c ==,由正弦定理边角关系知:|||||sin sin sin |A A CB CB A BC +=+故选:A9.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .6【答案】C【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .10.已知椭圆22143x y +=的左、右焦点分别为1F 、2F ,点P 在椭圆上且在x 轴的下方,若线段2PF 的中点在以原点O 为圆心,2OF 为半径的圆上,则直线2PF 的倾斜角为()A .6πB .4πC .3πD .23π【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.11.已知A 为椭圆2212516x y +=上一点,F 为椭圆一焦点,AF 的中点为P ,O 为坐标原点,若2OP =则AF =()A .8B .6C .4D .2【答案】B【解析】不妨设椭圆2212516x y +=左焦点为F ,右焦点为E ,因为AE 的中点为P ,EF 的中点为O ,所以24AE OP ==,又由210AE AF a +==,可得1046AF =-=.故选:B .12.已知椭圆C :22194x y +=的左右焦点分别是12,F F ,过2F 的直线与椭圆C 交于A ,B 两点,且118AF BF +=,则AB =()A .4B .6C .8D .10【答案】A【解析】由椭圆22:194x y C +=知:a =3,由椭圆的定义得:121226,26AF AF a BF BF a +==+==,所以11412AF BF AB a ++==,又因为118AF BF +=,所以AB 4=,故选:A题型二:椭圆的标准方程【例1】已知椭圆E :()222210x y a b a b+=>>右焦点为),其上下顶点分别为1C ,2C ,点()1,0A ,12AC AC ⊥,则该椭圆的标准方程为()A .22134x y +=B .22143x y +=C .2213y x +=D .2213x y +=【例2】已知椭圆C :()222210x y a b a b+=>>,椭圆C 的一顶点为A ,两个焦点为1F ,2F ,12AF F △焦距为2,过1F ,且垂直于2AF 的直线与椭圆C 交于D ,E 两点,则ADE ∆的周长是()A .B .8C .D .16【例3】如图,已知椭圆C 的中心为原点O ,(F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =,且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2214525x y +=C .2213010x y +=D .2213616x y +=故选:D【例4】阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C 的对称轴为坐标轴,焦点在y 轴上,且椭圆C 的离心率为53,面积为12π,则椭圆C 的方程为()A .221188x y +=B .22198y x +=C .221188y x +=D .22184y x +=【例5】过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【例6】已知12,F F 分别是椭圆221(0)x y a b a b +=>>的左、右焦点,A ,B 分别为椭圆的上,下顶点,过椭圆的右焦点2F 的直线交椭圆于C ,D 两点,1FCD 的周长为8,且直线AC ,BC 的斜率之积为14-,则椭圆的方程为()A .2212x y +=B .22132x y +=C .2214x y +=D .22143x y +=【例7】已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过F 2的直线与C 交于A ,B 两点.若22||3||AF F B =,15||4||AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【题型专练】1.已知1F 、2F 是椭圆C :22221x ya b+=()0a b >>的左、右焦点,A 为椭圆的上顶点,B 在x 轴上,20AB AF ⋅= 且122AF AB AF =+.若坐标原点O 到直线AB 的距离为3,则椭圆C 的方程为()A .2214x y +=B .22143x y +=C .221169x y +=D .2211612x y +=1612故选:D2.已知椭圆()2222:10x y C a b a b +=>>,其左、右焦点分别为1F ,2F ,离心率为12,点P 为该椭圆上一点,且满足12π3F PF ∠=,若12F PF △的内切圆的面积为π,则该椭圆的方程为()A .221129x y +=B .2211612x y +=C .2212418x y +=D .2213224x y +=3.已知椭圆的两个焦点为1(F ,2F ,M 是椭圆上一点,若12MF MF ⊥,128MF MF ⋅=,则该椭圆的方程是()A .22172x y +=B .22127x y +=C .22194x y +=D .22149x y +=4.已知1(1,0)F -,2(1,0)F 是椭圆C 的两个焦点,过2F 且垂直于x 轴的直线交椭圆C 于A ,B 两点,3AB =,则椭圆C 的标准方程为()A .2213y x +=B .2213x y +=C .22143x y +=D .22132x y +=方法二:由题意,设椭圆C 的标准方程为所以a =2或12a =-(舍去),所以2a 故椭圆C 的标准方程为22143x y +=.故选:C.5.已知椭圆C :()222210x y a b a b+=>>的右焦点为),右顶点为A ,O 为坐标原点,过OA 的中点且与坐标轴垂直的直线交椭圆C 于M ,N 两点,若四边形OMAN 是正方形,则C 的方程为()A .2213x y +=B .22153x y +=C .22175x y +=D.22197x y +=6.已知椭圆22:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -=与椭圆C 相交于不同的两点,A B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为()A .2213x y +=B .22142x y +=C .22153x y +=D .22163x y +=7.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近”的方法得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积.若椭圆C :()222210x y a b a b+=>>的左,右焦点分别是1F ,2F ,P 是C 上一点,213PF PF =,123F PF π∠=,C 的面积为12π,则C 的标准方程为()A .221364x y +=B .22112x y +=C .221169x y +=D .22143x y +=8.已知椭圆C :22=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为M ,N ,过F 2的直线l 交C 于A ,B 两点(异于M 、N ),△AF 1B 的周长为AM 与AN 的斜率之积为-23,则椭圆C的标准方程为()A .22=134y x +B .22=134x y +C .22=13x y +D .22=132x y +9.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线交于C 与A ,B ,若222AF F B =,1AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22198x y +=1F 题型三:椭圆的离心率【例1】已知1F ,2F 为椭圆22221x ya b+=(a >b >0)的左、右焦点,以原点O 为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A ,B ,若1ABF 为等边三角形,则椭圆的离心率为()A1B 1C .12D 又1290F AF ∠=,∴21,3AF c AF c ==,∴32c c a +=,可得2331c a ==+故选:B .【例2】已知椭圆C :()21024b b+=<<的左焦点为1F ,直线()0y kx k =≠与C 交于点M ,N .若1120MF N ︒∠=,1183MF NF ⋅=,则椭圆C 的离心率为()A .12B .22C D 因为O 为12,MN F F 的中点,所以四边形所以12MF NF =,12NF MF =,由椭圆的定义可得:又因为1183MF NF ⋅=,所以1MF 【例3】已知椭圆()22:10x y C a b a b+=>>上存在两点,M N 关于直线3310--=x y 对称,且线段MN 中点的纵坐标为53,则椭圆C 的离心率是()A B C .23D【例4】已知椭圆C :221a b+=()0a b >>的左右焦点分别为1F ,2F ,过点2F 做倾斜角为6π的直线与椭圆相交于A ,B 两点,若222,AF F B =,则椭圆C 的离心率e 为()AB .34C .35D【例5】设B 是椭圆()22:10C a b a b+=>>的上顶点,若C 上的任意一点P 都满足2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎝⎦【例6】12,F F 是椭圆C 的两个焦点,P 是椭圆C 上异于顶点的一点,I 是12PF F △的内切圆圆心,若12PF F △的面积等于12IF F △的面积的3倍,则椭圆C 的离心率为()A .13B .12C .2D .2a b如图,设()()()12,,,0,,0,P m n F c F c ∴-三角形由椭圆的定义可得22l a c=+122222PF F S cn cnr l a c a c∴===++ ,又2121113,2322P I F F F F cn S S c n a =∴⨯⨯=⨯⨯ 故选:B【例7】用平面截圆柱面,当圆柱的轴与α所成角为锐角时,圆柱面的截线是一个椭圆.著名数学家Dandelin 创立的双球实验证明了上述结论.如图所示,将两个大小相同的球嵌入圆柱内,使它们分别位于α的上方和下方,并且与圆柱面和α均相切.给出下列三个结论:①两个球与α的切点是所得椭圆的两个焦点;②椭圆的短轴长与嵌入圆柱的球的直径相等;③当圆柱的轴与α所成的角由小变大时,所得椭圆的离心率也由小变大.其中,所有正确结论的序号是()A .①B .②③C .①②D .①③【答案】C【分析】根据切线长定理可以证明椭圆上任意一点到12,F F 的距离之和为定值,即12,F F 是焦点再运用勾股定理证明短轴长,最后构造三角形,运用三角函数表示离心率即可.【详解】如图:在椭圆上任意一点P 作平行于12O O 的直线,与球1O 交于F 点,与球2O 交于E 点,则PE ,2PF 是过点P 作球2O 的两条公切线,2PE PF =,同理1PF PF =,是椭圆的焦点;①正确;【例8】国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆;某校体育馆的钢结构与“鸟巢”相同,其平面图如图2所示,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于34-,则椭圆的离心率为()A .34B .58C .12D .4【题型专练】1.直线:l y =与椭圆2222:1x y C a b+=交于,P Q 两点,F 是椭圆C 的右焦点,且0PF QF ⋅= ,则椭圆的离心率为()A .4-B .3C 1D .2【详解】的左焦点为F ',由对称性可知:四边形PF QF '为平行四边形,PF QF '∴=2PF PF QF a '=+=;2.设12,F F 分别是椭圆221x ya b+=的左、右焦点,若椭圆上存在点A ,使12120F AF ∠=︒且123AF AF =,则椭圆的离心率为()AB C D3.设椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点M ,N 在C 上(M 位于第-象限),且点M ,N 关于原点O 对称,若1222||,F F MN MF ==,则C 的离心率为()A .4B .37C .12D .377122a +故选:B4.如图,直径为4的球放地面上,球上方有一点光源P ,则球在地面上的投影为以球与地面切点F 为一个焦点的椭圆,已知是12A A 椭圆的长轴,1PA 垂直于地面且与球相切,16PA =,则椭圆的离心率为()A .12B .23C .13D .2【答案】A【分析】根据给定条件,结合球的性质作出截面12PA A ,再结合三角形内切圆性质求出12A A 长即可作答.【详解】依题意,平面12PA A 截球O 得球面大圆,如图,12Rt PA A 是球O 大圆的外切三角形,其中112,PA A A 切圆O 于点E ,F ,=5.如图圆柱12O O 的底面半径为1,母线长为6,以上下底面为大圆的半球在圆柱12O O 内部,现用一垂直于轴截面ABB A ''的平面α去截圆柱12O O ,且与上下两半球相切,求截得的圆锥曲线的离心率为()A .3B .3C D .3半径为1,12O O 平面α与底面夹角余弦值为圆柱的底面半径为1,∴又 椭圆所在平面与圆柱底面所成角余弦值为以G 为原点建立上图所示平面直角坐标系,12,332FH a EF a ∴===,则椭圆标准方程为2222c a b =-=,故离心率故选:A.6.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为坐标平面上一点,且满足120PF PF ⋅=的点P 均在椭圆C 的内部,则椭圆C 的离心率的取值范围为()A .2⎛ ⎝⎭B .10,2⎛⎫⎪⎝⎭C .,12⎛⎫ ⎪ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.已知点A ,P ,Q 为椭圆C :()222210x y a b a b +=>>上不重合的三点,且点P ,Q 关于原点对称,若12AP AQ k k ⋅=-,则椭圆C 的离心率为()A .2B C D8.已知椭圆22:1(0)x yC a ba b+=>>的一个焦点为F,椭圆C上存在点P,使得PF OP⊥,则椭圆C的离心率取值范围是()A.2⎛⎝⎦B.,12⎫⎪⎪⎣⎭C.10,2⎛⎤⎥⎝⎦D.1,12⎡⎫⎪⎢⎣⎭故选:B题型四:椭圆中焦点三角形面积【例1】已知椭圆()222210+=>>x y C a b a b:的左、右焦点分别为1F ,2F ,P 为C 上一点,12π3F PF ∠=,若12F PF △的面积为C 的短袖长为()A .3B .4C .5D .6【例2】(2021年全国高考甲卷数学(理)试题)已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.【题型专练】1.设P 为椭圆221259x y +=上一点,1,F 2F 为左右焦点,若1260F PF ︒∠=,则P 点的纵坐标为()A.4B.4±C.4D.4±【答案】B 【分析】根据椭圆中焦点三角形的面积公式2tan 2S b θ=求解即可.【详解】由题知12609tan2F PF S ︒=⨯= 设P 点的纵坐标为h则12421F F h h ⋅⋅=±⇒=.故选:B2.已知()()1200F c F c -,,,是椭圆E 的两个焦点,P 是E 上的一点,若120PF PF ⋅=,且122=△PF F S c ,则E 的离心率为()ABC .2D 3.已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅ 12,则12F PF △的面积为()A.B.CD .9题型五:椭圆中中点弦问题【例1】已知椭圆C :22221x y a b+=(0a b >>)的长轴为4,直线230x y +-=与椭圆C 相交于A 、B 两点,若线段AB 的中点为(1,1)M ,则椭圆C 的方程为()A .221168x y +=B .22142x y +=C .2211612x y +=D .22143x y +=【例2】平行四边形ABCD 内接于椭圆221x y a b +=()0a b >>,椭圆的离心率为2,直线AB 的斜率为1,则直线AD 的斜率为()A .1-4B .1-2C .2D .-1设E 为AD 中点,由于O 为BD 中点,所以因为1133(,),(,)A x y D x y 在椭圆上,【例3】椭圆2294144x y +=内有一点(2,3)P ,过点P 的弦恰好以P 为中点,那么这条弦所在的直线方程为()A .23120x y +-=B .32120x y +-=C .941440x y +-=D .491440x y +-=【例4】已知椭圆E :143+=上有三点A ,B ,C ,线段AB ,BC ,AC 的中点分别为D ,E ,F ,O为坐标原点,直线OD ,OE ,OF 的斜率都存在,分别记为1k ,2k ,3k ,且123k k k ++=直线AB ,BC ,AC 的斜率都存在,分别记为AB k ,BC k ,AC k ,则111AB BC ACk k k ++=()AB .C .-D .1-【例5】离心率为2的椭圆()222210x y a b a b +=>>与直线y kx =的两个交点分别为A ,B ,P 是椭圆不同于A 、B 、P 的一点,且PA 、PB 的倾斜角分别为α,β,若120αβ+=︒,则()cos αβ-=()A .16-B .13-C .13D .16【例6】(2022·全国·高考真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||MA NB MN ==l 的方程为___________.【例7】(2022·全国甲(理)T10)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.13【答案】A 【解析】【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.【详解】解:(),0A a -,设()11,P x y ,则()11,Q x y -,则1111,AP AQ y y k k x a x a==+-+,故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+,又2211221x y a b +=,则()2221212b a x y a -=,所以()2221222114b a x a x a -=-+,即2214b a =,所以椭圆C的离心率2c e a ===.故选:A.【例8】椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为椭圆的右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的最大值为__________.【答案】63【解析】因为,B A 关于原点对称,所以B 也在椭圆上,设左焦点为F ',根据椭圆的定义:||2AF AF a '+=,因为||BF AF'=,所以||||2AF BF a +=,O 是直角三角形ABF 斜边的中点,所以||2,||2sin ,||2cos AB c AF c BF c αα===,所以2(sin cos )2c a αα+=,所以11sin cos 4c a πααα==+⎛⎫+ ⎪⎝⎭,由于,124ππα⎡⎤∈⎢⎥⎣⎦,所以当12πα=时,离心率的最大值为63,故答案为63.【题型专练】1.已知椭圆()222210x y a b a b+=>>,()0,2P ,()0,2Q -过点P 的直线1l 与椭圆交于A ,B ,过点Q 的直线2l 与椭圆交于C ,D ,且满足12l l ∕∕,设AB 和CD 的中点分别为M ,N ,若四边形PMQN 为矩形,且面积为则该椭圆的离心率为()A .13B .23C.3D .32.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是()A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦D .314⎡⎤⎢⎥⎣⎦,【答案】B【详解】由题意,椭圆C :22143x y +=的左、右顶点分别为12(2,0),(2,0)A A -,设00(,)P x y ,则()2200344y x =-,又由1220002200034PA PA y y y k k x a x a x a ⋅=⨯=-+--,可得1234PA PA k k -=,因为[]12,1PA k ∈--,即23421PA k --≤≤-,可得23384PA k ≤≤,所以直线2PA 斜率的取值范围33,84⎡⎤⎢⎥⎣⎦.故选:B3.已知椭圆22:184x y C +=,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M ,则OM 的斜率与直线l 的斜率的乘积()A .1-B .1C .12D .12-【答案】D,进而联立方程求解中点4.点A ,B 在椭圆2212x y +=上,点11,2M ⎛⎫ ⎪⎝⎭,2OA OB OM +=,则直线AB 的方程是()A .12y x =-B .522y x =-+C .32y x =-+D .322y x =-5.已知椭圆143x y +=上有三个点A 、B 、C ,AB ,BC ,AC 的中点分别为D 、E 、F ,AB ,BC ,AC 的斜率都存在且不为0,若34OD OE OF k k k ++=-(O 为坐标原点),则111AB BC ACk k k ++=()A .1B .-1C .34-D .34【答案】A的斜率转化为6.直线:20l x y-=经过椭圆22+1(0)x y a ba b=>>的左焦点F,且与椭圆交于,A B两点,若M为线段AB中点,||||MF OM=,则椭圆的标准方程为()A.22+163x y=B.22+185x y=C.2214x y+=D.22+1129x y=7.已知三角形ABC 的三个顶点都在椭圆:143x y +=上,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在线的斜率分别为1k ,2k ,3k ,且1k ,2k ,3k 均不为0.O 为坐标原点,若直线OD ,OE ,OM 的斜率之和为1.则123111k k k ++=()A .43-B .3-C .1813-D .32-8.已知过点()1,1M 的直线l 与椭圆22184x y +=交于,A B 两点,且满足,AM BM =则直线l 的方程为()A .30x y -+=B .230x y +-=C .2230x y -+=D .230x y +-=题型六:椭圆中的最值问题【例1】已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别是1F ,2F ,点P 在椭圆C 上则下列结论正确的是()A .12PF PF ⋅有最大值无最小值B .12PF PF ⋅无最大值有最小值C .12PF PF ⋅既有最大值也有最小值D .12PF PF ⋅既无最大值也无最小值【例2】若点O 和点F 分别为椭圆()222210x y a b a b+=>>的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为()A .()a a c +B .()b a c +C .()a a c -D .()b ac -【例3】已知点P 是椭圆4x +2y =1上的动点(点P 不在坐标轴上),12F F 、为椭圆的左,右焦点,O 为坐标原点;若M 是12F PF ∠的角平分线上的一点,且1F M 丄MP ,则丨OM 丨的取值范围为()A .(0B .(0,2)C .(l ,2)D .2)【答案】A=因为1F M MP ⊥,因为PM 为12F PF ∠的角平分线,所以,PN 因为O 为12F F 的中点,所以,212OM F N =设点00(,)P x y ,由已知可得2a =,1b =,c 则022x -<<且00x ≠,且有220114y x =-,()2221000032331PF x y x x =++=+++-【例4】已知点P 在椭圆193x y +=上运动,点Q 在圆22(1)8x y -+=上运动,则PQ 的最小值为()A .2B .2C .24-D .4【答案】D【分析】先求出点P 到圆心(1,0)A 的距离的最小值,然后减去圆的半径可得答案。

高考椭圆大题知识点公式

高考椭圆大题知识点公式

高考椭圆大题知识点公式椭圆是初中数学中的一个重要的几何概念,它也是高考中常见的题型之一。

椭圆的性质和计算方法在高考中一直以来都是考察的重点,掌握了椭圆的知识点和公式,对于解答相关题目有着至关重要的作用。

本文将详细介绍高考椭圆大题的知识点和公式。

1. 椭圆的定义和基本性质椭圆可以用一个特定的平面曲线来描述,它是一个离心率小于1的闭合曲线。

椭圆有两个特殊的焦点和一个长轴和短轴。

在求解椭圆的相关题目时,我们需要了解椭圆的四个基本性质:离心率、焦半径、焦距和准线。

2. 椭圆的方程和标准方程对于给定的椭圆,我们需要根据已知条件求解其方程。

椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1(a>b>0),其中(h,k)是椭圆的中心坐标,a和b分别是椭圆的长轴和短轴长度。

3. 椭圆的焦点和准线椭圆的焦点是与椭圆的离心率相关的关键概念。

根据椭圆的标准方程,椭圆的焦点分别位于椭圆的长轴两侧,并与中心坐标的y坐标有一定的关系。

在求解与焦点相关的问题时,我们需要根据给定条件确定焦点的坐标和与焦点相关的长度。

4. 椭圆的参数方程和切线方程椭圆的参数方程是描述椭圆上任意一点的坐标与参数的关系。

根据椭圆的参数方程,我们可以求解椭圆上特定点的坐标,并进一步求解与椭圆相关的问题。

另外,椭圆的切线方程是求解椭圆上某一点的切线斜率和方程的重要手段。

5. 椭圆的面积和周长椭圆的面积和周长是解答椭圆相关题目时常见的考点。

椭圆的面积公式为πab,其中a是椭圆的长轴半径,b是椭圆的短轴半径。

椭圆的周长公式是2π√(a²+b²/2)。

6. 椭圆在平面几何中的应用椭圆不仅仅是一个抽象的数学概念,它在实际生活和工程领域中有着丰富的应用。

椭圆的轨迹和焦点特性在天体运动、建筑设计、电子工程等领域有着广泛的应用。

通过了解椭圆的应用,我们可以更好地理解椭圆的几何性质和相关计算方法。

高考数学椭圆解题方法总结

高考数学椭圆解题方法总结

高考数学椭圆解题方法总结一、设点或直线做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。

其中点可以设为,等,如果是在椭圆上的点,还可以设为。

一般来说,如果题目中只涉及到唯一一个椭圆上的的动点,这个点可以设为。

还要注意的是,很多点的坐标都是设而不求的。

对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设,如果只是过定点,可以设参数方程,其中α是直线的倾斜角。

一般题目中涉及到唯一动直线时可以设直线的参数方程。

二、转化条件有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。

对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。

比如点在圆上可以转化为向量点乘得零,三点共线可以转化成两个向量平行,某个角的角平分线是一条水平或竖直直线则这个角的两条边斜率和是零。

有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单。

三、代数运算转化完条件就剩算数了。

很多题目都要将直线与椭圆联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都是这样。

有的题目可能需要算弦长,可以用弦长公式,设参数方程时,弦长公式可以简化为解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为和,AB与x轴交于D,则(d是点O到AB的距离;第三个公式是我自己推的,教材上没有,解答题慎用)。

解析几何中很多题都有动点或动直线。

如果题目只涉及到一个动点时,可以考虑用参数设点。

若是只涉及一个过定点的动直线,题目中又涉及到求长度面积之类的东西,这时设直线的参数方程会简单一些。

在解析几何中还有一种方法叫点差法,设椭圆上两个点的坐标,将两点在椭圆上的方程相减,整理即可得到这两点的中点的横纵坐标与这两点连线的斜率的关系式。

四、能力要求做解析几何题,首先对人的耐心与信心是一种考验。

圆锥曲线:有关椭圆的小题总结 高考数学

圆锥曲线:有关椭圆的小题总结 高考数学

m足∠ = ∘ ,则



≥ = ,




【解析】由题意得: +
=


,所以当>>,则< < ,所


以表示焦点在轴上的椭圆,所以对,错,当 = >时,曲线


+
= ,所以表示圆,半径为 ,当 = , >时,曲线为





= ,所以 = ± ,所以表示两条直线,故选:




以只要求∠ 为直角时点横坐标的值,因为 = ,所以当
∠ 为直角时,点在圆 + = 上,解方程组:
得: =

±
,

所以点 横坐标的取值范围是:



+ =

�� +



<<
.


=
试卷讲评课件
【例3】已知椭圆
x2
上任意一点,则当点Q为椭圆短轴的端点时,∠AQB最大.
试卷讲评课件
【证明】如图,设 , ≤ <, < ≤ ,过点作
⊥ ,垂足为,则 = + , = − , = ,所以
∠ =
∠ =
+
,∠

=


迹E的方程为

+


=

所以动圆C的圆心轨迹E的方程为

+


=



+


=
试卷讲评课件
x2
练习3.已知A、B分别为椭圆E: 2

9.2椭圆-高考数学总复习历年(十年)真题题型归纳+模拟预测(原卷版)

9.2椭圆-高考数学总复习历年(十年)真题题型归纳+模拟预测(原卷版)

第9章 解析几何9.2 椭圆从近三年高考情况来看,椭圆的定义、标准方程、几何性质一直是高考命题的热点,尤其是离心率问题是高考考查的重点,多在选择题、填空题中出现,考查直线与椭圆的位置关系,常与向量、圆等知识相结合,多以解答题的形式出现,解题时,以直线与椭圆的位置关系为主,充分利用数形结合思想,转化与化归思想.同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养.1.(2022•新高考2)已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x 轴、y 轴分别相交于M ,N 两点,且|MA |=|NB |,|MN |=2√3,则l 的方程为 . 2.(2022•甲卷)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22 C .12D .133.(2022•甲卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→•BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1C .x 23+y 22=1D .x 22+y 2=1题型一.椭圆的标准方程与几何性质1.(2018•新课标Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .√22D .2√232.(2015•新课标Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点.且圆心在x 轴的正半轴上.则该圆标准方程为 .3.(2016•新课标Ⅰ)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13B .12C .23D .344.(2014•大纲版)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为√33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为4√3,则C 的方程为( ) A .x 23+y 22=1 B .x 23+y 2=1C .x 212+y 28=1 D .x 212+y 24=15.(2019•新课标Ⅰ)已知椭圆C 的焦点为F 1(﹣1,0),F 2(1,0),过点F 2的直线与椭圆C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( ) A .x 22+y 2=1 B .x 23+y 22=1C .x 24+y 23=1 D .x 25+y 24=16.(2019•新课标Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为 . 7.(2021•甲卷)已知F 1,F 2为椭圆C :x 216+y 24=1的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且|PQ |=|F 1F 2|,则四边形PF 1QF 2的面积为 . 8.(2013•新课标Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆E 于A 、B 两点.若AB 的中点坐标为(1,﹣1),则E 的方程为( ) A .x 245+y 236=1 B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=1题型二.椭圆的离心率1.(2018•新课标Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( ) A .1−√32 B .2−√3 C .√3−12D .√3−12.(2013•四川)从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( ) A .√24B .12C .√22D .√323.(2012•新课标)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A .12B .23C .34D .454.(2018•新课标Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A .23B .12C .13D .145.(2017•新课标Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx ﹣ay +2ab =0相切,则C 的离心率为( ) A .√63B .√33C .√23D .136.(2016•新课标Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A .13B .12C .23D .347.(2013•辽宁)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点F ,C 与过原点的直线相交于A ,B 两点,连结AF ,BF ,若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率为( ) A .35B .57C .45D .678.(2018•北京)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2−y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为 ;双曲线N 的离心率为 .题型三.取值范围问题1.(2017•新课标Ⅰ)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,√3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,√3]∪[4,+∞)2.(2021•乙卷)设B 是椭圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB |的最大值为( ) A .52B .√6C .√5D .23.(2021•乙卷)设B 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点,若C 上的任意一点P都满足|PB |≤2b ,则C 的离心率的取值范围是( )A .[√22,1)B .[12,1)C .(0,√22]D .(0,12]4.(2021•新高考Ⅰ)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|•|MF 2|的最大值为( ) A .13B .12C .9D .61.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为35,直线2x +y +10=0过椭圆的左顶点,则椭圆方程为( ) A .x 25+y 24=1 B .x 225+y 29=1 C .x 216+y 29=1D .x 225+y 216=12.设椭圆C :x 2a 2+y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点E (0,t )(0<t <b ).已知动点P 在椭圆上,且点P ,E ,F 2不共线,若△PEF 2的周长的最小值为4b ,则椭圆C 的离心率为( ) A .√32B .√22C .12D .√333.设椭圆y 2a 2+x 2b 2=1(a >b >0)的一个焦点为F 1(0,1),M (3,3)在椭圆外,点P为椭圆上的动点,若|PM |﹣|PF 1|的最小值为2,则椭圆的离心率为( ) A .23B .√34C .12D .144.已知动点M 在以F 1,F 2为焦点的椭圆x 2+y 24=1上,动点N 在以M 为圆心,半径长为|MF 1|的圆上,则|NF 2|的最大值为( ) A .2B .4C .8D .165.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (c ,0),上顶点为A (0,b ),直线x =a 2c 上存在一点P 满足(FP →+FA →)⋅AP →=0,则椭圆的离心率取值范围为( ) A .[12,1)B .[√22,1)C .[√5−12,1)D .(0,√22](多选)6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),焦点F 1(﹣c ,0),F 2(c ,0)(c >0),下顶点为B .过点F 1的直线l 与曲线C 在第四象限交于点M ,且与圆A :(x +2c)2+y 2=14c 2相切,若MF 2→⋅F 1F 2→=0,则下列结论正确的是( ) A .椭圆C 上不存在点Q ,使得QF 1⊥QF 2 B .圆A 与椭圆C 没有公共点C .当a =3时,椭圆的短轴长为2√6D .F 2B ⊥F 1M.。

高考椭圆知识点总结

高考椭圆知识点总结

高考椭圆知识点总结1. 椭圆的定义椭圆是平面上到一定点F1和F2的距离之和等于常数2a的点的轨迹。

2. 椭圆的标准方程椭圆的标准方程:$\\frac{x^2}{a^2} + \\frac{y^2}{b^2} = 1$,其中a和b分别为椭圆的长半轴和短半轴,且a>b>0。

3. 椭圆的焦点和准线•椭圆的焦点:椭圆的焦点是确定椭圆形状的关键,记作F1和F2,位于椭圆的长轴上,且F1和F2与长轴的距离为c,满足$c = \\sqrt{a^2 - b^2}$。

•椭圆的准线:椭圆的准线是垂直于椭圆的长轴,位于椭圆的两个焦点上方和下方,与椭圆的长轴相交于两个顶点。

4. 椭圆的性质•对于椭圆上的任意一点P(x, y),到两个焦点F1和F2的距离之和等于常数2a,即PF1+PF2=2a。

•椭圆的离心率e是一个重要的参数,定义为离心率e等于焦点F1或F2到椭圆的直径的距离与椭圆的长半轴a之比,即$e = \\frac{c}{a}$,满足0<e<1。

•椭圆的离心率越接近于0,椭圆形状越接近于圆形;离心率接近于1时,椭圆形状越扁平。

•椭圆的对称轴分为长轴和短轴,长轴是通过两个焦点的直线,短轴是和长轴垂直的直线。

•椭圆的离心率e和长半轴a的关系满足$e = \\sqrt{1 -\\frac{b^2}{a^2}}$。

5. 椭圆的方程参数化表示一个椭圆也可以通过参数化的方式表示,参数方程为: $x = a\\cos\\theta$,$y = b\\sin\\theta$,其中$0 \\leq \\theta \\leq 2\\pi$。

6. 椭圆的标准方程参数化表示椭圆的标准方程也可以进行参数化表示,参数方程为: $x = a\\cos t$, $y =b\\sin t$,其中$0 \\leq t \\leq 2\\pi$。

7. 椭圆的弧长椭圆的弧长可以通过积分来求解,椭圆的弧长计算公式为: $L =4a\\int_0^{\\frac{\\pi}{2}} \\sqrt{1 - e^2\\sin^2\\theta} d\\theta$,其中e为椭圆的离心率。

高中数学椭圆总结(全)

高中数学椭圆总结(全)

椭圆一.知识清单 1.椭圆的两种定义:①平面内与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。

其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。

②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|e dPF =,0<e <1的常数}。

(1=e 为抛物线;1>e 为双曲线)(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线).2 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。

其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。

其中22b a c -=注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。

3 参数方程:焦点在x 轴,⎩⎨⎧==θθsin cos b y a x (θ为参数)4 一般方程:)0,0(122>>=+B A By Ax5.性质:对于焦点在x 轴上,中心在原点:12222=+by a x (a >b >0)有以下性质:坐标系下的性质:① 范围:|x|≤a ,|y|≤b ;② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);④椭圆的准线方程:对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:= 对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) 椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称⑤焦半径公式:P (x 0,y 0)为椭圆上任一点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆题型总结
一、椭圆的定义和方程问题
(一)定义:PA+PB=2a>2c
1.命题甲:动点到两点的距离之和命题乙: 的轨迹是以A、B为焦点的椭圆,则命题甲是命
题乙的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
2.已知、是两个定点,且,若动点满足则动点的轨迹是()
A.椭圆
B.圆
C.直线
D.线段
3.已知、是椭圆的两个焦点, 是椭圆上的一个动点,如果延长到,使得,那么动点的轨迹是
( )
A.椭圆
B.圆
C.直线
D.点
4.已知、是平面内的定点,并且,是内的动点,且,判断动点的轨迹.
5.椭圆上一点到焦点的距离为2,为的中点,是椭圆的中心,则的值是。

(二)标准方程求参数范围
1.若方程表示椭圆,求k的范围.(3,4)U(4,5)
2.( )
A.充分而不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
3.已知方程表示焦点在Y轴上的椭圆,则实数m的范围是.
4.已知方程表示焦点在Y轴上的椭圆,则实数k的范围是.
5.方程所表示的曲线是.
6.如果方程表示焦点在轴上的椭圆,求实数的取值范围。

7.已知椭圆的一个焦点为,求的值。

8.已知方程表示焦点在X轴上的椭圆,则实数k的范围是.
(三)待定系数法求椭圆的标准方程
1.根据下列条件求椭圆的标准方程:
(1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点到两焦点的距离之和为26;(2)长轴是短轴的2倍,且过点(2,-6);
(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求椭圆方程.
2.以和为焦点的椭圆经过点点,则该椭圆的方程为。

3.如果椭圆:上两点间的最大距离为8,则的值为。

4.已知中心在原点的椭圆C的两个焦点和椭圆的两个焦点一个正方形的四个顶点,且椭圆
C过点A(2,-3),求椭圆C的方程。

5.已知P点在坐标轴为对称轴的椭圆上,点P到两焦点的距离为和,过点P作长轴的垂线
恰过椭圆的一个焦点,求椭圆方程。

6.求适合下列条件的椭圆的标准方程
(1)长轴长是短轴长的2倍,且过点;
(2)在轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.
(四)与椭圆相关的轨迹方程
1.已知动圆过定点,并且在定圆的内部与其相内切,求动圆圆心的轨迹方程.
2.一动圆与定圆内切且过定点,求动圆圆心的轨迹方程.
3.已知圆,圆,动圆与外切,与内切,求动圆圆心的轨迹方程.
4.已知,是圆(为圆心)上一动点,线段的垂直平分线交于,则动点的轨迹方程为
5.已知三边、、的长成等差数列,且点、的坐标、,求点的轨迹方程.
6.一条线段的长为,两端点分别在轴、轴上滑动,点在线段上,且,求点的轨迹方程.
7.已知椭圆的焦点坐标是,直线被椭圆截得线段中点的横坐标为,求椭圆方程.
8.若的两个顶点坐标分别是和,另两边、的斜率的乘积是,顶点的轨迹方程
为。

9.是椭圆上的任意一点,、是它的两个焦点,为坐标原点,,求动点的轨迹方程。

10.已知圆,从这个圆上任意一点向轴引垂线段,垂足为,点在上,并且,求点
的轨迹。

11.已知圆,从这个圆上任意一点向轴引垂线段,则线段的中点的轨迹方程
是。

12.已知,,的周长为6,则的顶点C的轨迹方程是。

13.已知椭圆,A、B分别是长轴的左右两个端点,P为椭圆上一个动点,求AP中点的轨迹
方程。

14.
(五)焦点三角形4a
1.已知、为椭圆的两个焦点,过的直线交椭圆于、两点。

若,则。

2.已知、为椭圆的两个焦点,过且斜率不为0的直线交椭圆于、两点,则的周长
是。

3.已知的顶点、在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的
周长为。

(六)焦点三角形的面积:
1.设是椭圆上的一点,、为焦点,,求的面积。

2.已知点是椭圆上的一点,、为焦点,,求点到轴的距离。

3.已知点是椭圆上的一点,、为焦点,若,则的面积为。

4.椭圆的两个焦点为、,过作垂直于轴的直线与椭圆相交,一个交点为,则。

5.已知AB为经过椭圆的中心的弦,为椭圆的右焦点,则的面积的最大值
为。

(七)焦点三角形
1.设椭圆的两焦点分别为和,为椭圆上一点,求的最大值,并求此时点的坐标。

2.椭圆的焦点为、,点在椭圆上,若,则;。

3.椭圆的焦点为、,为其上一动点,当为钝角时,点的横坐标的取值范围为。

4.P为椭圆上一点,、分别是椭圆的左、右焦点。

(1)若的中点是,求证:;(2)若,求的
值。

(八)中心不在原点的椭圆
1.椭圆的中心为点,它的一个焦点为,相应于焦点F的准线方程为,则这个椭圆的方程
是。

二、椭圆的简单几何性质
已知、、、、求椭圆方程
(一)
1.求下列椭圆的标准方程
(1);(2),一条准线方程为。

2.椭圆过(3,0)点,离心率为,求椭圆的标准方程。

3.椭圆短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程为?
4.椭圆的对称轴为坐标轴,离心率为,两准线间的距离为4,则此椭圆的方程为?
5.根据下列条件,写出椭圆的标准方程:
(1)椭圆的焦点为、,其中一条准线方程是;
(2)椭圆的中心在原点,焦点在轴上,焦距为,并且椭圆和直线恰有一个公共点;(3)椭圆的对称轴为坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆的最近距离是。

6.已知椭圆的左、右焦点分别为,离心率为,右准线方程为。

求椭圆的方程。

答案:7.根据下列条件求椭圆的方程:
(1) 两准线间的距离为,焦距为;答案:或
(2) 和椭圆共准线,且离心率为;
(3) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点煌距离分别为和,过P 作长
轴的垂线恰好过椭圆的一个焦点。

(二)
根据椭圆方程研究其性质 1. 已知椭圆的离心率为,求的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标。

2. 已知椭圆的长轴长是6,焦距是,那么中心在原点,长轴所在直线与轴重合的椭圆的准
线方程是 。

3. 椭圆的长轴长为 ,短轴长为 ,焦点坐标为 ,顶点坐标
为 ,离心率为 ,准线方程为 。

(三)
求离心率 1. 过椭圆的左焦点作轴的垂线交椭圆于点P ,F2为右焦点,若,则椭圆的离心率为( ) 2. 在平面直角坐标系中,椭圆的焦距为2,以O 圆心,a 为半径作圆,过点作圆的两切线互相垂直,则离心率= 。

3. 若椭圆的两个焦点把长轴分成三等份,则椭圆的离心率为?
4. 椭圆的短轴为AB ,它的一个焦点为F1,则满足为等边三角形的椭圆的离心率是? 5. 设椭圆的右焦点为,右准线为,若过且垂直于轴的弦的长等于点到的距离,则椭圆的离
心率是 。

答案:
6. 已知点,为椭圆的左准线与轴的交点,若线段AB 的中点C 在椭圆上,则该椭圆的离心
率为 。

答案:
(四)
第二定义 1. 设椭圆上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离
为 2 。

(五)
参数方程 (六)
椭圆系 1. 椭圆与的关系为( ) A .相同的焦点 B 。

有相同的准线 C 。

有相等的长、短轴 D 。

有相等的焦距
三、 直线和椭圆的位置关系
(一)判断位置关系
1. 当为何值时,直线和椭圆 (1)相交;(2)相切;(3)相离。

2. 若直线与椭圆有两个公共点,则实数的取值范围为 。

(二)弦长问题
1. 已知斜率为1的直线l 过椭圆的右焦点,交椭圆于A 、B 两点,求AB 的弦长
2. .
3. 设椭圆的左右两个焦点分别为、,过右焦点且与轴垂直的直线与椭圆C 相交,其中一个交点为。

(1)
求椭圆的方程; (2) 设椭圆C 的一个顶点为B (0,-b ),直线交椭圆C 于另一点N ,求
的面积。

(三)点差法
1.
已知一直线与椭圆 相交于、两点,弦的中点坐标为,求直线AB 的方程.
2. 椭圆C 以坐标轴为对称轴,并与直线l:x+2y=7相交于P 、Q 两点,点R 的坐标为(2,5),若为等腰三角形,,求椭圆C 的方程。

(四)向量结合
(五)对称问题
已知椭圆,试确定m的取值范围,使得椭圆上有两个不同的点关于直线对称。

1.。

相关文档
最新文档