18年高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数3.2.1对数及其运算(3)课时作业新人教B版必修1

合集下载

高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数3.2.1对数及其运算第2课时积、商、幂的对数课

高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数3.2.1对数及其运算第2课时积、商、幂的对数课

对数及其运算第2课时积、商、幂对数课堂导学三点剖析一、利用对数运算法那么计算问题85+lg 21; (2)log a n a +log a n a 1+log a n a1(a>0且a≠1); (3)2log 510+log 50.25;(4)2log 525+3log 264;(5)log 2(log 216).思路分析:要注意灵活运用对数运算法那么,要会正用法那么,也要会逆用法那么,更要会变形用法那么. 解:85+lg 21 =(lg12.5+lg 21)-lg 85 =lg(12.5×21)+lg 58 =lg(12.5×21×58) =lg10=1.(2)log a n a +log a n a 1+log a n a1 =n 1log a a-nlog a a n1-log a a =-n 1n n 1-=-n. (3)2log 510+log 50.25=log 5102+log 50.25=log 5(102×0.25)=log 552=2.(4)2log 525+3log 264=2log 552+3log 226=4log 55+18log 22=4+18=22.(5)log 2(log 216)=log 2(log 224)=log 24=log 222=2.温馨提示计算时要将式子中真数积、商、幂、方根运用对数运算法那么将它们化为对数和、差、积、商,然后化简求值;另一方面就是将式子中对数和、差、积、商运用对数运算法那么将它们化为真数积、商、幂、方根,然后化简求值.总之,要根据解题具体需要正用及逆用法那么,灵活地运用法那么.二、对数式条件求值问题【例2】lg2=0.3010,lg3=0.4771,求lg 45.思路分析:运用对数运算法那么变形lg 45,最后变为仅含lg2和lg3式子.解:lg 45=21lg45=21lg5×9 =21(lg5+lg9)=21lg 210+21lg32 =21(lg10-lg2)+lg3 =21(1-0.3010)+0.4771=0.8266. 温馨提示条件求值问题,关键是如何利用条件,条件直接用不上时,要变形后再用,或条件与所求值式子同时变形,找到共同点.三、对数运算法那么综合应用问题【例3】(1)化简27lg 81lg 3lg 27lg 539lg 523lg -+++; (2)lgx+lgy=2lg(x-2y),求证:logyx 2=4. (1)解法一:先采用“分〞方法. 原式=3lg 33lg 43lg 213lg 1093lg 543lg --++ ==511. 解法二:采用“合〞方法. 原式=2781lg )32793lg(21532152-⨯⨯⨯⨯==511. (2)证明:∵lgx+lgy=2lg(x -2y),∴lgxy=lg(x -2y)2.∴xy=(x -2y)2,即x 2-5xy+4y 2=0.∴x=4y 或x=y(舍去). ∴yx =4. ∴log 2y x =log 24=log 2(2)4=4.对数式化简两种方法.一是把真数分解质数,然后把对数分成假设干个对数代数和,最后进展化简;二是把同底对数之和合并成一个对数,对真数进展化简.这两种解题思路,便是我们解决对数式化简问题重要方法,在碰到这类问题时,要善于灵活地选用上面所讲方法. 各个击破类题演练1计算:(1); (2)21lg 493243-lg 8+lg 245. 解析:(1)= ==12lg 12lg =1. (2)21lg 493243-lg 8+lg 245 =21(5lg2-2lg7)43-×23lg2+21(2lg7+lg5) =25lg2-lg7-2lg2+lg7+21lg5 =21lg2+21lg5=21(lg2+lg5) =21lg10=21. 变式提升1计算:(1)lg52+32lg8+lg5lg20+(lg2)2; (2)解析:(1)lg52+32lg8+lg5lg20+(lg2)2 =2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2lg10+(lg5+lg2)2=2+(lg10)2=3.(2)= ==21. 类题演练2lgx=m,lgy=n,求lg x -lg(10y )2值. 解析:lg x -lg(10y )2=21lgx-2lg 10y =21lgx-2(lgy-lg10)=21m-2n+2.3n =2,求log 38-log 336(用n 表示).解析:由3n =2,得n=log 32.∴log 38-log 336=log 323-log 362=3log 32-2log 36=3log 32-2log 32×3=3log 32-2(log 32+log 33)=log 32-2=n-2.类题演练3化简log 2487+log 21221-log 242. 解法一:把48、12、42分解质因数,再利用对数运算法那么,把log 2487,log 212,log 242拆成假设干个对数代数和,然后再化简.原式=21log 2+log 2(3×22)21-log 2(7×2×3) =21log 27-21log 23-2log 22+log 23+2log 2221-log 2721-log 2221-log 23 =21-log 22=21-. 解法二:由于所给对数底数一样,可以把各对数合并成一个对数,然后再化简计算. 原式=log 2=log 221=21-. 变式提升3证明(lg2)3+(lg5)3+3lg2·lg5=1.证明:(lg2)3+(lg5)3+3lg2·lg5=(lg2+lg5)[(lg2)2-lg2·lg5+(lg5)2]+3lg2·lg5=(lg2)2+2lg2lg5+(lg5)2=(lg2+lg5)2=(lg10)2=1.。

高中数学第三章指数函数对数函数和幂函数3.2对数函数3.2.3对数函数的概念及基本性质课堂导学案苏教

高中数学第三章指数函数对数函数和幂函数3.2对数函数3.2.3对数函数的概念及基本性质课堂导学案苏教

3.2.3 对数函数的概念及基本性质课堂导学三点剖析一、对数函数的图象和性质【例 1】 利用对数的单调性,比较下列各组数的大小: (1)log π,log e;22(2)log 0.3,log 0.04.1 1 24解析:(1)函数 y=log x 在(0,+∞)上是增函数,而π>e>0,∴ log π>log e.222(2)log 0.04=1log 0.04 1 421 2log1=12log 0.04=log 0.2.1 1 422又因为函数 y=log x 在(0,+∞)上为减函数,12∴log 0.3<log 0.2,即 log 0.3<1 1 1log 0.04.1 2224温馨提示先把不同底数化为相同底数,再利用函数单调性比较大小是比较对数值大小的基本方法. 二、a>1或 0<a<1时,对数函数的不同性质 【例 2】 求函数 y= 1 log (x a )a(a>0且 a ≠1)的定义域.思路分析:先由被开方数是非负数建立不等式,由于不等式中含有字母参数,再根据对数的性 质对字母参数进行分类讨论.解析:由 1-log a (x+a)≥0,得 log a (x+a)≤1.当 a>1时,0<x+a ≤a, ∴-a<x ≤0.当 0<a<1时,x+a ≥a, ∴x ≥0.综上,当 a>1时,函数的定义域为(-a,0). 当 0<a<1时,函数的定义域为[0,+∞).温馨提示对于对数函数问题,底数中含字母参数都必须进行分类讨论.三、对数函数的单调性和单调区间的求法【例3】求函数y=log2(x2-x-6)的单调区间.解析:令u=x2-x-6,则y=log2u.∵y=log2u为u的增函数,∴当u为x的增函数时,y为x的增函数;当u为x的减函数时,y为x的减函数.由x2-x-6>0,得x<-2或x>3.借助于二次函数图象可知:当x∈(-∞,-2)时,u是x的减函数;1当x∈(3,+∞)时,u是x的增函数.所以,原函数的单调减区间是(-∞,-2),单调增区间是(3,+∞).温馨提示(1)研究函数的单调性,首先必须考虑它的定义域;(2)对数函数的单调性,当底数是字母时,必须分底数大于1和底数大于0且小于1这两种情况进行讨论;(3)对于复合函数的单调性,必须考虑u=g(x)与y=f(u)的单调性,从而得出y=f[g(x)]的单调性;(4)判断函数的增减性,或者求函数的单调区间,一般都可借助函数图象求解.各个击破类题演练 1比较下列各组数中两个值的大小.(1)log23.4,log28.5;(2)log a5.1,log a5.9(a>0,a≠1).解析:(1)对数函数y=log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4<log28.5;(2)当a>1时,函数y=log a x在(0,+∞)上是增函数,于是log a5.1<log a5.9;当0<a<1时,函数y=log a x在(0,+∞)上是减函数,于是log a5.1>log a5.9.变式提升 1比较下列两个值的大小:(lgm)1.9,(lgm)2.1(m>1).解析:若1>lgm>0,即1<m<10时,y=(lgm)x在R上是减函数,∴(lgm)1.9>(lgm)2.1.若lgm=1,即m=10时,(lgm)1.9=(lgm)2.1.若lgm>1,即m>10时,y=(lgm)x在R上是增函数,∴(lgm)1.9<(lgm)2.1.类题演练 21x1x已知f(x)=log a求f(x)的定义域;(a>0,且a≠1).11解析:由对数函数定义知xx>0,∴-1<x<1,∴f(x)的定义域为(-1,1).变式提升 212e x, (2006山东高考文,2)设f(x)=log(x231)xx22.则f(f(2))的值为()A.0B.1C.2D.3 解析:∵f(2)=log3(22-1)=log33=1,∴f(f(2))=f(1)=2e1-1=2.故选C.答案:C类题演练 3求函数y=log0.1(2x2-5x-3)的递减区间.解析:先求函数的定义域,由2x2-5x-3=(2x+1)(x-3)>0,得x<- 12,或x>3.令u=2x2-5x-3,y=log0.1u.2由于u=2(x- 54)2-618,可得u=2x2-5x-3(x<-12或x>3)的递增区间为(3,+∞),从而可得y=log0.1(2x2-5x-3)的递减区间为(3,+∞).变式提升 3求函数y=log(3+2x-x2)的单调区间和值域.12解析:由3+2x-x2>0解得函数y=log(3+2x-x2)的定义域是-1<x<3.12设u=3+2x-x2(-1<x<3),当-1<x1<x2≤1时,u1<u2,从而log u1>log u2,即y1>y2,故函数y=1122log(3+2x-x2)在区间(-1,1)上单调递减;同理可得,函数在区间(1,3)上是单调递增.12函数u=3+2x-x2(-1<x<3)的值域是(0,4),故函数y=log(3+2x-x2)的值域是y≥log1122 4,即y≥-2.3。

高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数(1)第一课时同步练习新人教B版必修1

高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数(1)第一课时同步练习新人教B版必修1

3.2.1 对数及其运算第1课时1.若a 2=N(a>0且a≠1),则有( )A .log 2N =aB .log 2a =NC .log N a =2D .log a N =22.若log x 7y =z ,则( )A .y 7=x zB .y =x 7zC .y =7x zD .y =z 7x3.21+log 272的值等于( )A .272B .7 C.47D .144.若log 16x =-14,则x =________;若(2)x=12,则x =________.5.若log 2(x 2-4x +6)=1,则x =________.1.有下列说法:①零和负数无对数;②3log 3(-5)=-5成立;③任何一个指数式都可以化为对数式;④以10为底的对数叫做常用对数.其中正确命题的个数为( )A .1个B .2个C .3个D .4个2.下列指数式与对数式的互化中,不正确的一组是( )A .100=1与lg1=0B .27-13=13与log 2713=-13C .log 39=2与912=3D .log 55=1与51=53.在b =log (a -2)(5-a)中,实数a 的取值范围为…( ) A .a>5或a<2 B .2<a<5 C .2<a<3或3<a<5 D .3<a<44.计算3log 35+3log315=________.5.已知log 7[log 3(log 2x)]=0,那么x -12=________.6.已知log a 2=m ,log a 3=n ,求a 2m +n的值.7.求alog a b·log b c·log c N 的值.1.给出下列式子:①5log 512=12;②πlogπ3-1=13;③4log 4(-3)=-3;④xlog x 6=6.其中不正确的是( )A .①③ B.②③ C.③④ D.②④ 2.下列命题正确的是( )①对数式log a N =b(a>0,且a≠1)和指数式a b=N(a>0,且a≠1)是同一关系式的两种不同表达形式;②在同底条件下,对数式log a N =b 与指数式a b=N 可以互相转化;③若a b=N(a>0,且a≠1),则alog a N =N 一定成立; ④对数的底数是任意正实数. A .①② B.①②③④ C .①②③ D.④3.以6为底,216336的对数等于( )A.73B.113C.92D .2 4.设5lgx=25,则x 的值等于( ) A .10 B .±10 C.100 D .±100 5.log 6(log 4(log 381))=________.6.log 3(1-2x9)=1,则x =________.7.(1)求对数值:log 4381=________;log 354625=________.(2)求真数:log 3x =-34,则x =________;log 2x =78,则x =________.(3)求底数:log x 3=-35,则x =________;log x 2=78,则x =________.8.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.9.已知log a b =log b a(a>0,a≠1;b>0,且b≠1),求证:a =b 或a =1b.10.已知lga 和lgb 是关于x 的方程x 2-x +m =0的两个根,而关于x 的方程x 2-(lga)x -(1+lga)=0有两个相等的实数根,求实数a ,b 和m 的值.答案与解析课前预习1.D 由对数式与指数式的互化易得.2.B log x 7y =z ⇔x z =7y ,∴x 7z=y.3.B 21+log 272=2·2log 272=2·72=7.4.12 -2 log 16x =-14⇔x =16-14=12,(2)x =12⇔x =log 212=log 2(2)-2=-2. 5.2 由log 2(x 2-4x +6)=1得x 2-4x +6=2,即x 2-4x +4=0,即(x -2)2=0,∴x =2. 课堂巩固1.B ③错误,如(-1)2=1就不能写成对数式.②错误,log 3(-5)无意义.2.C log 39=2的指数式应为32=9. 3.C 由对数的定义知⎩⎪⎨⎪⎧5-a>0,a -2>0,a -2≠1,解得⎩⎪⎨⎪⎧a<5,a>2,a≠3,∴2<a<3或3<a<5.4.655 ∵3log 35=5,3log 315=(3log 315)12=(15)12=55. ∴原式=5+55=655. 5.24由已知得log 3(log 2x)=1, ∴log 2x =3,则x =23.∴x-12=2-32=122=24.6.解:∵log a 2=m ,∴a m=2.又log a 3=n ,∴a n=3. ∴a 2m +n =(a m )2·a n =22·3=12.7.解:原式=(alog a b)log b c·log c N =blog b c·log c N =(blog b c)log c N =clog c N =N. 点评:重复使用对数恒等式即可得解;对数恒等式alog a N =N 中要注意书写格式. 课后检测1.C ③不正确,log 4(-3)无意义,∵负数和零无对数;④不正确,应在条件“x>0,且x≠1”的前提下计算.2.C ④中的底数应满足“大于0且不等于1”.3.A ∵216336=63623=63-23=673,∴log 6216336=log 6673=73.4.C 5lgx =25,∴lgx=2,即102=x. ∴x=100.5.0 原式=log 6[log 4(log 334)] =log 6(log 44) =log 61=0.6.-13 由已知得1-2x9=3,∴x=-13.7.(1)16 3 (2)1427278 (3)3-53 287(1)(43)16=34=81,∴log 4381=16;∵(354)3=625,∴log 354625=3.(2)由题意可得x =3-34=1427;由已知得x =278.(3)由已知得x -35=3,∴x=3-53;x 78=2,∴x=287.点评:对于对数和对数的底数与真数三者之间,已知其中两个就可求另外一个,关键是指数式与对数式的互化.8.解:∵f(x)的最大值为3,∴⎩⎪⎨⎪⎧lga<0,16lg 2a -44lga=3⇒(4lga +1)(lga -1)=0.∴lga=1(舍去)或lga =-14.∴a=10-14.9.证明:设log a b =log b a =k ,则b =a k ,a =b k,从而有b =(b k )k =bk 2.∵b>0,b≠1,∴k 2=1,即k =±1.当k =-1时,a =1b;当k =1时,a =b.∴a=b 或a =1b ,命题得证.10.解:由题意,得⎩⎪⎨⎪⎧ lga +lgb =1,lga·lgb=m ,(lga)2+4(1+lga)=0,①②③由③得(lga +2)2=0,∴lga=-2.∴a =1100.代入①得lgb =1-lga =3,∴b=103=1 000. 代入②得m =lga·lgb=(-2)×3=-6.∴a=1100,b =1 000,m =-6.。

高中数学 第三章 基本初等函数(Ⅰ)3.2 对数与对数函数

高中数学 第三章 基本初等函数(Ⅰ)3.2 对数与对数函数

3.2.2 对数函数课堂导学三点剖析一、对数函数定义域、值域问题【例1】求下列函数的定义域与值域.(1)y=log 2(x 2-4x-5);(2)y=log 3(9-x 2); (3)y=32x log ; (4)y=)34(log 5.0-x .思路分析:(1)(2)题,用y=log a x 的定义域来求它们的定义域,即相当于利用y=log a x 中的x 的代数式大于0即可求得;(3)(4)题,对数要有意义并且根式也要有意义,结合对数函数的图象求定义域比较直观、好理解.解:(1)∵x 2-4x-5>0,∴x<-1或x>5.∴y=log 2(x 2-4x-5)的定义域是{x|x<-1或x>5}.又令g(x)=(x-2)2-9,∵g(x)在定义域内恒有g(x)>0,∴函数值域为R .(2)由9-x 2>0,得-3<x<3,∴y=log 3(9-x 2)的定义域为{x|-3<x<3}.又知0<9-x 2≤9且y=log 3x 是增函数,∴y=log 3(9-x 2)≤log 39=2.∴y=log 3(9-x 2)的值域为(-∞,2].(3)∵该函数有奇次根式,要使函数有意义,只需对数的真数是正数,∴所求定义域是{x|x>0},值域为R .(4)要使函数y=)34(log 5.0-x 有意义,必须log 0.5(4x-3)≥0=log 0.51.∴0<4x -3≤1.∴43<x≤1. ∴所求定义域是{x|43<x≤1},值域为[0,+∞). 二、比较大小问题【例2】比较下列各组数中两个值的大小: (1)log 310.3,log 20.8;(2)log a 5.1,log a 5.9;(3)log 67,log 76.思路分析:对于底数相同的两个对数值比较大小,可由对数函数的单调性确定.对于底数不同的两个对数值比较大小,要换底或在两个对数值之间搭一个“桥梁”,如“0”和“1”,间接地比较大小.解:(1)由对数的性质,知 log 310.3>0,log 20.8<0,∴log 310.3>log 20.8.(2)对数函数的增减性取决于对数的底数是大于1还是在0与1之间,而已知条件中并未明确指出底数a 与1哪个大,因此需要对底数a 进行讨论.当a>1时,函数y=log a x 在(0,+∞)上是增函数,5.1<5.9,∴log a 5.1<log a 5.9;当0<a<1时,函数y=log a x 在(0,+∞)上是减函数,5.1<5.9,∴log a 5.1>log a 5.9.(3)∵log 67>1,log 76<log 77=1,∴log 67>log 76.三、函数单调性的判定与单调区间的求法【例3】(1)求证:函数f(x)=-log 51x 在(0,+∞)上是增函数;(2)求函数f(x)=log 2(x 2-1)的单调区间.(1)证明:在(0,+∞)上任取x 1、x 2,且0<x 1<x 2,则f(x 1)-f(x 2)=(-log 51x 1)-(-log 51x 2)=log 51x 2-log 51x 1.又y=log 51x 在(0,+∞)上是减函数,有log 51x 2<log 51x 1, ∴log 51x 2-log 51x 1<0,即f(x 1)-f(x 2)<0.∴f(x 1)<f(x 2).∴f(x)=-log 51x 在(0,+∞)上是增函数.(2)解析:由x 2-1>0得x>1或x<-1,∴f(x)定义域为(1,+∞)∪(-∞,-1).令g(x)=x 2-1,知g(x)在(1,+∞)上递增,在(-∞,-1)上递减且f(x)=log 2x 为增函数.故f(x)的增区间为(1,+∞),减区间为(-∞,-1).温馨提示(1)要熟练地应用增、减函数的定义,以及对数函数y=log a x 的单调性来证明复合函数单调性.(2)G(x)=f [g(x)],若g(x)与f(x)同增(或同减),则G(x)为增;若g(x)与f(x)一增一减,则G(x)为减,可据此来求单调区间.各个击破类题演练1已知函数y=log a (a-a x )(其中a>1),求它的定义域和值域.解析:根据题意a-a x >0,∴a x <a.又∵a>1,y=a x 是增函数,∴x<1.∵a x <a,且a x >0,0<a-a x <a,∴log a (a-a x )<1.∴函数y=log a (a-a x )的定义域和值域分别是{x|x<1}和{y|y<1}.变式提升1求下列函数的定义域:(1)y=log 7x311 ;(2)y=)32lg(422-+-x x x ; (3)y=log (x+1)(16-4x). 解析:(1)由⎪⎩⎪⎨⎧≠->-,031,0311x x 得x<31, ∴所求函数的定义域为{x|x<31}. (2)由⎪⎩⎪⎨⎧≠-+>-+≥-.0)32lg(,032,04222x x x x x 即⎩⎨⎧±-≠-<≥⇔⎪⎩⎪⎨⎧≠-+>-<-≤≥.51,63213213222x x x x x x x x x 或或或∴函数y=)32lg(422-+-x x x 的定义域为{x|x≥2或x<-3且x≠-15-}. (3)由⎪⎩⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠-><⇔⎪⎩⎪⎨⎧≠+>+>-.0,1,2,0,1,44110104162x x x x x x x x x 得∴y=log (x+1)(16-4x)的定义域为{x|-1<x<2且x≠0}.类题演练2比较下列各组数中两个值的大小: (1)log 213,log 513;(2)log 3π,log 20.8.解析:(1)∵在x∈(1,+∞)上,y=log 51x 的图象在y=log 21x 图象的上方, ∴log 513>log 213.(2)∵log 3π>log 31=0,log 20.8<log 21=0,∴log 3π>log 20.8.变式提升比较(lgm)1.9与(lgm)2.1(m>1)的大小.解析:把lgm 看作指数函数的底数,本题转化为比较一个指数函数的两个函数值的大小,于是应对底数lgm 进行讨论:当1>lgm>0,即1<m<10时,y=(lgm)x 在R 上是减函数,1.9<2.1,∴(lgm)1.9>(lgm)2.1;当lgm=1,即m=10时,(lgm)1.9=(lgm)2.1=1;当lgm>1,即m>10时,y=(lgm)x 在R 上是增函数,1.9<2.1,∴(lgm )1.9<(lgm)2.1.类题演练3求函数f(x)=log 0.5(x 2-2x-3)的单调区间.解析:由x 2-2x-3>0得x>3或x<-1,令g(x)=(x-1)2-4,知g(x)在(3,+∞)上递增,在(-∞,-1)上递减.又f(x)=log0.5x是减函数,故f(x)的增区间为(-∞,-1),减区间为(3,+∞).变式提升3判断f(x)=log a(x2-2x-3)在(3,+∞)上的单调性.解析:令g(x)=x2-2x-3,当x∈(3,+∞)时,有g(x)>0. 设x1、x2∈(3,+∞)且x1>x2,则g(x1)=x12-2x1-3,g(x2)=x22-2x2-3.∴g(x1)-g(x2)=(x12-x22)-2(x1-x2)=(x1-x2)(x1+x2-2). ∵x1>x2>3,∴x1-x2>0,x1+x2-2>0.∴g(x1)>g(x2).又当a>1时,f(x)=log a x是增函数,∴f(x1)=log a g(x1)>log a g(x2)=f(x2).∴当a>1时,f(x)在(3,+∞)上是增函数.同理可证,当0<a<1时,f(x)在(3,+∞)上是减函数.。

高中数学第三章基本初等函数Ⅰ3.2对数与对数函数3.2.2对数函数3.2.3指数函数与对数函数的关系学习导航学案

高中数学第三章基本初等函数Ⅰ3.2对数与对数函数3.2.2对数函数3.2.3指数函数与对数函数的关系学习导航学案

3.2.2 对数函数-3.2.3 指数函数与对数函数的关系自主整理1.对数函数的定义:函数y=log a x(a>0,且a≠1,x>0)称为对数函数,它的定义域为(0,+∞),值域为R.2.对数函数的图象与性质:4.反函数当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x),反函数也是函数,它具有函数的一切特性.反函数是相对于原函数而言的,函数与它的反函数互为反函数.指数函数y=a x(a>0,且a≠1)和对数函数y=log a x(a>0,且a≠1)互为反函数,它们的定义域与值域相互对换,单调性相同,图象关于直线y=x对称.高手笔记1.解对数不等式的关键是善于把真数视为一个整体,用对数函数的单调性构造不等式,但一定要注意真数大于零这一隐含条件.2.求函数定义域时,常见的限制条件有:分母不为零,开偶次方时被开方数非负,对数的真数大于零,底数大于零且不等于1等.3.考查对数函数与其他函数组成的复合函数时,要注意利用复合函数的单调性法则和函数单调性的定义.考查对数函数的值域问题时,要注意只有当对数的真数取到所有的正数时,对数值才可能取到所有的实数.4.利用对数函数的图象的平移和对称可以认识与对数函数有关的一些函数的图象和性质,这些图象的变换规律与指数函数的有关图象变换规律是类似的.5.作出函数y=log a x 的图象,再将所得图象沿y 轴对称到y 轴左侧,所得两部分组合在一起就是函数y=log a |x|的图象.作出函数y=log a x 的图象,再将所得图象在x 轴下方的部分沿x 轴翻折到x 轴上方,与原x 轴上方的部分一起,就是y=|log a x|的图象. 名师解惑1.比较两个对数的大小,一般可采用哪些方法? 剖析:两数(式)大小的比较主要是找出适当的函数,把要比较的两数作为此函数的函数值,然后利用函数的单调性等来比较两数的大小.一般采用的方法有: (1)直接法:由函数的单调性直接作答;(2)作差法:把两数作差变形,然后判断其大于、等于、小于零来确定;(3)作商法:若两数同号,把两数作商变形,判断其大于、等于、小于1来确定; (4)转化法:把要比较的两数适当地转化成两个新数大小的比较;(5)媒介法:选取适当的“媒介”数,分别与要比较的两数比较大小,从而间接地求得两数的大小.2.对数函数的图象特征和对数函数的性质之间有哪些对应关系? 剖析:对数函数的图象特征和对数函数的性质之间有以下对应关系:(1)图象都位于y 轴右侧,且以y 轴为渐近线→函数定义域为(0,+∞). (2)图象向上、向下无限延展→函数值域为R .(3)图象恒过定点(1,0)→1的对数是零,即log a 1=0.(4)当a >1时,图象由左向右逐渐上升→当a >1时,y=log a x 在(0,+∞)上是增函数; 当0<a <1时,图象由左向右逐渐下降→当0<a <1时,y=log a x 在(0,+∞)上是减函数. (5)当a >1时,在直线x=1的右侧,图象位于x 轴上方;在直线x=1与y 轴之间,图象位于x 轴下方→当a >1时,x >1,则y=log a x >0;0<x <1,则y=log a x <0.当0<a <1时,在直线x =1的右侧,图象位于x 轴下方;在直线x =1与y 轴之间,图象位于x 轴上方→当0<a <1时,x >1,则y=log a x <0;0<x <1,则y=log a x >0. 3.怎样把对数函数与指数函数联系起来研究? 剖析:(1)对数函数的反函数是指数函数,所以要利用指数函数的性质来研究对数函数.应该注意到:这两种函数都要求底数a >0,且a≠1;对数函数的定义域为(0,+∞),结合图象看,对数函数在y 轴左侧没有图象,即负数与0没有对数,也就是真数必须大于0.这些知识可以用来求含有对数函数的定义域.(2)通过将对数函数与指数函数的图象进行对比,可以发现:当a >1,或0<a <1时,对数函数与指数函数的单调性是一致的〔即在区间(0,+∞)上同时为增函数,或者同时为减函数〕.对数函数的图象都经过点(1,0),这与性质log a 0=1是分不开的.(3)既然对数函数y=log a x 与指数函数y=a x互为反函数,那么它们的图象关于直线y =x 对称.于是通过对a 分情况(约定不同的取值范围),再结合函数y=log 2x,y=log 21x 的图象来揭示对数函数的性质,应该是一件水到渠成的事.讲练互动图3-2-2【例题1】图3-2-2是对数函数y=log a x 当底数a 的值分别取3,34,53,101时所对应图象,则相应于C 1,C 2,C 3,C 4的a 的值依次是( ) A.3,34,53,101 B.3,34,101,53 C.34,3,53,101 D.34,3,101,53 解析:因为底数a 大于1时,对数函数的图象自左向右呈上升趋势,且a 越大,图象就越靠近x 轴;底数a 大于0且小于1时,对数函数的图象自左向右呈下降趋势,且a 越小,图象就越靠近x 轴. 答案:A 绿色通道由对数函数的图象间的相对位置关系判断底数a 的相互关系,应根据对数函数图象与底数间的变化规律来处理.在指数函数y=a x中,底数a 越接近1,相应的图象就越接近直线y=1,对数函数与指数函数是一对反函数,其图象是关于直线y=x 对称的,直线y=1关于直线y=x 的对称直线是x=1,所以我们有结论:对数函数y=log a x ,底数a 越接近1,其图象就越接近直线x=1. 变式训练1.若log a 2<log b 2<0,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1 解析:注意到此题两对数值底数不同真数相同,用图象法或用换底公式均可.方法一:由底数与对数函数的图象关系(如图)可知y=log a x,y=log b x 图象的大致走向.再由对数函数的图象规律:从第一象限看,自左向右底数依次增大. 方法二:利用换底公式转化成同底的对数再进行比较. 由已知,得ba 22log 1log 1 <0,则0>log 2a>log 2b,即log 21>log 2a>log 2b.∵y=log 2x 为增函数, ∴0<b<a<1.方法三:取特殊值法.∵log 212=-1,log 412=21, ∴log 212<log 412<0.∴可取a=21,b=41,则0<b<a<1. 答案:B【例题2】比较大小: (1)log 0.27与log 0.29; (2)log 35与log 65;(3)(lgm )1.9与(lgm )2.1(m >1); (4)log 85与lg4.分析:(1)log 0.27和log 0.29可看作是函数y=log 0.2x ,当x=7和x=9时对应的两函数值,由y=log 0.2x 在(0,+∞)上单调递减,得log 0.27>log 0.29. (2)考查函数y=log a x 底数a >1的底数变化规律,函数y=log 3x (x >1)的图象在函数y=log 6x (x >1)的上方,故log 35>log 65.(3)把lgm 看作指数函数的底数,要比较两数的大小,关键是比较底数lgm 与1的关系.若lgm >1即m >10,则(lgm )x 在R 上单调递增,故(lgm )1.9<(lgm )2.1;若0<lgm <1即1<m <10,则(lgm )x 在R 上单调递减,故(lgm )1.9>(lgm )2.1;若lgm=1即m=10,则(lgm )1.9=(lgm )2.1.(4)因为底数8、10均大于1,且10>8, 所以log 85>lg5>lg4,即log 85>lg4. 解:(1)log 0.27>log 0.29. (2)log 35>log 65.(3)当m >10时,(lgm )1.9<(lgm )2.1;当m=10时,(lgm )1.9=(lgm )2.1;当1<m <10时,(lgm )1.9>(lgm )2.1. (4)log 85>lg4.绿色通道本题比较大小代表了几个典型的题型.其中题(1)是直接利用对数函数的单调性;题(2)是对数函数底数变化规律的应用;题(3)是指数函数单调性及对数函数性质的综合运用;题(4)是中间量的运用.当两个对数的底数和真数都不相同时,需要找出中间量来“搭桥”,再利用对数函数的增减性.常用的中间量有0、1、2等可通过估算加以选择. 变式训练2.比较下列各组数中两个值的大小: (1)log 23.4,log 28.5; (2)log 0.31.8;log 0.32.7;(3)log a 5.1,log a 5.9(a>0且a≠1); (4)log 67,log 76.分析:对于底数相同的两个对数值比较大小,可由对数的单调性确定,利用对数函数的增减性比较两个对数的大小.当不能直接进行比较时,可在两个对数中间插入一个已知数(如1或0等),间接比较两个数的大小. 解:(1)考查对数函数y=log 2x ,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log 23.4<log 28.5.(2)考查对数函数y=log 0.3x ,因为它的底数满足0<0.3<1,所以它在(0,+∞)上是减函数,于是log 0.31.8>log 0.32.7.(3)对数函数的增减性决定于对数的底数是大于1还是小于1,而已知条件中并未明确指出底数a 与1哪个大,因此需要对底数a 进行讨论:当a>1时,函数y=log a x 在(0,+∞)上是增函数,于是log a 5.1<log a 5.9; 当0<a<1时,函数y=log a x 在(0,+∞)上是减函数,于是log a 5.1>log a 5.9. (4)∵log 67>log 66=1,log 76<log 77=1, ∴log 67>log 76.【例题3】已知函数y=lg (12+x -x ),求其定义域,并判断其奇偶性、单调性. 分析:注意到12+x +x=xx -+112,即有lg (12+x -x )=-lg (12+x +x ),从而f(-x )=lg (12+x +x )=-lg (12+x -x )=-f (x ),可知其为奇函数.又因为奇函数在关于原点对称的区间上的单调性相同,所以我们只需研究(0,+∞)上的单调性. 解:由题意12+x -x >0,解得x∈R ,即定义域为R .又f (-x )=lg [1)(2+-x -(-x )]=lg (12+x +x )=lg1112-+x=lg (12+x -x )-1=-lg (12+x -x )=-f (x ),∴y=lg(12+x -x )是奇函数. 任取x 1、x 2∈(0,+∞),且x 1<x 2, 则xx x x ++⇒++11121221>22211x x -+,即有121+x -x 1>122+x -x 2>0, ∴lg(121+x -x 1)>lg (122+x -x 2),即f (x 1)>f (x 2)成立.∴f(x )在(0,+∞)上为减函数. 又f (x )是定义在R 上的奇函数, 故f (x )在(-∞,0)上也为减函数.绿色通道研究函数的性质一定得先考虑定义域.在研究函数单调性时,注意奇偶性对函数单调性的影响,即偶函数在关于原点对称的区间上具有相反的单调性,奇函数在关于原点对称的区间上具有相同的单调性. 变式训练3.(2006广东高考,1)函数f(x)=xx -132+lg(3x+1)的定义域是( )A.(31-,+∞) B.(31-,1) C.(31-,31) D.(-∞,31-) 解析:由.131013,01<<-⇒⎩⎨⎧>+>-x x x答案:B【例题4】(1)解不等式:log 3(4-x)>2+log 3x; (2)解方程:2lg 3-x -3lgx+4=0.分析:对于(1),将对数不等式转化为解代数不等式组,对于(2)用换元法将其转化为一元二次方程.解:(1)原不等式可化为log 3(4-x)>log 3(9x),其等价于⎪⎩⎪⎨⎧>>>0,x 0,x -49x,x -4解得0<x<52. ∴原不等式的解集为{x|0<x<52}. (2)设2-3lgx =t,则t≥0. 原方程化为-t 2+t+2=0. 解得t=2,或t=-1(舍去).由2-3lgx =2,得lgx=2.故x=100.经检验x=100是原方程的解.黑色陷阱(1)形如f(log a x)=0,f(log a x)>0的对数方程或不等式,往往令t=log a x 进行换元转化.(2)解对数方程和不等式时要注意防止定义域的扩大,处理办法为:第一,若不是同解变形,最后一定要验根;第二,解的过程中要加以限制条件,使定义域保持不变,即进行同解变形,最后通过解混合不等式组得到原不等式的解. 变式训练4.(2006陕西高考,理4)设函数f(x)=log a (x+b)(a>0,a≠1)的图象过点(2,1),其反函数的图象过点(2,8),则a+b 等于( )A.3B.4C.5D.6 解析:因为函数f(x)的图象经过点(2,1),所以f(2)=1,即log a (2+b )=1,即a=2+b. 又其反函数的图象经过点(2,8),故函数f(x)的图象经过点(8,2),有log a (8+b)=2,即a 2=8+b,解得a=-2,b=-4(舍去),或a=3,b=1,所以a+b=4. 答案:B5.设函数f (x )=x 2-x+b ,且f (log 2a )=b ,log 2[f (a )]=2(a≠1),则f (log 2x )的最小值为_____________.解析:由已知,得⎪⎩⎪⎨⎧=+-=+-,2)(log ,log log 22222b a a b b a a即)2()1(,4,0)1(log log 222⎩⎨⎧=+-=-b a a a a由①得log 2a=1,∴a=2. 代入②得b=2.∴f(x )=x 2-x+2.∴f(log 2x )=log 22x-log 2x+2=(log 2x 21-)2+47.∴当log 2x=21时,f (log 2x )取得最小值47,此时x=2.答案:47。

高中数学第三章基本初等函数(Ⅰ)32对数与对数函数321对数及其运算同步测控新人教B版1

高中数学第三章基本初等函数(Ⅰ)32对数与对数函数321对数及其运算同步测控新人教B版1

3.2.1 对数及其运算同步测控我夯基,我达标1.式子2)5log 211(2+的值为( ) A.2+5 B.25 C.2+25 D.1+25 解析:原式=)5log 1(2+=2)52(log 2=25.答案:B2.下列各式中成立的是( )A.log a x 2=2log a xB.log a |xy|=log a |x|+log a |y|C.log a 3>log a 2D.log a yx =log a x-log a y 解析:A 、D 的错误在于不能保证真数为正,C 的错误在于a 值不定.答案:B3.已知f (x 5)=lgx ,则f (2)等于( ) A.lg2 B.lg32 C.lg321 D.51lg2 解析:令x 5=t ,则x=5t =t 51. ∴f(t )=lgt 51=51lgt. ∴f(2)=51lg2. 答案:D4.下列四个命题中,真命题是( )A.lg2lg3=lg5B.lg 23=lg9C.若log a M+N=b ,则M+N=a bD.若log 2M+log 3N=log 2N+log 3M ,则M=N解析:本题易错选A 或B 或C.主要问题是对函数的运算性质不清,在对数运算的性质中,与A 类似的一个错误的等式是lg2+lg3=lg5;B 中的lg 23表示(lg3)2,它与lg32=lg9意义不同;C 中的log a M+N 表示(log a M )+N ,它与log a (M+N )意义不同;D 中等式可化为log 2M-log 2N=log 3M-log 3N ,即log 2N M =log 3NM ,所以M =N. 答案:D5.求下列各式的值:(1)设log b x-log b y =a ,则log b 5x 3-log b 5y 3=____________;(2)设log a (x +y)=3,log a x =1,则log a y =____________;(3)3|91|log 3=_____________.解析:(1)∵log b x-log b y =a,∴log b y x=a.∴log b 5x 3-log b 5y 3=log b 3355y x=log b (y x )3=3log b y x=3a.(2)∵log a (x +y)=3, ∴a 33=x +y.又log a x =1,∴x=a.∴y=a 3-a.从而log a y =log a (a 3-a). (3)3|91|log 3=3|3log 23|-=3|3log 2|3-=32=9.答案:(1)3a (2)log a (a 3-a) (3)96.已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x 则f (log 23)的值为__________.解析:∵1<log 23<2,∴3+log 23>4.∴f(3+log 23)=(21)3log 32+ =(21)24log 2=(21)241log 21=241.又∵当x<4时,f(x+1)=f(x),∴f(log 23)=f(1+log 23)=f(2+log 23)=f(3+log 23)=241. 答案:2417.求下列各式中的x :(1)log 54x =21-;(2)log x 5=23; (3)log (x-1)(x 2-8x +7)=1.分析:根据式中未知数的位置或直接转化成指数式计算或利用对数性质进行计算.解:(1)原式转化为(54)21-=x ,所以x=25. (2)原式转化为x 23=5,所以x=325. (3)由对数性质,得⎪⎩⎪⎨⎧>+-≠->--=+-,078,11,01,17822x x x x x x x 解得x =8.8.已知lg2=0.3010,lg3=0.4771,求lg 45.分析:解本题的关键是设法将45的常用对数分解为2、3的常用对数代入计算. 解:lg 45=21lg45=21lg 290 =21(lg9+lg10-lg2) =21(2lg3+1-lg2) =lg3+2121-lg2 =0.477 1+0.5-0.150 5=0.826 6.我综合,我发展9.对于a>0,a≠1,下列说法中正确的是( )①若M=N ,则log a M=log a N ②若log a M=log a N ,则M=N ③若log a M 2=log a N 2,则M=N ④若M=N ,则log a M 2=log a N 2A.①③B.②④C.②D.①②③④ 解析:在①中,当M=N≤0时,log a M 与log a N 均无意义,因此log a M=log a N 不成立. 在②中,当log a M=log a N 时,必有M >0,N >0,且M=N ,因此M=N 成立.在③中,当log a M 2=log a N 2时,有M≠0,N≠0,且M 2=N 2,即|M|=|N|,但未必有M=N ,例如,M=2,N=-2时,也有log a M 2=log a N 2,但M≠N.在④中,若M=N=0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立.∴只有②正确.答案:C10.设log a c 、log b c 是方程x 2-3x+1=0的两根,则log b a c=__________.解析:依题意,得⎩⎨⎧=∙=+,1log log ,3log log c c c c b a b a即⎪⎪⎩⎪⎪⎨⎧=∙=+,1log log 1,3log 1log 1ba b a c c c c 即⎩⎨⎧=∙=+.1log log ,3log log b a b a c c c c ∴(log c a-log c b)2=(log c a+log c b)2-4log c a·log c b=32-4=5.∴log c a-log c b=±5. 故log b a =5551log log 1log 1±=±=-=b a b a c c c . 答案:±55 11.已知log 189=a ,18b =5,则log 3645=_______.(用a,b 表示)解析:∵log 189=a ,∴log 18218=1-log 182=a. ∴log 182=1-a.又∵18b =5,∴log 185=b.∴log 3645=ab a -+=++=22log 15log 9log 36log 45log 1818181818. 答案:ab a -+2 12.若26x =33y =62z ,求证:3xy-2xz-yz=0.分析:由已知条件到结论,本质就是把指数式化为对数式,要把指数位置上的字母拿下来,唯一的方法就是取对数,通常我们两边同时取常用对数,也可以根据题目的具体情况取其他数字(条件中已有的底数)为底数,总之要同底,然后利用对数的性质和运算法则化简计算.证法一:设t=26x =33y =62z ,两边取常用对数,则x=2lg 6lg t ,y=3lg 3lg t ,z=6lg 2lg t . ∴3xy -2xz-yz=6lg 3lg 6lg 6lg 2lg 6lg 3lg 2lg 6lg 222t t t -- =)]3lg 12lg 1(6lg 13lg 2lg 1[6lg 2+-t =)3lg 2lg 13lg 2lg 1(6lg 2-t =0.证法二:∵26x =33y =62z ,∴两边取以3为底的对数,有6xlog 32=3y=2zlog 36,由前面的等式,得yz=2xzlog 32,由后面的等式,得3xy=2xzlog 36.∴3xy -2xz-yz=2xzlog 36-2xz-2xzlog 32=2xz(log 36-1-log 32)=2xz (log 36-log 33-log 32)=0. 科学是实事求是的学问。

高中数学三章基本初等函数Ⅰ3.2对数与对数函数3.2.1对数及其运算

高中数学三章基本初等函数Ⅰ3.2对数与对数函数3.2.1对数及其运算

3.2.1 对数及其运算整体设计教学分析我们在前面的学习过程中,已学习了指数函数的概念和性质,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与欣赏”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.理解对数的概念,了解对数与指数的关系,理解和掌握对数的性质.2.掌握对数式与指数式的关系,通过实例推导对数的运算性质.3.准确地运用对数运算性质进行运算,并掌握化简求值的技能,运用对数运算性质解决有关问题.4.通过与指数式的比较,引出对数的定义与性质,让学生经历并推理出对数的运算性质,并归纳整理本节所学的知识.5.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用.教学难点:对数概念的理解,对数运算性质的推导及应用. 课时安排3课时教学过程第1课时 对数概念导入新课思路1.(1)庄子:一尺之棰,日取其半,万世不竭.①取4次,还有多长?②取多少次,还有0.125尺?(2)假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? 抽象出:①(12)4=?(12)x=0.125 x =?②(1+8%)x=2 x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题〕.思路 2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题〕.推进新课新知探究提出问题错误!活动:学生讨论并作图,教师适时提示、点拨.对问题①,回忆计算机作函数图象的方法,抓住关键点.对问题②,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题③,定义一种新的运算.对问题④,借助③,类比到一般的情形.讨论结果:①如下图.②在所作的图象上,取点P,测出点P的坐标,移动点P,使其纵坐标分别接近18、20、30,观察这时的横坐标,大约分别为32.72、43.29、84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年、43年、84年,我国人口分别约为18亿、20亿、30亿.③1813=1.01x ,2013=1.01x ,3013=1.01x,在这几个式子中,要求x 分别等于多少,目前我们没学这种运算,可以定义一种新运算,用符号“log”表示对数,即若1813=1.01x,则x 总以1.01为底的1813的对数就可写成x =log 1.011813.其他的可类似得到,x =log 1.012013,x =log 1.013013,这种运算叫做对数运算.④一般性的结论就是对数的定义:一般地,对于指数式a b=N ,我们把“以a 为底N 的对数b”记作log a N ,即b =log a N(a>0,且a≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”.实质上,上述对数表达式,不过是指数式N =a b的另一种表达形式. 由此得到对数和指数幂之间的关系:a Nb 指数式a b=N 底数 幂 指数 对数式log a N =b对数的底数真数对数例如:42=16⇔2=log 416;102=100⇔2=log 10100;214=2⇔12=log 42;10-2=0.01-2=log 100.01.提出问题①为什么在对数定义中规定a>0,且a≠1?②根据对数定义求log a 1和log a a a>0,且a≠1的值.③负数与零有没有对数?④alogaN=N 与log a a b=ba>0,且a≠1是否成立?⑤什么是常用对数?讨论结果:①这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)12;若a =0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a =1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.综之,就规定了:a >0,且a≠1.②log a 1=0,log a a =1.因为对任意a >0,且a≠1,都有a 0=1,所以log a 1=0. 同样易知:log a a =1.即1的对数等于0,底的对数等于1.③因为底数a >0,且a≠1,由指数函数的性质可知,对任意的b∈R ,a b>0恒成立,即只有正数才有对数,零和负数没有对数. ④因为a b=N ,所以b =log a N ,a b=alogaN=N ,即alogaN=N.因为a b=a b,所以log a a b=b.故两个式子都成立.(alog a N =N 叫对数恒等式)常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数log 10N 简记作lgN.例如:log 105简记作lg5;log 103.5简记作lg3.5.例如:loge3简记作ln3;loge10简记作ln10.应用示例思路1例1求log 22,log 21,log 216,log 212.解:因为21=2,所以log 22=1; 因为20=1,所以log 21=0; 因为24=16,所以log 216=4; 因为2-1=12,所以log 212=-1.点评:本题要注意方根的运算,同时也可借助对数恒等式来解.例2求lg10,lg100,lg0.01. 解:因为101=10,所以lg10=1; 因为102=100,所以lg100=2; 因为10-2=0.01,所以lg0.01=-2.例3利用科学计算器求对数(精确到0.000 1):lg2 001;lg0.061 8;lg0.004 5;lg396.5. 解:用科学计算器计算:所以lg2 001≈3.301 2,lg0.061 8≈-1.209 0, lg0.004 5≈-2.346 8,lg395.6≈2.598 2.思路2例1以下四个命题中,属于真命题的是( )(1)若log 5x =3,则x =15 (2)若log 25x =12,则x =5 (3)若log x 5=0,则x = 5 (4)若log 5x =-3,则x =1125A .(2)(3)B .(1)(3)C .(2)(4)D .(3)(4)活动:学生观察,教师引导学生考虑对数的定义.解析:对数式化为指数式,根据指数幂的运算性质算出结果. 对于(1),因为log 5x =3,所以x =53=125,错误; 对于(2),因为log 25x =12,所以x =2512=5,正确;对于(3),因为log x 5=0,所以x 0=5,无解,错误; 对于(4),因为log 5x =-3,所以x =5-3=1125,正确.总之(2)(4)正确.答案:C点评:对数的定义是对数形式和指数形式互化的依据.例2计算:(1)log 927;(2) 43log 81;(3)log (2+3)(2-3);(4) 345log625.活动:教师引导,学生回忆,教师提问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法. 解法一:(1)设x =log 927,则9x =27,32x =33,所以x =32.(2)设x =43log 81,则(43)x=81,43x =34,所以x =16.(3)令x =log (2+3)(2-3)=log (2+3)(2+3)-1,所以(2+3)x=(2+3)-1,x =-1. (4)令x =345log625,所以(354)x=625,x 345=54,x =3.解法二:(1)log 927=log 933=log 9932=32.(2) 43log 81=43log (43)16=16.(3)log (2+3)(2-3)=log (2+3)(2+3)-1=-1.(4) 345log625=345log(354)3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据.知能训练1.把下列各题的指数式写成对数式:(1)42=16;(2)30=1;(3)4x=2;(4)2x=0.5;(5)54=625;(6)3-2=19;(7)(14)-2=16. 解:(1)2=log 416;(2)0=log 31;(3)x =log 42;(4)x =log 20.5;(5)4=log 5625;(6)-2=log 319;(7)-2=log 1416.2.把下列各题的对数式写成指数式:(1)x =log 527;(2)x =log 87;(3)x =log 43;(4)x =log 713;(5)log 216=4;(6) 31log 27=-3;(7) 3log x =6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a.解:(1)5x=27;(2)8x=7;(3)4x=3;(4)7x=13;(5)24=16;(6)(13)-3=27;(7)(3)6=x ;(8)x -6=64;(9)27=128;(10)3a=27.3.求下列各式中x 的值:(1)log 8x =-23;(2)log x 27=34;(3)log 2(log 5x)=1;(4)log 3(lgx)=0.解:(1)因为log 8x =-23,所以x =8-23=(23)-23=23×(-23)=2-2=14; (2)因为log x 27=34,所以43x =27=33,即x =(33)34=34=81;(3)因为log 2(log 5x)=1,所以log 5x =2,x =52=25; (4)因为log 3(lgx)=0,所以lgx =1,即x =101=10. 4.(1)求log 84的值;(2)已知log a 2=m ,log a 3=n ,求a2m +n的值.解:(1)设log 84=x ,根据对数的定义有8x=4,即23x=22,所以x =23,即log 84=23; (2)因为log a 2=m ,log a 3=n ,根据对数的定义有a m=2,a n=3, 所以a2m +n=(a m )2·a n =(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用.拓展提升对于a >0,a≠1,下列结论正确的是( )(1)若M =N ,则log a M =log a N (2)若log a M =log a N ,则M =N (3)若log a M 2=log a N 2,则M =N (4)若M =N ,则log a M 2=log a N 2A.(1)(3) B.(2)(4)C.(2) D.(1)(2)(4)活动:学生思考,讨论,交流,回答,教师及时评价.回想对数的有关规定.对(1)若M=N,当M为0或负数时log a M≠log a N,因此错误;对(2)根据对数的定义,若log a M=log a N,则M=N,正确;对(3)若log a M2=log a N2,则M=±N,因此错误;对(4)若M=N=0时,则log a M2与log a N2都不存在,因此错误.综上,(2)正确.答案:C点评:0和负数没有对数,一个正数的平方根有两个.课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数.作业课本本节练习B 1、2.设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备.备课资料[备选例题]例1将下列指数式与对数式互化,有x 的求出x 的值. (1)215-=15;(2) 2log 4=x ;(3)3x=127;(4)(14)x=64;(5)lg0.000 1=x.解:(1) 215-=15化为对数式是log 515=-12;(2)x =2log 4化为指数式是(2)x=4,即22x =22,x2=2,x =4;(3)3x=127化为对数式是x =log 3127,因为3x=(13)3=3-3,所以x =-3;(4)(14)x =64化为对数式是x =log 1464,因为(14)x =64=43,所以x =-3;(5)lg0.000 1=x 化为指数式是10x=0.000 1, 因为10x=0.000 1=10-4,所以x =-4. 例2计算3log35+3log315的值.解:设x =log 315,则3x=15,(312)x =21)51(-,所以x =3log15. 所以3log 35+3log 315=5+33log15=5+15=655.例3计算a logab·logbc·logcN(a >0,b >0,c >0,N >0).解:alogab·logbc·logcN=blogbc·logcN=clogcN=N.(设计者:路致芳)第2课时 积、商、幂的对数导入新课思路1.上节课我们学习了以下内容: 1.对数的定义.2.指数式与对数式的互化. a b=N log a N =b. 3.重要公式:(1)负数与零没有对数;(2)log a 1=0,log a a =1;(3)对数恒等式alog a N =N.下面我们接着讲积、商、幂的对数〔教师板书课题〕.思路 2.我们在学习指数的时候,知道指数有相应的运算法则,即指数运算法则. a m·a n=am +n;a m ÷a n =am -n;(a m )n=a mn;ma n=a nm.从上节课我们还知道指数与对数都是一种运算,而且它们互为逆运算,对数是否也有和指数相类似的运算法则呢?答案是肯定的,这就是本堂课的主要内容,点出课题.推进新课新知探究提出问题1在上节课中,我们知道,对数运算可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?2如我们知道a m=M,a n=N,a m·a n=a m+n,那m+n如何表示,能用对数式运算吗?3在上述2的条件下,类比指数运算性质能得出其他对数运算性质吗?4你能否用最简练的语言描述上述结论?如果能,请描述.,5上述运算性质中的字母的取值有什么限制吗?6上述结论能否推广呢?,7学习这些性质能对我们进行对数运算带来哪些方便呢?讨论结果:(1)通过问题(2)来说明.(2)如a m·a n=a m+n,设M=a m,N=a n,于是MN=a m+n,由对数的定义得到M=a m⇔m=log a M,N=a n⇔n=log a N,MN=a m+n⇔m+n=log a MN,log a(MN)=log a M+log a N.因此m+n可以用对数式表示.(3)令M =a m ,N =a n ,则M N =a m ÷a n =a m -n,所以m -n =log a M N .又由M =a m,N =a n,所以m =log a M ,n =log a N.所以log a M -log a N =m -n =log a MN,即log a MN=log a M -log a N.设M =a m,则M n=(a m )n=a mn.由对数的定义, 所以log a M =m ,log a M n=mn.所以log a M n=mn =nlog a M ,即log a M n=nlog a M. 这样我们得到对数的三个运算性质: 如果a >0,a≠1,M >0,N >0,则有 log a (MN)=log a M +log a N ,① log a MN =log a M -log a N ,②log a M n=nlog a M(n∈R ).③ (4)以上三个性质可以归纳为:性质①:两数积的对数,等于各数的对数的和;性质②:两数商的对数,等于被除数的对数减去除数的对数; 性质③:幂的对数等于幂指数乘底数的对数.(5)利用对数运算性质进行运算,所以要求a >0,a≠1,M >0,N >0.(6)性质①可以推广到n 个数的情形:即log a (M 1M 2M 3…M n )=log a M 1+log a M 2+log a M 3+…+log a M n (其中a >0,a≠1,M 1、M 2、M 3、…、M n 均大于0). (7)纵观这三个性质我们知道,性质①的等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算.性质②的等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算. 性质③从左往右仍然是降级运算.利用对数的性质①②可以使两正数的积、商的对数转化为两正数的各自的对数的和、差运算,大大的方便了对数式的化简和求值.应用示例思路1例1用log a x ,log a y ,log a z 表示下列各式:(1)log a xy z ;(2)log a (x 3y 5);(3)log a x yz ;(4)log a x 2y 3z .解:(1)log a xyz =log a (xy)-log a z =log a x +log a y -log a z ;(2)log a (x 3y 5)=log a x 3+log a y 5=3log a x +5log a y ;(3)log a x yz =log a x -log a (yz)=log a 21x -(log a y +log a z)=12log a x-log a y -log a z ; (4)log ax2y 3z=log a (x 221y 31-z)=log a x 2+log a 21y +log a 31-z=2log a x+12log a y -13log a z.点评:对数的运算实质上是把积、商、幂的对数运算分别转化为对数的加、减的运算.例2计算:(1)lg 5100;(2)lg4+lg25;(3)(lg2)2+lg20×lg5.解:(1)lg 5100=15lg100=25;(2)lg4+lg25=lg(4×25)=lg100=2;(3)(lg2)2+lg20×l g5=(lg2)2+(1+lg2)(1-lg2)=(lg2)2+1-(lg2)2=1.点评:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如变形要化到最简形式,同时注意分子、分母的联系;要避免错用对数运算性质,特别是对数运算性质的灵活运用,运算性质的逆用常被学生所忽视.解:(1)解法一:lg14-2lg 73+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(32×2)=lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.解法二:lg14-2lg 73+lg7-lg18=lg14-lg(73)2+lg7-lg18=lg 14×7(73)2×18=lg1=0.(2)lg243lg9=lg35lg32=5lg32lg3=52. (3)lg 27+lg8-3lg 10lg1.2=lg(33)12+lg23-3lg(10)12lg3×2210 =32lg3+2lg2-1lg3+2lg2-1=32. 思路2例1:求下列各式的值.(1)log 525;(2)log 0.41;(3)log 2(47×25). 解法一:(1)log 525=log 552=2; (2)log 0.41=0;(3)log 2(47×25)=log 247+log 225=log 222×7+log 225=2×7+5=19.解法二:(1)设log 525=x ,则5x=25=52,所以x =2; (2)设log 0.41=x ,则0.4x =1=0.40,所以x =0; (3)log 2(47×25)=log 2(214×25)=log 2219=19,或log 2(47×25)=log 247+log 225=7log 222+log 225=2×7+5=19. 点评:此题关键是要记住对数运算性质的形式.例2计算下列各式的值:(1)12lg 3249-43lg 8+lg 245;(2)lg52+23lg8+lg5·lg20+(lg2)2;(3)lg 2+lg3-lg 10lg1.8.活动:学生思考、交流,观察题目特点,教师可以提示引导:将真数中的积、商、幂化为对数的和、差、积;再就是逆用对数的运算性质.先利用对数的性质把积、商、幂化为对数的和、差、积进行计算.再就是逆用对数的运算性质,把对数的和、差、积转化为真数的积、商、幂再计算.(1)解法一:12lg 3249-43lg 8+lg 245=12(5lg2-2lg7)-43×32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5 =12(lg2+lg5)=12lg10=12. 解法二:12lg 3249-43lg 8+lg 245=lg 427-34232lg+lg75=lg 42×757×4=lg(2×5)=lg 10=12.(2)解法一:lg52+23lg8+lg5·lg20+(lg2)2=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2lg10+(lg2+lg5)2=2+(lg10)2=2+1=3.解法二:lg52+23lg8+lg5·lg20+(lg2)2=2lg5+2lg2+lg5(2lg2+lg5)+(1-lg5)2=2lg10+lg5[2(1-lg5)+lg5]+(1-lg5)2=2+lg5(2-lg5)+(1-lg5)2=2+2lg5-(lg5)2+1-2lg5+(lg5)2=3.(3)解法一:lg 2+lg3-lg 10lg1.8=12lg2+lg9-lg10lg1.8=lg 18102lg1.8=lg1.82lg1.8=12. 解法二:lg 2+lg3-lg 10lg1.8=12lg2+lg3-12lg 1810=12lg2+lg3-122lg3+lg2-1=122lg3+lg2-12lg3+lg2-1=12. 点评:这类问题一般有以下几种处理方法:一是将真数中的积、商、幂运用对数的运算法则化为对数的和、差、积,然后化简求值;二是将式中对数的和、差、积运用对数的运算法则化为真数的积、商、幂,然后化简求值;三是上述两种方法灵活运用,化简求值. 变式训练 计算:(1)2log 510+log 50.25;(2)2log 525+3log 264;(3)log 2(log 216). 解:(1)因为2log 510=log 5102=log 5100,所以2log 510+log 50.25=log 5100+log 50.25=log 5(100×0.25)=log 552=2log 55=2.(2)因为2log 525=2log 552=4log 55=4,3log 264=3log 226=18log 22=18,所以2log 525+3log 264=22.(3)因为log 216=log 224=4,所以log 2(log 216)=log 24=log 222=2.知能训练1.用log a x ,log a y ,log a z ,log a (x +y),log a (x -y)表示下列各式: (1)log a 3x y 2z ;(2)log a (x·4z 3y 2);(3)log a (xy 12z -23);(4)log a xy x 2-y 2; (5)log a (x +y x -y ·y);(6)log a [y xx -y ]3. 解:(1)log a 3x y 2z =log a 3x -log a y 2z =13log a x -(2log a y +log a z) =13log a x -2log a y -log a z. (2)log a (x·4z 3y 2)=log a x +log a 4z 3y 2=log a x +14(log a z 3-log a y 2) =log a x -24log a y +34log a z =log a x -12log a y +34log a z. (3)log a (xy 12z -23)=log a x +log a y 12+log a z -23=log a x +12log a y -23log a z.(4)log a xy x 2-y 2=log a xy -log a (x 2-y 2)=log a x +log a y -log a (x +y)(x -y)=log a x +log a y -log a (x +y)-log a (x -y).(5)log a (x +y x -y ·y)=log a x +y x -y+log a y =log a (x +y)-log a (x -y)+log a y.(6)log a [y x(x -y)]3=3[log a y -log a x -log a (x -y)]=3log a y -3log a x -3log a (x -y).2.已知f(x 6)=log 2x ,则f(8)等于( )A.43 B .8 C .18 D.12解析:因为f(x 6)=log 2x ,x >0,令x 6=8,得x =632=212,所以f(8)=log 2212=12. 另解:因为f(x 6)=log 2x =16log 2x 6,所以f(x)=16log 2x. 所以f(8)=16log 28=16log 223=12. 答案:D3.若a >0,a≠1,x >0,y >0,x >y ,下列式子正确的个数为( ) ①log a x·log a y =log a (x +y) ②log a x -log a y =log a (x -y)③log a x y=log a x÷log a y ④log a (xy)=log a x·log a yA .0B .1C .2D .3 答案:A4.若a >0,a≠1,x >y >0,n∈N +,下列式子正确的个数为( )①(log a x)n =nlog a x ②(log a x)n =log a x n③log a x =-log a 1x ④log a x log a y =log a x y ⑤n log a x =1n log a x ⑥1nlog a x =log a n x ⑦log a x n=nlog a x ⑧log a x -y x +y =-log a x +y x -y A .3 B .4 C .5 D .6 答案:B5.科学家以里氏震级来度量地震的强度.若设I 为地震时所散发出来的相对能量程度,则里氏震级r 可定义为r =0.6lgI ,试比较6.9级和7.8级地震的相对能量程度.解:设6.9级和7.8级地震的相对能量程度分别为I 1和I 2,由题意,得⎩⎪⎨⎪⎧ 6.9=0.6lgI 1,7.8=0.6lgI 2.因此0.6(lgI 2-lgI 1)=0.9,即lg I 2I 1=1.5.所以I 2I 1=101.5≈32. 因此,7.8级地震的相对能量程度约为6.9级地震的相对能量程度的32倍.拓展提升已知x 、y 、z >0,且lgx +lgy +lgz =0,求x 1lgy +1lgz ·y 1lgz+1lgx ·z 1lgx +1lgy的值. 活动:学生讨论、交流、思考,教师可以引导.大胆设想,运用对数的运算性质.由于所求的式子是三项积的形式,每一项都有指数,指数中又有对数,因此想到用对数的运算性质,如果能对所求式子取对数,那可能会好解决些,故想到用参数法,设所求式子的值为t.解:令x 1lgy +1lgz ·y 1lgz +1lgx ·z 1lgx +1lgy =t ,则lgt =(1lgy +1lgz )lgx +(1lgz +1lgx )lgy +(1lgx +1lgy)lgz =lgx lgy +lgx lgz +lgy lgz +lgy lgx +lgz lgx +lgz lgy =lgx +lgz lgy +lgx +lgy lgz +lgy +lgz lgx=-lgy lgy +-lgz lgz +-lgx lgx =-3,所以t =10-3=11 000即为所求. 课堂小结1.对数的运算法则.2.对数的运算法则的综合应用,特别是公式的逆向使用.3.对数与指数形式比较:作业课本本节练习B 1、2、3.设计感想在前面研究了对数概念的基础上,为了运算的方便,本节课我们借助指数的运算法则,推出了对数的运算法则,引导学生自己完成推导过程,加深对公式的理解和记忆,对运算性质的认识类比指数的运算法则来理解记忆,强化法则的使用条件,注意对数式中每一个字母的取值范围,由于它是以后学习对数函数的基础,所以安排教学时,要反复练习,加大练习的量,多结合信息化的教学手段,顺利完成本堂课的任务.备课资料[备选例题]例 已知a 、b 、c 均为正数,3a =4b =6c,求证:2a +1b =2c . 活动:学生思考观察,教师引导,及时评价学生的思考过程.从求证的结论看,解题的关键是设法把a 、b 、c 从连等号式中分离出来,为便于找出a 、b 、c 的关系,不妨设3a =4b =6c=k(k >0),则a 、b 、c 就可用这一变量k 表示出来,再结合对数的运算性质就可证得结论.证法一:设3a =4b =6c =k ,则k >0.由对数的定义得a =log 3k ,b =log 4k ,c =log 6k ,则左边=2a +1b =2log 3k +1log 4k=2log k 3+log k 4=log k 9+log k 4=log k 36,右边=2c =2log 6k =2log k 6=log k 36,所以2a +1b =2c. 证法二:对3a =4b =6c 同时两边取常用对数得lg3a =lg4b =lg6c,alg3=blg4=clg6.所以c a =lg3lg6=log 63,c b =lg4lg6=log 64.又2c a +c b=log 6(9×4)=2,所以2a +1b =2c. 点评:本题主要考查指数、对数的定义及其运算性质.灵活运用指数、对数的概念及性质解题,适时转化.(设计者:卢岩冰)第3课时 换底公式与自然对数导入新课 思路1.问题:你能根据对数的定义推导出下面的换底公式吗?a >0,且a≠1,c >0,且c≠1,b >0,log a b =log c b log c a.教师直接点出课题.思路 2.前两节课我们学习了以下内容:1.对数的定义及性质;2.对数恒等式;3.对数的运算性质及应用.我们能就同底数的对数进行运算,那么不同底数的对数集中在一起,如何解决呢?这就是本堂课的主要内容.教师板书课题.思路3.从对数的定义可以知道,任意不等于1的正数都可作为对数的底,数学史上,人们经过大量的努力,制作了常用对数表和自然对数表,只要通过查表就能求出任意正数的常用对数或自然对数,这样,如果能将其他底的对数转换为以10为底或以e 为底的对数就能方便地求出任意不等于1的正数为底的对数,那么,怎么转化呢?这就需要一个公式,即对数的换底公式,从而引出课题. 推进新课新知探究提出问题①已知lg2=0.301 0,lg3=0.477 1,求log 23的值.②根据①,如a>0,a≠1,你能用含a 的对数式来表示log 23吗?③更一般地,我们有log a b =log c b log c a,如何证明?④证明log a b =log c b log c a的依据是什么?⑤你能用自己的话概括出换底公式吗?⑥换底公式的意义是什么?有什么作用?⑦什么是自然对数,如何用计算器计算自然对数?活动:学生针对提出的问题,交流讨论,回顾所学,力求转化,教师适时指导,必要时提示学生解题的思路,给学生创造一个互动的学习环境,培养学生的创造性思维能力.对①目前还没有学习对数的换底公式,它们又不是同底,因此可考虑对数的定义,转化成方程来解;对②参考①的思路和结果的形式,借助对数的定义可以表示;对③借助①②的思路,利用对数的定义来证明;对④根据证明的过程来说明;对⑤抓住问题的实质,用准确的语言描述出来,一般是按照从左到右的形式;对⑥换底公式的意义就在于对数的底数变了,与我们的要求接近了;⑦自然对数与常用对数是两种特殊的对数,它们对科学研究和了解自然起了巨大的作用.讨论结果:①因为lg2=0.301 0,lg3=0.477 1,根据对数的定义,所以100.301 0=2,100.477 1=3. 不妨设log 23=x ,则2x =3,所以(100.301 0)x =100.477 1,100.301 0×x =100.477 1,即0.301 0x =0.477 1,x =0.477 10.301 0=lg3lg2.因此log 23=lg3lg2=0.477 10.301 0≈1.585 1. ②根据①我们看到,最后的结果是log 23用lg2与lg3表示,是通过对数的定义转化的,这就给我们以启发,本来是以2为底的对数转换成了以10为底的对数,不妨设log 23=x ,由对数定义知道,2x=3,两边都取以a 为底的对数,得log a 2x =log a 3,xlog a 2=log a 3,x =log a 3log a 2, 也就是log 23=log a 3log a 2. 这样log 23就表示成了以a 为底的3的对数与以a 为底的2的对数的商.③证明log a b =log c b log c a. 证明:设log a b =x ,由对数定义知道,a x =b ;两边取c 为底的对数,得log c a x =log c b xlog c a =log c b ;所以x =log c b log c a ,即log a b =log c b log c a. 一般地,log a b =log c b log c a(a >0,a≠1,b >0,c >0,c≠1)称为对数换底公式.④由③的证明过程来看,换底公式的证明要紧扣对数的定义,证明的依据是:若M >0,N >0,M =N ,则log a M =log a N.⑤一个数的对数,等于同一底数的真数的对数与底数的对数的商,这样就把一个对数变成了与原来对数的底数不同的两个对数的商. ⑥换底公式的意义就在于把对数式的底数改变,把不同底问题转化为同底问题,为使用运算法则创造条件,更方便化简求值.说明:我们使用的计算器中,“log”通常是常用对数,因此要使用计算器计算对数,一定要先用换底公式转化为常用对数.如log 23=lg3lg2, 即计算log 23的值的按键顺序为:“log”→“3”→“÷”→“log”→“2”→“=”.再如:在前面要求我国人口达到18亿的年份,就是要计算x =log 1.011813, 所以x =log 1.011813=lg 1813lg1.01=lg18-lg13lg1.01≈1.255 3-1.1390.043=32.883 7≈33年.可以看到运用对数换底公式,有时要方便得多.⑦在科学技术中,常常使用以无理数e =2.718 28…为底的对数.以e 为底的对数叫做自然对数.logeN 通常记作lnN.根据对数的换底公式,可以得到自然对数与常用对数的关系:lnN =lgN lge ≈lgN 0.434 3,即lnN≈2.302 6 lgN.用科学计算器可直接求自然对数.例如,求ln34(精确到0.000 1),可用科学计算器计算如下:所以ln34≈3.526 4.应用示例思路1 例1求下列各式的值: (1)log 89·log 2732的值;(2)ln1.解:(1)log 89·log 2732=lg9lg8×lg32lg27=2lg33lg2×5lg23lg3=23×53=109. (2)因为e 0=1,所以ln1=0.例2 (1)求证:log x ylog y z =log x z.证明:因为log x ylog y z =log x y log x z log x y =log x z ,所以log x ylog y z =log x z.(2)求证:log an b n=log a b.证明:因为log an b n =log a b n log a a n =nlog a b nlog a a=log a b ,所以log an b n =log a b. 点评:本题的结论可作为公式直接应用.思路2例1 (1)已知log 23=a ,log 37=b ,用a 、b 表示log 4256.(2)若log 83=p ,log 35=q ,求lg5.活动:学生交流,展示自己的思维过程,教师对学生的表现及时评价,要注意转化.利用对数运算性质法则和换底公式进行化简,然后再表示.对(1)据题目的特点,底数不同,所以考虑把底数统一起来,再利用对数的运算性质化简.对(2)利用换底公式把底数统一起来,再灵活利用对数的运算性质解决.解:(1)因为log 23=a ,则1a=log 32, 又因为log 37=b ,所以log 4256=log 356log 342=log 37+3·log 32log 37+log 32+1=ab +3ab +a +1. (2)因为log 83=p ,即log 233=p ,所以log 23=3p.所以log 32=13p. 又因为log 35=q ,所以lg5=log 35log 310=log 35log 32+log 35=3pq 1+3pq. 点评:本题是条件问题,要充分考虑到条件与结论的关系,更要灵活运用对数的换底公式和运算性质.例2设x 、y 、z∈(0,+∞),且3x =4y =6z .(1)求证:1x +12y =1z;(2)比较3x 、4y 、6z 的大小. 活动:学生观察,积极思考,尽量把所学知识与题目结合起来,教师及时提示引导.(1)利用对数的定义把x 、y 、z 表示出来,根据对数的定义把3x =4y =6z 转化为指数式,求出x 、y 、z ,然后计算.(2)在(1)的基础上利用中间量,作差比较,利用对数的运算性质进行比较.(1)证明:设3x =4y =6z =k ,因为x 、y 、z∈(0,+∞),所以k >1.取对数,得x =lgk lg3,y =lgk lg4,z =lgk lg6, 所以1x +12y =lg3lgk +lg42lgk =2lg3+lg42lgk =2lg3+2lg22lgk =lg6lgk =1z, 即1x +12y =1z. (2)解:因为3x -4y =(3lg3-4lg4)lgk =lg64-lg81lg3·lg4lgk =lgk·l g 6481lg3·lg4<0,所以3x <4y.又因为4y -6z =(4lg4-6lg6)lgk =lg36-lg64lg2·lg6lgk =lgk·l g 916lg2·lg6<0, 所以4y <6z.所以3x <4y <6z.点评:如果题目中有指数式,常根据对数的定义转化为对数式,有对数式常根据对数的定义转化为指数式,比较大小常用作差,如果是几个数比较大小,有时采用中间量法,要具体情况具体分析. 例3已知log a x =log a c +b ,求x.活动:学生讨论,教师指导,教师提问,学生回答,教师对解题中出现的问题及时处理.把对数式转化为指数式求解,或把b 转化为对数形式利用对数的运算性质来解.由于x 作为真数,故可直接利用对数定义求解;另外,由于等式右端为两实数和的形式,b 的存在使变形产生困难,故可考虑将log a c 移到等式左端,或者将b 变为对数形式来解.解法一:由对数定义,可知x =a logac +b =a logac ·a b =c·a b. 解法二:由已知移项可得log a x -log a c =b ,即log a x c=b ,由对数定义,知x c=a b , 所以x =c·a b.解法三:因为b =log a a b ,所以log a x =log a c +log a a b =log a c·a b . 所以x =c·a b .点评:利用对数定义进行指数式与对数式的互化对解题起到关键作用.知能训练(1)已知lg2=a ,lg3=b ,则lg12lg15等于( ) A.2a +b 1+a +b B.a +2b 1+a +bC.2a +b 1-a +bD.a +2b 1-a +b(2)已知2lg(x -2y)=lgx +lgy ,则x y的值为( ) A .1 B .4C .1或4D .4或-1(3)若3a=2,则log 38-2log 36=__________.(4)lg12.5-lg 58+lg0.5=__________. 答案:(1)C (2)B (3)a -2 (4)1 拓展提升探究换底公式的其他证明方法:活动:学生讨论、交流、思考,教师可以引导:大胆设想,运用对数的定义及运算性质和指数幂的运算性质.证法一:设log a N =x ,则a x=N ,两边取以c(c >0且c≠1)为底的对数,得log c a x =log c N ,所以xlog c a =log c N ,即x =log c N log c a. 故log a N =log c N log c a .证法二:由对数恒等式,得N =alog a N ,两边取以c(c >0且c≠1)为底的对数,得log c N =log a N·log c a ,所以log a N =log c N log c a. 证法三:令log c a =m ,log a N =n ,则a =c m ,N =a n ,所以N =(c m )n=c mn .两边取以c(c >0且c≠1)为底的对数,得mn =log c N ,所以n =log c N m ,即log a N =log c N log c a. 对数换底公式的应用:换底公式log a N =log c N log c a(c >0且c≠1,a >0且a≠1,N >0)的应用包括两个方面,即由左端到右端的应用和由右端到左端的应用.前者较为容易,而后者则易被学生忽视,因此,教学时应重视后者的用法,下面仅就后者举例说明:例:化简:log a M log a N +log b M log b N +log c M log c N +log d M log d N. 解:原式=log N M +log N M +log N M +log N M =4log N M. 课堂小结1.对数换底公式.2.换底公式可用于对数式的化简、求值或证明.若对数式的底数和真数可转化成同底数的幂的形式,则该幂底数可被选作换底公式的底数,也可把对数式转化成以10为底的常用对数或以任意数a(a >0且a≠1)为底的对数式的形式,进行化简、求值或证明. 作业1.已知271log 17=a ,31log 15=b ,求log 81175的值. 解:因为271log 17=log 277=13log 37=a , 所以log 37=3a. 又因为31log 15=log 35=b , 所以log 81175=14log 325×7=14(log 325+log 37)=14(2log 35+log 37)=3a +2b 4. 2.求证:(log 23+log 49+log 827+…+log 2n 3n )log 9n 32=52. 证明:左边=(log 23+log 49+log 827+…+log 2n 3n )log 9n 32=nlog 23·1n log 332=log 23·52log 32=52=右边. 设计感想本堂课主要是学习对数的换底公式,它在以后的学习中有着非常重要的应用,由于对数的运算法则是在同底的基础上,因此利用对数换底公式把不同底数的对数转化为同底显得非常重要,有时也可以逆用对数的换底公式达到我们的目的,特别是实际问题的应用更为广泛,因此要反复训练,强化记忆,所以设计了大量的例题与练习,授课时要加快速度,激发学生学习的兴趣,多运用多媒体的教学手段.备课资料。

2018年高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数3.2.1对数及其运算课件新人教B版必修1

2018年高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数3.2.1对数及其运算课件新人教B版必修1

)
答案:D
思考辨析 判断下列说法是否正确,正确的在后面的括号里打“ ”,错误的打 “×”. (1)因为(-2)2=4,所以log-24=2. ( ) (2)log34与log43表示的含义相同. ( ) (3)0的对数是0. ( ) (4)lg N是自然对数. ( ) (5)logax· logay=loga(x+y). ( ) (6)loga(-3)2 018=2 018loga(-3). ( ) (7)logab· logbc· logca=1(a,b,c>0且均不等于1). ( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)× (7)




3.为什么规定在对数logaN中,a>0,且a≠1呢?
提示: (1)当 a<0 时,N 取某些值时,logaN 无意义,如根据指数的运 算性质可知,不存在实数 x 使 a 不能小于 0.
(2)当a=0,N≠0时,不存在实数x使ax=N成立,无法定义logaN.当 a=0,N=0时,任意非零正实数x,有ax=N成立,logaN不确定. (3)当a=1,N≠1时,不存在实数x,使ax=N,logaN无意义.当a=1,N=1 时,ax=N恒成立,logaN不能确定.
3.做一做:使对数式log5(3-x)有意义的x的取值范围是( A.x>3 B.x<3 C.x>0 D.x<3,且x≠2 答案:B
)




提示: ∵������lo g ������ (������������ ) =MN;������lo g ������ ������ +lo g ������ ������ = ������lo g ������ ������ ·������lo g ������ ������ =M· N, ∴������lo g ������ (������������ ) = ������lo g ������ ������ +lo g ������ ������ ,∴loga(MN)=logaM+logaN.

高中数学 第三章 基本初等函数(Ⅰ)3.2 对数与对数函数 3.2.1 对数及其运算课堂探究 新人教

高中数学 第三章 基本初等函数(Ⅰ)3.2 对数与对数函数 3.2.1 对数及其运算课堂探究 新人教

对数及其运算课堂探究探究一对数式与指数式的互化由对数的定义知,对数式与指数式是同一种数量关系的两种不同表达形式,其关系如下表:10(2)log39=2⇔32=9;(3)log210=x⇔2x=10;(4)e3=x⇔log e x=3,即ln x=3.答案:(1)lg 1 000=3 (2)32=9 (3)2x=10 (4)ln x=3探究二对数基本性质的应用1.对数恒等式a log a N=N的应用(1)能直接应用对数恒等式的求值.(2)对于不能直接应用对数恒等式的情况按以下步骤求解.2.利用对数的基本性质求值时经常用到两个关键的转化(1)log a x=1⇔x=a(a>0,且a≠1).(2)log a x =0⇔x =1(a >0,且a ≠1).我们常用其来实现一些较复杂的指数式的转化.【典型例题2】(1)若log 3(lg x )=1,则x =__________; (2)求值:4221(log 9log 5)2-=__________.解析:(1)∵log 3(lg x )=1,∴lg x =3. ∴x =103=1 000.(2)原式=2(log 29-log 25)=22log 9log 522=95.答案:(1)1 000 (2)95点评在对数的相关运算中,除了对数的定义外,应灵活应用如log a 1=0,log a a =1,a log a M =M 等常用性质,另外要特别注意真数与底数的取值要求,做到及时检验. 探究三对数运算法则的应用对数运算法则的使用技巧及注意事项:1.“收”:同底的对数式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂等,然后化简求值,如log 24+log 25=log 220.2.“拆”:将式中真数的积、商、幂等运用对数的运算法则把它们化为对数的和、差、积、商,然后化简求值,如log 295=log 29-log 25. 3.各字母的取值X 围即字母的取值必须保证底数大于0且不等于1,真数大于0. 4.注意“同底”这个化简的方向,因为同底的对数才可能利用对数的运算法则. 5.要保证所得结果中的对数与化简过程中的对数都有意义. 【典型例题3】化简下列各式: (1)4lg2+3lg5-lg15;;(3)2log 32-log 3329+log 38-55log 3. 思路分析:利用对数的运算法则,将所给式子转化为积、商、幂的对数.解:(1)原式=lg 432515⨯=lg(24×54)=lg(2×5)4=4;(2)原式=33lg 33lg 222lg 32lg 21+-+-=()3lg321lg 212lg32lg 21+-+-=32;(3)原式=2log 32-(5log 32-2)+3log 32-3 =2log 32-5log 32+2+3log 32-3=-1. 点评(1)注意对数运算法则的正用和逆用;(2)综合运用对数运算法则时应注意掌握变形技巧,如化为最简形式或统一底数等. 探究四对数换底公式的应用1.应用换底公式表示已知对数的两个策略2.利用换底公式进行化简求值的技巧及常见处理方式(1)技巧:“化异为同”,即将不同底的对数尽量化为同底的对数来计算.(2)常见的三种处理方式:①借助运算性质:先利用对数的运算法则及性质进行部分运算,最后再换成同底求解.②借助换底公式:一次性地统一换为常用对数(或自然对数),再化简、通分、求值. ③利用对数恒等式或常见结论:有时可熟记一些常见结论,这样能够提高解题效率. 【典型例题4】(1)计算lg12-lg 58+lg12.5-log 89·log 98的值; (2)已知log 189=a,18b=5,求log 3645. 解:(1)原式=lg 1525282⎛⎫÷⨯⎪⎝⎭-lg 9lg 8·lg 8lg 9=lg10-1=0. (2)方法一:∵log 189=a,18b=5, ∴log 18 5=b . 于是log 36 45=1818log 45log 36=()()1818log 95log 182⨯⨯=81818log 9log 51log 2++=18181log 9a b ++=2a ba+-.方法二:∵log189=a,18b=5,∴log185=b.于是log3645=()18218log9518log9⨯=18181818log9log52log18log9+-=2a ba+-.方法三:∵log189=a,18b=5,∴l g 9=a lg18,lg 5=b lg18.∴log36 45=lg45lg36=()2lg9518lg9⨯=lg9lg52lg18lg9+-=lg18lg182lg18lg18a ba+-=2a ba+-.点评在解题过程中,根据问题的需要将指数式转化为对数式,或者将对数式转化为指数式,这正是数学转化思想的具体体现,要注意学习、体会,逐步达到灵活应用.探究五易错辨析易错点忽视底数的限制条件而致误【典型例题5】已知log(x+3)(x2+3x)=1,某某数x的值.错解:由对数的性质,可得x2+3x=x+3,解得x=1或x=-3.错因分析:错解中忽视了对数的底数和真数必须大于0且底数不等于1.正解:由对数的性质,知22333030,31x x xx xx x⎧+=+⎪+⎨⎪++≠⎩且解得x=1,故实数x的值为1.点评由对数的定义可知,对数log a N的底数a>0,且a≠1,真数N>0,因此我们在解题时一定要注意这些限制条件,如果忽视了这些条件,则很容易出错.。

人教B版高中数学必修一《第三章 基本初等函数(Ⅰ) 3.2 对数与对数函数 3.2.1 对数及其运算》_1

人教B版高中数学必修一《第三章 基本初等函数(Ⅰ) 3.2 对数与对数函数 3.2.1 对数及其运算》_1
板书设计:
教学反思:
“三四五”高效课堂教学设计:
(授课日期:年月日星期班级)
授课题目
对数与对数运算(二)
拟课时
第课时
明确目标
1.知识与技能:理解对数的运算性质.
2.过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.
3.情感、态度与价值观
(2)在第(3)小题的计算过程中,用到了性质log Mn= logaM及换底公式logaN= .利用换底公式可以证明:logab= ,
即logablogba=1.
例2:已知log189 =a,18b= 5,求log3645.
.
四、总结提升
1、本节课你主要学习了
五、问题过关
1.已知 , ,求下列格式的值
则由1、 0=12、 1= 如何转化为对数式
②负数和零有没有对数?
③根据对数的定义, =?
(以上三题由学生先独立思考,再个别提问解答)
由以上的问题得到
① ( >0,且 ≠1)
②∵ >0,且 ≠1对任意的力, 常记为 .
恒等式: =N
3.两类对数
①以10为底的对数称为常用对数, 常记为 .
②以无理数e=2.71828…为底的对数称为自然对数, 常记为 .
让学生讨论、研究,教师引导
师组织,生交流探讨得出如下结论:
底数a>0,且a≠1,真数M>0,N>0;只有所得结果中对数和所给出的数的对数都存在时,等式才能成立.
学生思考,口答,教师板演、点评.
学生先做,老师再评讲
板书设计:
教学反思:
“三四五”高效课堂教学设计:
(授课日期:年月日星期班级)

高中数学(文科)目录

高中数学(文科)目录

高中数学(文科)目录高一上:必修1第1章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第2章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图象2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第3章基本初等函数(Ⅰ)3.1 指数与指数函数3.1.1 实数指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数幂函数的概念、解析式、定义域、值域幂函数的图象幂函数的性质幂函数的单调性、奇偶性及其应用3.4 函数的应用(Ⅱ)函数最值的应用分段函数的应用根据实际问题选择函数类型必修4:第1章基本初等函数(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第2章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第3章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式必修5第1章解三角形1.1 正弦定理和余弦定理1.2 应用举例第2章数列2.1 数列2.2 等差数列2.3 等比数列第3章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题必修2第1章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第2章平面解析几何初步2.1 平面直角坐标系中的基本公式2.2 直线的方程2.3 圆的方程2.4 空间直角坐标系必修3第1章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第2章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第3章概率3.1 事件与概率3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用选修(文科)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第2章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第3章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修(文科)选修1-2第1章统计案例1.1 独立性检验1.2 回归分析第2章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明第3章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.2 复数的运算第4章框图4.1 流程图4.2 结构图选修4-4第一章坐标系1.1 直角坐标系,平面上的伸缩变换1.2 极坐标系1.3 曲线的极坐标方程1.4 圆的极坐标方程1.5 柱坐标系和球坐标系第二章参数方程2.1 曲线的参数方程2.2 直线和圆的参数方程2.3 圆锥曲线的参数方程2.4 一些常见曲线的参数方程选修4-4第一章坐标系1.1 直角坐标系,平面上的伸缩变换1.2 极坐标系1.3 曲线的极坐标方程1.4 圆的极坐标方程1.5 柱坐标系和球坐标系第二章参数方程2.1 曲线的参数方程2.2 直线和圆的参数方程2.3 圆锥曲线的参数方程2.4 一些常见曲线的参数方程选修4-5第1章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法。

高中数学第三章基本初等函数(Ⅰ)3.2.1对数及其运算课件新人教B版必修1

高中数学第三章基本初等函数(Ⅰ)3.2.1对数及其运算课件新人教B版必修1

M Z Z 目标导航 UBIAODAOHANG
知识梳理
HISHI SHULI
重难聚焦
HONGNAN JVJIAO
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
2.对数的性质
(1)0和负数没有对数.
(2)loga1=0(a>0,且a≠1). (3)logaa=1(a>0,且a≠1). (4)对数恒等式: ������log������������ = ������(a>0,且 a≠1). 名师点拨在对数logaN=b中,规定真数N>0.这是由于在实数范围 内,正数的任何次幂都是正数,因而ab=N>0,故要求对数的真数必须
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
名师点拨1.应用公式时需要注意法则的适用范围,并且公式可以
正用、逆用和变形用.
2.当心记忆错
误:loga(MN)≠logaM·logaN,loga(M±N)≠logaM±logaN.
3.虽然loga(M+N)≠logaM+logaN,但并不是说loga(M+N)与 logaM+logaN一定不相等,对于某些M,N的取 值,loga(M+N)=logaM+logaN是成立的.例如,当M=2,N=2 时,loga(2+2)=loga2+loga2=loga4.
【做一做2-2】 若log3(log2x)=0,则x=
.
解析:由已知得log2x=1,故x=2.
答案:2
M Z Z 目标导航 UBIAODAOHANG
知识梳理
HISHI SHULI
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.1 对数及其运算(3)
A 级 基础巩固
一、选择题
1.若log 51
3·log 36·log 6x =2,则x =导学号 65164875( D )
A .9
B .19
C .25
D .125
[解析] ∵log 51
3
·log 36·log 6x =2,
∴lg
13lg5·lg6lg3·lg x lg6=2,∴lg x =-2lg5=lg5-2
,∴x =125. 2.
1
log 14 19+1
log 15
13等于导学号 65164876( C ) A .lg3 B .-lg3 C .1lg3
D .-1
lg3
[解析] 1log 1419+1
log 1513=lg 14lg 19+lg 15lg 13

-2lg2-2lg3+-lg5-lg3=lg2lg3+lg5lg3=lg10lg3=1lg3
. 3.e ln3
-e -ln2
等于导学号 65164877( C )
A .1
B .2
C .52
D .3
[解析] e ln3-e
-ln2
=e
loge3

1e
loge2
=3-12=52
.
4.已知log 32=a,3b
=5,则log 330用a 、b 表示为导学号 65164878( A ) A .1
2
(a +b +1) B .1
2
(a +b )+1
C .1
3(a +b +1) D .1
2
a +
b +1 [解析] ∵3b
=5, ∴b =log 35.
log 330=12log 330=1
2(log 33+log 32+log 35)
=1
2(1+a +b ),选A . 二、填空题
5.计算log 43·log 98= 3
4 .导学号 65164879
[解析] log 43·log 98=lg3lg4·lg8lg9=lg32lg2·3lg22lg3=3
4.
6.已知f (3x )=2x ·log 23,则f (21 007
)的值等于__2_014__.导学号 65164880
[解析] 令3x
=t ,∴x =log 3t , ∴f (t )=2log 3t ·log 23=2·lg t lg3·lg3
lg2
=2log 2t , ∴f (2
1 007
)=2log 22
1 007
=2×1 007=2 014.
三、解答题
7.若log 37·log 29·log 49m =log 41
2,求m 的值.导学号 65164881
[解析] ∵log 37·log 29·log 49m =log 41
2,

lg7lg3·2lg3lg2·lg m 2lg7=-lg22lg2=-12
, ∴lg m =-12lg2=lg2-
12 ,
∴m =2-
12 =2
2
.
8.计算3
log34
-272
3 -lg0.01+ln e 3
的值.导学号 65164882 [解析] 3
log34
-272
3 -lg0.01+ln e 3
=4-32
-lg10-2
+ln e 3
=4-9+2+3=0.
B 级 素养提升
一、选择题
1.设2a =5b
=m ,且1a +1b
=2,则m =导学号 65164883( A )
A .10
B .10
C .20
D .100
[解析] ∵2a
=5b
=m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2, ∴m =10.故选A . 2.方程e ln|x |
=2的解是导学号 65164884( C )
A .-2
B .2
C .-2或2
D .4
[解析] ∵e ln|x |=2,∴|x |=2,∴x =-2或2.
二、填空题
3.12lg0.36+13lg82lg2+lg0.3=__1__.导学号 65164885 [解析] 12lg0.36+13lg82lg2+lg0.3=lg0.6+lg2lg4+lg0.3=lg1.2
lg1.2
=1.
4.若m log 35=1,n =5m
,则n 的值为__3__.导学号 65164886 [解析] ∵m log 35=1,∴m =1
log 35
=log 53. ∴n =5m
=5
log53=3.
三、解答题
5.已知log 98=p ,log 2725=q ,试用p 、q 表示log 52.导学号 65164887 [解析] ∵p =log 98=32log 32,q =log 2725=2
3log 35,
∴log 52=log 32log 35=23p
32
q =4p
9q
.
C 级 能力拔高
1.已知x 、y 、z 均大于1,a ≠0,log z a =24,log y a =40,log (xyz )a =12,求log x a .导学号 65164888
[解析] 由log z a =24得log a z =1
24

由log y a =40得log a y =1
40,
由log (xyz )a =12得log a (xyz )=1
12,
即log a x +log a y +log a z =1
12
.
∴log a x +140+124=112,解得log a x =1
60,∴log x a =60.
2.已知log a x +3log x a -log x y =3(a >1).导学号 65164889 (1)若设x =a t
,试用a 、t 表示y ;
(2)若当0<t ≤2时,y 有最小值8,求a 和x 的值. [解析] (1)由换底公式,得 log a x +3log a x -log a y
log a x =3(a >1),
∴log a y =(log a x )2
-3log a x +3,
当x =a t 时,log a x =log a a t =t ,∴log a y =t 2
-3t +3, 故y =a
t 2
-3t +3(t ≠0).
(2)y =a
(t -
32 )2+
34 ,∵0<t ≤2,a >1,
∴当t =3
2
时,y min =a 34 =8,∴a =16,此时x =a 32 =64.。

相关文档
最新文档