[K12学习]七年级数学上册 4.2 立体图形的视图 4.2.2 由视图到立体图形跟踪训练(含解析)
【中小学资料】七年级数学上册 4.2 立体图形的视图 4.2.2 由视图到立体图形跟踪训练(含解析)(新版)华东
4.2.2由视图到立体图形一.选择题(共8小题)1.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个2.若图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是()A. 6 B.8 C.10 D.123.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.圆柱C.圆锥D.球4.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥5.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图()A.B.C.D.6.某几何体的三视图如图所示,这个几何体是()A.圆柱B.三棱柱 C 长方体D.圆锥7.如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是()A.B. C.D.8.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱二.填空题(共6小题)9.一个几何体,是由许多规格相同的小正方体堆积而成的,其正视图、左视图如图所示,要摆成这样的图形,最少需用_________ 个正方体.10.如图是一个几何体的三个视图,则这个几何体的表面积为_________ .(结果保留π)11.一个由大小相同的正方体构成的几何体的三视图如图,这个几何体是由_________ 个正方体组成的.12如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_________ .13.如图,一个几何体是由大小相同的小正方体焊接而成,其主视图、俯视图、左视图都是“田”字形,则焊接该几何体所需小正方体的个数最少为_________ .14.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是_________ .三.解答题(共6小题)15.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图,请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:毫米)16.某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.17.右图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)18.如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm的等腰三角形,求这个几何体的体积.19.有一些大小相同的小正方体组成的简单几何体,从不同方向看到的平面图形如图所示,请你猜一猜组成这个几何体的小正方体的个数.20.如图是由几个棱长为1cm的小立方块搭成的几何体从上往下看的平面图形,小立方块中的数字表示该位置上小立方块的个数,求出这个几何体的体积.第四章图形的初步认识4.2.2由视图到立体图形参考答案与试题解析一.选择题(共8小题)1.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个考点:由三视图判断几何体.分析:根据给出的几何体,通过动手操作,观察可得答案为4,也可以根据画三视图的方法,发挥空间想象能力,直接想象出每个位置正方体的数目,再加上来.解答:解:由三视图可得,需要的小正方体的数目:1+2+1=4.如图:故选:A.点评:本题考查了几何体的三视图及空间想象能力.2.若图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是()A. 6 B.8 C.10 D.12考点:由三视图判断几何体.专题:几何图形问题.分析:根据主视图以及俯视图,可得出共有2行,根据俯视图可得出该几何体由2列组成,故可得出小正方体最少块数.解答:解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选A.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.3.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.圆柱C.圆锥D.球考点:由三视图判断几何体.分析:根据三视图确定该几何体是圆柱体.解答:解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选:B.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.4.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选:D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图()A.B.C.D.考点:由三视图判断几何体.分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出左边的一列后面一行有两个,俯视图中右边的一列有两排,综合起来可得解.解答:解:从主视图可以看出左边的一列有两个,右边的两列只有一个;从左视图可以看出左边的一列后面一行有两个,右边的一列只有一个;从俯视图可以看出右边的一列有两排,右边的两列只有一排(第二排).故选:A.点评:本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.6.某几何体的三视图如图所示,这个几何体是()A.圆柱B.三棱柱C.长方体D.圆锥考点:由三视图判断几何体.专题:常规题型.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为长方形可得为长方体.故选:C.点评:本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间的想象能力.7.如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是()A.B. C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:先细心观察原立体图形中正方体的位置关系,从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列,结合四个选项选出答案.解答:解:从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列.故选:B.点评:本题考查了由三视图判断几何体及简单组合体的三视图,重点考查几何体的三视图及空间想象能力.8.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.解答:解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故选:A.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.二.填空题(共6小题)9.一个几何体,是由许多规格相同的小正方体堆积而成的,其正视图、左视图如图所示,要摆成这样的图形,最少需用7 个正方体.考点:由三视图判断几何体.分析:根据主视图、左视图是分别从物体正面、左面看,所得到的图形,结合本题进行分析即可.解答:解:根据三视图可得:第二层有2个小正方块,根据主视图和左视图可得第一层最少有5个正方体,故最少需用7块正方体;故答案为7.点评:此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“主视图疯狂盖,左视图拆违章”就更容易得到答案.10.如图是一个几何体的三个视图,则这个几何体的表面积为24π.(结果保留π)考点:由三视图判断几何体;几何体的表面积.分析:根据三视图正视图以及左视图都为矩形,底面是圆形,则可想象出这是一个圆柱体.表面积=侧面积+底面积×2.解答:解:∵圆柱的直径为4,高为4,∴表面积=2π×(×4)×4+π×(×4)2×2=24π.故答案为:24π.点评:考查了由三视图判断几何体和几何体的表面积,本题难点是确定几何体的形状,关键是找到等量关系里相应的量.11.一个由大小相同的正方体构成的几何体的三视图如图,这个几何体是由 4 个正方体组成的.考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.解答:解:综合三视图,我们可得出,这个几何体的底层应该有3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个,故答案为:4.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.12.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是72 .考点:由三视图判断几何体.专题:压轴题.分析:根据主视图与左视图得出长方体的边长,再利用图形的体积得出它的高,进而得出表面积.解答:解:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3,∴它的表面积是:2×3×2+2×6×2+3×6×2=72.故答案为:72.点评:此题主要考查了利用三视图判断几何体的边长,得出图形的高是解题关键.13.如图,一个几何体是由大小相同的小正方体焊接而成,其主视图、俯视图、左视图都是“田”字形,则焊接该几何体所需小正方体的个数最少为4个.考点:由三视图判断几何体.分析:主视图、俯视图、左视图是分别从物体正面、上面、左面看所得到的图形.解答:解:利用一个几何体是由大小相同的小正方体焊接而成,综合主视图、俯视图、左视图,底层最少有2个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是4个.故答案为:4个.点评:本题考查由三视图判断几何体,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是4或5或6或7 .考点:由三视图判断几何体.分析:易得这个几何体共有2层,由左视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共三列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.三.解答题(共6小题)15.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图,请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:毫米)考点:由三视图判断几何体;圆柱的计算.分析:首先利用几何体的三视图确定该几何体的形状,然后计算其表面积.解答:解:由三视图可知茶叶罐的形状为圆柱体,并且茶叶罐的底面直径2R为100毫米,高H为150毫米,∵每个密封罐所需钢板的面积即为该圆柱体的表面积,∴S表面积=2πR2+2πRH=2π×502+2π×50×150=20000π(毫米2).答:制作每个密封罐所需钢板的面积为20000π毫米2.点评:此题主要考查了由三视图确定几何体和求几何体的面积与体积,难点是找到等量关系里相应的量.16.某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.考点:由三视图判断几何体.专题:数形结合.分析:考查立体图形的三视图,圆柱的全面积的求法及公式的应用.解答:解:(1)根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,故可判断出该几何体为圆柱.(2分)(2)根据圆柱的全面积公式可得,20π×40+2×π×102=1000π(6分).点评:注意立体图形三视图的看法,圆柱的全面积的计算.17.右图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)考点:由三视图判断几何体.专题:几何图形问题;压轴题.分析:从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可以圆柱的半径,长和高,易求体积.解答:解:该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).答:所以立体图形的体积为250π立方单位.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.18.如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm的等腰三角形,求这个几何体的体积.考点:由三视图判断几何体.分析:由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,求出圆锥的高,然后根据圆锥的体积公式求解即可.解答:解:由三视图可知此几何体是圆锥,依题意知母线长l=13,底面半径r=5,所以底面上的高h=,∴圆锥的体积=πr2•h==100π.点评:本题主要考查三视图的知识和圆锥体积的计算,解决此类图的关键是由三视图得到立体图形.19.有一些大小相同的小正方体组成的简单几何体,从不同方向看到的平面图形如图所示,请你猜一猜组成这个几何体的小正方体的个数.考点:由三视图判断几何体.分析:根据三视图的知识,该几何体共有两列三行组成,底面有5个正方体,第二层有最少2个最多4个,第三层有1个,相加即可求解.解答:解:该几何体共有两列三行组成,底面有5个正方体,第二层有最少2个最多4个,第三层有1个,5+2+1=8(个),5+4+1=10(个).答:组成这个几何体的小正方体的个数是8个或9个或10个.点评:本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.20.如图是由几个棱长为1cm的小立方块搭成的几何体从上往下看的平面图形,小立方块中的数字表示该位置上小立方块的个数,求出这个几何体的体积.考点:由三视图判断几何体.分析:先根据正方体的体积公式:V=l3,计算出一个正方体的体积,再数出几何体中小立方块的个数,相乘即可求解.解答:解:(1×1×1)×(3+4+2+1)=1×10=10(cm3)答:这个几何体的体积是10cm3.点评:考查了由三视图判断几何体,关键是熟悉正方体的体积公式,得到几何体中小立方块的个数.。
数学华东师大版七年级上册4.2.2 由视图到立体图形教学课件
三视图的有关计算
例3 某工厂要加工一批密封罐, 设计者给出了密封罐的三视图, 请你按照 三视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位: mm)。
分析: 1. 应先由三视图想象出
密封罐的立体形状 ; 2. 画出物体的 展开图 。
解: 由三视图可知, 密封罐的形状是正六棱柱。 如图, 是它的展开图。 密封罐的高为50mm, 底面正六边形的直径为100mm, 边长为50mm。
华师大版 数学 七年级 上册
能熟练地由三视图想象出物体形状, 进一步提高空 间想象能力.
由三视图想象出立体图形后能进行简单的面积或体 积的计算.
根据三视图确定几何体 例1 如图, 分别根据三视图(1) (2)说出立体图形的名称。
图(1)
图(2)
分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图 想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形。
由展开图可知, 制作一个密封罐所 需钢板的面积为:
6 50 50+2 6 1 50 50sin 60 2
6
502
1+
3 2
27990(mm
2
)
100mm 50mm
50mm
三视图的有关计算
1. 三种图形的转化:
三视图
立体图
展开图
2. 由三视图求立体图形的面积的方法: (1) 先根据给出的三视图确定立体图形, 并确定立体图形的长、宽、高。 (2) 将立体图形展开成一个平面图形 (展开图), 观察它的组成部分。 (3) 最后根据已知数据, 求出展开图的面积。
(1) 从三个方向看立体图形, 视图都是矩形, 可以想象出: 整体是 图①所示;
长方, 体如
七年级数学上册 第4章 图形的初步认识 4.2 立体图形的视图 4.2.1 由立体图形到视图课件 华东师大版
第4章 图形的初步认识
4.2 立体图形的视图 1.由立体图形到视图
学习指南 知识管理 归类探究 当堂测评 分层作业
教学目标
学习指南
1.理解三视图的概念; 2.会画简单几何体的三视图. 情景问题引入 如图是一个长方体,从上面、正面、左面不同方向对长方体投影,得到不同 的图形,它们都有什么特点呢?
知识管理
A
B
C
D
3.6月15日是“父亲节”,小明送给父亲一个礼盒(如图所示),该礼盒的
主视图是( A )
A
B
C
D
4.[2017·酒泉]某种零件模型可以看成如图所示的几何体(空心圆柱),该几
何体的俯视图是( D )
A
B
C
D
6.[2016·广州]如图所示几何体的左视图是( A )
A
B
C
七年级数学上册4.2立体图形的视图4.2.1由立体图形到试图跟踪训练(含解析)华东师大版(new)
第四章图形的初步认识4.2。
1由立体图形到试图一.选择题(共8小题)1.下面的几何体中,主视图为三角形的是()A.B.C.D.2.下列几何体中,同一个几何体的主视图与俯视图不同的是()A.圆柱 B.正方体 C.圆锥 D.球3.如图是由四个相同的小正方体组成的立体图形,它的俯视图为( )A.B.C.D.4.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是( )A.B.C.D.5.如图所示物体的俯视图是( )A.B.C.D.6.将两个长方体如图放置,则所构成的几何体的左视图可能是( )A. B. C D.7.如图所示的几何体的主视图是()A.B.C.D.8.如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是( )A.B.C.D.二.填空题(共6小题)9.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是_________ .10.如图是五个相同的正方体堆成的几何体,则它的俯视图是_________ (填序号①,②等)11.请写出一个主视图、俯视图有可能完全一样的几何体_________ .12.如图,下列水平放置的几何体中,俯视图是正方形的有_________ 个.13.如图放置的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的主视图是下列四个图形中的_________ (只填序号)14.如图,是由小立方块搭成几何体的俯视图,上面的数字表示,该位置小立方块的个数画出主视图: _________ ,左视图:_________ .三.解答题(共8小题)15.画如图所示几何体的三视图(1)主视图(2)左视图(3)俯视图.16.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是_________ (立方单位),表面积是_________ (平方单位)(2)画出该几何体的主视图和左视图.17.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数碟子的高度(单位:cm)1 22 2+1。
华师大版七年级上册数学《4-2-2 由视图到立体图形》课件
范例 请根据下图(1)、(2)、(3)的立体图形的三视图说 出立体图形的名称.
解:(1)是三棱锥;(2)是长方体;(3)是圆柱.
仿例 如下图是某几何体的三视图,该几何体是( B )
A.圆柱 C.正三棱柱
B.圆锥 D.正三棱锥
变例
一个几何体的三视图如图,则该几何体是( D )
A
B
C
D
知识模块二 由视图猜测物体的数量
第4章 图形的初步认识 4.2立体图形的视图
4.2.2 由视图到立体图形
学习目标
【学习目标】 1.让学生学会根据视图想象出它们的空间形状; 2.通过动手操作来验证自己的猜想,并在多次实践 中找出规律; 3.进一步培养学生的空间想象能力,激发学习兴 趣. 【学习重点】 由三视图确定几何体. 【学习难点】 由两个视图确定几何体.
范例 一个几何体由多个完全相同的小正方体组成,
它的三视图如图(1)所示,那么组成这个物体的小正
方体的个数为( D )
A.2个
B.3个
C.4个
D.5个
图(1)仿例 一张桌子上摆 Nhomakorabea着若干个大小、形状完全相 同的碟子,现从三个方向看,其三视图如图(2)所 示,则这张桌子上碟子的总数为( B ) A.11 B.12 C.13 D.14
解:摆这样的几何体,最多需要17块小正方体; 最少需要11块小正方体.
展示提升
知识模块一 由视图到立体图形 知识模块二 由视图猜测物体的数量
检测反馈
【当堂检测】见所赠光盘和学生用书; 【课后检测】见学生用书.
学生课堂行为规范的内容是: 按时上课,不得无故缺课、迟到、早 退。 遵守课堂礼仪,与老师问候。 上课时衣着要整洁,不得穿无袖背心 、吊带 上衣、 超短裙 、拖鞋 等进入 教室。 尊敬老师,服从任课老师管理。 不做与课堂教学无关的事,保持课堂 良好纪 律秩序 。 听课时有问题,应先举手,经教师同 意后, 起立提 问。 上课期间离开教室须经老师允许后方 可离开 。 上课必须按座位表就坐。 要爱护公共财物,不得在课桌、门窗 、墙壁 上涂写 、刻划 。 要注意保持教室环境卫生。 离开教室要整理好桌椅,并协助老师 关好门 窗、关 闭电源 。
2022-2022七年级数学上册 4.2.2 由视图到立体图形课件 (新版)华东师大版
•
11、人总是珍惜为得到。2022/2/172022/2/172022/2/17Feb-2217-Feb-22
•
12、人乱于心,不宽余请。2022/2/172022/2/172022/2/17Thursday, February 17, 2022
•
13、生气是拿别人做错的事来惩罚自 己。2022/2/172022/2/172022/2/172022/2/172/17/2022
主 视 图
左 视 图
俯
视
解:共8个.
图
4.由四个小长方形搭成的物体,它的俯视图如图所 示.问这个物体有几种搭法?试分别画出来.
(俯视图)
5. 用小方块搭成一个几何体,使它的主视图和 俯视图如图所示,它最少需要多少个小立方块, 最多需要多少个小立方块?
主视图
俯视图
最少十个
俯视图 主视图
最多十三个
4.你能根据下面的三视图画出它的原立 体图形吗?
主视图
俯视图
左视图
原图形
要点归纳
由视图到立体图形: 只根据某个视图是无法确定其空间形状的,必
须将所有视图结合来分析.方法如下:
1.把所有视图联系起来粗 略地 看一看
2.找出各个视图间的关系 3.看出整个立体图形的大致形 状 4.进一步分析
当堂训练
1.下面是一个物体的三视图,试
图
图
俯 视 图
2.指出下面三个平面图形是下面这个物体
的三视图中的那个视图.
(主视图 )
(俯视图)
(左视图 )
3、一个仓库里堆积着正方体的货箱若干,要搬运 这些箱子很困难,可仓管员要落实箱子的数量, 就想出 一个办法:将这堆货物的三视图画出来。 你能根据三视图帮他清点一下箱子的数量吗?
初二七年级数学上册4.2.2 由视图到立体图形ppt课件
5.一个几何体的主视图和俯视图如图所示,那么它的左视图可能是( B )
6.(2017·河南)某几何体的左视图如图所示,则该几何体不可能是( )D
7.(2016·百色)某几何体的三视图如图所示,则组成该几何体的小正方体 的个数是___5_.
解:2×4=8
16.(阿凡题 1071751)学校食堂厨房的桌子上整齐地摆放着若干相同规格 的碟子,碟子的个数与碟子的高度的关系如下表:
碟子的个数
碟子的高度(单位:cm)
1
2
2
2+1.5
3
2+3
4
2+4.5
…
…
(1)当桌子上放有x个碟子时,请写出此时碟子的高度(用含x的式子表示); (2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠 成一摞,求叠成一摞后的高度. 解:(1)2+1.5(x-1)=1.5x+0.5 (2)由三视图可知共有12个碟子, 叠成一摞的高度=1.5×12+0.5=18.5(cm)
长方体、圆柱 (写出符合题意的两个立体图形即可).
13.一个立体图形由四个相同的小立方体组成.图①是分别从正面看和从 左面看这个立体图形得到的平面图形,
那么原立体图形可能是图②中的 ①②④ (把图②中正确的立体图形的序号
都填在横线上).
14.根据三视图,画出该几何体的实物图.
15.一个长方体的左视图、俯视图及相关数据如图所示,求它的主视图 的面积.
1.(2017·随州)如图为某个几何体的三视图,则该几何体是( C ) A.圆锥 B.长方体 C.圆柱 D.三棱柱
2.(2017·盐城)如图是某几何体的三视图,该几何体是( D ) A.球 B.三棱柱 C.圆柱 D.圆锥
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2.2由视图到立体图形一.选择题(共8小题)1.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个2.若图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是()A. 6 B.8 C.10 D.123.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.圆柱C.圆锥D.球4.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥5.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图()A.B.C.D.6.某几何体的三视图如图所示,这个几何体是()A.圆柱B.三棱柱 C 长方体D.圆锥7.如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是()A.B. C.D.8.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱二.填空题(共6小题)9.一个几何体,是由许多规格相同的小正方体堆积而成的,其正视图、左视图如图所示,要摆成这样的图形,最少需用_________ 个正方体.10.如图是一个几何体的三个视图,则这个几何体的表面积为_________ .(结果保留π)11.一个由大小相同的正方体构成的几何体的三视图如图,这个几何体是由_________ 个正方体组成的.12如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_________ .13.如图,一个几何体是由大小相同的小正方体焊接而成,其主视图、俯视图、左视图都是“田”字形,则焊接该几何体所需小正方体的个数最少为_________ .14.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是_________ .三.解答题(共6小题)15.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图,请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:毫米)16.某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.17.右图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)18.如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm的等腰三角形,求这个几何体的体积.19.有一些大小相同的小正方体组成的简单几何体,从不同方向看到的平面图形如图所示,请你猜一猜组成这个几何体的小正方体的个数.20.如图是由几个棱长为1cm的小立方块搭成的几何体从上往下看的平面图形,小立方块中的数字表示该位置上小立方块的个数,求出这个几何体的体积.第四章图形的初步认识4.2.2由视图到立体图形参考答案与试题解析一.选择题(共8小题)1.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个考点:由三视图判断几何体.分析:根据给出的几何体,通过动手操作,观察可得答案为4,也可以根据画三视图的方法,发挥空间想象能力,直接想象出每个位置正方体的数目,再加上来.解答:解:由三视图可得,需要的小正方体的数目:1+2+1=4.如图:故选:A.点评:本题考查了几何体的三视图及空间想象能力.2.若图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是()A. 6 B.8 C.10 D.12考点:由三视图判断几何体.专题:几何图形问题.分析:根据主视图以及俯视图,可得出共有2行,根据俯视图可得出该几何体由2列组成,故可得出小正方体最少块数.解答:解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选A.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.3.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.圆柱C.圆锥D.球考点:由三视图判断几何体.分析:根据三视图确定该几何体是圆柱体.解答:解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选:B.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.4.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选:D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图()A.B.C.D.考点:由三视图判断几何体.分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出左边的一列后面一行有两个,俯视图中右边的一列有两排,综合起来可得解.解答:解:从主视图可以看出左边的一列有两个,右边的两列只有一个;从左视图可以看出左边的一列后面一行有两个,右边的一列只有一个;从俯视图可以看出右边的一列有两排,右边的两列只有一排(第二排).故选:A.点评:本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.6.某几何体的三视图如图所示,这个几何体是()A.圆柱B.三棱柱C.长方体D.圆锥考点:由三视图判断几何体.专题:常规题型.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为长方形可得为长方体.故选:C.点评:本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间的想象能力.7.如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是()A.B. C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:先细心观察原立体图形中正方体的位置关系,从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列,结合四个选项选出答案.解答:解:从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列.故选:B.点评:本题考查了由三视图判断几何体及简单组合体的三视图,重点考查几何体的三视图及空间想象能力.8.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.解答:解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故选:A.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.二.填空题(共6小题)9.一个几何体,是由许多规格相同的小正方体堆积而成的,其正视图、左视图如图所示,要摆成这样的图形,最少需用7 个正方体.考点:由三视图判断几何体.分析:根据主视图、左视图是分别从物体正面、左面看,所得到的图形,结合本题进行分析即可.解答:解:根据三视图可得:第二层有2个小正方块,根据主视图和左视图可得第一层最少有5个正方体,故最少需用7块正方体;故答案为7.点评:此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“主视图疯狂盖,左视图拆违章”就更容易得到答案.10.如图是一个几何体的三个视图,则这个几何体的表面积为24π.(结果保留π)考点:由三视图判断几何体;几何体的表面积.分析:根据三视图正视图以及左视图都为矩形,底面是圆形,则可想象出这是一个圆柱体.表面积=侧面积+底面积×2.解答:解:∵圆柱的直径为4,高为4,∴表面积=2π×(×4)×4+π×(×4)2×2=24π.故答案为:24π.点评:考查了由三视图判断几何体和几何体的表面积,本题难点是确定几何体的形状,关键是找到等量关系里相应的量.11.一个由大小相同的正方体构成的几何体的三视图如图,这个几何体是由 4 个正方体组成的.考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.解答:解:综合三视图,我们可得出,这个几何体的底层应该有3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个,故答案为:4.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.12.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是72 .考点:由三视图判断几何体.专题:压轴题.分析:根据主视图与左视图得出长方体的边长,再利用图形的体积得出它的高,进而得出表面积.解答:解:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3,∴它的表面积是:2×3×2+2×6×2+3×6×2=72.故答案为:72.点评:此题主要考查了利用三视图判断几何体的边长,得出图形的高是解题关键.13.如图,一个几何体是由大小相同的小正方体焊接而成,其主视图、俯视图、左视图都是“田”字形,则焊接该几何体所需小正方体的个数最少为4个.考点:由三视图判断几何体.分析:主视图、俯视图、左视图是分别从物体正面、上面、左面看所得到的图形.解答:解:利用一个几何体是由大小相同的小正方体焊接而成,综合主视图、俯视图、左视图,底层最少有2个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是4个.故答案为:4个.点评:本题考查由三视图判断几何体,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是4或5或6或7 .考点:由三视图判断几何体.分析:易得这个几何体共有2层,由左视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共三列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.三.解答题(共6小题)15.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图,请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:毫米)考点:由三视图判断几何体;圆柱的计算.分析:首先利用几何体的三视图确定该几何体的形状,然后计算其表面积.解答:解:由三视图可知茶叶罐的形状为圆柱体,并且茶叶罐的底面直径2R为100毫米,高H为150毫米,∵每个密封罐所需钢板的面积即为该圆柱体的表面积,∴S表面积=2πR2+2πRH=2π×502+2π×50×150=20000π(毫米2).答:制作每个密封罐所需钢板的面积为20000π毫米2.点评:此题主要考查了由三视图确定几何体和求几何体的面积与体积,难点是找到等量关系里相应的量.16.某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.考点:由三视图判断几何体.专题:数形结合.分析:考查立体图形的三视图,圆柱的全面积的求法及公式的应用.解答:解:(1)根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,故可判断出该几何体为圆柱.(2分)(2)根据圆柱的全面积公式可得,20π×40+2×π×102=1000π(6分).点评:注意立体图形三视图的看法,圆柱的全面积的计算.17.右图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)考点:由三视图判断几何体.专题:几何图形问题;压轴题.分析:从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可以圆柱的半径,长和高,易求体积.解答:解:该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).答:所以立体图形的体积为250π立方单位.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.18.如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm的等腰三角形,求这个几何体的体积.考点:由三视图判断几何体.分析:由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,求出圆锥的高,然后根据圆锥的体积公式求解即可.解答:解:由三视图可知此几何体是圆锥,依题意知母线长l=13,底面半径r=5,所以底面上的高h=,∴圆锥的体积=πr2•h==100π.点评:本题主要考查三视图的知识和圆锥体积的计算,解决此类图的关键是由三视图得到立体图形.19.有一些大小相同的小正方体组成的简单几何体,从不同方向看到的平面图形如图所示,请你猜一猜组成这个几何体的小正方体的个数.考点:由三视图判断几何体.分析:根据三视图的知识,该几何体共有两列三行组成,底面有5个正方体,第二层有最少2个最多4个,第三层有1个,相加即可求解.解答:解:该几何体共有两列三行组成,底面有5个正方体,第二层有最少2个最多4个,第三层有1个,5+2+1=8(个),5+4+1=10(个).答:组成这个几何体的小正方体的个数是8个或9个或10个.点评:本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.20.如图是由几个棱长为1cm的小立方块搭成的几何体从上往下看的平面图形,小立方块中的数字表示该位置上小立方块的个数,求出这个几何体的体积.考点:由三视图判断几何体.分析:先根据正方体的体积公式:V=l3,计算出一个正方体的体积,再数出几何体中小立方块的个数,相乘即可求解.解答:解:(1×1×1)×(3+4+2+1)=1×10=10(cm3)答:这个几何体的体积是10cm3.点评:考查了由三视图判断几何体,关键是熟悉正方体的体积公式,得到几何体中小立方块的个数.。