高考数学复习必备试题1
高考数学一轮复习 考点01 集合必刷题 理(含解析)-人教版高三全册数学试题
考点01 集合1.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=( )A.{0} B.{1}C.{0,1} D.{0,-1}【答案】C【解析】因为B={y|y=x2,x∈A}={0,1},所以A∩B={0,1}.2.设集合,集合,则()A. B. C. D.【答案】B【解析】集合=,集合,则。
故答案为:B.3.已知全集为整数集Z.若集合A={x|y=1-x,x∈Z},B={x|x2+2x>0,x∈Z},则A∩(∁Z B)=( ) A.{-2} B.{-1}C.[-2,0] D.{-2,-1,0}【答案】D【解析】由题意可知,集合A={x|x≤1,x∈Z},B={x|x>0或x<-2,x∈Z},故A∩(∁Z B)={-2,-1,0}.故选D.4.已知集合A={x|0<x≤6},B={x∈N|2x<33},则集合A∩B中的元素个数为( )A.6 B.5C.4 D.3【答案】B【解析】集合A={x|0<x≤6},B={x∈N|2x<33}={0,1,2,3,4,5},∴A∩B={1,2,3,4,5},∴A∩B中元素个数为5.故选B.5.已知集合,,则()A. B. C. D.【答案】A【解析】因为集合,,所以A∩B={0,1}.故答案为:A.6.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )A .M =NB .M ⊆NC .M ∩N =∅D .N ⊆M【答案】D【解析】∵M ={x ||x |≤1}={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M .故选D. 7.已知集合 ,,则( )A .B .C .D .【答案】C 【解析】由题意得,,.故选C.8.已知集合A ={1,a 2},B ={2a ,-1},若A ∩B ={4},则实数a 等于( ) A .-2 B .0或-2 C .0或2 D .2【答案】D【解析】因为A ∩B ={4},所以4∈A 且4∈B ,故⎩⎪⎨⎪⎧a 2=4,2a =4,a =2.故选D.9.已知集合,,则集合( )A .B .C .D .【答案】D 【解析】已知集合,,∴A∩B 中的元素满足:解得: 则A∩B=. 故选D.10.设全集U =R ,已知集合A ={x ||x |≤1},B ={x |log 2x ≤1},则(∁U A )∩B =( ) A .(0,1] B .[-1,1] C .(1,2]D .(-∞,-1]∪[1,2]【答案】C【解析】因为A={x||x|≤1}={x|-1≤x≤1},B={x|log2x≤1}={x|0<x≤2},所以∁U A={x|x>1或x<-1},则(∁U A)∩B=(1,2].11.已知全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0},则图中阴影部分表示的集合为( )A.{0,1,2} B.{1,2}C.{3,4} D.{0,3,4}【答案】A【解析】∵全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0}={x|x>2或x<0},∴∁U B={x|0≤x≤2},∴图中阴影部分表示的集合为A∩(∁U B)={0,1,2}.故选A.12.设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A.M∩N=M B.M∪(∁R N)=MC.N∪(∁R M)=R D.M∩N=N【答案】D【解析】由题意可得N=(0,2),M=(-∞,4),N⊆M.故选D.13.设集合A={x|y=lg(-x2+x+2)},B={x|x-a>0}.若A⊆B,则实数a的取值X围是( ) A.(-∞,-1) B.(-∞,-1]C.(-∞,-2) D.(-∞,-2]【答案】B【解析】集合A={x|y=lg(-x2+x+2)}={x|-1<x<2},B={x|x-a>0}={x|x>a},因为A⊆B,所以a≤-1.14.已知,则()A. B.C. D.【答案】C【解析】由题可得则故选C.15.已知集合A={x|x<1},B={x|x2-x-6<0},则( )A.A∩B={x|x<1}B.A∪B=RC.A∪B={x|x<2}D.A∩B={x|-2<x<1}【答案】D【解析】集合A={x|x<1},B=x{x|x2-x-6<0}={x|-2<x<3},则A∩B={x|-2<x<1},A∪B={x|x <3}.故选D.16.设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值X围是( ) A.(-∞,1) B.(-∞,1]C.(1,+∞)D.[1,+∞)【答案】A【解析】∵U=R,集合A={x|x≥1}=[1,+∞),∴∁U A=(-∞,1),由B={x|x>a}=(a,+∞)以及(∁U A)∪B=R可知实数a的取值X围是(-∞,1).故选A.17.已知集合,集合,则A. B. C. D.【答案】A【解析】由题得A={x|-2<x<3},所以={x|x≤-2或x≥3},所以=.故答案为:A18.已知集合,,则∁A. B. C. D.【答案】A【解析】由,即,解得或,即,∁,解得,即,则∁,故选A.1.A ,B 为两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },若A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A -B =( ) A .{2} B .{1,2} C .{-2,1,2} D .{-2,-1,0}【答案】C【解析】∵A ,B 为两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0}={x |-2<x <1},∴A -B ={-2,1,2}.故选C.20.对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={y |y ≥0},B ={x |-3≤x ≤3},则A *B =________. 【答案】[-3,0)∪(3,+∞)【解析】由题意知A -B ={x |x >3},B -A ={x |-3≤x <0},所以A *B =[-3,0)∪(3,+∞). 21.设集合I ={x |-3<x <3,x ∈Z },A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________. 【答案】{1}【解析】∵集合I ={x |-3<x <3,x ∈Z }={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},∴∁I B ={0,1},则A ∩(∁I B )={1}.22.(2018某某红色七校联考)集合A ={x |x 2+x -6≤0},B ={y |y =x ,0≤x ≤4},则A ∩(∁R B )=________. 【答案】[-3,0)【解析】∵A ={x |x 2+x -6≤0}={x |-3≤x ≤2},B ={y |y =x ,0≤x ≤4}={y |0≤y ≤2},∴∁R B ={y |y <0或y >2},∴A ∩(∁R B )=[-3,0).23.已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =12x 2-x +52,0≤x ≤3.若A ∩B =∅,则实数a 的取值X 围是________. 【答案】(-∞,-3]∪[3,2]【解析】由题意可得A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.当A ∩B =∅时,⎩⎪⎨⎪⎧a 2+1≥4,a ≤2,∴3≤a ≤2或a ≤-3,∴a 的取值X 围是(-∞,-3]∪[3,2]. 24.已知集合,,则_________.【答案】【解析】因为,,所以,故{0,7},故填. 25.已知集合,.(1)若A∩B=,某某数m的值;(2)若,某某数m的取值X围.【答案】(1)2;(2)【解析】由已知得:,.(1)因为,所以,故,所以.(2).因为,或,所以或.所以的取值X围为.。
高考数学复习双基统一测试试题及参考答案
高考数学复习双基统一测试试题本试卷分第I 卷(选择题)和II 卷(非选择题)两部分,满分150分,考试时间120分钟。
参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k次的概率P n (k )=kn k k n P P C --)1(球的体积公式:334R V π=(其中R 表示球的半径) 球的表面积公式S=4πR 2(其中R 表示球的半径)第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)下列四个选项中,只有一个是符合题目要求的。
.1.已知全集},,{},,{},,,,,{e b a B c b A e d c b a U ===集合,则( )∩B= ( )A .{e a ,}B .},,{d c bC .},,{e c aD .}{c2.过点P (-2,4)作圆25)1()2(:22=-+-y x C 的切线l ,直线03:=-y ax m 与直线l 平行,则a 的值是( )A .2B .58 C .512 D .43.若关于x 的不等式042≥--a x x ,对任意]1,0(∈x 恒成立,则a 的取值范围是( )A .4-≥aB .3-≥aC .03≤<-aD .3-≤a4.已知向量a =(λ,-2),b =(-3,5),且a 与b 的夹角为钝角,则λ的取值范围是( ) A .),56()56,310(+∞⋃- B .)310(∞+-C .)310,(--∞D .]310,(--∞5.如图,都不是正四面体的表面展开图的是( )A .①⑥B .④⑤C .②③D .④⑥6.已知a >b >c >0,t 是方程02=++c bx ax 的实根,则t 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)7.正方体的八个顶点中,有四个顶点恰好是正四面体的顶点,则这个正方体的表面积与正四面体的表面积之比是 ( )A .2:3B .1:2C .1:3D .3:2 8.要得到函数)42cos(π-=xy 的图象,只需将y=sin2x的图象( )A .向左平移2π B .向右平移2π C .向左平移4πD .向右平移4π 9.已知点P 在曲线323+-=x x y 上移动,若经过点P 的曲线的切线的倾斜角为α,则a 的取值范围是( )A .),43[)2,0[πππ⋃ B .),65[)2,0[πππ⋃C .),43[ππD .]43,0[π10.数列1,(1+2),(1+2+22),…,(1+2+…+2n -1),…的前n 项和等于 ( )A .2nB .2n -nC .2n+1 -n -2D .n·2n11.(理科答)甲、乙两名篮球队员轮流投篮至某人投中为止。
高考数学模拟复习试卷试题模拟卷14613
高考模拟复习试卷试题模拟卷【考情解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【重点知识梳理】 1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a2+b2≥2ab(a ,b ∈R). (2)b a +ab ≥2(a ,b 同号). (3)ab≤⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). (4)a2+b22≥⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). 3.算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x>0,y>0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p.(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p24.(简记:和定积最大) 【高频考点突破】考点一 利用基本不等式证明简单不等式 【例1】 已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8. 【规律方法】利用基本不等式证明新的不等式的基本思路是:利用基本不等式对所证明的不等式中的某些部分放大或者缩小,在含有三个字母的不等式证明中要注意利用对称性.【变式探究】 已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c ≥9.考点二 利用基本不等式求最值 【例2】 解答下列问题:(1)已知a >0,b >0,且4a +b =1,求ab 的最大值; (2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值; (3)已知x <54,求f(x)=4x -2+14x -5的最大值;(4)已知函数f(x)=4x +ax (x >0,a >0)在x =3时取得最小值,求a 的值. 【规律方法】(1)利用基本不等式解决条件最值的关键是构造和为定值或乘积为定值,主要有两种思路:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法等.【变式探究】(1)设a >0,若关于x 的不等式x +ax ≥4在x ∈(0,+∞)上恒成立,则a 的最小值为( ) A .4 B .2 C .16 D .1(2)设0<x <52,则函数y =4x(5-2x)的最大值为______.(3)设x >-1,则函数y =(x +5)(x +2)x +1的最小值为________.考点三 基本不等式的实际应用【例3】运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 【规律方法】有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,一定要注意变量的实际意义及其取值范围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】 首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y =12x2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【真题感悟】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2 B 、2 C 、22 D 、42b a =ab 2.【高考重庆,文14】设,0,5a b a b ,则1++3a b 的最大值为________.3.【高考福建,文5】若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .54.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c 的最小值为________.5.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________. 6.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________.8.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.109.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.9410.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为() A .9 B.92 C .3 D.3 22 【押题专练】1.设非零实数a ,b ,则“a2+b2≥2ab”是“a b +ba ≥2”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 2.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )A.72B .4C.92D .5 3.若正数x ,y 满足4x2+9y2+3xy =30,则xy 的最大值是( )A.43B.53C .2D.544.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是 ( ) A .3B .4C .5D .65.设x ,y ∈R ,a >1,b >1,若ax =by =3,a +b =23,则1x +1y 的最大值为( )A .2B.32C .1D.126.设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为 ( ) A .0B .1C.94D .37.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 8.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值.9.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x)万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)10.函数f(x)=lgx2-x,若f(a)+f(b)=0,则3a+1b的最小值为________.11.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
(江苏专用)高考数学总复习 专题1.1 集合试题(含解析)-人教版高三全册数学试题
专题1.1 集合【三年高考】1.【2017高考某某1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防X 空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.【2016高考某某1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-【考点】集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确某某高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.2.【2015高考某某1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算3.【2014某某1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂=. 【答案】{1,3}- 【解析】由题意得{1,3}AB =-.4.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。
新高考高一数学期末复习必修一复习试题1-2套
A.最大值-1/4B.最大值1/4C.最小值-1/4D.最小值1/4
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.
13.函数 的定义域是____________。(用集合表示)
14.已知f(x) 偶函数,当x<0时,f(x)= ,则当x>0时,f(x)=__________.
(1)当 时,求函数 的单调递增区间;
(2)求函数 的零点个数.
新高考高一数学必修一复习试题2
一、选择题(每小题5分,共60分)
23.设集合 , ,则 = ( )
A. B. C. D.
24.化简: ()
A. 4B. C. 或4D.
25.下列四组函数,表示同一函数的是()
A. B. ,
C. D.
26.已知函数 ,那么 的值是()
38.函数 的单调增区间是_____.
三、解答题:(共70分)
39.设集合 ,集合
(1)若 ,求实数 的取值范围;
(2)若 ,求实数 的取值范围.
40.已知函数 是奇函数,且 ,
(1)求函数解析式;
(2)判断并证明 在 上的单调性
41.设函数 是定义在 上的减函数,并且满足 , .
(1)求 的值,
(2)如果 ,求 的取值范围。
新高考高一数学必修一复习试题1
一、选择题(每小题5分,共60分)D.
2.若全集 ,则集合 的真子集共有()
A. 个B. 个C. 个D. 个
3.已知集合 ,集合 ,则集合 ( )
A. B. C. D.
4.等式 的解集为()
A. B.
高三文科数学高考复习试题(附答案)
高三文科数学高考复习试题(附答案)考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。
下面是店铺为大家整理的高三文科数学高考复习试题,请认真复习!高三文科数学高考复习试题一、选择题:每小题只有一项是符合题目要求的,将答案填在题后括号内.1.函数y=log2x-2的定义域是( )A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)2.设集合A={(x,y) | },B={(x,y)|y=2x},则A∩B的子集的个数是( )A.1B.2C.3D.43.已知全集I=R,若函数f(x)=x2-3x+2,集合M={x|f(x)≤0},N={x| <0},则M∩∁IN=( )A.[32,2]B.[32,2)C.(32,2]D.(32,2)4.设f(x)是R上的奇函数,当x>0时,f(x)=2x+x,则当x<0时,f(x)=( )A.-(-12)x-xB.-(12)x+xC.-2x-xD.-2x+x5.下列命题①∀x∈R,x2≥x;②∃x∈R,x2≥x;③4≥3;④“x2≠1”的充要条件是“x≠1或x≠-1”.其中正确命题的个数是( )A.0B.1C.2D.36. 已知下图(1)中的图像对应的函数为,则下图(2)中的图像对应的函数在下列给出的四个式子中,只可能是( )7.在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( )A.(1.4,2)B.(1,1.4)C.(1,32)D.(32,2)8.点M(a,b)在函数y=1x的图象上,点N与点M关于y轴对称且在直线x-y+3=0上,则函数f(x)=abx2+(a+b)x-1在区间[-2,2)上( )A.既没有最大值也没有最小值B.最小值为-3,无最大值C.最小值为-3,最大值为9D.最小值为-134,无最大值9.已知函数有零点,则的取值范围是( )A. B. C. D.二、填空题:将正确答案填在题后横线上.10.若全集U=R,A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为_______ _.11.若lga+lgb=0(a≠1),则函数f(x)=ax与g(x)=-bx的图象关于________对称.12.设 ,一元二次方程有正数根的充要条件是 = .13.若函数f(x)在定义域R内可导,f(2+x)=f(2-x),且当x∈(-∞,2)时,(x-2) >0.设a=f(1),,c=f(4),则a,b,c的大小为.14、已知。
2021年高考(新课标)数学(理)大一轮复习试题:阶段示范性金考卷1
2021年高考(新课标)数学(理)大一轮复习试题:阶段示范性金考卷1一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. [xx·安徽合肥模拟]已知集合A={x∈R||x|≥2},B={x∈R|x2-x-2<0}且R为实数集,则下列结论正确的是( )A. A∪B=RB. A∩B≠∅C. A⊆(∁R B)D. A⊇(∁R B)解析:集合A={x∈R||x|≥2}={x∈R|x≥2或x≤-2},B={x∈R|x2-x-2<0}={x∈R|-1<x<2},所以A∪B={x∈R|x>-1或x≤-2},所以A错误;A∩B=∅,所以B错误;∁R B={x∈R|x≥2或x≤-1},所以A⊆(∁RB),所以C正确,D错误.故选C.答案:C2. [xx·辽宁东北育才学校模拟]若命题p:∃x0∈[-3,3],x20+2x0+1≤0,则对命题p的否定是( )A. ∀x∈[-3,3],x2+2x+1>0B. ∀x∈(-∞,-3)∪(3,+∞),x2+2x+1>0C. ∃x0∈(-∞,-3)∪(3,+∞),x20+2x0+1≤0D. ∃x0∈[-3,3],x20+2x0+1>0解析:把特称命题改为全称命题,否定结论.故选A.答案:A3. 下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A. y=x3B. y=|x|+1C. y=-x2+1D. y=2-|x|解析:本题可采用排除法.是偶函数则排除A,在(0,+∞)上单调递增则排除C,D.故选B.答案:B4. [xx·湖北高考]设U为全集.A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的()A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件解析:由韦恩图易知充分性成立.反之,A∩B=∅时,不妨取C =∁U B,此时A⊆C.必要性成立,故选C.答案:C5. 设f(x),g(x)在[a,b]上可导,且f′(x)>g′(x),则当a<x<b时,有()A. f(x)>g(x)B. f(x)<g(x)C. f(x)+g(a)>g(x)+f(a)D. f(x)+g(b)>g(x)+f(b)解析:∵f′(x)-g′(x)>0,∴(f(x)-g(x))′>0,∴f(x)-g(x)在[a,b]上是增函数,∴当a<x<b时f(x)-g(x)>f(a)-g(a),∴f(x)+g(a)>g(x)+f(a).答案:C6. 已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(xx)等于()A. -2B. 2C. -98D. 98解析:∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(xx)=f(503×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(xx)=-2.答案:A7. [xx·辽宁铁岭模拟]若a=20.5,b=logπ3,c=log222,则有()A. a>b>cB. b>a>cC. c>a>bD. b>c>a解析:∵a=20.5>20=1,b=logπ3∈(0,1),c=log222<log21=0,∴a>b>c.故选A.答案:A8. [xx·广东七校联考]已知函数f (x )=(15)x-log 3x ,若实数x 0是方程f (x )=0的解,且x 0<x 1,则f (x 1)的值( )A. 恒为负B. 等于零C. 恒为正D. 不大于零解析:由于函数f (x )=(15)x -log 3x 在定义域内是减函数,于是,若f (x 0)=0,当x 0<x 1时,一定有f (x 1)<0,故选A.答案:A9. [xx·山东莱芜模拟]已知函数f (x )的定义域为[3,6],则函数y =f (2x )log 12(2-x )的定义域为( )A. ⎣⎢⎡⎭⎪⎫32,+∞B. ⎣⎢⎡⎭⎪⎫32,2 C. ⎝ ⎛⎭⎪⎫32,+∞ D. ⎣⎢⎡⎭⎪⎫12,2 解析:要使函数y =f (2x )log 12(2-x )有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6,log 12(2-x )>0⇒⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1⇒32≤x <2.故选B. 答案:B10. 函数f (x )=x +2cos x 在⎣⎢⎡⎦⎥⎤0,π2上取得最大值时,x =( )A. 0B. π6C. π3D. π2解析:令f ′(x )=1-2sin x =0,得x =π6,所以f ⎝ ⎛⎭⎪⎫π6=π6+ 3.又f (0)=2,f ⎝ ⎛⎭⎪⎫π2=π2,所以f ⎝ ⎛⎭⎪⎫π6为最大值,故选B. 答案:B11. 某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2(x >0),生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A. 6千台B. 7千台C. 8千台D. 9千台解析:设利润为y ,则y =y 1-y 2=17x 2-(2x 3-x 2)=-2x 3+18x 2(x >0),∴y ′=-6x 2+36x =-6x (x -6).令y ′=0,解得x =0或x =6,经检验知x =6既是函数的极大值点又是函数的最大值点.答案:A12. [xx·金版创新题]函数f (x )=2x 2ex 的图象大致是( )解析:f ′(x )=4x e x -2x 2e x (e x )2=4x -2x 2e x =2x (2-x )e x ,令f ′(x )=0,得x =0或x =2,所以f (x )=2x 2e x 在(-∞,0],[2,+∞)上单调递减,在[0,2]上单调递增.故选A.答案:A第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13. 如图所示,函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k =________.解析:由⎩⎨⎧y =x 2,y =kx ,得两曲线交点为(0,0),(k ,k 2),则S =⎠⎛0k (kx-x 2)d x =92,即k 3=27,∴k =3.答案:314. [xx·浙江嘉兴模拟]已知函数f(x)=⎩⎪⎨⎪⎧x -2,x ≥2,-2,x<2,则不等式x·f(x -1)<10的解集是________.解析:当x -1≥2,即x ≥3时,f(x -1)=(x -1)-2=x -3,代入得x(x -3)<10,得-2<x<5,所以3≤x<5;当x -1<2,即x<3时,f(x -1)=-2,代入得-2x<10,得x>-5,所以-5<x<3.综上不等式的解集为(-5,5). 答案:(-5,5)15. [xx·郑州一中模考]若函数f(x)=mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是________.解析:f ′(x)=2mx +1x -2,函数f(x)在其定义域(0,+∞)内为增函数的充要条件是2mx +1x -2≥0在(0,+∞)内恒成立,即2m ≥-1x 2+2x 在(0,+∞)内恒成立,由于函数φ(x)=-1x 2+2x =-(1x -1)2+1≤1,故只要2m ≥1即可,即m ≥12.答案:[12,+∞)16. [xx·湖南长沙模拟]已知函数f(x)是定义在R 上的偶函数,当x ≥0时,f (x )=e x -ax ,若函数f (x )在R 上有且仅有4个零点,则a 的取值范围是________.解析:本题考查函数的求导与零点的判断. 函数f (x )是定义在R 上的偶函数,所以研究函数零点的个数,只考虑x >0的情况,作出函数y =e x ,y =ax 图象,当两函数有两交点时,满足题意,即求出过原点与函数y =e x相切的直线斜率,y ′=e x,设切点坐标为(x 0,e x 0),e x 0x 0=e x 0⇒x 0=1,切线的斜率为k =e ,故当a >e 时有四个零点.答案:(e ,+∞)三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知R 为全集,集合A ={x |log 12(3-x )≥-2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪5x +2≥1,求(∁R A )∩B . 解:由已知log 12(3-x )≥log 124,因为y =log 12x 为减函数,则有⎩⎨⎧3-x ≤4,3-x >0,解得-1≤x <3,所以A ={x |-1≤x <3}.于是∁R A ={x |x <-1或x ≥3}.由5x +2≥1,解得-2<x ≤3,所以B ={x |-2<x ≤3}. 故(∁R A )∩B ={x |-2<x <-1或x =3}.18.(本小题满分12分)已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)由f (0)=0可知b =1, 从而有f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得a =2.经检验符合题意,∴a =2,b =1. (2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1.易知f (x )在(-∞,+∞)上为减函数.又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+k ,即对一切t ∈R 有3t 2-2t -k >0.从而判别式Δ=4+12k <0,解得k <-13.所以k 的取值范围是(-∞,-13).19.[xx·成都质量检测](本小题满分12分)设有两个命题: 命题p :函数f (x )=-x 2+ax +1在[1,+∞)上是单调递减函数;命题q :已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线恰好与直线2x +y =1平行,且f (x )在[a ,a +1]上单调递减,若命题p 或q 为真,p 且q 为假,求实数a 的取值范围.解:由f (x )=-x 2+ax +1在[1,+∞)上是单调递减函数知a2≤1,即a ≤2.由f ′(x )=3mx 2+2nx 得⎩⎨⎧f ′(-1)=3m -2n =-2,f (-1)=-m +n =2,即⎩⎨⎧m =2,n =4.所以f (x )=2x 3+4x 2.令f ′(x )=6x 2+8x ≤0,得x ∈[-43,0]为f (x )的单调递减区间.依题意知[a ,a +1]⊆[-43,0],所以⎩⎪⎨⎪⎧a ≥-43,a +1≤0得-43≤a ≤-1.因为命题p 或q 为真,p 且q 为假,所以p 和q 一真一假. 当p 真q 假时,-1<a ≤2和a <-43;当p 假q 真时,a 不存在.故实数a 的取值范围是(-∞,-43)∪(-1,2]. 20.(本小题满分12分)已知函数f (x )=ax -e x (a >0).(1)若a =12,求函数f (x )在x =1处的切线方程; (2)当1≤a ≤e +1时,求证:f (x )≤x .解:(1)当a =12时,f (x )=12x -e x ,f (1)=12-e , f ′(x )=12-e x ,f ′(1)=12-e , 故函数f (x )在x =1处的切线方程为y -12+e =(12-e)(x -1),即(12-e)x -y =0.(2)证明:令g (a )=x -f (x )=-xa +x +e x ,只需证明g (a )≥0在1≤a ≤e +1时恒成立即可.g (1)=-x +x +e x =e x >0,①g (1+e)=-x ·(1+e)+x +e x =e x -e x .设h (x )=e x -e x ,则h ′(x )=e x -e.当x <1时,h ′(x )<0;当x >1时,h ′(x )>0.∴h (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.∴h (x )≥h (1)=e 1-e·1=0,即g (1+e)≥0.②由①②知,g (a )≥0在1≤a ≤e +1时恒成立.故当1≤a ≤e +1时,f (x )≤x .21.(本小题满分12分)已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.解:(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,所以当a<0时,f(x)的单调递增区间为(-∞,+∞);当a>0时,由f′(x)>0,解得x<-a或x>a,由f′(x)<0,解得-a<x<a,所以当a>0时,f(x)的单调递增区间为(-∞,-a],[a,+∞),f(x)的单调递减区间为[-a,a].(2)因为f(x)在x=-1处取得极值,所以f′(-1)=3×(-1)2-3a=0.所以a=1.所以f(x)=x3-3x-1,f′(x)=3x2-3.由f′(x)=0,解得x1=-1,x2=1.由(1)中f(x)的单调性,可知f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.因为直线y=m与函数y=f(x)的图象有三个不同的交点,结合f(x)的单调性,可知m的取值范围是(-3,1).22.[xx·课标全国卷Ⅰ](本小题满分12分)设函数f (x )=a e x ln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ;(2)证明:f (x )>1.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b x e x -1.由题意可得f (1)=2,f ′(1)=e.故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e. 设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e . 设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h(1)=-1e.综上,当x>0时,g(x)>h(x),即f(x)>1.32527 7F0F 缏28508 6F5C 潜$31272 7A28 稨=E,20218 4EFA 仺29425 72F1 狱21835 554B 啋E24514 5FC2 忂34783 87DF 蟟33806 840E 萎。
高考数学模拟复习试卷试题模拟卷第1课时等差数列的前n项和2 14
高考模拟复习试卷试题模拟卷第1课时等差数列的前n项和课后篇巩固探究A组1.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.63解析:S7==49.答案:C2.设Sn是等差数列{an}的前n项和,S5=10,则a3的值为()A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{an}的通项公式为an=2n37,则Sn取最小值时n的值为()A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{an}的前n项和为Sn(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是()A.S17B.S18C.S15D.S14解析:由a5+a8+a11=3a8是定值,可知a8是定值,所以S15==15a8是定值.答案:C5.若两个等差数列{an},{bn}的前n项和分别为An与Bn,且满足(n∈N+),则的值是()A. B. C. D.解析:因为,所以.答案:C6.已知{an}是等差数列,Sn为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{an}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=2,a1=20,∴S10=10a1+d=0=110.答案:1107.在等差数列{an}中,前n项和为Sn,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶S奇=3015=15,于是d=3.答案:39.若等差数列{an}的公差d<0,且a2·a4=12,a2+a4=8.(1)求数列{an}的首项a1和公差d;(2)求数列{an}的前10项和S10的值.解(1)由题意知(a1+d)(a1+3d)=12,(a1+d)+(a1+3d)=8,且d<0,解得a1=8,d=2.(2)S10=10×a1+d=10.10.导学号33194010已知数列{an}是首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负.求:(1)此等差数列的公差d;(2)设前n项和为Sn,求Sn的最大值;(3)当Sn是正数时,求n的最大值.解(1)∵数列{an}首项为23,前6项均为正,从第7项开始变为负,∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得<d<,又d∈Z,∴d=4.(2)∵d<0,∴{an}是递减数列.又a6>0,a7<0,∴当n=6时,Sn取得最大值,即S6=6×23+×(4)=78.(3)Sn=23n+×(4)>0,整理得n(252n)>0,∴0<n<,又n∈N+,∴n的最大值为12.B组1.设数列{an}为等差数列,公差d=2,Sn为其前n项和,若S10=S11,则a1=()A.18B.20C.22D.24解析:因为S11S10=a11=0,a11=a1+10d=a1+10×(2)=0,所以a1=20.答案:B2.(全国1高考)记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1B.2C.4D.8解析:设首项为a1,公差为d,则a4+a5=a1+3d+a1+4d=24,S6=6a1+d=48,联立可得①×3②,得(2115)d=24,即6d=24,所以d=4.答案:C3.等差数列{an}的前n项和记为Sn,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15解析:∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.答案:C4.导学号33194011若等差数列{an}的通项公式是an=12n,其前n项和为Sn,则数列的前11项和为()A.45B.50C.55D.66解析:∵Sn=,∴=n,∴的前11项和为(1+2+3+…+11)=66.故选D.答案:D5.已知等差数列{an}前9项的和等于前4项的和.若a1=1,ak+a4=0,则k=.解析:设等差数列{an}的公差为d,则an=1+(n1)d,∵S4=S9,∴a5+a6+a7+a8+a9=0.∴a7=0,∴1+6d=0,d=.又a4=1+3×,ak=1+(k1)d,由ak+a4=0,得+1+(k1)d=0,将d=代入,可得k=10.答案:106.已知数列{an}为等差数列,其前n项和为Sn,且1+<0.若Sn存在最大值,则满足Sn>0的n的最大值为.解析:因为Sn有最大值,所以数列{an}单调递减,又<1,所以a10>0,a11<0,且a10+a11<0.所以S19=19×=19a10>0,S20=20×=10(a10+a11)<0,故满足Sn>0的n的最大值为19.答案:197.导学号33194012在等差数列{an}中,a1=60,a17=12,求数列{|an|}的前n项和.解数列{an}的公差d==3,∴an=a1+(n1)d=60+(n1)×3=3n63.由an<0得3n63<0,解得n<21.∴数列{an}的前20项是负数,第20项以后的项都为非负数.设Sn,Sn'分别表示数列{an}和{|an|}的前n项和,当n≤20时,Sn'=Sn==n2+n;当n>20时,Sn'=S20+(SnS20)=Sn2S20=60n+×32×n2n+1260.∴数列{|an|}的前n项和Sn'=8.导学号33194013设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.(1)求数列{an}的通项公式及前n项和公式;(2)设数列{bn}的通项公式为bn=,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.解(1)设等差数列{an}的公差为d,因为a5+a13=34,S3=9,所以整理得解得所以an=1+(n1)×2=2n1,Sn=n×1+×2=n2.(2)由(1)知bn=,所以b1=,b2=,bm=.若b1,b2,bm(m≥3,m∈N)成等差数列,则2b2=b1+bm,所以,即6(1+t)(2m1+t)=(3+t)(2m1+t)+(2m1)(1+t)(3+t),整理得(m3)t2(m+1)t=0,因为t是正整数,所以(m3)t(m+1)=0,m=3时显然不成立,所以t==1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高三数学复习练习题及答案x
停课辅导期间数学专用材料一、集合与简易逻辑1.已知集合A={x| -2≤x ≤7 }, B={x|m+1<x <2m -1},若A ∪B=A ,B≠∅,则函数m 的取值范围是____ A .-3≤m ≤4 B .-3<m <4 C .2<m <4 D . m ≤42.已知集合A={x x 2+(p+2)x+1=0, p ∈R },若A ∩R +=φ。
则实数P 的取值范围为 。
3.命题“若△ABC 有一内角为3π,则△ABC 的三内角成等差数列”的逆命题是( )A .与原命题真值相异B .与原命题的否命题真值相异C .与原命题的逆否命题的真值不同D .与原命题真值相同【参考答案】1. P ∈(-4,+∞) 2. D 3. D二、函数: 研究函数的问题一定要注意定义域优先的原则。
4.判断函数f(x)=(x -1)x x-+11的奇偶性为_______________5.函数y=3472+++kx kx kx 的定义域是一切实数,则实数k 的取值范围是_________6.设函数f(x)=132-+x x ,函数y=g(x)的图象与函数y=f -1(x+1)的图象关于直线y=x 对称,则g (3)=_____________7. 方程log 2(9x -1-5)-log 2(3 x -1-2)-2=0的解集为______________【参考答案】4. k ⎪⎭⎫⎢⎣⎡∈43,0 5. 非奇非偶 6. g ( 3 ) = 27 7. {x x = 2}三、数列8.x=ab 是a 、x 、b 成等比数列的( ) A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 9.已知数列{a n }的前n 项和S n =a n -1(a 0,≠∈a R ),则数列{a n}___________ A.一定是A ²P B.一定是G ²PC.或者是A ²P 或者是G ²PD.既非等差数列又非等比数列10.A ²P {a n }中, a 1=25, S 17=S 9,则该数列的前____项之和最大,其最大值为_____。
全国统一高考数学练习卷及含答案 (1)
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、已知,2||,1||==b a 且)(b a -与a 垂直,则a 与b 的夹角是()A60B30C135D452、若直线l 上的一个点在平面α内,另一个点在平面α外,则直线l 与平面α的位置关系()A.l ⊂αB.l ⊄αC.l ∥αD.以上都不正确3、两个平面若有三个公共点,则这两个平面()A.相交B.重合C.相交或重合D.以上都不对4、等差数列}{n a 的前n 项和n n S n +=22,那么它的通项公式是()A、12-=n a n B、12+=n a n C、14-=n a n D、14+=n a n 5、曲线||x y =与1+=kx y 的交点情况是()A、最多有两个交点B、有两个交点C、仅有一个交点D、没有交点6、已知集合},2|||{},23|{>=<<-=x x P x x M 则=⋂P M ()A、}2223|{<<-<<-x x x 或B、RC、}23|{-<-x x D、}22|{<<x x 7、甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙两人下成和棋的概率为()(A)60%(B)30%(C)10%(D)50%8.如图,在正方形ABCD 中,E、F、G、H 是各边中点,O 是正方形中心,在A、E、B、F、C、G、D、H、O 这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有()A.6个B.7个C.8个D.9个9.如图,正四面体ABCD 中,E 为AB 中点,F 为CD 的中点,则异面直线EF 与SA 所成的角为()A.90°B.60°C.45°D.30°10.如图,正三棱柱111C B A ABC -中,AB=1AA ,则1AC 与平面C C BB 11所成的角的正弦值为()A.22B.515C.46D.3611.抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为()A.0B.23C.2D.312.已知椭圆22221a y x =+(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a 的取值范围是()A.2230<<a B.2230<<a 或282>aC.223<a 或282>a D.282223<<a 二、填空题(共4小题,每小题5分;共计20分)1.方程log2|x|=x2-2的实根的个数为______.2.1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C60分子中形状为五边形的面有______个,形状为六边形的面有______个.3.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.4.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:①f(x)是周期函数;②f(x)关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(2)=f(0),其中正确判断的序号为______(写出所有正确判断的序号).三、大题:(满分70分)1.如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.2.设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.3.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.4.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.5、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC=∠PBC=90º(Ⅰ)证明:AB⊥PC(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积。
高考数学模拟复习试卷试题模拟卷第01节 集合的概念及其基本运算1 3
高考模拟复习试卷试题模拟卷第01节 集合的概念及其基本运算A 基础巩固训练1.【高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )22.【高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =()A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 3.【福州市三中模拟】已知集合,,若,则实数的取值范围是() A .B .C .D .4.【冀州中学高三上学期第一次月考,文1】若集合{}0P y y =≥,P Q Q =,则集合Q 不可能是( )A .∅B .{}2,R y y x x =∈C .{}2,R xy y x =∈D .{}2log ,0y y x x =>5.【重点中学高三上学期第三次月考,理1】已知全集{}1,2,3,4,5,6,7,8,9U = 集合{}1,2,3,4,5,6A = 集合{}3,4,5,6,7,8B =,则集合B C A C U U ⋂为( )A . {}3,4,5,6B . {}1,2,7,8,9C . {}1,2,3,4,5,6,7,8D . {}9 B 能力提升训练1.定义集合A 与B 的运算“*”为:{A B x x A *=∈或x B ∈,但}x A B ∉.设X 是偶数集,{1,2,3,4,5}Y =,则()X Y Y **=( ) A.X B.Y C.XY D.X Y2.下列四个集合中,是空集的是( )A .{}3|3x x +=B .22{|}x y y x x y R =∈(,)﹣,, C .21{|0}x x x x R +=∈﹣, D .2{|}0x x ≤3.设集合{}1,0,2A =-,集合{}2B x x A x A =-∈-∉且,则B =( ) (A ){}1 (B ){}2- (C ){}1,2-- (D ){}1,0-4.【·海安中学模拟】已知集合A ={(x ,y)|x2+y2=1},B ={(x ,y)||x|+|y|=λ},若A ∩B ≠∅,则实数λ的取值范围是________.5.已知集合A ={x|4≤x2≤16},B =[a ,b],若A ⊆B ,则实数a -b 的取值范围是( ) A. (-∞,-2]B.[)+∞-,2 C. (-∞,2]D.[)+∞,2 C 思维拓展训练1.【湖北八校联考文】已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅,则a =( )A .6或2B .6C .2或6D .22.【广东汕头市二模】设非空集合M 同时满足下列两个条件: ①{}1,2,3,,1M n ⊆⋅⋅⋅⋅⋅⋅-;②若a M ∈,则n a M -∈,(2,)n n N +≥∈.则下列结论正确的是( ) A .若n 为奇数,则集合M 的个数为122n - B .若n 为奇数,则集合M 的个数为122n +C .若n 为偶数,则集合M 的个数为22n D .若n 为偶数,则集合M 的个数为221n - 3.设数集M 同时满足条件①M 中不含元素1,0,1-,②若a M ∈,则11aM a+∈-. 则下列结论正确的是 ( )(A )集合M 中至多有2个元素; (B )集合M 中至多有3个元素; (C )集合M 中有且仅有4个元素; (D )集合M 中有无穷多个元素. 4.【其中总动员】设集合(){}(){},|||||1,,()()0A x y x y B x y y x y x =+≤=-+≤,M AB =,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .15[,]22B .25[,]22 C .110[,]22 D .210[,]225.已知集合()(){},M x y y f x ==,若对于任意()11,x y M∈,存在()22,x y M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①()1,M x y y x ⎧⎫==⎨⎬⎩⎭; ②(){},sin 1M x y y x ==+; 则以下选项正确的是()(A)①是“垂直对点集” ,②不是“垂直对点集” (B)①不是“垂直对点集”,②是“垂直对点集” (C)①②都是“垂直对点集” (D) ①②都不是“垂直对点集”高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
2013届高考数学知识点复习测试题1
第2讲 等差数列★ 知 识 梳理 ★1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.⑵前n 项和公式2)(1n n a a n S +=或dn n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项. 即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a ) ⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a a S S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇.★ 重 难 点 突 破 ★1.重点:理解等差数列的概念,掌握等差数列的通项公式、前n 项和公式并能解决实际问题;理解等差中项的概念,掌握等差数列的性质.2.难点:利用等差数列的性质解决实际问题.3.重难点:正确理解等差数列的概念,灵活运用等差数列的性质解题.⑴求等差数列的公差、求项、求值、求和、求n S 最值等通常运用等差数列的有关公式及其性质.问题1:已知n m ≠,且n a a a m ,,,,321和n b b b b m ,,,,,4321都是等差数列,则=--2313b b a a分析:问题转化为:在n m ,插入若干个数,使其成等差,利用等差数列公差的求法公式解答. 解析:设等差数列n a a a m ,,,,321和n b b b b m ,,,,,4321的公差分别是21,d d 则1132d a a =-,14d m n =-,∴213m n a a -=-,同理,得5223m n d b b -==-,∴=--2313b b a a 25.⑵求“首末项和为常数”的数列的和,一般用倒序相加法.问题2:已知函数.424)(xxx f +=则 ①=+)32()31(f f ; ②=+++)20092008()20092()20091(f f f .分析:①可以直接代入计算,也可以整体处理;②寻找规律,整体处理. 解析: xx x f 424)(+=,经计算,得1)1()(=-+x f x f ,∴=+++)20092008()20092()20091(f f f 100411004=⨯.★ 热 点 考 点 题 型 探 析★考点1等差数列的通项与前n 项和 题型1已知等差数列的某些项,求某项【例1】已知{}n a 为等差数列,20,86015==a a ,则=75a 【解题思路】可以考虑基本量法,或利用等差数列的性质 【解析】方法1: 154,156420598141160115==⇒⎩⎨⎧=+==+=d a d a a d a a ∴2415474156474175=⨯+=+=d a a 方法2: 1544582015601560=-=--=a a d,∴241541520)6075(6075=⨯+=-+=d a a方法3:令b an a n+=,则38,45162060815==⇒⎩⎨⎧=+=+b a b a b a ∴24384516757575=+⨯=+=b a a方法4: {}n a 为等差数列,∴7560453015,,,,a a a a a 也成等差数列,设其公差为1d ,则15a 为首项,60a 为第4项. ∴438203111560=⇒+=⇒+=d d d a a ∴2442016075=+=+=d a a方法5: {}n a 为等差数列,∴),75(),,60(),,15(756015a a a 三点共线∴2415204582060751560757560751560=⇒-=-⇒--=--a a a a a a【名师指引】给项求项问题,先考虑利用等差数列的性质,再考虑基本量法.题型2已知前n 项和n S 及其某项,求项数.【例2】⑴已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;⑵若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数n . 【解题思路】⑴利用等差数列的通项公式d n a a n )1(1-+=求出1a 及d ,代入n S 可求项数n ; ⑵利用等差数列的前4项和及后4项和求出n a a +1,代入n S 可求项数n .【解析】⑴设等差数列的首项为1a ,公差为d ,则3,186893111-==⇒⎩⎨⎧-=+=+d a d a d a∴7,663)1(231821==⇒=--=n n n n n S n⑵ 124,363214321=+++=+++---n n n n a a a a a a a a3423121---+=+=+=+n n n n a a a a a a a a∴40160)(411=+⇒=+n n a a a a ∴39780207802)(1=⇒=⇒=+=n n a a n S n n【名师指引】解决等差数列的问题时,通常考虑两种方法:⑴基本量法;⑵利用等差数列的性质.题型3求等差数列的前n 项和【例3】已知n S 为等差数列{}n a 的前n 项和,212n n S n -=.⑴求321a a a ++;⑵求10321a a a a ++++ ; ⑶求n a a a a ++++ 321.【解题思路】利用n S 求出n a ,把绝对值符号去掉转化为等差数列的求和问题. 【解析】4. 212n n S n -=,∴当1=n 时,1111211=-==S a ,当2≥n 时,n n n n n S S a n n n 213)1()1(12)12(221-=-+---=-=-,当1=n 时,1111213a ==⨯-, ∴n a n 213-=. 由0213≥-=n a n ,得213≤n ,∴当61≤≤n 时,0>n a ;当7≥n 时,0<n a .⑴27331223321321=-⨯==++=++S a a a a a a ;⑵)(10987632110321a a a a a a a a a a a a +++-++++=++++ 52)101012()6612(2222106=-⨯--⨯=-=S S ;⑶当61≤≤n 时,232132112n n a a a a a a a a n n -=++++=++++ ,当7≥n 时,)(876321321n n a a a a a a a a a a a +++-++++=++++ .7212)12()6612(222226+-=---⨯=-=n n n n S S n【名师指引】含绝对值符号的数列求和问题,要注意分类讨论. 【新题导练】1.已知{}n a 为等差数列,q a p a n m ==,(k n m ,,互不相等),求k a . 【解析】nm k m q n k p a nk q a nm q p nk a a nm a a k k n k n m --+-=⇒--=--⇒--=--)()(2.已知n S 为等差数列{}n a 的前n 项和,100,7,141===n S a a ,则=n . 【解析】设等差数列的公差为d ,则23171414=-=--=a a d101002)1(21=⇒=⨯-+=n n n n S n .3.已知5个数成等差数列,它们的和为5,平方和为165,求这5个数. 【解析】设这5个数分别为.2,,,,2d a d a a d a d a ++--则⎩⎨⎧=+=⇒⎩⎨⎧=+++++-+-=+++++-+-1651051165)2()()()2(5)2()()()2(2222222da a d a d a a d a d a d a d a a d a d a解得4,1±==d a当4,1==d a 时,这5个数分别为:9,5,1,3,7--; 当4,1-==d a 时,这5个数分别为:.7,3,1,5,9--4.已知n S 为等差数列{}n a 的前n 项和,10,10010010==S S ,求110S .【解析】方法1:设等差数列的公差为d ,则⎪⎩⎪⎨⎧=-=⇒⎩⎨⎧=+=+100109950111049501001004510111d a d a d a ∴110109110211101110-=⨯⨯+=d a S ;方法2: 2902)(90100111001110100-=+⇒-=+=-a a a a S S ∴1102)(1102)(110100*********-=+=+=a a a a S .考点2 证明数列是等差数列【例4】已知n S 为等差数列{}n a 的前n 项和,)(+∈=N n nS b n n .求证:数列{}n b 是等差数列.【解题思路】利用等差数列的判定方法⑴定义法;⑵中项法.【解析】方法1:设等差数列{}n a 的公差为d ,d n n na S n )1(211-+=,∴d n a nS b n n )1(211-+==∴2)1(2121111d d n a nd a b b n n =---+=-+(常数)∴数列{}n b 是等差数列.方法2: d n a nS b n n )1(211-+==, ∴nd a b n 2111+=+,d n a b n )1(2112++=+ ∴1111222)1(21)1(21++=+=-++++=+n n n b nd a d n a d n a b b ,∴数列{}n b 是等差数列.【名师指引】判断或证明数列是等差数列的方法有: ⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列; ⑶通项公式法:b kn a n +=(b k ,是常数)⇔{}n a 是等差数列;⑷前n 项和公式法:Bn An S n +=2(B A ,是常数,0≠A )⇔{}n a 是等差数列.【新题导练】5.设n S 为数列{}n a 的前n 项和,)(+∈=N n pna S n n ,.21a a = ⑴求常数p 的值;⑵求证:数列{}n a 是等差数列.【解析】⑴ n n pna S =,21a a =,∴111=⇒=p pa a ⑵由⑴知:n n na S =,当2≥n 时,0))(1()1(111=--⇒--=-=---n n n n n n n a a n a n na S S a ,∴)2(01≥=--n a a n n ,∴数列{}n a 是等差数列.考点3 等差数列的性质【例5】⑴已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; ⑵已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .【解题思路】利用等差数列的有关性质求解. 【解析】⑴11001122112)(116611111==⨯=+=a a a a S ;⑵方法1:令Bn AnS n +=2,则n m m n B m n A nBm Am m Bn An -=-+-⇒⎩⎨⎧=+=+)()(2222. m n ≠,∴1)(-=++B m n A ,∴)()()(2n m n m B n m A S n m +-=+++=+;方法2:不妨设n m >m n a a n m a a a a a S S m n m m n n n n m -=+-=+++++=-+-+++2))((11321 .∴211-=+=+++m n n m a a a a , ∴)(2))((1n m a a n m S n m n m +-=++=++;方法3: {}n a 是等差数列,∴⎭⎬⎫⎩⎨⎧n S n 为等差数列 ∴⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+n m S n m m S m n S n nm m n ,,,,,三点共线. ∴)(n m S nm nn m S n m n mm nnm nm +-=⇒-+=--++. 【名师指引】利用等差数列的有关性质解题,可以简化运算.【新题导练】6.含12+n 个项的等差数列其奇数项的和与偶数项的和之比为( ).A nn 12+ .B nn 1+ .C nn 1- .D nn 21+【解析】(本两小题有多种解法) 2))(1(12112531++++=++++=n n a a n a a a a S 奇2)(222642n n a a n a a a a S +=++++= 偶,n n a a a a 22121+=++∴nn S S 1+=偶奇.∴选B.7.设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S nn ,则=55b a .【解析】12652525514225143)12(2)12(7551212=+⨯-⨯=⇒+-=+-+-==--b a n n n n T S b a n n nn ∴填1265.考点4 等差数列与其它知识的综合【例6】已知n S 为数列{}n a 的前n 项和,n n S n 211212+=;数列{}n b 满足:113=b ,n n n b b b -=++122,其前9项和为.153⑴求数列{}n a 、{}n b 的通项公式; ⑵设n T 为数列{}n c 的前n 项和,)12)(112(6--=n n n b a c ,求使不等式57k T n >对+∈∀N n 都成立的最大正整数k 的值.【解题思路】⑴利用n a 与n S 的关系式及等差数列的通项公式可求;⑵求出n T 后,判断n T 的单调性. 【解析】⑴ n n S n 211212+=,∴当1=n 时,611==S a ;当2≥n 时,5)1(211)1(2121121221+=----+=-=-n n n n n S S a n n n当1=n 时,1651a ==+,∴5+=n a n ;222112+++++=⇒-=n n n n n n b b b b b b ,∴{}n b 是等差数列,设其公差为d .则3,5153369112111==⇒⎩⎨⎧=+=+d b d b d b ,∴23)1(35+=-+=n n b n .⑵ [][]1)23(211)5(26)12)(112(6-+-+=--=n n b a c n n n121121)12)(12(2+--=+-=n n n n∴1211)121121()7151()5131()311(+-=+--++-+-+-=n n n T n+∈N n ,∴n T 是单调递增数列. ∴当1=n 时,()323111min =-==T T n∴57k T n >对+∈∀N n 都成立()38573257min <⇔>⇔>⇔k k k T n∴所求最大正整数k 的值为37.【名师指引】本题综合考察等差数列、通项求法、数列求和、不等式等知识,利用了函数、方程思想,这是历年高考的重点内容. 【新题导练】8.已知n S 为数列{}n a 的前n 项和,31=a ,)2(21≥=-n a S S n n n . ⑴求数列{}n a 的通项公式;⑵数列{}n a 中是否存在正整数k ,使得不等式1+>k k a a 对任意不小于k 的正整数都成立?若存在,求最小的正整数k ,若不存在,说明理由.【解析】⑴当2≥n 时,)(22111----=⇒=n n n n n n n S S S S a S S∴21111-=--n n S S ,且3111=S ,∴{}n a 是以21-为公差的等差数列,其首项为31.∴nS n n S S n n356635)1(21111-=⇒-=--=∴当2≥n 时,)53)(83(18211--==-n n S S a n n n当1=n 时,11018)53)(83(18a ≠=--,∴⎪⎩⎪⎨⎧≥--=)2()53)(83(18)1(3n n n n ; ⑵0)23)(53)(83(181>---=-+k k k a a k k ,得3532<<k 或38>k ,∴当3≥k 时,1+>k k a a 恒成立,所求最小的正整数.3=k★ 抢 分 频 道 ★基础巩固训练1.(2009广雅中学)设数列{}n a 是等差数列,且28a =-,155a =,n S 是数列{}n a 的前n 项和,则A .1011S S =B .1011S S >C .910S S =D .910S S <【解析】C .1091521015216292)(,22S S a d a S da a a a S =⇒++=++=+=另法:由28a =-,155a =,得713815)8(5=---=d ,76921=-=d a a ,计算知910S S =2.在等差数列{}n a 中,1205=a ,则=+++8642a a a a . 【解析】480 .480458642==+++a a a a a3.数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,=n . 【解析】24 由492-=n a n 知{}n a 是等差数列,.250>⇒>n a n ∴.24=n4.已知等差数列{}n a 共有10项,其奇数项之和为10,偶数项之和为30,则其公差是 . 【解析】4 已知两式相减,得.4205=⇒=d d5.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = . 【解析】1)1(21++n n 利用迭加法(或迭代法),也可以用归纳—猜想—证明的方法.6.从正整数数列 ,5,4,3,2,1中删去所有的平方数,得到一个新数列,则这个新数列的第1964项是 . 【解析】2008综合拔高训练7.(2009广雅中学)已知等差数列{}n a 中,21920,28a a a =-+=-. ⑴求数列{}n a 的通项公式;⑵若数列{}n b 满足2log n n a b =,设12n n T b b b = ,且1n T =,求n 的值.【解析】⑴设数列{}n a 的公差为d ,则2,22288220111=-=⇒⎩⎨⎧-=+-=+d a d a d a ∴242)1(222-=-+-=n n a n⑵ 242log2-=n b n ,∴2422-=n n b∴nn n nn n n b b b b T 24)1(24)321(232122-+-++++===令(1)240n n n +-=,得23=n ∴当23n =时,.1=n T 8.已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a ⑴当n 为何值时,n S 取得最大值; ⑵求208642a a a a a +++++ 的值;⑶求数列{}na 的前n 项和.nT【解析】⑴ 等差数列{}n a 中,.16,2541==a a ∴公差31414-=--=a a d∴283+-=n a n ,令90283≤⇒>+-=n n a n∴当9≤n 时,0>n a ;当9>n 时,0<n a .∴当9=n 时,n S 取得最大值;⑵ 数列{}n a 是等差数列∴208642a a a a a +++++ 20)9325(10102)(1011202-=⨯-==+=a a a ;⑶由⑴得,当9≤n 时,0>n a ;当9>n 时,0<n a .∴n n n S S a a a a a a T -=+++-+++=911109212)(⎥⎦⎤⎢⎣⎡---⨯-⨯=)1(2325)336259(2n n n 234253232+-=n n 9.(2009执信中学)已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈⑴证明:数列{}1n n a a +-是等比数列; ⑵求数列{}n a 的通项公式; ⑶若数列{}n b 满足12111*44...4(1)(),n n b bb b n a n N ---=+∈证明{}n b 是等差数列.【解析】⑴证明:2132,n n n a a a ++=-∴)(2112n n n n a a a a -=-+++, 3,121==a a ,∴)(2112++++∈=--N n a a a a nn n n{}1n n a a +∴-是以21a a -2=为首项,2为公比的等比数列。
高考数学总复习 模拟试卷(一)理-人教版高三全册数学试题
2016年高考数学(理科)模拟试卷(一)(本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题 满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( ) A .[0,1] B .(0,1) C .(0,1] D .[0,1) 2.复数(3+2i)i =( )A .-2-3iB .-2+3iC .2-3iD .2+3i 3.命题“∀x ∈R ,|x |+x 2≥0”的否定是( ) A .“∀x ∈R ,|x |+x 2<0” B .“∀x ∈R ,|x |+x 2≤0” C .“∃x 0∈R ,|x 0|+x 20<0” D .“∃x 0∈R ,|x 0|+x 20≥0”4.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是( ) A .f (x )=-x |x | B .f (x )=x +1xC .f (x )=tan xD .f (x )=ln x x5.设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n =( )A .4B .5C .6D .76.曲线y =x 3-2x +4在点(1,3)处切线的倾斜角为( ) A.π6 B.π3 C.π4 D.π27.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a =( )A.12B.45C .2D .9 8.某几何体的三视图如图M11,则它的体积为( )图M11A .72πB .48π C.30π D .24π9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π,则该函数的图象是( ) A .关于直线x =π8对称 B .关于点⎝ ⎛⎭⎪⎫π4,0对称C .关于直线x =π4对称D .关于点⎝ ⎛⎭⎪⎫π8,0对称 10.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .211.在同一个平面直角坐标系中画出函数y =a x,y =sin ax 的部分图象,其中a >0,且a ≠1,则下列所给图象中可能正确的是( )A BC D12.已知定义在区间⎣⎢⎡⎦⎥⎤0,3π2上的函数y =f (x )的图象关于直线x =3π4对称,当x ≥3π4时,f (x )=cos x .若关于x 的方程f (x )=a 有解,记所有解的和为S ,则S 不可能为( )A.54πB.32πC.94π D.3π 第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须做答.第22~24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.14.二项式(x +y )5的展开式中,含x 2y 3的项的系数是________.(用数字作答) 15.如图M12,在平行四边形ABCD 中,AP ⊥BD ,垂足为点P ,AP =3,则AP →·AC →=________.图M1216.阅读如图M13所示的程序框图,运行相应的程序,输出S 的值为________.图M13三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,c =2,cos C =34.(1)求sin A 的值; (2)求△ABC 的面积.18.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.19.(本小题满分12分)如图M14,在四棱锥P ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D AE C 为60°,AP =1,AD =3,求三棱锥E ACD 的体积.图M1420.(本小题满分12分)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)当a =1时,求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,问:m 在什么X 围取值时,对于任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤m2+f ′x 在区间(t,3)上总存在极值?(3)求证:ln22×ln33×ln44×…×ln n n <1n(n ≥2,n ∈N *).21.(本小题满分12分)已知直线l :y =kx +2(k 为常数)过椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点B 和左焦点F ,直线l 被圆O :x 2+y 2=4截得的弦AB 的中点为M .(1)若|AB |=4 55,某某数k 的值;(2)如图M15,顶点为O ,对称轴为y 轴的抛物线E 过线段BF 的中点T ,且与椭圆C 在第一象限的交点为S ,抛物线E 在点S 处的切线m 被圆O 截得的弦PQ 的中点为N ,问:是否存在实数k ,使得O ,M ,N 三点共线?若存在,请求出k 的值;若不存在,请说明理由.图M15 图M16请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目上.如果多做,则按所做的第一个题目计分,做答量请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10)选修41:几何证明选讲如图M16,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上—点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED .23.(本小题满分10)选修44:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.24.(本小题满分10)选修45:不等式选讲 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值.(2)是否存在a ,b ,使得2a +3b =6?并说明理由.2016年高考数学(理科)模拟试卷(一)1.D 解析:由M ={x |x ≥0,x ∈R }=[0,+∞),N ={x |x 2<1,x ∈R }=(-1,1),得M ∩N =[0,1).2.B 解析:(3+2i)i =3i +2i·i=-2+3i.故选B.3.C 解析:对于命题的否定,要将命题中的“∀”变为“∃”,且否定结论,则命题“∀x ∈R ,|x |+x 2≥0”的否定是“∃x 0∈R ,|x 0|+x 20<0”.故选C.4.A5.A 解析:∵{a n }是等差数列,且a 1+a 2+a 3=15,∴a 2=5.又∵a 1a 2a 3=105,∴a 1a 3=21.由⎩⎪⎨⎪⎧a 1a 3=21,a 1+a 3=10及{a n }递减可求得a 1=7,d =-2.∴a n=9-2n .由a n ≥0,得n ≤4.故选A.6.C 解析:f ′(x )=3x 2-2,f ′(1)=1,所以切线的斜率是1,倾斜角为π4.7.C 解析:∵f (0)=20+1=2,f [f (0)]=f (2)=4a ,∴22+2a =4a .∴a =2. 8.C 解析:几何体是由半球与圆锥叠加而成,它的体积为V =12×43π×33+13×π×32×52-32=30π.9.A 解析:依题意,得T =2πω=π,ω=2,故f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,所以f ⎝ ⎛⎭⎪⎫π8=sin ⎝⎛⎭⎪⎫2×π8+π4=sin π2=1≠0,f ⎝ ⎛⎭⎪⎫π4=sin ⎝⎛⎭⎪⎫2×π4+π4=sin 3π4=22≠0,因此该函数的图象关于直线x =π8对称,不关于点⎝⎛⎭⎪⎫π4,0和点⎝ ⎛⎭⎪⎫π8,0对称,也不关于直线x =π4对称.故选A.10.A 解析:如图D129,将点(5,3)代入z =y -2x ,得最小值为-7.图D12911.D 解析:正弦函数y =sin ax 的最小正周期为T =2πa.对于A ,T >2π,故a <1,而y =a x的图象是增函数,故A 错误; 对于B ,T <2π,故a >1,而函数y =a x是减函数,故B 错误; 对于C ,T =2π,故a =1,∴y =a x=1,故C 错误; 对于D ,T >2π,故a <1,∴y =a x是减函数.故选D.12.A 解析:作函数y =f (x )的草图(如图D130),对称轴为x =3π4,当直线y =a 与函数有两个交点(即方程有两个根)时,x 1+x 2=2×3π4=3π2;当直线y =a 与函数有三个交点(即方程有三个根)时,x 1+x 2+x 3=2×3π4+3π4=9π4;当直线y =a 与函数有四个交点(即方程有四个根)时,x 1+x 2+x 3+x 4=4×3π4=3π.故选A.图D13013.12 解析:从10件产品中任取4件,共有C 410种基本事件,恰好取到1件次品就是取到1件次品且取到3件正品,共有C 13C 37种,因此所求概率为C 13C 37C 410=12.14.10 解析:展开式的通项为T k +1=C k 5x5-k y k,则T 4=C 35x 2y 3=10x 2y 3,故答案为10.15.18 解析:设AC ∩BD =O ,则AC →=2(AB →+BO →),AP →·AC →=AP →·2(AB →+BO →)=2AP →·AB →+2AP →·BO →=2AP →·AB →=2AP →·(AP →+PB →)=2|AP →|2=18.16.-4 解析:由题意,得第一次循环:S =0+(-2)3=-8,n =2; 第二次循环:S =-8+(-2)2=-4,n =1,结束循环,输出S 的值为-4. 17.解:(1)∵cos C =34,∴sin C =74.∵asin A =c sin C ,∴1sin A =274,∴sin A =148. (2)∵c 2=a 2+b 2-2ab cos C ,∴2=1+b 2-32b ,∴2b 2-3b -2=0.∴b =2.∴S △ABC =12ab sin C =12×1×2×74=74.18.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知,P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215, 故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设可获利润为X 万元,则X 的可能取值为0,100,120,220. 因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=15, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=25.故所求的分布列为:数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+132015=210015=140.19.(1)证明:如图D131,连接BD 交AC 于点O ,连接EO .因为底面ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . 因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)解:因为PA ⊥平面ABCD ,平面ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图D131,以A 为坐标原点,AB →,AD →,AP →的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系Axyz ,则D ()0,3,0,E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12.图D131设B (m,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量, 则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0.可取n 1=⎝⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量, 由题设易知,|cos 〈n 1,n 2〉|=12,即33+4m 2=12.解得m =32(m =-32,舍去). 因为E 为PD 的中点,所以三棱锥E ACD 的高为12.故三棱锥E ACD 的体积V =13×12×3×32×12=38.20.解:f ′(x )=ax-a (x >0). (1)当a =1时,f ′(x )=1x -1=1-xx,令f ′(x )>0时,解得0<x <1,∴f (x )在(0,1)上单调递增; 令f ′(x )<0时,解得x >1,∴f (x )在(1,+∞)上单调递减. (2)∵函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°, ∴f ′(2)=a2-a =1.∴a =-2,f ′(x )=-2x+2.∴g (x )=x 3+x 2⎝ ⎛⎭⎪⎫m 2+2-2x =x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,g ′(x )=3x 2+(4+m )x -2.∵对任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤m2+f ′x 在区间(t,3)上总存在极值,且g ′(0)=-2,∴只需⎩⎪⎨⎪⎧g ′t <0,g ′3>0.由题知,对任意的t ∈[1,2],g ′(t )<0恒成立,∴⎩⎪⎨⎪⎧g ′1<0,g ′2<0,g ′3>0.解得-373<m <-9.(3)证明:令a =-1,f (x )=-ln x +x -3,∴f (1)=-2. 由(1)知,f (x )=-ln x +x -3在(1,+∞)上单调递增, ∴当x ∈(1,+∞)时,f (x )>f (1),即-ln x +x -1>0. ∴ln x <x -1对一切x ∈(1,+∞)成立. ∵n ≥2,n ∈N *,则有0<ln n <n -1.∴0<ln n n <n -1n .∴ln22×ln33×ln44×…×ln n n <12×23×34×…×n -1n =1n (n ≥2,n ∈N *).21.解:(1)圆O 的圆心为O (0,0),半径为r =2. ∵OM ⊥AB ,|AB |=4 55,∴|OM |=r 2-⎝ ⎛⎭⎪⎫|AB |22=4 55. ∴2k 2+1=4 55.∴k 2=14.图D132又k =k FB >0,∴k =12. (2)如图D132,∵F ⎝ ⎛⎭⎪⎫-2k ,0,B (0,2),T 为BF 中点, ∴T ⎝ ⎛⎭⎪⎫-1k ,1. 设抛物线E 的方程为y =tx 2(t >0),∵抛物线E 过点T ,∴1=t ·1k2,即t =k 2. ∴抛物线E 的方程为y =k 2x 2.∴y ′=2k 2x .设S (x 0,y 0),则k m =y ′0|x x ==2k 2x 0.假设O ,M ,N 三点共线,∵OM ⊥l ,ON ⊥m ,∴l ∥m .又k l =k >0,∴k l =k m .∴k =2k 2x 0.∴x 0=12k ,y 0=k 2x 20=k 2·14k 2=14. ∵S 在椭圆C 上,∴x 20a 2+y 20b2=1. 结合b =2,c =2k ,a 2=b 2+c 2=4+4k2. 得14k 24+4k2+1164=1.∴k 2=-5963. ∴k 无实数解,矛盾.∴假设不成立.故不存在实数k ,使得O ,M ,N 三点共线.22.证明:(1)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又因为∠PGD =∠EGA ,所以∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PFA .又AF ⊥EP ,所以∠PFA =90°,所以∠BDA =90°,故AB 为圆的直径.图D133(2)如图D133,连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而得Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .因为AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角,所以ED 为圆的直径,又由(1)知AB 为圆的直径,所以ED =AB .23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧ x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|, 则|PA |=d sin30°=2 55|5sin(θ+α)-6|, 其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|PA |取得最大值,最大值为22 55.当sin(θ+α)=1时,|PA |取得最小值,最小值为2 55. 24.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,当且仅当a =b =2时等号成立. 故a 3+b 3≥2a 3b 3≥4 2,当且仅当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥2 6ab ≥4 3.由于4 3>6,从而不存在a ,b ,使2a +3b =6.。
高考数学必背公式与知识点及答案数学高考复习必备
高考数学必背公式与知识点及答案数学高考复习必备以下是十道高考数学必背公式与知识点及试题及答案:1. 二次函数的标准式:f(x) = ax^2 + bx + c,其中a ≠ 0。
知识点:顶点坐标、对称轴、开口方向等。
试题:已知二次函数f(x) = x^2 + px + q的顶点坐标为(2, -3),求p和q的值。
解答:由题意知,顶点坐标为(2,-3)。
根据顶点坐标公式,可得p=-2、q=-72.指数函数的定义:f(x)=a^x,其中a>0且a≠1、知识点:增减性、对数函数、指数方程等。
试题:若f(3)=2,求指数函数f(x)=2^x的解析式。
解答:由题意知,f(3)=2,即2^3=2、所以,指数函数f(x)的解析式为f(x)=2^x。
3. 对数函数的定义:f(x) = loga(x),其中a>0且a≠1、知识点:性质、换底公式、对数方程等。
试题:若f(x) = log3(x),求f(243)。
解答:由题意知,f(x) = log3(x),则f(243) = log3(243) = 54. 三角函数的定义:sinθ、cosθ、tanθ等。
知识点:周期性、反函数、三角恒等式等。
试题:若sinθ = 1/2,且0°<θ<180°,求cosθ的值。
解答:由题意知,sinθ = 1/2,则θ等于30°或150°。
根据三角函数的关系可知,cos30° = √3/2,cos150° = -√3/2、由于0°<θ<180°,所以cosθ的值为√3/25.函数的复合:(fog)(x)=f(g(x))。
知识点:复合函数的性质、反函数等。
试题:已知函数f(x)=3x+1,g(x)=2x-1,求复合函数f(g(x))的解析式。
解答:根据复合函数的定义可知,f(g(x))=f(2x-1)=3(2x-1)+1=6x-26.集合的运算:并、交、差等。
高考数学一轮复习 滚动测试卷1-人教版高三全册数学试题
滚动测试卷一(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2017某某某某一模)若P={x|x<4},Q={x|x2<4},则()A.P⊆QB.Q⊆PC.P⊆∁R QD.Q⊆∁R P2.不等式-x2+|x|+2<0的解集是()A.{x|-2<x<2}B.{x|x<-2,或x>2}C.{x|-1<x<1}D.{x|x<-2,或x>1}3.若幂函数的图象经过点(3,),则该函数的解析式为()A.y=x3B.y=C.y=D.y=x-14.下列判断错误的是()A.命题“若am2≤bm2,则a≤b”是假命题B.命题“∀x∈R,x3-x2-1≤0”的否定是“∃x0∈R,-1>0”C.“若a=1,则直线x+y=0和直线x-ay=0互相垂直”的逆否命题为真命题D.命题“p∨q为真命题”是命题“p∧q为真命题”的充分不必要条件5.下列函数中,既是奇函数,又在(0,+∞)内单调递增的是()A.y=sin xB.y=-x2+C.y=x3+3xD.y=e|x|6.若函数y=x2-3x-4的定义域为[0,m],值域为,则m的取值X围是()A.(0,4]B.C.D.7.设函数f(x)=若f=8,则m=()A.2B.1C.2或1D.8.(2017某某某某一模)已知函数f(x)=e x+e-x,则y=f'(x)的图象大致为()9.已知函数f(x)是定义在R上的偶函数,且最小正周期为2,当0≤x≤1时,f(x)=x,则f(-1)+f(-2 017)=()A.0B.C.1D.210.(2017某某某某一模)已知定义在R上的函数f(x)满足f(x+1)+f(1-x)=2.当x>1时,f(x)=,则关于x的方程f(x)+2a=0没有负实根时实数a的取值X围是()A.(-∞,-1]∪B.(0,1)C.D.11.已知函数y=f(x)是定义在R上的偶函数,且当x>0时,不等式f(x)+x·f'(x)<0成立,若a=30.2·f(30.2),b=(logπ2)·f(logπ2),c=·f,则a,b,c的大小关系为()A.c>b>aB.c>a>bC.b>a>cD.a>c>b12.已知函数f(x)=+sin πx在[0,1)内的最大值为m,在(1,2]上的最小值为n,则m+n=()A.-2B.-1C.1D.2二、填空题(本大题共4小题,每小题5分,共20分)13.已知曲线f(x)=ln x在点(x0,f(x0))处的切线经过点(0,1),则x0的值为.14.(2017某某,11)已知函数f(x)=x3-2x+e x-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0,则实数a的取值X围是.15.已知函数f(x)=的值域是[0,2],则实数a的取值X围是.16.已知函数f(x)=x2+,g(x)=-m.若∀x1∈[1,2],∃x2∈[-1,1],使f(x1)≥g(x2),则实数m的取值X围是.三、解答题(本大题共6小题,共70分)17.(10分)已知a∈R,函数f(x)=log2.(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰有一个元素,求a的取值X围;(3)设a>0,若对任意t∈,函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值X围.18.(12分)已知f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)求f(0)+f(1)+f(2)+…+f(2 015)的值.19.(12分)如图,在半径为30 cm的四分之一圆形(O为圆心)铝皮上截取一块矩形材料OABC,其中点B 在圆弧上,点A,C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长AB=x cm,圆柱的体积为V cm3.(1)写出体积V关于x的函数解析式;(2)当x为何值时,才能使做出的圆柱形罐子的体积V最大?20.(12分)(2017某某某某一模)已知函数f(x)=(a∈R).(1)求函数f(x)的单调区间;(2)若∀x∈[1,+∞),不等式f(x)>-1恒成立,某某数a的取值X围.21.(12分)已知函数f(x)=,其中a∈R.(1)若a=0,求函数f(x)的定义域和极值.(2)当a=1时,试确定函数g(x)=f(x)-1的零点个数,并证明.22.(12分)已知函数f(x)=2ln x-x2+ax(a∈R).(1)若函数f(x)的图象在x=2处的切线斜率为-1,且不等式f(x)≥2x+m在上有解,某某数m的取值X围;(2)若函数f(x)的图象与x轴有两个不同的交点A(x1,0),B(x2,0),且0<x1<x2,求证:f'<0(其中f'(x)是f(x)的导函数).参考答案滚动测试卷一(第一~三章)1.B解析由P={x|x<4},Q={x|x2<4}={x|-2<x<2},可得∁R P={x|x≥4},∁R Q={x|x≤-2或x≥2},结合选项可知只有Q⊆P成立,故选B.2.B解析由-x2+|x|+2<0,得x2-|x|-2>0,即(|x|+1)(|x|-2)>0,故|x|-2>0,解得x>2或x<-2.3.B解析设幂函数解析式为y=xα,则=3α,故α=,即y=.故选B.4.D解析A中,当m=0时,满足am2≤bm2,但a可以大于b,故命题是假命题,故正确;B显然正确;C中,原命题是真命题,故其逆否命题也为真命题,故正确;D中,p∨q为真命题,可知p,q至少有一个为真,但推不出p∧q为真命题,故错误.故选D.5.C解析选项A,C中函数为奇函数,又函数y=sin x在(0,+∞)内不是单调函数,故选C.6.C解析y=x2-3x-4=.当x=0或x=3时,y=-4,故≤m≤3.7.B解析∵f=8,∴f(4-m)=8.若4-m<1,即3<m,可得5(4-m)-m=8,解得m=2,舍去.若4-m≥1,即m≤3,可得24-m=8,解得m=1.故选B.8.D解析函数f(x)=e x+e-x,则y=f'(x)=e x-e-x,因为y=e x是增函数,y=-是增函数,所以导函数是增函数.故选D.9.D解析∵函数f(x)是定义在R上的偶函数,且最小正周期为2,当0≤x≤1时,f(x)=x,∴f(-1)=f(1)=1,f(-2017)=f(2017)=f(1)=1,∴f(-1)+f(-2017)=1+1=2.10.A解析∵f(x)满足f(x+1)+f(1-x)=2,∴f(x)的图象关于点(1,1)中心对称,作出其图象如图.∵f(x)+2a=0没有负实根,∴-2a≤1或-2a≥2,解得a≥-或a≤-1.故选A.11.A解析设F(x)=xf(x),当x>0时,F'(x)=[xf(x)]'=f(x)+xf'(x)<0,即函数F(x)在(0,+∞)内单调递减,又y=f(x)在R上是偶函数,则F(x)在R上是奇函数,从而F(x)在R上单调递减,又30.2>1,0<logπ2<1,log2<0,即30.2>logπ2>log2,所以F(30.2)<F(logπ2)<F,即a<b<c.12.D解析可知f(x)=+sinπx=1++sinπx.记g(x)=+sinπx,则当x∈[0,1)时,g(2-x)=+sinπ(2-x)=-sinπx=-=-g(x),即在区间[0,1)∪(1,2]上,函数f(x)关于点(1,1)中心对称,故m+n=2.13.e2解析因为函数f(x)的导数为f'(x)=,所以切线斜率k=f'(x0)=,所以切线方程为y-ln x0=(x-x0).因为切线过点(0,1),所以代入切线方程得ln x0=2,解得x0=e2.14.解析因为f(-x)=(-x)3-2(-x)+e-x-=-f(x),所以f(x)为奇函数.因为f'(x)=3x2-2+e x+e-x≥3x2-2+2≥0(当且仅当x=0时等号成立),所以f(x)在R上单调递增.因为f(a-1)+f(2a2)≤0可化为f(2a2)≤-f(a-1),即f(2a2)≤f(1-a),所以2a2≤1-a,2a2+a-1≤0,解得-1≤a≤,故实数a的取值X围是.15.[1,]解析先作出函数f(x)=log2(1-x)+1,-1≤x<0的图象,再研究f(x)=x3-3x+2,0≤x≤a的图象.由f(x)=x3-3x+2(0≤x≤a)可知f'(x)=3x2-3=0,得x=1(x=-1舍去).由f'(x)>0,得x>1;由f'(x)<0,得0<x<1.故当x=1时,f(x)在x∈[0,a]上有最小值f(1)=0,又f()=2.所以1≤a≤.16.解析∀x1∈[1,2],∃x2∈[-1,1],使f(x1)≥g(x2),只需f(x)=x2+在[1,2]上的最小值大于等于g(x)=-m在[-1,1]上的最小值.因为f'(x)=2x-≥0在[1,2]上恒成立,且f'(1)=0,所以f(x)=x2+在[1,2]上单调递增,所以f(x)min=f(1)=12+=3.因为g(x)=-m在[-1,1]上单调递减,所以g(x)min=g(1)=-m,所以-m≤3,即m≥-.17.解(1)由log2>0,得+5>1,解得x∈∪(0,+∞).(2)+a=(a-4)x+2a-5,(a-4)x2+(a-5)x-1=0,当a=4时,x=-1,经检验,满足题意.当a=3时,x1=x2=-1,经检验,满足题意.当a≠3且a≠4时,x1=,x2=-1,x1≠x2.x1是原方程的解当且仅当+a>0,即a>2;x2是原方程的解当且仅当+a>0,即a>1.于是满足题意的a∈(1,2].综上,a的取值X围为(1,2]∪{3,4}.(3)当0<x1<x2时,+a>+a,log2>log2,所以f(x)在(0,+∞)内单调递减.函数f(x)在区间[t,t+1]上的最大值与最小值分别为f(t),f(t+1).f(t)-f(t+1)=log2-log2≤1即at2+(a+1)t-1≥0,对任意t∈成立.因为a>0,所以函数y=at2+(a+1)t-1在区间上单调递增,当t=时,y有最小值a-, 由a-≥0,得a≥.故a的取值X围为.18.(1)证明因为f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x).所以f(x)是周期为4的周期函数.(2)解当x∈[-2,0]时,-x∈[0,2].由已知得f(-x)=2(-x)-(-x)2=-2x-x2,又f(x)是奇函数,所以f(-x)=-f(x)=-2x-x2,所以f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],所以f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,所以f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.从而求得当x∈[2,4]时,f(x)=x2-6x+8. (3)解f(0)=0,f(2)=0,f(1)=1,f(3)=-1.又f(x)是周期为4的周期函数,所以f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2008)+f(2009)+f(2010)+f(2011)=f(2012)+f(2013)+f(2014)+f(2015)=0.所以f(0)+f(1)+f(2)+…+f(2015)=0.19.解(1)连接OB,因为AB=x cm,所以OA=cm.设圆柱的底面半径为r cm,则=2πr,即4π2r2=900-x2,所以V=πr2x=π··x=,其中0<x<30.(2)由(1)知V=(0<x<30),则V'=.由V'==0,得x=10,可知V=在(0,10)内是增函数,在(10,30)内是减函数.所以当x=10时,V有最大值.20.解(1)f'(x)=,当Δ=4+8a≤0,即a≤-时,x2-2x-2a≥0,f'(x)≥0,∴函数f(x)在(-∞,+∞)上单调递增.当a>-时,令x2-2x-2a=0,解得x1=1-,x2=1+.∴函数f(x)的单调递增区间为(-∞,1-)和(1+,+∞),单调递减区间为(1-,1+).(2)∵f(x)>-1⇔>-1⇔2a>x2-e x,∴由条件知,2a>x2-e x对∀x≥1成立.令g(x)=x2-e x,h(x)=g'(x)=2x-e x,∴h'(x)=2-e x.当x∈[1,+∞)时,h'(x)=2-e x≤2-e<0,∴h(x)=g'(x)=2x-e x在[1,+∞)上单调递减,∴h(x)=2x-e x≤2-e<0,即g'(x)<0,∴g(x)=x2-e x在[1,+∞)上单调递减,∴g(x)=x2-e x≤g(1)=1-e,故f(x)>-1在[1,+∞)上恒成立,只需2a>g(x)max=1-e,∴a>,即实数a的取值X围是.21.解(1)当a=0时,函数f(x)=的定义域为{x|x∈R,且x≠-1},f'(x)=.令f'(x)=0,得x=0.当x变化时,f'(x)和f(x)的变化情况如下:x(-∞,-1) (-1,0) 0 (0,+∞)f'(x) --0 +f(x) 单调递减单调递减极小值单调递增所以f(x)的单调递减区间为(-∞,-1),(-1,0);单调递增区间为(0,+∞).故当x=0时,函数f(x)有极小值f(0)=1.函数f(x)无极大值.(2)函数g(x)存在两个零点.证明过程如下:由题意,函数g(x)=-1.因为x2+x+1=>0,所以函数g(x)的定义域为R.求导,得g'(x)=,令g'(x)=0,得x1=0,x2=1,当x变化时,g(x)和g'(x)的变化情况如下:x(-∞,0) 0 (0,1) 1 (1,+∞)g'(x) +0 -0 +g(x) 单调递增极大值单调递减极小值单调递增故函数g(x)的单调递减区间为(0,1);单调递增区间为(-∞,0),(1,+∞).当x=0时,函数g(x)有极大值g(0)=0;当x=1时,函数g(x)有极小值g(1)=-1.因为函数g(x)在(-∞,0)内单调递增,且g(0)=0,所以对于任意x∈(-∞,0),g(x)≠0.因为函数g(x)在(0,1)内单调递减,且g(0)=0,所以对于任意x∈(0,1),g(x)≠0.因为函数g(x)在(1,+∞)内单调递增,且g(1)=-1<0,g(2)=-1>0,所以函数g(x)在(1,+∞)内有且仅有一个x0,使得g(x0)=0,故函数g(x)存在两个零点(即0和x0).22.(1)解由f'(x)=-2x+a,可知切线的斜率k=f'(2)=a-3=-1,故a=2.因此f(x)=2ln x-x2+2x.由f(x)≥2x+m,得m≤2ln x-x2.∵不等式f(x)≥2x+m在上有解,∴m≤(2ln x-x2)max.令g(x)=2ln x-x2,则g'(x)=-2x=.∵x∈,∴当g'(x)=0时,x=1.当<x<1时,g'(x)>0;当1<x<e时,g'(x)<0.故g(x)在x=1处取得最大值g(1)=-1,因此m≤-1,即m的取值X围为(-∞,-1). (2)证明∵f(x)的图象与x轴交于两个不同的点A(x1,0),B(x2,0),∴方程2ln x-x2+ax=0的两个根为x1,x2,∴∴a=(x1+x2)-.又f'(x)=-2x+a,∴f'-(x1+x2)+a=.下证<0,即证+ln<0.设t=,∵0<x1<x2,∴0<t<1.即证μ(t)=+ln t<0在t∈(0,1)内恒成立,∵μ'(t)=,又0<t<1,∴μ'(t)>0,∴μ(t)在(0,1)内是增函数,∴μ(t)<μ(1)=0, 从而知+ln<0,故<0,即f'<0成立.。
高考数学一轮复习 极值值知识梳理1 试题
函数极值与最值一、考点说明:导数法处理函数的极值与最值是36个B级考点之一36个B级要求知识点的考察比例要到达60%以上。
尤其是导数的运算及运用等,仍为考察重点。
08年填空题14题以三次函数为模型考察。
17题以实际应用为载体考察。
09年填空题3题以三次函数为模型考察。
10年填空题14题以分式函数和实际应用为模型结合考察。
20题以指对函数模型考察。
11年填空题12题以指对函数为模型考察。
19题以三次函数和二次函数为模型综合考察。
应重视导数题的考察,以中档题为主。
小题中两年都考了三次函数,应该更加关注指、对数函数,三角函数的导数及相关的超越函数.二、知识梳理:1.在定义中,获得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。
请注意以下几点:〔ⅰ〕极值是一个部分概念。
由定义,极值只是某个点的函数值与它附近点的函数值比拟是最大或者最小。
并不意味着它在函数的整个的定义域内最大或者最小。
〔ⅱ〕函数的极值不是唯一的。
即一个函数在某区间上或者定义域内极大值或者极小值可以不止一个。
〔ⅲ〕极大值与极小值之间无确定的大小关系。
即一个函数的极大值未必大于极小值,) 4>)(1xf。
〔ⅳ〕函数的极值点一定出如今区间的内部,区间的端点不能成为极值点。
而使函数获得最大值、最小值的点可能在区间的内部,也可能在区间的端点。
由上图可以看出,在函数获得极值处,假如曲线有切线的话,那么切线是程度的,从而有0)(='x f 。
但反过来不一定。
根底体验:1.【08届二检】函数)(x f y =的导函数)(x f y '=的图像如下,那么 ▲ . A .函数)(x f 有1个极大值点,1个极小值点 B .函数)(x f 有2个极大值点,2个极小值点 C .函数)(x f 有3个极大值点,1个极小值点 D .函数)(x f 有1个极大值点,3个极小值点2.【0811】假如函数y=f(x)的图象如下图,那么导函数'()y f x =的图象可能是▲ .xXy1x x 4O2x3x • • ••经典讲练:【例题1】:函数322(),f x x ax bx a =+++在1=x 时有极值10,那么b a ,的值分别为 ▲ .【解析】'2()32,f x x ax b =++由,得'(1)0(1)10f f ⎧=⎨=⎩ 即 223,9a b a a b +=-⎧⎨++=⎩解得34311a a b b =-=⎧⎧⎨⎨==-⎩⎩或,变式练习:1.函数23bx ax y +=,当1x =时,有极大值3, 那么,a b 的值分别为 .变式练习:2.【11届月考】实数d c b a ,,,成等比数列,且对函数x x y -+=)2ln(,当b x =时取到极大值c ,那么ad 等于 ▲ .【例题2】:【10·模拟】函数32y x ax a =-+在()0,1内有极小值,那么实数a 的取值范围是 ▲ . 30,2⎛⎫ ⎪⎝⎭变式练习:1.【09·联考】假设函数3()63f x x bx b =-+在()0,1内有极小值,那么实数b的取值范围是 ▲ .【例题3:】最值确实定1. 函数]4,0[,)(∈=-x xe x f x 的最小值是 ▲ .02.【中学08综合】函数3223125y x x x =--+在区间[]0,3上最大值与最小值分别是 ▲ . 5,-153. 设213a <<,函数323()(11)2f x x ax b x =-+-≤≤的最大值为1,最小值为2-,求常数ab = ▲ .4. 【四县一校】a ∈R ,假设函数3axy e x =+,x ∈R 有大于零的极值点,那么 ▲ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列一.【课标要求】1.通过实例,理解等比数列的概念;2.探索并掌握等差数列的通项公式与前n 项和的公式;3.能在具体的问题情境中,发现数列的等比关系,并能用有关知识解决相应的问题。
体会等比数列与指数函数的关系二.【命题走向】等比数列与等差数列同样在高考中占有重要的地位,是高考出题的重点。
客观性的试题考察等比数列的概念、性质、通项公式、求和公式等基础知识和基本性质的灵活应用,对基本的运算要求比较高,解答题大多以数列知识为工具预测2010年高考对本讲的考察为:(1)题型以等比数列的公式、性质的灵活应用为主的1~2道客观题目; (2)关于等比数列的实际应用问题或知识交汇题的解答题也是重点;(3)解决问题时注意数学思想的应用,象通过逆推思想、函数与方程、归纳猜想、等价转化、分类讨论等,它将能灵活考察考生运用数学知识分析问题和解决问题的能力三.【要点精讲】1.等比数列定义一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:1n a +:(0)n a q q =≠数列对于数列(1)(2)(3)都是等比数列,它们的公比依次是2,5,21-。
(注意:“从第二项起”、“常数”q 、等比数列的公比和项都不为零)2.等比数列通项公式为:)0(111≠⋅⋅=-q a q a a n n 。
说明:(1)由等比数列的通项公式可以知道:当公比1d =时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若{}n a 为等比数列,则m n mna q a -=。
3.等比中项如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做b a 与的等比中项(两个符号相同的非零实数,都有两个等比中项)4.等比数列前n 项和公式 一般地,设等比数列123,,,,,n a a a a 的前n 项和是=n S 123n a a a a ++++,当1≠q 时,qq a S n n --=1)1(1 或11n n a a q S q -=-;当q=1时,1na S n =(错位相减法)。
说明:(1)n S n q a ,,,1和n n S q a a ,,,1各已知三个可求第四个;(2)注意求和公式中是n q ,通项公式中是1-n q不要混淆;(3)应用求和公式时1≠q ,必要时应讨论1=q 的情况。
四.【典例解析】题型1:等比数列的概念例1.“公差为0的等差数列是等比数列”;“公比为21的等比数列一定是递减数列”;“a,b,c 三数成等比数列的充要条件是b 2=ac ”;“a,b,c 三数成等差数列的充要条件是2b=a+c ”,以上四个命题中,正确的有( )A .1个B .2个C .3个D .4个 解析:四个命题中只有最后一个是真命题。
命题1中未考虑各项都为0的等差数列不是等比数列; 命题2中可知a n+1=a n ×21,a n+1<a n 未必成立,当首项a 1<0时,a n <0,则21a n >a n ,即a n+1>a n ,此时该数列为递增数列;命题3中,若a=b=0,c ∈R ,此时有ac b =2,但数列a,b,c 不是等比数列,所以应是必要而不充分条件,若将条件改为b=ac ,则成为不必要也不充分条件。
点评:该题通过一些选择题的形式考察了有关等比数列的一些重要结论,为此我们要注意一些有关等差数列、等比数列的重要结论。
例2.命题1:若数列{a n }的前n 项和S n =a n +b(a ≠1),则数列{a n }是等比数列; 命题2:若数列{a n }的前n 项和S n =an 2+bn+c(a ≠0),则数列{a n }是等差数列;命题3:若数列{a n }的前n 项和S n =na -n ,则数列{a n }既是等差数列,又是等比数列;上述三个命题中,真命题有( )A .0个B .1个C .2个D .3个解析: 由命题1得,a 1=a+b ,当n ≥2时,a n =S n -S n -1=(a -1)·a n -1。
若{a n }是等比数列,则12a a =a ,即b a a a +-)1(=a ,所以只有当b=-1且a ≠0时,此数列才是等比数列。
由命题2得,a 1=a+b+c ,当n ≥2时,a n =S n -S n -1=2na+b -a ,若{a n }是等差数列,则a 2-a 1=2a ,即2a -c=2a ,所以只有当c=0时,数列{a n }才是等差数列。
由命题3得,a 1=a -1,当n ≥2时,a n =S n -S n -1=a -1,显然{a n }是一个常数列,即公差为0的等差数列,因此只有当a -1≠0;即a ≠1时数列{a n }才又是等比数列。
点评:等比数列中通项与求和公式间有很大的联系,上述三个命题均涉及到S n 与a n 的关系,它们是a n =⎩⎨⎧--,11n nS S a 时当时当21≥=n n ,正确判断数列{a n }是等差数列或等比数列,都必须用上述关系式,尤其注意首项与其他各项的关系。
上述三个命题都不是真命题,选择A 。
题型2:等比数列的判定例3.已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是(D ) (A)(],1-∞- (B)()(),01,-∞+∞(C)[)3,+∞ (D)(][),13,-∞-+∞【解1】:∵等比数列()n a 中21a = ∴当公比为1时,1231a a a ===,33S = ; 当公比为1-时,1231,1,1a a a =-==-,31S =- 从而淘汰(A)(B)(C)故选D ;【解2】:∵等比数列()n a 中21a = ∴312321111S a a a a q q q q⎛⎫=++=++=++ ⎪⎝⎭∴当公比0q >时,31113S q q =++≥+=;当公比0q <时,31111S q q ⎛⎫=---≤-=- ⎪⎝⎭ ∴(][)3,13,S ∈-∞-+∞ 故选D ;【考点】:此题重点考察等比数列前n 项和的意义,等比数列的通项公式,以及均值不等式的应用; 【突破】:特殊数列入手淘汰;重视等比数列的通项公式,前n 项和,以及均值不等式的应用,特别是均值不等式使用的条件;点评:本题主要考查等比数列的概念和基本性质,推理和运算能力。
例4.(2009浙江文)设n S 为数列{}n a 的前n 项和,2n S kn n =+,*n N ∈,其中k 是常数. (I ) 求1a 及n a ;(II )若对于任意的*m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值. 解(Ⅰ)当1,111+===k S a n ,12)]1()1([,2221+-=-+--+=-=≥-k kn n n k n kn S S a n n n n (*)经验,,1=n (*)式成立, 12+-=∴k kn a n (Ⅱ)m m m a a a 42,, 成等比数列,m m m a a a 422.=∴,即)18)(12()14(2+-+-=+-k km k km k km ,整理得:0)1(=-k mk , 对任意的*∈N m 成立, 10==∴k k 或题型3:等比数列的通项公式及应用例5.一个等比数列有三项,如果把第二项加上4,那么所得的三项就成为等差数列,如果再把这个等差数列的第三项加上32,那么所得的三项又成为等比数列,求原来的等比数列解析:设所求的等比数列为a ,aq ,aq 2; 则2(aq+4)=a+aq 2,且(aq+4)2=a(aq 2+32);解得a=2,q=3或a=92,q=-5; 故所求的等比数列为2,6,18或92,-910,950。
点评:第一种解法利用等比数列的基本量q a ,1,先求公比,后求其它量,这是解等差数列、等比数列的常用方法,其优点是思路简单、实用,缺点是有时计算较繁。
例6.(2009山东卷文)等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值; (11)当b=2时,记 1()4n nn b n N a ++=∈ 求数列{}n b 的前n 项和n T 解:因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.所以得n n S b r =+, 当1n =时,11a S b r ==+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-, 又因为{n a }为等比数列, 所以1r =-, 公比为b , 所以1(1)n n a b b -=- (2)当b=2时,11(1)2n n n a b b --=-=, 111114422n n n n n n n b a -++++===⨯ 则234123412222n n n T ++=++++ 3451212341222222n n n n n T +++=+++++ 相减,得23451212111112222222n n n n T +++=+++++-31211(1)112212212n n n -+⨯-++--12311422n n n +++=--所以113113322222n n n n n n T ++++=--=-【命题立意】:本题主要考查了等比数列的定义,通项公式,以及已知n S 求n a 的基本题型,并运用错位相减法求出一等比数列与一等差数列对应项乘积所得新数列的前n 项和n T .例7.(1)(2009安徽卷文)已知数列{} 的前n 项和,数列{}的前n项和(Ⅰ)求数列{}与{}的通项公式;(Ⅱ)设,证明:当且仅当n ≥3时,<【思路】由11 (1)(2)nn a n a s s n -=⎧=⎨-≥⎩可求出n n a b 和,这是数列中求通项的常用方法之一,在求出n n a b 和后,进而得到n c ,接下来用作差法来比较大小,这也是一常用方法 【解析】(1)由于114a s ==当2n ≥时, 221(22)[2(1)2(1)]4n n n a s s n n n n n -=-=+--+-=*4()m a n n N ∴=∈ 又当x n ≥时11(26)(2)n n n m m b T T b --=-----12n n b b -∴=∴数列{}n b 项与等比数列,其首项为1,公比为1211()2n n b -∴=(2)由(1)知22111116()2n n C a b n -=⋅=⋅2(1)121221116(1)()(1)21216()2n n n n n C n C n n +-+-+⋅+∴==⋅ 由21(1)112n n C n C n++<<得即22101n n n -->∴>3n ≥又3n ≥时2(1)212n n +<成立,即11n nC C +<由于0n C >恒成立. 因此,当且仅当3n ≥时, 1n n C C +<点评:对于等比数列求和问题要先分清数列的通项公式,对应好首项和公比求出最终结果即可例8.(1)设{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2b 4=a 3.分别求出{a n }及{b n }的前10项的和S 10及T 10;(2)在1与2之间插入n 个正数a 1,a 2,a 3……,a n ,使这n +2个数成等比数列;又在1与2之间插入n 个正数b 1,b 2,b 3,……,b n ,使这n +2个数成等差数列.记A n =a 1a 2a 3……a n ,B n =b 1+b 2+b 3+……+b n .(Ⅰ)求数列{A n }和{B n }的通项;(Ⅱ)当n ≥7时,比较A n 与B n 的大小,并证明你的结论。