数学必修3第三章概率复习
高中数学人教版必修三第3章 概率全章复习 课件(共17张PPT)
例题精讲之概率的性质 8.如图,在等腰直角△ABC中, (1)过直角顶点C在∠ACB内部随机地 作一条射线CM,与线段AB交于点M, 求AM<AC的概率; (2)若是直接在线段AB上随机找一点 C M,求AM<AC的概率。
答案:
2 (1)3/4;(2) 2
A
M
B
例题精讲之概率的性质
9、在圆x2+y2-2x-2y+1=0内随机投点, 求点与圆心距离小于1/3的概率。 解:圆化为标准形式为:(x-1)2+(y-1)2=1, 这是以点C(1,1)为圆心,半径为1的圆 设“点P与圆心的距离小于1/3”为事件A, 则A成立的对应的区域是以C为圆心,半 径为1/3的圆。 所以P(A)=1/9。
例题精讲之概率的性质 2.有一人在打靶中,连续射击2次, 事件“至少有1次中靶”的对立事 件是( ) C A.至多有1次中靶 B.2次都中靶 C.2次都不中靶 D.只有1次中靶
例题精讲之概率的性质
3、袋内分别有红、白、黑球各3、2、 1个,从中任取2个,则互斥而不对 D )。 立的两个事件是( A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球 C.至少有一个白球;一个白球一个黑 球 D.至少有一个白球;红、黑球各一个
必修3第3章 概率全章复习
一、基础知识归纳 设Ω有n个基本事件,随机事件A包含m 个基本事件,则事件A的概率P(A)=m/n. 对任何事件A:0≤P(A)≤1.
1、古典概率定义
事件A包含的基本事件数 P(A)= 基本事件总数 当且仅当所描述的基本事件的出 现是等可能性时才成立
2、简单概率事件关系
12.若以连续掷两次骰子分别得到的点数m、n 作为P点的坐标,则点P落在圆x2+y2=16内的 概率是 ________
必修3第三章-概率-知识点总结和强化练习:
高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
必修3第三章《概率》复习课
数学
年级
高二
备课组组长
主备人
授课时间
2020年 月 日
单元
(第几单元)第三章总复习
课题
必修3第三章《概率》复习课
教材分析
随机事件的概率,随机现象的产生,频率与概率的关系与区别
课程标准
要求
通过本节课学习使学生掌握必然事件,不可能事件,确定事件,随机事件,频数与频率,概率的六种基本性质,古典概型,几何概型,互斥事件,对立事件等内容。
课前3分钟教育
课前三分钟防疫情及爱国主义教育
课型
复习课
教学目标
1、随机事件的概率;随机现象的发生;频率与概率的区别。
2、利用古典概型与几何概型可以求一些随机事件的概率;随机模拟。
教学重点
应用概率解决实际问题
教学难点
应用概率解决实际问题
教学方法
讲授法,归纳、总结、讨论、交流
学习方法
自主学习,合作学习
教学用具
教材书,课件,班班通,粉笔
课时数
2课时
设计
意图
师生
活动
师生 们共 同讨 论实 例, 提出 自己
的观 点, 老师, 学生进行 讨论。
首先
学生
们对
每一
个实
例提
出自
己的
观点,
然后
在老
师的
引导
下解
决问
题。
首先
学生
们对
每一
个实
例提
出自
己的
观点,
题。
首先第三章的有关内容与定义提问的形式来让学生想起。
(1)频率本身是随机的,在试验前___________确定,做同样次数的重复试验得到事件的频率会不同。
北师大版高中数学必修3第三章概率小结与复习
1 a 1 的概率P= (3)使四棱锥M-ACBD的体积小于 = 3 a 3 1 1 1 3
(2)点M距离ABCD及面A1B1C1D1的距离都大于
a 3
6
a
的概率P=
3 2 1 aaa 3
a
aa
1 2
(三)、课堂练习:1、某人进行打靶练习,共射击10次, 其中有2次中10环,有3次环中9环,有4次中8环,有1次未 中靶,试计算此人中靶的概率,假设此人射击1次,试问中 靶的概率约为多大?中10环的概率约为多大?
20
205109 Nhomakorabea(四)、课堂小结:1.初步理解必然现象和随机 现象的概念;2.理解不可能事件、必然世间、随 机事件,基本事件以及基本事件空间,并能够写 出基本事件空间 ;3.初步理解概率和频率的概 念,能理解概率的统计定义;4.了解互斥事件和 互为对立事件的概念,能熟练使用概率的加法公 式;5.理解古典概型的定义,理解古典概型的两 个特征;6.概率的一般加法公式;7.理解几何 概型的条件,会应用几何概型的定义解答相应问 题。 (五)、作业布置:复习题三中A组4、5、7 B 组3 五、教学反思:
4
(二)、 知识运用探析 例1、下列说法正确的是( ) A 不可能事件的概率为0 B 概率为0 的事件一定是不可能事件 C 事件A、B的和事件的概率等于事件A、B的概率的和 D 如果A与B是互斥事件,那么 A 与 B 也是互斥事件 简析:[A] 例2、在一次数学考试中,小明的成绩在80分以上的概率是 0.18,在70~79分的概率是0.45,在60~69分的概率是0.09, 则小明此次考试几个的概率是多少? 解析:设小明的成绩在80分以上,70~79分,60~69分分别 为事件A,B,C, 由公式可知, 即小明此次考试及格的概率是0.82
人教b版数学必修三:第3章《概率》章末复习导学案(含答案)
章末复习课知识概览对点讲练知识点一互斥事件与对立事件互斥事件和对立事件,都是研究怎样从一些较简单的事件的概率的计算来推算较复杂事件的概率.应用互斥事件的概率加法公式解题,备受高考命题者的青睐,应用公式时一定要注意首先确定各个事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.对于较复杂事件的概率,可以转化为求对立事件的概率.例1某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4.(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率.点评“互斥”和“对立”事件容易搞混.互斥事件是指两事件不可能同时发生.对立事件是指互斥的两事件中必有一个发生.变式迁移1互相输血,小明是B型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?知识点二 古典概型古典概型是一种基本的概型,也是学习其它概型的基础,在高考题中,经常出现此种概型的题目,解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性.在应用公式P (A )=mn时,关键是正确理解基本事件与事件A 的关系,求出n 、m .例2 将一颗骰子先后抛掷2次,观察向上的点数,求(1)两次向上的点数之和为7或是4的倍数的概率;(2)以第一次向上的点数为横坐标x ,第二次向上的点数为纵坐标y 的点(x ,y )在圆x 2+y 2=20的内部(不包括边界)的概率.变式迁移2 任取两个一位数,观察结果,问: (1)共有多少种不同的结果?(2)取出的两数之和等于3的结果有多少种? (3)两数的和是3的概率是多少?知识点三 几何概型几何概型同古典概型一样,是概率中最具有代表性的试验概型之一,在高考命题中占有非常重要的位置.我们要理解并掌握几何概型试验的两个基本特征,即每次试验中基本事件的无限性和每个事件发生的等可能性,并能求简单的几何概型试验的概率.例3 甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.(保留小数点后三位)变式迁移3 在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率.课时作业一、选择题1.从装有2个红球和2个黑球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A .至少有1个黑球与都是黑球B .至少有1个黑球与至少有1个红球C .恰有1个黑球与都是黑球D .至少有1个黑球与都是红球2.一个电路板上装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63,则至少有一根熔断的概率是( )A .0.59B .0.85C .0.96D .0.743.将一个各个面上均涂有颜色的正方体锯成27个同样的大小的小正方体,从中任取一个小正方体,其中恰有3面涂有颜色的概率为( )A.19B.827C.427D.494.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混和,再任意排列成一行,则得到的数能被2或5整除的概率是( )A .0.2B .0.4C .0.6D .0.85.已知实数x 、y ,可以在0<x <2,0<y <2的条件下随机取数,那么取出的数对(x ,y )满足(x -1)2+(y -1)2<1的概率是( )A.π4B.4πC.π2D.π3 二、填空题6.某射击选手射击一次,击中10环、9环、8环的概率分别为0.3、0.4、0.1,则射手射击一次,击中环数小于8的概率是________.7.某市公交车每隔10分钟一班,在车站停1分钟,则乘客等车时间不超过7分钟的概率为________.8.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是________.三、解答题9.袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求: (1)3只全是红球的概率; (2)3只颜色全相同的概率; (3)3只颜色不全相同的概率; (4)3只颜色全不相同的概率.10.在圆x 2+y 2-2x -2y +1=0内随机投点,求点与圆心距离小于13的概率.章末复习课对点讲练例1 解 (1)记“他乘火车去”为事件A 1,“他乘轮船去”为事件A 2,“他乘汽车去”为事件A 3,“他乘飞机去”为事件A 4,这四个事件不可能同时发生,故它们彼此互斥.故P (A 1∪A 4)=P (A 1)+P (A 4)=0.3+0.4=0.7. 所以他乘火车或乘飞机去的概率为0.7.(2)设他不乘轮船去的概率为P ,则P =1-P (A 2) =1-0.2=0.8.变式迁移1 解 (1)对任一人,其血型为A 、B 、AB 、O 型血的事件分别记为A ′、B ′、C ′、D ′,它们是互斥的.由已知,有P (A ′)=0.28,P (B ′)=0.29,P (C ′)=0.08,P (D ′)=0.35.因为B 、O 型血可以输给B 型血的人,故“可以输给B 型血的人”为事件B ′∪D ′.根据互斥事件的加法公式,有P (B ′∪D ′)=P (B ′)+P (D ′)=0.29+0.35=0.64. (2)由于A 、AB 型血不能输给B 型血的人,故“不能输给B 型血的人”为事件A ′∪C ′,且P (A ′∪C ′)=P (A ′)+P (C ′)=0.28+0.08=0.36.答 任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36. 例2 解 (1)第一颗骰子先后抛掷2次,此问题中含有36个等可能的基本事件.记“两数之和为7”为事件A ,则事件A 中含有(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),6个基本事件.∴P (A )=636=16.记“两数之和是4的倍数”为事件B ,则事件B 中含有(1,3),(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6),9个基本事件,∴P (B )=936=14.∵事件A 与事件B 是互斥事件,∴所求概率为P (A )+P (B )=512.(2)记“点(x ,y )在圆x 2+y 2=20的内部”为事件C ,则事件C 中共含有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),11个基本事件,∴P (C )=1136.变式迁移2 解 (1)因为每次取出的数是0,1,2,…,9这十个数字中的一个,从而每次取数都有10种可能,所以两次取数共有等可能的结果总数为n =10×10=100(种).(2)记“两个数的和等于3”为事件A ,则事件A 的可能取法有第一次取的数分别为0,1,2,3,相应的第二次取的数分别为3,2,1,0,即事件A 包含4种结果.(3)事件A 的概率是P (A )=4100=0.04.例3 解 要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2,设A 为“两船都不需要等待码头空出”,则A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为右图中阴影部分,Ω为边长是24的正方形,由几何概型定义知, 所求概率为P (A ) =A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576≈0.879. 变式迁移3 解 如图所示,设事件A 是“作射线OC ,使∠AOC 和∠BOC 都不小于30°”,μA =90°-30°-30°=30°,μΩ=90°,由几何概型的计算公式,得P (A )=μA μΩ=30°90°=13.故所求“使得∠AOC 和∠BOC 都不小于30°”的概率是13.课时作业1.C [结合互斥事件和对立事件的定义知,对于C 中恰有1个黑球,即1黑1红,与都是黑球是互斥事件.但不是对立事件,因为还有2个都是红球的情况,故应选C.]2.C 3.B4.C [最后一位数有5种结果,而能被2或5整除的有3种.] 5.A 6.0.2解析 P =1-0.3-0.4-0.1=0.2. 7.45 8.π169.解 (1)记“3只全是红球”为事件A .从袋中有放回地抽取3次,每次取1只,共会出现3×3×3=27种等可能的结果,其中3只全是红球的结果只有一种,故事件A 的概率为P (A )=127.(2)“3只颜色全相同”只可能是这样三种情况:“3只全是红球”(设为事件A ),“3只全是黄球”(设为事件B ),“3只全是白球”(设为事件C ),且它们之间是互斥关系,故“3只颜色全相同”这个事件可记为A ∪B ∪C .由于事件A 、B 、C 不可能同时发生,因此它们是互斥事件;再由于红、黄、白球个数一样,故不难得到P (B )=P (C )=P (A )=127,故P (A ∪B ∪C )=P (A )+P (B )+P (C )=19.(3)3只颜色不全相同的情况较多,如有两只球同色而另一只球不同色,可以两只同红色或同黄色或同白色;或三只球颜色全不相同,这些情况一一考虑起来比较麻烦.现在记“3只颜色不全相同”为事件D ,则事件D 为“3只颜色全相同”,显然事件D 与D 是对立事件.∴P (D )=1-P (D )=1-19=89.(4)要使3只颜色全不相同,只可能是红、黄、白各一只,要分三次抽取,故3次抽到红、黄、白各一只的可能结果有3×2×1=6种,故3只颜色全不相同的概率为627=29.10.解 圆x 2+y 2-2x -2y +1=0可化为(x -1)2+(y -1)2=1,则圆的圆心C (1,1),半径r =1,点与圆心距离小于13的区域是以C (1,1)为圆心,以13为半径的圆内部分.故点与圆心距离小于13的概率为P =π⎝⎛⎭⎫132π·12=19.。
高中数学必修三第三章概率小结与复习导学案
高一数学《必修3》导学案63 编制:涂汉军审核:杨小玉高一____班第___组姓名________ __第三章概率小结与复习一、本章知识网络结构:二、重要知识回顾:1、概率的基本性质:P A B= ;(2)若A、B对立(1)A、B互斥⇔()P A P B=。
⇒()+()2、古典概型的概率公式P(A)= 。
3、几何概型:概率公式P(A)= 。
4、关于n选2的问题注意:(1)任抽2个;(2)逐一抽取不放回;(3)逐一抽取(放回)。
(它们的基本事件总数均不同)。
三、基础练习:1、从一批产品中取出3件产品,设A=“3件产品全不是次品”,B=“3件产品全是品”,C=“3件产品不全是次品”,则下列( )正确:A、A与C互斥B、B与C互斥C、任两个均互斥D、任两个均不互斥2、抛掷一枚均匀的硬币3次,出现一枚正面,二枚反面的概率是。
3、从分别写有1、2、3、4的4张卡片中:(1)任取2张,则这2张卡片上的数字恰好相邻的概率为;(2)逐一有放回地抽取2张,这2张卡片上的数字恰好相邻的概率为;(3)逐一不放回地抽取2张,这2张卡片上的数字恰好相邻的概率为。
4、若a是区间[8,20]内的任意一个整数,则对任意一个a使得函数28=-+y x x a 有零点的概率为。
5、某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为。
四、典型例题:例1(1)例2、一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.例3、从甲地到乙地有一班车在9:30到10:00到达,若某人从甲地坐该班车到乙地转乘9:45到10:15出发的汽车到丙地去,求他能赶上车的概率。
【课后作业】1、△ABC内取一点P,则△PAB与△ ABC的面积之比大于34的概率为________。
2020年高中数学必修三第三章《概率》章末复习课
2020年高中数学必修三第三章《概率》学习目标 1.理解频率与概率的关系,会用随机模拟的方法用频率估计概率;2.掌握随机事件的概率及其基本性质,能把较复杂的事件转化为较简单的互斥事件求概率;3.能区分古典概型与几何概型,并能求相应概率.1.频率与概率频率是概率的近似值,是随机的,随着试验的不同而变化;概率是多数次的试验中频率的稳定值,是一个常数,不要用一次或少数次试验中的频率来估计概率. 2.求较复杂概率的常用方法(1)将所求事件转化为彼此互斥的事件的和;(2)先求其对立事件的概率,然后再应用公式P (A )=1-P (A )求解. 3.古典概型概率的计算关键要分清基本事件的总数n 与事件A 包含的基本事件的个数m ,再利用公式P (A )=mn 求解.有时需要用列举法把基本事件一一列举出来,在列举时必须按某一顺序做到不重不漏. 4.几何概型事件概率的计算关键是求得事件A 所占区域和整个区域的几何测度,然后代入公式求解.类型一 频率与概率例1 对一批U 盘进行抽检,结果如下表:(1)(2)从这批U 盘中任意抽取一个是次品的概率约是多少?(3)为保证买到次品的顾客能够及时更换,要销售2 000个U 盘,至少需进货多少个U 盘? 解 (1)表中次品频率从左到右依次为0.06,0.04,0.025,0.017,0.02,0.018.(2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任意抽取一个是次品的概率约是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x (1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.反思与感悟概率是个常数.但除了几类概型,概率并不易知,故可用频率来估计.跟踪训练1某射击运动员为备战奥运会,在相同条件下进行射击训练,结果如下:(1)(2)假设该射击运动员射击了300次,则击中靶心的次数大约是多少?(3)假如该射击运动员射击了300次,前270次都击中靶心,那么后30次一定都击不中靶心吗?(4)假如该射击运动员射击了10次,前9次中有8次击中靶心,那么第10次一定击中靶心吗?解(1)由题意得,击中靶心的频率与0.9接近,故概率约为0.9.(2)击中靶心的次数大约为300×0.9=270.(3)由概率的意义,可知概率是个常数,不因试验次数的变化而变化.后30次中,每次击中靶心的概率仍是0.9,所以不一定不击中靶心.(4)不一定.类型二互斥事件与对立事件例2甲、乙两人参加普法知识竞赛,共有5个不同题目,选择题3个,判断题2个,甲、乙两人各抽一题.(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?解把3个选择题记为x1,x2,x3,2个判断题记为p1,p2.“甲抽到选择题,乙抽到判断题”的情况有:(x1,p1),(x1,p2),(x2,p1),(x2,p2),(x3,p1),(x3,p2),共6种;“甲抽到判断题,乙抽到选择题”的情况有:(p1,x1),(p1,x2),(p1,x3),(p2,x1),(p2,x2),(p2,x3),共6种;“甲、乙都抽到选择题”的情况有:(x1,x2),(x1,x3),(x2,x1),(x2,x3),(x3,x1),(x3,x2),共6种;“甲、乙都抽到判断题”的情况有:(p1,p2),(p2,p1),共2种.因此基本事件的总数为6+6+6+2=20.(1)“甲抽到选择题,乙抽到判断题”的概率为620=310,“甲抽到判断题,乙抽到选择题”的概率为620=310,故“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率为310+3 10=3 5.(2)“甲、乙两人都抽到判断题”的概率为220=110,故“甲、乙两人至少有一人抽到选择题”的概率为1-110=910.反思与感悟 在求有关事件的概率时,若从正面分析,包含的事件较多或较烦琐,而其反面却较容易入手,这时,可以利用对立事件求解.跟踪训练2 有4张面值相同的债券,其中有2张中奖债券.(1)有放回地从债券中任取2次,每次取出1张,计算取出的2次中至少有1张是中奖债券的概率;(2)无放回地从债券中任取2次,每次取出1张,计算取出的2次中至少有1张是中奖债券的概率.解 (1)把4张债券分别编号1,2,3,4,其中3,4是中奖债券,用(2,3)表示“第一次取出2号债券,第二次取出3号债券”,所有可能的结果组成的基本事件空间为Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}. 用C 表示“有放回地从债券中任取2次,取出的2张都不是中奖债券”,则C 表示“有放回地从债券中任取2次,取出的2张中至少有1张是中奖债券”,则C ={(1,1),(1,2),(2,1),(2,2)},所以P (C )=1-P (C )=1-416=34.(2)无放回地从债券中任取2次,所有可能的结果组成的基本事件空间Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}.用D 表示“无放回地从债券中任取2次,取出的2张都不是中奖债券”,则D 表示“无放回地从债券中任取2次,取出的2张至少有1张是中奖债券”, 则P (D )=1-P (D )=1-212=56.类型三 古典概型与几何概型例3 某产品的三个质量指标分别为x ,y ,z ,用综合指标S =x +y +z 评价该产品的等级.若S ≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(1)利用上表提供的样本数据估计该批产品的一等品率; (2)在该样本的一等品中,随机抽取2件产品,①用产品编号列出所有可能的结果;②设事件B 为“在取出的2件产品中,每件产品的综合指标S 都等于4”,求事件B 发生的概率.解 (1)计算10件产品的综合指标S ,如下表:其中S ≤4的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的一等品率为610=0.6,从而可估计该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A 1,A 2},{A 1,A 4},{A 1,A 5},{A 1,A 7},{A 1,A 9},{A 2,A 4},{A 2,A 5},{A 2,A 7},{A 2,A 9},{A 4,A 5},{A 4,A 7},{A 4,A 9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种.②在该样本的一等品中,综合指标S 等于4的产品编号分别为A 1,A 2,A 5,A 7,则事件B 发生的所有可能结果为{A 1,A 2},{A 1,A 5},{A 1,A 7},{A 2,A 5},{A 2,A 7},{A 5,A 7},共6种. 所以P (B )=615=25.反思与感悟 古典概型与几何概型的共同点是各基本事件的等可能性;不同点是前者总的基本事件有限,后者无限.跟踪训练3 如图所示的大正方形面积为13,四个全等的直角三角形围成一个阴影小正方形,较短的直角边长为2,向大正方形内投掷飞镖,则飞镖落在阴影部分的概率为( )A.413B.313C.213D.113 答案 D解析 设阴影小正方形边长为x ,则在直角三角形中 有22+(x +2)2=(13)2, 解得x =1或x =-5(舍去),∴阴影部分面积为1,∴飞镖落在阴影部分的概率为113. 类型四 列举法与数形结合例4 三个人玩传球游戏,每个人都等可能地传给另两人(不自传),若从A 发球算起,经4次传球又回到A 手中的概率是多少?解 记三人为A 、B 、C ,则4次传球的所有可能可用树状图方式列出:如图.每一个分支为一种传球方案,则基本事件的总数为16,而又回到A 手中的事件个数为6,根据古典概型概率公式得P =616=38.反思与感悟 事件个数没有很明显的规律,而且涉及的基本事件又不是太多时,我们可借助树状图直观地将其表示出来,有利于条理地思考和表达.跟踪训练4 设M ={1,2,3,4,5,6,7,8,9,10},任取x ,y ∈M ,x ≠y .求x +y 是3的倍数的概率. 解 利用平面直角坐标系列举,如图所示.由此可知,基本事件总数n =1+2+3+4+5+6+7+8+9=45.而x +y 是3的倍数的情况有m =1+2+4+4+3+1=15(种).故所求事件的概率m n =13.1.下列事件中,随机事件的个数为( )①在某学校明年的田径运动会上,学生张涛获得100米短跑冠军; ②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯; ③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4 ℃时结冰. A .1 B .2 C .3 D .4 答案 C解析 ①在某学校明年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4 ℃时结冰是不可能事件.故选C.2.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) A .对立事件 B .互斥但不对立事件 C .不可能事件 D .必然事件答案 B解析 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.3.下列试验属于古典概型的有( )①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,观察球的颜色; ②在公交车站候车不超过10分钟的概率;③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数; ④从一桶水中取出100 mL ,观察是否含有大肠杆菌. A .1个 B .2个 C .3个 D .4个 答案 A解析 古典概型的两个基本特征是有限性和等可能性.①符合两个特征;对于②和④,基本事件的个数有无限多个;对于③,出现“两正”“两反”与“一正一反”的可能性并不相等,故选A.4.甲、乙两人随意入住两间空房,则甲、乙两人各住一间房的概率是( ) A.13 B.14 C.12 D .无法确定 答案 C解析 共有4个事件“甲、乙同住房间A ,甲、乙同住房间B ,甲住A 乙住B ,甲住B 乙住A ”,两人各住一个房间共有两种情况,所以甲、乙两人各住一间房的概率是12.5.任取一个三位正整数N ,则对数log 2N 是一个正整数的概率是( ) A.1225 B.3899 C.1300 D.1450 答案 C解析 三位正整数有100~999,共900个,而满足log 2N 为正整数的N 有27,28,29,共3个,故所求事件的概率为3900=1300.1.两个事件互斥,它们未必对立;反之,两个事件对立,它们一定互斥.若事件A 1,A 2,A 3,…,A n 彼此互斥,则P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ). 2.关于古典概型,必须要解决好下面三个方面的问题: (1)本试验是不是等可能的? (2)本试验的基本事件有多少个?(3)事件A 是什么,它包含多少个基本事件? 只有回答好这三个方面的问题,解题才不会出错.3.几何概型的试验中,事件A 的概率P (A )只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关.求试验为几何概型的概率,关键是求得事件所占区域和整个区域Ω的几何度量,然后代入公式即可求解. 4.关于随机数与随机模拟试验问题随机模拟试验是研究随机事件概率的重要方法,用计算器或计算机模拟试验,首先要把实际问题转化为可以用随机数来模拟试验结果的量,我们可以从以下两个方面考虑: (1)确定产生随机数组数,如长度型、角度型(一维)一组,面积型(二维)二组.(2)由所有基本事件总体对应区域确定产生随机数的范围,由事件A 发生的条件确定随机数应满足的关系式.40分钟课时作业一、选择题1.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的( ) A .①② B .①③ C .②③ D .①②③答案 A解析 从装有红球、白球和黑球各2个的口袋内一次取出2个球,基本事件为:白白,白红,白黑,红红,红黑,黑黑.除“两球都不是白球”外,还有其他事件如白红可能发生,故①与“两球都为白球”互斥但不对立.②符合,理由同上.③两球至少有一个白球,其中包含两个都是白球,故不互斥.2.袋中装白球和黑球各3个,从中任取2个,则至多有一个黑球的概率是( ) A.15 B.45 C.13 D.12答案 B解析 把白球编号为1,3,5,黑球编号为2,4,6.从中任取2个,基本事件为12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共15个.其中至多一个黑球的事件有12个.由古典概型公式得P =1215=45.3.掷两颗均匀的骰子,则点数之和为5的概率等于( ) A.118 B.19 C.16 D.112 答案 B解析 基本事件36个,其中点数之和为5的有(1,4),(2,3),(3,2),(4,1),故概率为436=19.4.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,则恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 答案 B解析 用列举法列出基本事件总数为10.事件“恰有一件次品”包含的基本事件个数为6,则P =610=0.6.5.某运动会期间,从来自A 大学的2名志愿者和来自B 大学的4名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A 大学志愿者的概率是( ) A.115 B.25 C.35 D.1415答案 C解析 用列举法.基本事件总数为15,事件包括的基本事件数为9,∴P =915=35.6.从正方形的四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) A.15 B.25 C.35 D.45答案 C解析 共可组成10条线段,其中小于边长的有4条,故不小于边长的有6条,所以不少于边长的概率为35.7.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8 答案 B解析 由几何概型公式知,所求概率为半圆的面积与矩形的面积之比,则P =12π·122=π4,故选B. 二、填空题8.从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为________. 答案 25解析 基本事件有ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,共10个.其中有a 的事件的个数为4个,故所求概率为P =410=25.9.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为________. 答案 3510.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 答案 23解析 两本数学书编号为1,2,语文书编号为3,则共有123,132,231,213,312,321,6个基本事件.其中2本数学书相邻的事件有4个,故所求概率P =46=23.11.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________. 答案 13三、解答题12.如图所示,A 是圆上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,求弦AA ′的长度大于等于半径的概率.解 如图,当AA ′的长度等于半径时,∠AOA ′=60°, 使AA ′大于半径的弧度为240°, 所以P =240°360°=23.13.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵孵出8 513条鱼苗,根据概率的统计定义解答下列问题:(1)这种鱼卵的孵化概率(孵化率)是多少? (2)30 000个鱼卵大约能孵化出多少条鱼苗?(3)要孵化出5 000条鱼苗,大约需准备多少个鱼卵(精确到百位)?解 (1)这种鱼卵的孵化频率为8 51310 000=0.851 3,把它近似作为孵化的概率,即这种鱼卵的孵化概率是0.851 3.(2)设能孵化出x 条鱼苗,则x30 000=0.851 3,所以x =25 539,即30 000个鱼卵大约能孵化出25 539条鱼苗.(3)设大约需准备y 个鱼卵,则5 000y =0.851 3,所以y ≈5 900,即大约需准备5 900个鱼卵.14.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c . (1)求“抽取的卡片上的数字满足a +b =c ”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解 (1)由题意,得(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3, 1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.第 11 页 共 11 页 (2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89. 因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.。
高中数学必修三第三章《概率》章节练习题(含答案)
高中数学必修三第三章《概率》章节练习题(含答案)高中数学必修三第三章《概率》章节练题一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有()。
A.1个B.2个C.3个D.4个2.任取两个不同的1位正整数,它们的和是8的概率是()。
A。
B。
C。
D。
补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()。
A。
B。
C。
D。
3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手。
若从中任选3人,则选出的火炬手的编号相连的概率为()。
A。
B。
C。
D。
4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为()。
A。
B。
C。
D。
5.在棱长为a的正方体ABCD-A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为()。
A。
B。
C。
D。
6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是()。
A。
P1=P2 B。
P1>P2 C。
P1<P2 D。
无法比较二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为()。
8.已知函数f(x)=log2x,x∈R。
在区间[1,8]上任取一点x,使f(x)≥-2的概率为()。
补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是()。
A。
B。
C。
D。
9.如图,利用随机模拟的方法可以估计图中由曲线y=√(x)与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组[0,1]的均匀随机数,a=RAND,b=RAND;②做变换,令x=4a,y=√(b);③判断(x,y)是否在阴影部分中,若是则计数器加1;④重复上述步骤n次,估计S≈n×计数器/.则利用上述方法,当n=时,估计得到的阴影部分的面积S≈()。
高中数学必修三《第3章 概率》归纳整合课件
生是等可能的.
网络构建
专题归纳
解读第高十四考页,编辑于星期高日:考二真十三题点 四十五分。
用 M 表示“A1 被选中”这一事件,则 M={(A1,B1,C1),(A1, B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1, B3,C2)},即事件 M 由 6 个基本事件组成.故 P(M)=168=13. (2)用 N 表示“B1 和 C1 不全被选中”这一事件,则其对立事 件 N 表示“B1 和 C1 全被选中”这一事件. 因为 N ={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},即 事件 N 由 3 个基本事件组成,所以 P( N )=138=16. 由对立事件的概率公式得
1 2
709040=0.897;23
608080=0.896.
所 以 从 左到 右 依次 填 入: 1,0.8,0.9,0.857,0.892,0.897, 0.898,
0.897,0.896.
(2)由于每批种子的发芽的频率稳定在 0.897 附近,所以估计该油 菜子发芽的概率约为 0.897.
网络构建
其中直径在区间[1.48,1.52]内的零件为一等品. (1)从上述10个零件中,随机抽取1个,求这个零件为一等品的 概率. (2)从一等品零件中,随机抽取2个: ①用零件的编号列出所有可能的抽取结果; ②求这2个零件直径相等的概率.
网络构建
专题归纳
解读第高十一考页,编辑于星期高日:考二真十三题点 四十五分。
一切可能的结果组成的基本事件空间Ω={(A1,B1,C1), (A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1) ,(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2, C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1 ,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3, B3,C1),(A3,B3,C2)},即由18个基本事件组成.由于每 一个基本事件被抽取的机会均等,因此这些基本事件的发
高中数学必修3第三章概率全章复习.
概率全章复习一、基础知识梳理(一)随机事件的概率随机事件的概率及概率的意义1、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数为事件A出现的频数;称事件A出现的比例为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(A∪B=P(A+P(B;若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B= P(A+P(B=1,于是有P(A=1—P(B2、概率的基本性质:(1)必然事件概率为1,不可能事件概率为0,因此0≤P(A≤1;(2)当事件A与B互斥时,满足加法公式:P(A∪B=P(A+ P(B;(3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B=P(A+ P(B=1,于是有P(A=1—P(B;(4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。
必修3第三章概率集中处理1234
必修3第三章概率复习题一、 选择题1. 1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是( )A.3个都是正品B.至少有一个是次品C.3个都是次品D.至少有一个是正品 2.下列事件中,不可能发生的事件是 ( )A.三角形的内角和为180°B.三角形中大边对的角也较大C.锐角三角形中两个锐角的和小于90°D.三角形中任意两边之和大于第三边3.下面四个事件: ①明天天晴;②常温下,锡条能够熔化;③自由落下的物体作匀加速直线运动;④函数 xy a =(0a >,且1a ≠)在定义域上为增函数.其中随机事件的个数为 ( )A. 0B. 1C. 2D. 34.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为( ) A .2 B .3 C .4 D .65. 某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是 ( ) A.至多有一次中靶 B.两次都中靶 C.两次都不中靶 D.只有一次中靶6.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中是互斥事件 :⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球. 的个数为( ) A.0 B.1 C.2 D.3 7.下列说法中正确的是( )A.事件A 、B 至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件也是互斥事件D.互斥事件不一定是对立事件,而对立事件一定是互斥事件8. 从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,下列既是互斥事件又是对立事件的是 ( )A 、恰好有1件次品和恰好有2件次品B 、至少有1件次品和全是次品C 、至少有1件正品和至少有1件次品D 、至少有1件次品和全是正品 9.同时掷3枚硬币,那么互为对立事件的是( )A.至少有1枚正面和最多有1枚正面B.最多1枚正面和恰有2枚正面C.至多1枚正面和至少有2枚正面D.至少有2枚正面和恰有1枚正面6.有两双不同的袜子,任取2只恰好成双的概率是( )A.16B.14C.13D.127.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12B.13C.14D.158. 用1,2,3组成无重复数字的三位数,且这些数被2整除的概率为 ( )A. 15B. 14C. 13D. 359. 袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为A. 37B. 710C. 110D. 310( )4.人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( ) A.2π B.1πC.23D.135.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=25外的概率是 ( ) A.536B.712C.512D.137.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a的概率为 ( )A.22 B.22π C.16D.16π 8.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.39.一枚伍分硬币连掷3次,只有1次正面向上的概率为 ( ) A.38 B.25 C. 13 D.1410.袋中有5个球,其中3个是红球,2个是白球.从中任取2个球,这2个球都是红球的概率为 A. 1120 B. 310 C. 710 D. 37( )1、从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,下列既是互斥事件又是对立事件的是 ( )A 、恰好有1件次品和恰好有2件次品B 、至少有1件次品和全是次品C 、至少有1件正品和至少有1件次品D 、至少有1件次品和全是正品 2、甲、乙二人下棋,甲获胜的概率是30%,两人下成和棋的概率为50%,则甲不输的概率是( ) A. 30% B. 20% C. 80% D. 以上都不对3、在500mL 的水中有一个草履虫,现从中随机取出2mL 水样放到显微镜下观察,则发现草履虫的概率是( ) A. 0.5 B. 0.4 C. 0.004 D. 不能确定4、同时掷3枚硬币,那么互为对立事件的是( )A.至少有1枚正面和最多有1枚正面B.最多1枚正面和恰有2枚正面C.至多1枚正面和至少有2枚正面D.至少有2枚正面和恰有1枚正面 5、平面上画有等距的平行线组,间距为(0)a a >,把一枚半径为(2)r r a <的硬币随机掷在平面上,硬币与平行线相交的概率 [ ] A 、2a r a - B 、2a r a - C 、a r a - D 、2ra 6、从1、2、3、4、5、6这6个数字中,不放回地任取两数,两数都是偶数的概率是[ ]A.12B.13C.14D.157、在区间(0,1)中,随机的取出两数,其和小于12的概率 [ ] A 、18 B 、14 C 、34 D 、788、现有五个球分别记为A 、C 、J 、K 、S ,随机放进三个盒子,每个盒子只能放一个球,则K 或S 在盒中的概率是( )A.101B.53C.103D.109 9、盒中有10个大小、形状完全相同的小球,其中8个白球、2个红球,则从中任取2球,至少有1个白球的概率是( ) A.4445B.15C.145D.899010、在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率是( ) A.21B.34C.41D. 2311、若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=25外的概率是 ( ) A.536B.712C.512D.131.任取两个不同的1位正整数,它们的和是8的概率是( ).A .241 B .61 C .83D .1212.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ). A .31 B .π2C .21D .323.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为( ).A .103B .107C .53D .52 4.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ).A .103 B .51 C .101 D .1215.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ).A .12513 B .12516 C .12518 D .125196.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( ).A .21 B .31 C .41 D .1617.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ). A .51B .52 C .53D .54 8.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( ).A .61B .31 C .21 D .329.抛掷一骰子,观察出现的点数,设事件A 为“出现1点”,事件B 为“出现2点”.已知P (A )=P (B )=61,则“出现1点或2点”的概率为( ). A .21 B .31C .61 D .121二、填空题1.下列事件中:①若x R ∈,则20x <;②没有水分,种子不会发芽; ③刘翔在2008年奥运会,力挫群雄,荣获男子110米栏冠军; ④若两平面//αβ,m α⊂且n β⊂,则//m n .其中_________是必然事件,_________是随机事件.2.若事件A 、B 是对立事件,则P(A)+P(B)=________________.3..在放有5个红球,4个黑球和3个白球的袋中.任意取出3球,取出的球全是同色球的概率为________.1.先后抛掷两枚骰子,骰子朝上的面的点数分别为x ,y ,则满足log2xy =1的概率为________.2.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.3.一个投针实验的模板如图所示,AB 为半圆O 的直径,点C 在半圆上 且CA =CB.现向模板内任投一针, 则该针恰好落在△ABC 内(图中的阴影区域)的概率是________.4.某同学军训时打靶一次击中10环、9环、8环的概率分别是0.3,0.3,0.2,那么他射击一次不够8环的概率是___2、在区间(0,1)中随机地取出两个数,则两数之和大于23的概率是______________13、向面积为S 的△ABC 内任投一点P ,则△PBC 的面积小于2S的概率是_________10.某人午觉醒来,发觉表停了,他打开收音机想听电台报时,假定电台每小时报时一次,则他等待的时间短于10分钟的概率为___________.11.有A ,B ,C 三台机床,一个工人一分钟内可照看其中任意两台,在一分钟内A 未被照看的概率是 .12.抛掷一枚均匀的骰子(每面分别有1~6点),设事件A 为“出现1点”,事件B 为“出现2点”,则“出现的点数大于2”的概率为.13.已知函数f (x )=log 2x , x ∈⎥⎦⎤⎢⎣⎡221 ,,在区间⎥⎦⎤⎢⎣⎡221 ,上任取一点x 0,使f (x 0)≥0的概率为.14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.15.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b.则a+b能被3整除的概率为.三、解答题1.如图,墙上挂着一块边长为16cm的正方形木板,上面画了大、中、小三个同心圆,半径分别为2cm,4cm,6cm,某人站在3m处向木板投镖,射击到边线上或没射中木板都不算,可重新投一次,问:(1)投中大圆的概率是多少?(2)投中小圆和中圆形成的圆环的概率是多少?(3)投中大圆之外的概率是多少?2.一个不透明的口袋中装有大小形状相同的1个白球和3个编有不同号码的黑球,从中任意摸出2个球.(1)写出所有的基本事件;(2)求事件“摸出的2个球是黑球”包括多少个基本事件?3.先后抛掷两枚质地均匀的骰子,求:(1)点数之和是4的倍数的概率;(2)点数之和大于5且小于10的概率.4.一个盒子中放有5个完全相同的小球,其上分别标有号码1,2,3,4,5.从中任取一个,记下号码后放回.再取出1个,记下号码后放回,按顺序记录为(x,y),求所得两球的和为6的概率.5.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)A:取出的两球都是白球;(2)B:取出的两球1个是白球,另1个是红球;(3)C:取出的两球中至少有一个白球.6.从装有编号分别为a,b的2个黄球和编号分别为c,d的2个红球的袋中无放回地摸球,每次任摸一球,求:(1)第1次摸到黄球的概率;(2)第2摸到黄球的概率.(1)求至多2人排队等候的概率;(2)求至少2人排队等候的概率.在一个口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1.若从袋中摸出5个球,那么摸出的五个球所标数字之和小于2或大于的概率是多少?18.盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率, ⑴取到的2只都是次品; ⑵取到的2只中恰有一只次品.19.5位同学参加百米赛跑,赛场共有5条跑道.其中甲同学恰有第一道,乙同学恰好排在第二道的概率是多少?20在1万张有奖储蓄的奖券中,设有一等奖1个,二等奖5个,三等奖10个.从中购买一张奖券.⑴求分别获得一等奖、二等奖、三等奖的概率; ⑵求购买一张奖券就中奖的概率.21.一个箱子中有红、黄、白三色球各一只,从中每次任取一只,有放回地抽取3次.求: ⑴3只全是红球的概率; (2)3只颜色全相同的概率; (3)3只颜色不全相同的概率; (4)3只颜色全不相同的概率.5、设b 和c 分别是先后抛掷一枚骰子得到的点数,求方程x²+bx +c =0有实数根的概率16、将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“3x y +≤”的概率; (2)求事件“2x y -=”的概率.17、甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白三种颜色的球各2个,从两个盒子中各取1个球。
高中数学必修3第三章:概率3.2古典概型
验,如果这2个元素没有顺序,那么这次试验共有
nn-1 2
个
基本事件;如果这2个元素有顺序,那么这次试验有n(n-1)
个基本事件.可以作为结论记住(不要求证明),在选择题或
填空题中可以直接应用.
计算基本事件个数的常用法
1.列举法 列举法也称枚举法.对于一些情境比较简单,基本事件 个数不是很多的概率问题,计算时只需一一列举即可得出随 机事件所含的基本事件数.但列举时必须按一定顺序,做到 不重不漏.
球,d,e为黑球.
列表如下:
a
b
c
d
e
a
(a,b) (a,c) (a,d) (a,e)
b (b,a)
(b,c) (b,d) (b,e)
c (c,a) (c,b)
(c,d) (c,e)
d (d,a) (d,b) (d,c)
(d,e)
e (e,a) (e,b) (e,c) (e,d)
由于每次取两个球,每次所取两个球不相同,而摸(b,a) 与(a,b)是相同的事件,故共有10个基本事件.
新课引入 “三门问题”是美国一个经典的电视游戏节目,内容如 下:现有三扇门,其中一扇后面有一辆汽车,另外两扇门后 各有一只羊,参赛者选中车门就得车,选中羊门就得羊,首 先参赛者选一扇门,然.后主持人故意打开剩下两门中的一 扇羊门(主持人知道车在何处),接着主持人给参赛者选择机 会,是坚持原门还是换另一扇门?
[解析] 第1个概率模型不是古典概型,因为从区间[1,10] 内任意取出一个数,有无数个对象可取,所以不满足“有限 性”.
第2个概率模型是古典概型,因为试验结果只有10个, 而且每个数被抽到的可能性相等,即满足有限性和等可能 性;
第3个概率模型不是古典概型,而是以后将学的几何概 型;
人教版高中数学必修三 第三章 概率§1.4 古典概型(Classical Probability)
§1.4 古典概型(Classical Probability)一、排列与组合公式的复习1. 两大计数原理: 乘法原理,加法原理(简单介绍)。
2. 排列、组合的定义及计算公式(1)排列:())( ),1()2)(1(!! n r r n n n n r n n A r n ≤+---=-= , 特例,全排列!n A n n =。
(2)组合: )( ,!)1()2)(1(!n r r r n n n n r A r n C r n r n≤+---==⎪⎪⎭⎫ ⎝⎛= 特例,1,0==-n r n n r n C C C 。
3. 从n 个不同的球中摸取r 个球,(1)有放回计序(重复排列):rn 种取法;(2)无放回⎪⎩⎪⎨⎧种取法;不计序(组合):种取法;计序(排列):r n r n C A 二、 古典概型(等可能概型)(Classical probability)1. 古典概型 “概型”是指某种概率模型。
“古典概型”是一种最简单、最直观的概率模型。
它具有下述特征:(1)样本空间的元素(基本事件)只有有限个,不妨设为n 个,记为{}n e e e S ,,,21 =;(2)每个基本事件出现的可能性是相等的,即有{}{}{})()()(21n e P e P e P === 。
称这种数学模型为古典概型(Classical probability)或等可能概型。
它在概率论中具有非常重要的地位,一方面它比较简单,既直观,又容易理解,另一方面它概括了许多实际内容,有很广泛的应用。
2. 等可能概型中事件概率的计算:设在古典概型中,试验E 共有n 个基本事件,事件A 包含了k 个基本事件,则事件A 的概率为基本事件总数的有利事件数中的基本事件总数中所含的基本事件数A S A n k A P ===)(. (A 中所含的基本事件数,习惯上常常称为是A 的有利事件数),不难验证,上述的概率)(∙P 的确具有非负性、规范性和有限可加性.)(【注】讲课时可以简单证明这个公式)求解古典概率问题,一般要做好三方面的工作:一是判明问题性质,分辨所解的问题,是不是古典概率问题.如果问题所及的试验,具有以下两个基本特征:(1)试验的样本空间的元素只有有限个;(2)试验中每个样本点出现的可能性相同.那么,我们就可断定它是一个古典概率问题.二是掌握古典概率的计算公式.如果样本空间包含的样本点的总数为n ,事件A 包含的样本点数(即A 的有利场合的数目)为k ,那么事件A 的概率是 P(A)=n k =样本点总数包含的样本点数事件A =样本点总数的有利场合数A . 三是根据公式要求,确定n 和k 的数值. 这是解题的关键性一步,计算方法灵活多变,没有一个固定的模式. 古典概率一种解法大体都是围绕n 和k 的计算而展开的.三、几类基本问题:抛硬币、掷骰(t óu)子、摸球、取数等随机试验,在概率问题的研究中,有着十分重要的意义. 一方面,这些随机试验,是人们从大量的随机现象中筛选出来的理想化的概率模型.它们的内容生动形象,结构清楚明确,富有直观性和典型性,便于深入浅出地反映事物的本质,揭示事物的规律. 另一方面,这种模型化的处理方法,思想活泼,应用广泛,具有极大的普遍性,不少复杂问题的解决,常常可以归结为某种简单的模型. 因此,有目的地考察并掌握若干常见的概率模型,有助于我们举一反三,触类旁通,丰富解题的技能和技巧,从根本上提高解答概率题的能力.本部分主要讨论古典概率中的五类基本问题(摸球问题、分球入盒问题、随机取数问题、抽签问题和分组问题),给出它们的一般解法,指出它们的典型意义,介绍它们的常见应用.例1(摸球问题) 一袋中有8个大小形状相同的球,其中5个黑色球,三个白色球。
高中数学必修(3)第三章概率(知识点汇总)
第三章 概率(知识点汇总)1.事件(1)必然事件:在一定条件下必然要发生的事件.(2)不可能事件:在一定条件下不可能发生的事件.(3)确定事件:必然事件和不可能事件统称在一定条件下的确定事件。
(4)随机事件:在一定条件下可能发生也可能不发生的事件.(5)基本事件:在试验中不能再分的最简单的随机事件,其他事件可以由它们来表示,这样的事件称为基本事件。
(6)等可能性事件:如果一次试验中有n 个可能的结果(基本事件),且每个基本事件出现的可能性都相等,即每个基本事件的概率都是n1,这些事件叫等可能性事件。
2.事件的关系与运算(1)事件的包含:若事件A 发生,事件B 一定发生,则称事件A 包含于事件B (或事件B 包含事件A ),记作:若B A ⊆(或A B ⊇);若B A ⊆且A B ⊆,则事件A 与事件B 相等;(2)事件的并(或和):若事件A 和事件B 至少有一个发生所构成的事件C ,称为事件A 与B 的并(或和),记作:B A )(或B A +;(3)事件的交(或积):若事件C 发生当且仅当事件A 且事件B 发生,则称至少有一个发生所构成的,称事件C 为事件A 与B 的交事件(或积事件),记作:B A C B A C ⋅==或 ;(4)互斥事件:若A 与B 不可能同时发生,即B A 为不可能事件,那么事件A 与事件B 互斥。
从集合角度看,n 个事件彼此互斥,是指各个事件所含的结果组成的集合彼此不相交。
一般地,如果事件n A A A ,,,21 中的任何两个都是互斥事件,那么就说事件n A A A ,,,21 彼此互斥;(5)对立事件:若A ∩B 为不可能事件,A ∪B 为必然事件,那么事件A 与B 互为对立事件,A 的对立事件记作A ,B 的对立事件记作B ;从集合角度看,两个事件对立时,两个事件所含的结果组成的集合即为事件的全体(全集)。
(6)对立事件与互斥事件的关系:两个互斥事件不一定是对立事件,而两个对立事件必是互斥事件,即两个事件对立是这两个事件互斥的充分不必要条件3.频率与概率(1)频率的定义:在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数m 称为事件A 发生的频数,比值nm 为事件A 出现的频率,并记作)(A f n ;(2)概率的定义:一般地,在大量重复进行同一试验时,事件A 发生的频率nm总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作)(A P ;(3)注意以下几点:①求一个事件的概率的基本方法是通过大量的重复试验;②只有当频率在某个常数附近摆动时,这个常数才叫做事件的概率; ③概率是频率的稳定值,而频率是概率的近似值;④概率反映了随机事件发生的可能性的大小;⑤必然事件的概率为1,不可能事件的概率为0.因此0≤P (A )≤1;4.概率的性质及运算(1)对于任何事件的概率的范围是:0≤P (A )≤1,其中不可能事件的概率是P (A )=0,必然事件的概率是P (A )=1;(2)当事件A 与事件B 互斥时,A ∪B 的频率fn(A ∪B)=fn(A)+fn(B),由此得到概率的加法公式:如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B );如果n A A A ,,,21 彼此互斥,那么)()()()(2121n n A P A P A P A A A P +++= ;(3)当事件A 与事件B 是互为对立事件时,有P (A )=1-P (B );(4)事件A 与其对立事件A 所发生的概率关系是1)()(=+A P A P ;(5)在公式P (A ∪B )=P (A )+P (B )中,前提条件是A 与B 互斥,如果A 与B 不互斥,则应为)()()()(B A P B P A P B A P -+=;1、等可能基本事件的特点:(1)基本事件是不能再分的事件,任何事件(不包括不可能事件)都可以表示成基本事件的和;(2)任何两个基本事件都是互斥的;(3)每个基本事件的发生都是等可能的;2、基本事件数的探求方法:(1)列举法;(2)树状图法;(3)列表法;3、古典概型(1)满足以下两个条件的随机试验的概率模型称为古典概型:①有限性:在一次试验中,所有可能出现的基本事件只有有限个;②等可能性:每个基本事件的发生都是等可能的;(2)如果一次试验的等可能基本事件共有n 个,随机事件A 包含了其中的m 个,那么事件A 发生的概率为n m A P =)(;或理解为P (A )=,A 包含的基本事件数总体的基本事件个数4、几何概型如果每个事件发生的概率只与构成该事件的区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,则称这样的概率模型为几何概率模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、事件的关系和运算
(二)和事件A ∪B : 表示事件A、B中至少有一个发生的事件.
P( A B) P( A) P( B) (1)当A、B是互斥事件时:
(2)当A、B是对立事件时:P( A B) P( A) P( B) 1
即:P ( A) 1 P ( A)
求法:
B
(2)三角形AOP为锐角三角形的概率
11 甲乙二人相约定6:00-6:30在约定地点会面, 先到的人要等候另一人10分钟后,方可离开。求 甲乙二人能会面的概率。
解:设甲、乙两人分别于6点x分、y分到达地约 定地点。则(x,y)表示了所有的可能结果。 y 如图,它是一个边长为30的正方形。 设事件A是甲乙二人会面, 30 则仅当|x-y|≤10时事件A发生。 对应的区域是图中阴影部分。
几何概型 (1) 试验总所有可能出现的基本事件有无限个;
(2) 每个基本事件出现的可能性相等
我们将具有这两个特点的概率模型称为几何概 率模型,简称几何概型。
在几何概型中,事件A的概率计算公式如下 :
பைடு நூலகம்
P(A)=
构成事件A的区域长度(面积或体积)
试验的全部结果所构成的区域长度(面积或体积)
当且仅当所描述的基本事件的出现是等可能性 时才成立
所表示的区域的事件记为A,求P(A)
9、有一个半径为4的圆,现将一枚直 径为2的硬币投向其中,(硬币完全落 在圆外的不计),则硬币完全落在圆内 的概率?
思考: 半径为4的圆改为:边长为 4的正方形?
10、
O
A
如图:AOB 60 OA=2,OB=5,在线段OB上任意 取一点P,试求:
(1)三角形AOP为钝角三角形的概率
不可能同时发生的两个事件叫做 互斥事件: 互斥事件.
A B
对立事件: 其中必有一个发生的互斥事件叫做 对立事件.
A B 且A B I
互斥事件与对立事件的联系与区别:
1、两事件对立,必定互斥,但互斥未必 对立
2、互斥的概念适用于多个事件,但对 立概念只适用于两个事件
3、两个事件互斥只表明这两个事件不能 同时发生,即至多只能发生一个,但可以 都不发生;而两事件对立则表明它们有且 只有一个发生
1/6 )甲不输的概率是
(
2/3
)
7、在相距5米的两根木杆上系一条绳子,并 在绳子上挂一盏灯,则灯与两端距离都大 于2米的概率为______________ 1/5
8、将甲、乙两颗骰子先后各抛一次,a, b分别表示抛掷甲、乙两颗骰子所得的点数, 若把点数P(a,b)落在不等式组
x0 y0 x y 4
1 D. 2
2、某种彩票中奖几率为0.1%,某 人连续买1000张彩票,下列说法 正确的是:( C ) A、此人一定会中奖 B、此人一定不会中奖 C、每张彩票中奖的可能性都相等 D、最后买的几张彩票中奖的可能性 大些
3. 一批产品中,有10件正品和5件 次品,对产品逐个进行检测,如果 已检测到前 3次均为正品,则第4次 检测的产品仍为正品的概率是(A ) A.7/12 B. 4/15 C.6/11 D. 1/3
概率复习
一、知识回顾:
随机事件 随 机 事 件 的 概 率 事 件 事 件 的 概 率 必然事件 不可能事件 概率的定义 0<P<1 P=1 P=0 的概
概率 频率 稳率 定是 值频 率
怎样得到随机 事件的概率
用列举法求概率
用频率估计概率
二、概率的加法
1、事件的关系和运算 (一)互斥事件和对立事件
(1)直接法:化成求一些彼此互斥事件的概率 的和; (2)间接法:求对立事件的概率.
古典概型
(1) 试验总所有可能出现的基本事件只有有限个;
(2) 每个基本事件出现的可能性相等
我们将具有这两个特点的概率模型称为古典概率模 型,简称古典概型。
P(A)=
A包含的基本事件的个数
基本事件总数
当且仅当所描述的基本事件的出现是等可能性 时才成立
P(A)=
302-202 302
=
5
10
10 30
9
x
4、在去掉大小王的52张扑克中, 随机抽取一张牌,这张牌是J或 Q的概率为_________ 2/13
5.有一人在打靶中,连续射击2次,事件 “至少有1次中靶”的对立事件是( C) A.至多有1次中靶 B.2次都中靶 C.2次都不中靶 D.只有1次中靶 6、甲乙两人下棋,两人下成和棋的概率是1/2, 乙胜的概率是1/3,则乙不输的概率是( 5/6 ) 甲获的概率是 (
古典概型与几何概型的区别
相同:两者基本事件的发生都是等可 能的; 不同:古典概型要求基本事件有有限个, 几何概型要求基本事件有无限多个.
训练固基
1. 抛掷一枚质地均匀的硬币,如果连续 抛掷1000次,那么第999次出现正面朝上 的概率是( D )
1 A. 999
B.
1 1000
C.
999 1000