高中数学必修3第三章 概率
人教版高中数学必修三3.随机事件的概率PPT课件(共30)
八、知识迁移:
例、 为了估计水库中的鱼的尾数, 先从水库中捕出2 000尾鱼,给每尾鱼作 上记号(不影响其存活),然后放回水 库.经过适当的时间,让其和水库中其 余的鱼充分混合,再从水库中捕出500尾 鱼,其中有记号的鱼有40尾,试根据上 述数据,估计这个水库里鱼的尾数.
课堂感悟
概率是一门研究现实世界中广泛存在的 随机现象的科学,正确理解概率的意义是认识 、理解现实生活中有关概率的实例的关键,学 习过程中应有意识形成概率意识,并用这种意 识来理解现实世界,主动参与对事件发生的概 率的感受和探索。
课堂小结
1.随机事件发生的不确定性及频率的稳定性. (对立统一)
2.随机事件的概率的统计定义:随机事件在相 同的条件下进行大量的试验时,呈现规律性, 且频率总是接近于常数P(A),称P(A)为事件的 概率.
3.随机事件概率的性质:0≤P(A)≤1.
作业:教材P123页T2,T3.
频率与概率的区别与联系:
√(2)明天本地下雨的机会是70%.
又例如生活中,我们经常听到这样的议论 :“天气预报说昨天降水概率为90%,结果根 本一点雨都没下,天气预报也太不准确了。” 学了概率后,你能给出解释吗?
解:天气预报的“降水”是一个随机事 件,概率为90%指明了“降水”这个随机事 件发生的概率,我们知道:在一次试验中, 概率为90%的事件也可能不出现,因此,“ 昨天没有下雨”并不说明“昨天的降水概率 为90%”的天气预报是错误的。
值. (2)频率本身是随机的,在试验前不能确定.
做同样次数的重复试验得到事件的频率会不同,比如全班每人做 了10次掷硬币的试验,但得到正面朝上的频率可以是不同的.
(3)概率是一个确定的数,是客观存在的,与 每次试验无关. 比如,如果一个硬币是质地均匀的,则掷硬币
必修3第三章-概率-知识点总结和强化练习:
高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
高中数学必修三 第三章 概率 第1节 事件与概率
练习:一个盒子中装有 4 个完全相同的球,分别标有号码 1,2,3,5,从中任取两 球,然后不放回. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件总数; (3)写出“取出的两球上的数字之和是 6”这一事件所包含的基本事件.
1.常见现象的特点及分类
名称
定义
必然现象 在一定条件下必然 发生某种结果的现象.
不可能现 在一定条件下 不可能发生某种结果的现象.
象
在相同的条件下多次观察同一现象,每次观察到
随机现象 的结果 不一定 相同,事先很难预料哪一种
结果会出现的现象.
2.试验 把观察随机现象或为了某种目的而进行的实验统称为试验,把
典型例题:
例 1:判断下列现象是必然现象还是随机现象: (1)掷一枚质地均匀的骰子出现的点数; (2)行人在十字路口看到的交通信号灯的颜色; (3)在 10 个同类产品中,有 8 个正品、2 个次品,从中任意抽出 2 个检验的结果.
[精解详析] (1)掷一枚质地均匀的骰子其点数有可能出现 1~6 点,不能确定, 因此是随机现象. (2)行人在十字路口看到交通信号灯的颜色有可能是红色,有可能是黄色,也有 可能是绿色,故是随机现象. (3)抽出的 2 个产品中有可能全部是正品,也有可能是一个正品一个次品,还有 可能是两个次品,故此现象为随机现象.
件是( )
A.4 个都是正品
B.至少有 1 个是次品
C.4 个都是次品
D.至少有 2 个是正品
解析:A、B 为随机事件,C 为不可能事件,只有 D 为必然事件.答案:D
高中数学必修3课件:3.1.3 概率的基本性质
事件为事件A与事件B的交事件(或积事件),记作C=__A_∩__B__
(或C=AB).
类比集合,事件A与事件B的交事件用图
表示.
栏目 导引
第三章 概率
(3)互斥事件、对立事件 若事件A与事件B为__A_∩__B_=__∅__,那么称事件A与事件B互斥, 其含义是:事件A与事件B在任何一次试验中_不__会__同__时__发生. 若A∩B为__不__可__能__事件,A∪B为必__然___事件,那么称事件A与 事件B互为对立事件,其含义是:事件A与事件B在任何一次 试验中_有__且__仅__有___一个发生.
栏目 导引
第三章 概率
互动探究 2.在本例中,设事件E={3个红球},事件F={3个球中至少 有一个白球},那么事件C与A、B、E是什么运算关系?C与F 的交事件是什么? 解:由本例的解答可知, C=A∪B∪E,C∩F=A∪B.
栏目 导引
第三章 概率
题型三 用互斥事件、对立事件求概率
例3 (2012·高考湖南卷)某超市为了解顾客的购物量及结算
栏目 导引
第三章 概率
(2)记 A 为事件“一位顾客一次购物的结算时间不超过 2 分 钟”,将频率视为概率,由互斥事件的概率加法公式得 P(A)=11050+13000+12050=170. 故一位顾客一次购物的结算时间不超过 2 分钟的概率为170.
栏目 导引
第三章 概率
【名师点评】 (1)应用概率加法公式时要保证事件互斥,复 杂事件要拆分成若干个互斥事件,以化繁为简:注意不重不 漏. (2)当事件本身包含的情况较多,而其对立事件包含的结果较 少时,就应该利用对立事件间的关系求解,即贯彻“正难则 反”的思想.
栏目 导引
第三章 概率
人教版高中数学必修三教材用书第三章概率3.22(整数值)随机数(randomnumbers)的产生
3.2.2(整数值)随机数(random numbers)的产生随机数的产生[导入新知]1.随机数的产生(1)标号:把n个大小、形状相同的小球分别标上1,2,3,…,n;(2)搅拌:放入一个袋中,把它们充分搅拌;(3)摸取:从中摸出一个.这个球上的数就称为从1~n之间的随机整数,简称随机数.2.伪随机数的产生(1)规则:依照确定算法;(2)特点:具有周期性(周期很长);(3)性质:它们具有类似随机数的性质.计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.[化解疑难]对随机数的理解计算器或计算机产生的整数随机数是按照确定的算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质,不是真正的随机数,称为伪随机数.即使是这样,由于计算器或计算机省时省力,并且速度非常快,我们还是把计算器或计算机产生的伪随机数近似地看成随机数.产生随机数的方法[导入新知]1.利用计算器产生随机数的操作方法用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:2.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率.[化解疑难]计算机模拟试验的优点用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法真正进行.因此利用计算机进行随机模拟试验就成为一种很重要的替代方法,它可以在短时间内多次重复地来做试验,不需要对试验进行具体操作,可以广泛应用到各个领域.随机数的产生方法[例1]某校高一年级共有20个班1 200名学生,期末考试时,如何把学生随机地分配到40个考场中去?[解]第一步,n=1;第二步,用RANDI(1,1 200)产生一个[1,1 200]内的整数随机数x表示学生的座号;第三步,执行第二步,再产生一个座号,若此座号与以前产生的座号重复,则执行第二步,否则n=n+1;第四步,如果n≤1 200,则重复执行第三步,否则执行第五步;第五步,按座号的大小排列,作为考号(不足四位的前面添上“0”,补足位数),程序结束.[类题通法]产生随机数需要注意的两个问题(1)利用抽签法时,所设计的试验要切实保证任何一个数被抽到的可能性是相等的,这是试验成功的基础.(关键词:等可能)(2)利用计算器或计算机产生随机数时,由于不同型号的计算器产生随机数的方法可能会有所不同,故需特别注意操作步骤与顺序的正确性,具体操作需严格参照其说明书.(关键词:步骤与顺序)[活学活用]用随机模拟方法抛掷一枚均匀的硬币100次,产生计算机统计这100次试验中“出现正面朝上”随机数.解:利用计算机统计频数和频率,用Excel 演示.(1)选定C1格,键入频数函数“=FREQUENCY(A1:A100,0.5)”,按Enter 键,则此格中的数是统计A1至A100中比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数;(2)选定D1格,键入“=1-C1/100”,按Enter 键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率. 利用随机模拟法估计概率[例2] (1)已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569683 431 257 393 027 556 488 730 113537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.35B .C .0.20D .(2)种植某种树苗,成活率是0.9.若种植该种树苗5棵,用随机模拟方法估计恰好4棵成活的概率.[解析] (1)选B 由题意知模拟三次投篮的结果,经随机模拟产生了20组随机数,在20组随机数中表示三次投篮恰有两次命中的有191,271,932,812,393,共5组随机数,∴所求概率为520=14=0.25. (2)利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9.因为种植5棵,所以每5个随机数作为一组,可产生30组随机数,如下所示:698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为9=0.3.30 [类题通法]利用随机模拟估计概率应关注三点用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.[活学活用]甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162332 616 804 560 111 410 959 774 246 762428 114 572 042 533 237 322 707 360 751据此估计乙获胜的概率为________.解析:产生30组随机数,就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367. 答案:[典例] 通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 78842604 3346 0952 6807 9706 5774 57256576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为________.[解析] 表示三次击中目标分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为520=25%. [答案] 25%[易错防范]1.由题意可知,数字1,2,3,4,5,6代表击中,若不能正确理解各数字的意义,则容易导致题目错解.2.解决此类题目时正确设计试验,准确理解随机数的意义是解题的基础和关键.[成功破障]天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生0到9之间的整数值的随机数,如果我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,顺次产生的随机数如下:907 966 191 925 271 932 812 458569 683 631 257 393 027 556 488730 113 137 989 则这三天中恰有两天下雨的概率约为( )A.1320B .720 C.920 D .1120 解析:选B 由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191,271,932,812,631,393,137,共7组随机数,∴所求概率为720.[随堂即时演练]1.利用抛硬币产生随机数1和2,出现正面表示产生的随机数为1,出现反面表示产生的随机数为2.小王抛两次,则出现的随机数之和为3的概率为( )A.12B .13 C.14D .15解析:选A 抛掷硬币两次,产生的随机数的情况有(1,1),(1,2),(2,1),(2,2)共四种,其中随机数之和为3的情况有(1,2),(2,1)两种,故所求概率为24=12. 2.已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 03474373 8636 9647 1417 46980371 6233 2616 8045 60113661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( )A .0.85B .0.819 2C .0.8D . 解析:选D 该射击运动员射击4次至少击中3次,考虑该事件的对立事件,故看这20组数据中含有0和1的个数多少,含有2个或2个以上的有5组数,故所求概率为1520=0.75. 3.一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是________.解析:恰有一个面涂有红色在每一个侧面上只有一个,共有6个,故所求概率为29. 答案:294.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________.解析:从5个数中任取两个,共有10种取法,两个数相差1的有1,2;2,3;3,4;4,5四种,故所求概率为410=25. 答案:255.盒中有大小、形状相同的5只白球2只黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球;(2)任取三球,都是白球.解:用1,2,3,4,5表示白球,6,7表示黑球.(1)步骤:①利用计算器或计算机产生1到7的整数随机数,每一个数一组,统计组数n ;②统计这n 组数中小于6的组数m ;③任取一球,得到白球的概率估计值是m n .(2)步骤:①利用计算器或计算机产生1到7的整数随机数,每三个数一组,统计组数n ;②统计这n 组数中,每个数字均小于6的组数m ;③任取三球,都是白球的概率估计值是m n. [课时达标检测]一、选择题1.袋子中有四个小球,分别写有“巴”“西”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止.用随机模拟的方法估计直到第二次才停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“巴”“西”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次才停止概率为( )A.15B.14C.13D.12答案:B2.用计算机模拟随机掷骰子的试验,估计出现2点的概率,下列步骤中不.正确的是( ) A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计数器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束.出现2点的频率作为概率的近似值答案:A3.从3名男生和2名女生中任选3人参加演讲比赛,则这三人中恰有一名男生的概率是( )A.310B.35C.25D.13答案:A4.从2,4,6,8,10这5个数中任取3个,则这三个数能成为三角形三边的概率是( ) A.25B.710C.310D.35 答案:C5.甲、乙两人一起去游济南趵突泉公园,他们约定,各自独立地从1号到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16 答案:D二、填空题6.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.解析:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36=12. 答案:127.某小组有五名学生,其中三名女生、两名男生,现从这个小组中任意选出两名分别担任正、副组长,则正组长是男生的概率是________.解析:从五名学生中任选两名,有10种情况,再分别担任正、副组长,共有20个基本事件,其中正组长是男生的事件有8种,则正组长是男生的概率是820=25. 答案:258.现有五个球分别记为A ,B ,C ,D ,E ,随机取出三球放进三个盒子,每个盒子只能放一个球,则D 或E 在盒中的概率是________.解析:从5个球中取3个,有10种取法,再把3个球放入3个盒子,有6种放法,基本事件有60个,D 和E 都不在盒中含6个基本事件,则D 或E 在盒中的概率P =1-660=910. 答案:910三、解答题9.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P =310. (2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P =815.10.甲盒中有红、黑、白三种颜色的球各3个,乙盒子中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球.(1)求取出的两个球是不同颜色的概率;(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).解:(1)设A 表示“取出的两球是相同颜色”,B 表示“取出的两球是不同颜色”.则事件A 的概率为:P (A )=3×2+3×29×6=29. 由于事件A 与事件B 是对立事件,所以事件B 的概率为:P (B )=1-P (A )=1-29=79. (2)随机模拟的步骤:第1步:利用抽签法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N 个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.第2步:统计两组对应的N 对随机数中,每对中两个数字不同的对数n .第3步:计算n N 的值,则n N就是取出的两个球是不同颜色的概率的近似值. 11.先后随机投掷2枚正方体骰子,其中x 表示第1枚骰子出现的点数,y 表示第2枚骰子出现的点数.(1)求点P (x ,y )在直线y =x -1上的概率;(2)求点P (x ,y )满足y 2<4x 的概率.解:(1)每颗骰子出现的点数都有6种情况,所以基本事件总数为6×6=36个.记“点P (x ,y )在直线y =x -1上”为事件A ,A 有5个基本事件:A ={(2,1),(3,2),(4,3),(5,4),(6,5)},∴P (A )=536. (2)记“点P (x ,y )满足y 2<4x ”为事件B ,则事件B 有17个基本事件:当x =1时,y =1;当x =2时,y =1,2;当x =3时,y =1,2,3;当x =4时,y =1,2,3;当x =5时,y =1,2,3,4;当x=6时,y=1,2,3,4.∴P(B)=1736.。
苏教版高中数学必修三-第三章-概率知识讲解(全套及答案)
第3章概率§3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率(教师用书独具)●三维目标1.知识与技能:①了解随机事件、必然事件、不可能事件的概念;②正确理解事件A出现的频率的意义和概率的概念和意义,明确事件A发生的频率与概率的区别与联系;2.过程与方法:通过经历试验、统计等活动,进一步发展学生合作交流的意识和能力.通过获取试验数据,归纳总结试验结果,体会随机事件发生的不确定性及其频率的稳定性;做到在探索中学习,在探索中提高.3.情感态度与价值观:通过学生自己动手、动脑和亲身试验来理解概率的含义,体会数学知识与现实生活的联系.●重点难点重点:理解随机事件发生的不确定性和频率的稳定性;正确理解概率的意义;难点:理解随机事件发生的随机性,以及随机性中表现出的规律性.难点突破:给学生亲自动手操作的机会,使学生在实践过程中形成对随机事件发生的随机性以及随机性中表现出的规律性的直接感知.按照探究式教学法的核心思想,围绕概率定义产生的思维过程,从定义产生的必要性和合理性两方面不断设置问题,激发学生的探究欲望,让学生以研究者和探索者的身份,参与随机事件发生频率的统计规律的抽象概括过程,参与概率定义的过程。
从而强化重点.(教师用书独具)●教学建议在本节课的教学中建议教师主要渗透以下几个方面的学法指导.(1)让学生亲自经历运用科学方法探索的过程。
主要是创设“掷硬币时‘正面向上’出现的比例是多少”的问题情境,让学生在探索中体会科学知识.(2)培养学生学会通过自学、观察、试验等方法获取相关知识,使学生在探索研究过程中提高分析、归纳、推理能力.(3)让学生通过试验,相互交流试验数据,体会相互合作提升办事效率.结合本节课的教学内容以及学生的认知情况,本节课主要突出运用了“探究式”教学方法,在试验探究的过程中,培养学生探究问题的能力、语言表达能力.●教学流程创设问题情境,引出问题1日常生活中的实例和问题2掷骰子实验.⇒引导学生结合前面学习过的频率的知识,观察、比较、分析,得出概率的概念.⇒通过引导学生回答所提问题理解频率与概率的关系.⇒通过例1及其变式训练,使学生掌握随机事件,必然事件及不可能事件的概念.⇒通过例2及其变式训练,使学生掌握概率与频率的关系问题的解题策略.⇒通过例3及其变式训练阐明概率的意义,使学生明确与概率有关的问题的解决方法.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识考察下列现象:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)常温常压下石墨能变成金刚石;(4)三角形的内角和大于360°;(5)明天下雨以上现象中哪几个是必然会发生的?哪几个是肯定不会发生的?【提示】(1)(2)必然发生;(3)(4)肯定不会发生;(5)可能发生也可能不发生.1.(1)定义:对于某个现象,如果能让其条件实现一次,就是进行了一次试验,而试验的每一种可能的结果,都是一个事件.(2)分类【问题导思】做一个简单的实验:把一枚骰子掷多次,观察出现的结果,并记录各结果出现的频数.在本实验中出现了几种结果,还有其它实验结果吗?【提示】一共出现了1点,2点,3点,4点,5点,6点六种结果,没有其它结果出现.若做大量地重复实验,你认为出现每种结果的次数有何关系?【提示】大致相等一般地,对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).(1)有界性:对任意事件A,有0≤P(A)≤1.(2)规范性:若Ω、Ø分别代表必然事件和不可能事件,则P(Ω)=1,P(Ø)=0.指出下列事件中哪些是必然事件、不可能事件、随机事件:(1)巴西足球队在下届世界杯足球赛中夺得冠军;(2)x2-3x+2=0有两个不相等的实数根;(3)李四走到十字路口遇到张三;(4)某人购买福利彩票5注,均未中奖;(5)在标准大气压下,温度低于0 ℃时,冰融化.【思路探究】本题可以根据事件的定义去判断,解决此类问题的关键是根据题意明确条件,判断在此条件下,事先能否断定出现某种结果.【自主解答】巴西足球队在下届世界杯足球赛中是否夺得冠军不确定,故(1)为随机事件;(2)∵Δ=(-3)2-8=1>0,∴(2)是必然事件;(3)(4)是随机事件;(5)是不可能事件.准确掌握随机事件、必然事件、不可能事件的概念是解题的关键,应用时要特别注意看清条件,在给定的条件下判断是一定发生,还是不一定发生,还是一定不发生,来确定属于哪一类事件.在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?①如果a,b都是实数,那么a+b=b+a;②从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;③没有水分,种子发芽;④某电话总机在60秒内接到至少15次传呼;⑤在标准大气压下,水的温度达到50 ℃时沸腾;⑥同性电荷,相互排斥.【解】由实数运算性质知①恒成立是必然事件;⑥由物理知识知同性电荷相斥是必然事件,①⑥是必然事件.没有水分,种子不会发芽,标准大气压下,水的温度达到50 ℃时不沸腾,③⑤是不可能事件.从1~6中取一张可能取出4也可能取不到4,电话总机在60秒可传呼15次也可不传呼15次.②④是随机事件.某公司在过去几年内使用了某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:时)进行了统计,统计结果如下表所示:(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率. 【思路探究】 (1)频率=频数÷总数.(2)先求出灯管使用寿命在[0,1 500)的频数,再应用公式f n (A )=n An 求解.【自主解答】 (1)频率依次是0.048,0.121,0.208,0.223,0.193,0.165,0.042. (2)样本中使用寿命不足1 500小时的频数是48+121+208+223=600,所以样本中使用寿命不足1 500小时的频率是6001 000=0.6,即估计灯管使用寿命不足1500小时的概率为0.6.1.频率是事件A 发生的次数m 与试验总次数n 的比值,利用此公式可求出它们的频率.频率本身是随机变量,当n 很大时,频率总是在一个稳定值附近左右摆动,这个稳定值就是概率.2.解此类题目的步骤是:先利用频率的计算公式依次计算频率,然后用频率估计概率.下表中列出了10次抛掷一枚硬币的试验结果,n 为每次试验抛掷硬币的次数,m 为硬币正面向上的次数.计算每次试验中“正面向上”这一事件的频率,并考查它的概率.【解】 由事件发生的频率=mn ,可分别得出这10次试验中“正面向上”这一事件出现的频率依次为0.502,0.498,0.512,0.506,0.502,0.492,0.488,0.516,0.524,0.494.这些数字都在0.5附近摆动,由概率的统计定义可得,“正面向上”的概率为0.5.张明同学抛一枚硬币10次,共有8次反面向上,于是他指出:“抛掷一枚硬币,出现反面向上的概率应为0.8”.你认为他的结论正确吗?为什么?【思路探究】 正确理解频率定义及概率的统计性定义是解答本题的关键.他的结论显然是错误的.【自主解答】 从概率的统计定义可看出:事件A 发生的频率m n 叫做事件A 发生的概率的近似值.但要正确理解概率的定义必须明确大前提:试验次数n 应当足够多.也就是说,只有“在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定”时,才用这个常数来刻画该随机事件发生的可能性大小,即称为这一事件发生的概率的近似值.张明同学抛掷一枚硬币10次,有8次正面向上,就得出“正面向上”的概率为0.8,显然是对概率统计性定义曲解的结果.1.随机事件的概率,本质上是刻画该事件在一次试验中发生的可能性大小的数量,不能由此断定某次试验中一定发生某种结果或一定不发生某种结果.2.在理解概率的定义时,一定要将频率与概率区分开,频率与试验的次数有关,概率不随试验次数而变化,是个客观值.某同学认为:“一个骰子掷一次得到6点的概率是16,这说明一个骰子掷6次一定会出现一次6点.”这种说法正确吗?说说你的理由.【解】 这种说法是错误的.因为掷骰子一次得到6点是一个随机事件,在一次试验中,它可能发生,也可能不发生,掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现6点,也可能不出现6点,所以6次试验中有可能一次6点也不出现,也可能出现1次,2次,…,6次.混淆随机事件的概念致误先后抛两枚质地均匀的硬币.(1)一共可能出现多少种不同的结果?(2)出现“一枚正面,一枚反面”的结果有多少种? (3)出现“一枚正面,一枚反面”的概率是多少?【错解】 (1)一共可能出现“两枚正面”“两枚反面”“一枚正面,一枚反面”3种不同的结果.(2)出现“一枚正面,一枚反面”的结果有1种. (3)出现“一枚正面,一枚反面”的概率是13.【错因分析】 忽略了“一枚反面,一枚正面”与“一枚正面,一枚反面”是两种不同的结果,从而导致得出错误的结果.【防范措施】 1.明确事件的构成,分清事件间的区别与联系. 2.试验的所有结果要逐一写出,不能遗漏.【正解】 (1)一共可能出现“正、正”“正、反”“反、正”“反、反”4种不同的结果.(2)出现“一枚正面,一枚反面”的结果,是“正、反”“反、正”两种. (3)出现“一枚正面,一枚反面”的概率是12.1.随机事件可以重复地进行大量的试验,每次试验结果不一定相同,且无法预测下一次的结果,但随着试验的重复进行,其结果呈现出一定的规律性.2.随机事件频率与概率的区别与联系①2013年清明节下雨②打开电视,正在播放电视剧《西游记》③半径为R的圆,面积为πR2④某次数学考试二班的及格率为70%【解析】③为必然事件,其余为随机事件.【答案】①②④2.下面给出了四种现象:①若x∈R,则x2<0;②没有水分,种子发芽;③某地明年8月8日天晴;④若平面α∩平面β=m,n∥α,n∥β,则m∥n.其中是确定性现象的是________.【解析】根据确定性现象的定义知①②④为确定性现象.【答案】①②④3.已知随机事件A发生的频率为0.02,事件A出现了1 000次,由此可推知共进行了________次试验.【解析】1 0000.02=50 000.【答案】50 0004.对某电视机厂生产的电视机进行抽样检测的数据如表所示:(1)(2)估计该厂生产的电视机是优等品的概率是多少?【解】(1)结合公式f n(A)=mn及题意可计算出优等品的各个频率依次为:0.8,0.92,0.96,0.95,0.956,0.954.(2)由(1)知计算出的优等品的频率虽然各不相同,但却都在常数0.95左右摆动,且随着抽取台数n的增加,频率稳定于0.95,因此,估计该厂生产的电视机是优等品的概率是0.95.一、填空题1.下列事件:①物体在重力作用下会自由下落;②函数f(x)=x2-2x+3=0有两个零点;③下周日会下雨;④某寻呼台某一时段内收到传呼的次数少于10次.其中随机事件的个数为________.【解析】根据定义知①为必然事件,②为不可能事件,③④为随机事件.【答案】 22.某地气象局预报说,明天本地降雨概率为80%,则下列解释正确的是________.①明天本地有80%的区域降雨,20%的区域不降雨;②明天本地有80%的时间降雨,20%的时间不降雨;③明天本地降雨的机率是80%; ④以上说法均不正确.【解析】 本题主要考查对概率的意义的理解.选项①,②显然不正确,因为80%的概率是说降雨的概率,而不是说80%的区域降雨,更不是说有80%的时间降雨,是指降雨的可能性是80%.【答案】 ③3.某班共49人,在必修1的学分考试中,有7人没通过,若用A 表示参加补考这一事件,则下列关于事件A 的说法正确的是________(填序号).(1)概率为17;(2)频率为17;(3)频率为7;(4)概率接近17.【解析】 频率是概率的近似值,当试验次数很大时,频率在概率附近摆动,本题中试验次数是49,不是很大,所以只能求出频率为17,而不能求出概率.【答案】 (2)4.在某餐厅内抽取100人,其中有30人在15岁及15岁以下,35人在16岁至25岁之间,25人在26岁至45岁之间,10人在46岁及46岁以上,则从此餐厅内随机抽取1人,此人年龄在16岁至25岁之间的概率约为________.【解析】 16岁至25岁之间的人数为35,频率为0.35,故从此餐厅内随机抽取一人,此人年龄在16岁至25岁之间的概率约为0.35.【答案】 0.35 5.给出下列4个说法:①现有一批产品,次品率为0.05,则从中选取200件,必有10件是次品;②做100次抛掷一枚硬币的试验,结果有51次出现正面向上,因此,出现正面向上的概率是51100;③抛掷一颗骰子100次,有18次出现1点,则出现1点的频率是950;④随机事件的概率一定等于这个事件发生的频率. 其中正确的说法是________(填序号).【解析】 次品率为0.05,即出现次品的概率(可能性)是0.05,所以200件产品中可能有10件是次品,并非“必有”,故①错;在1次具体的试验中,正面向上的次数与试验的总次数之比是频率,而不是概率,故②错;③显然正确;由概率的定义知,概率是频率的稳定值,频率在概率附近摆动,故随机事件的概率不一定等于该事件发生的频率,故④错.故填③.【答案】 ③6.某人忘记了自己的存折密码的最后一位数字,但只记得最后一位数字是偶数,他随意按了一个数字,则他按对密码的概率为________.【解析】 最后一位是偶数有0,2,4,6,8共5种情况,按任一数字都是随机的,因此他按对密码的概率P =15.【答案】 157.任意抛掷一颗质地不均匀的骰子,向上的各点数的概率情况如下表所示:【解析】 概率大的点数易出现,由上表知点数为6的最易出现. 【答案】 68.样本容量为200的频率分布直方图如图3-1-1所示,根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为________,数据落在[2,10)内的概率约为________.图3-1-1【解析】 落在[6,10)内的概率为0.08×4=0.32,所以频数为0.32×200=64.落在[2,10)内的频率为(0.02+0.08)×4=0.4.【答案】 64 0.4 二、解答题9.我国西部某地区的年降水量在下列范围内的概率如下表所示:(1)年降水量在[180,280)范围内的概率; (2)年降水量小于230 mm 的概率.【解】 (1)[180,280)分成两个范围,第一范围是在[180,230);第二范围是[230,280). 由于在第一个范围的概率为0.31,第二个范围的概率为0.21,因此,年降水量在[180,280)范围内的概率为P =0.31+0.21=0.52.(2)由于小于230 mm 有三个范围,其一是低于130 mm 的;其二是[130,180)的;其三是[180,230)的;而这三个范围的概率分别是0.15、0.28、0.31,因此,年降水量小于230 mm 时的概率为P =0.15+0.28+0.31=0.74.10.如果掷一枚质地均匀的硬币10次,前5次都是正面向上,那么后5次一定都是反面向上,这种说法正确吗?为什么?【解】 不正确.如果把掷一枚质地均匀的硬币1次作为一次试验,正面向上的概率是12,指随着试验次数的增加,即掷硬币次数的增加,大约有一半正面向上.但对于一次试验来说,其结果是随机的,因此即使前5次都是正面向上,但对后5次来说,其结果仍是随机的,每次掷硬币试验正面向上的概率仍然是12,即每次可能是反面向上,也可能是正面向上,可能性相等.11.已知f (x )=x 2+2x ,x ∈[-2,1],给出事件A :f (x )≥a (1)当A 为必然事件时,求a 的取值范围; (2)当A 为不可能事件时,求a 的取值范围. 【解】 f (x )=x 2+2x ,x ∈[-2,1], ∴f (x )min =-1, 此时x =-1.又f (-2)=0<f (1)=3, ∴f (x )max =3. ∴f (x )∈[-1,3](1)当A 为必然事件时,即f (x )≥a 恒成立,故有a ≤f (x )min =-1,即a 的取值范围是(-∞,-1].(2)当A 为不可能事件时, 即f (x )≥a 一定不成立, 故有a >f (x )max =3, 则a的取值范围为(3,+∞).(教师用书独具)2011年6月4日,中国选手李娜在法国网球公开赛女单决赛中战胜意大利老将斯齐亚沃尼,顺利在罗兰·加洛斯红土球场夺得了个人第一座大满贯冠军,这是中国的第一个单打大满贯冠军,也创下了亚洲女选手首次登顶大满贯的纪录.决赛前,有人对两人参赛训练中一发成功次数统计如下表(1)分别计算出两位运动员一发成功的频率,完成表格;(2)根据(1)中计算的结果估计两位运动员一发成功的概率.【思路点拨】先计算两位运动员一发成功的频率,然后根据频率估计概率.【规范解答】(1)中在0.9的附近,所以估计两人一发成功的概率均为0.9.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:(1)(2)估计这一地区男婴出生的概率约是多少. 【解】 (1)计算mn 即得到男婴出生的频率依次约是:0.5200,0.5173,0.5173,0.5173.(2)由于这些频率非常接近0.5173,因此估计这一地区男婴出生的概率约为0.5173.§3.2古典概型(教师用书独具)●三维目标 1.知识与技能(1)理解基本事件的特点;(2)通过实例,理解古典概型及其概率计算公式;(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率. 2.过程与方法根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.3.情感态度与价值观概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。
高中数学必修3课件:3.2.1 古典概型
第三章 概率
想一想 “在区间[0,10]上任取一个数,这个数恰为2的概率是多少”?这 个概率模型属于古典概型吗? 提示:不是.因为在区间[0,10]上任取一个数,其试验结果有 无限个,故其基本事件有无限个,所以不是古典概型.
栏目 导引
第三章 概率
做一做 2.投掷一枚骰子,恰好数字6正面向上的概率是________. 解析:由于骰子每一个面向上的可能性相等,故数字 6 正面向 上的概率是16. 答案:16
栏目 导引
第三章 概率
【解】 从 7 人中选出数学、物理、化学成绩优秀者各 1 名, 其一切可能的结果组成的 12 个基本事件为: (A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2), (A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2), (A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2). C1 恰被选中有 6 个基本事件: (A1,B1,C1),(A1,B2,C1),(A2,B1,C1),(A2,B2,C1), (A3,B1,C1),(A3,B2,C1), 因而 P(M)=162=12.
第三章 概率
1.基本事件 (1)定义:在一次试验中,所有可能出现的基本结果中不能 再分的最简单的___随__机____事件称为该次试验的基本事件. (2)特点:一是任何两个基本事件是_互__斥___的;二是任何事 件(除不可能事件)都可以表示成基本事件的__和___.
栏目 导引
第三章 概率
做一做 1.袋中有红、白色球各一个,每次任取一个,有放回地抽三 次,所有的基本事件数是________. 解析:所有的基本事件有(红红红)(红红白)(红白红)(白红红)( 红白白)(白红白)(白白红)(白白白),共8个. 答案:8
必修3随机事件的概率
随机事件的概率
(1)必然事件、不可能事件、随机事件
必然事件和不可能事件统称为确定事件. 确定事件和随机事件统称为事件.一般用大写 字母A,B,C……表示.
随机事件的概率
例1下面各事件是必然事件,不可能事件,还是随机事件?
(1)导体通电时发热; (2)李强射击一次,中靶; (3)抛一石块,下落; (4)在常温下,焊锡熔化; (5)抛一枚硬币,正面朝上; (6)在标准大气压下且温度低于时,冰 融化.
随机事件的概率
(2)频率与概率
概率:对于给定的随机事件A,如果随着试验次 数的增加,事件A发生的频率fn(A)稳定在某个 常数上,把这个常数记作P(A),称为事件 A的概率。
必然事件的概率是1. 不可能事件的概率是0. 随机事件的概率是(0,1). 即概率的取值范围是:[0,1]
例3某射手在同一条件下进行射击, 结果如下表所示:
随机事件的概率
4.必然事件和不可能事件统称为确定事件.
5.确定事件和随机事件统称为事件.一般用大 写字母A,B,C……表示. 6.频数:在相同的条件S下重复n次试验,观 察某一事件A是否出现,称n次试验中事件A 出现的次数m为事件A出现的频数. 7.频率:事件A出现的比例fn(A)=m/n为事件A 出现的频率.取值范围是:[0,1]
抽取 台数 优等 品数 50 40 100 92 200 192 300 285 500 478 1000 954
(1)计算表中优等品的各个频率; (2)该厂生产的电视机优等品的概率是 多少?
ex1
• 解:(1)表中依次填入的数据为: 0.80,0.92,0.96,0.95,0.956, 0.954. • (2)由于频率稳定在常数0.95,所以 该厂生产的电视机优等品的概率约是 0.95。
高中数学第三章概率3.1.3概率的基本性质课件新人教A版必修3
(2)对于事件C,可能的结果为1个红球2个白球,2个红球1个白球,3
个均为红球,故C∩A=A.
探究一
探究二
探究三
思维辨析
当堂检测
互动探究 在本例中A与D是什么关系?事件A与B的交事件是什么?
解:由本例的解答,可知A⊆D.
因为A,B是互斥事件,所以A∩B=⌀.
故事件A与B的交事件是不可能事件.
集合的观点看,事件C1是事件D3,E,H的子集,集合C1与集合D1相等.
3.请指出如果事件C2发生或C4发生或C6发生,就意味着哪个事件
发生?
提示如果事件C2发生或C4发生或C6发生,就意味着事件G发生.
4.如果事件D2与事件H同时发生,就意味着哪个事件发生?
提示如果事件D2与事件H同时发生,就意味着事件C5发生.
然是A1,A2,…,An彼此互斥.在将事件拆分成若干个互斥事件时,注意
不能重复和遗漏.
2.当所要拆分的事件非常烦琐,而其对立事件较为简单时,可先求
其对立事件的概率,再运用公式求解.但是一定要找准其对立事件,
避免错误.
探究一
探究二
探究三
思维辨析
当堂检测
变式训练2据统计,某储蓄所一个窗口排队等候的人数及相应概
点},C5={出现5点},C6={出现6点},D1={出现的点数不大于
1},D2={出现的点数大于4},D3={出现的点数小于6},E={出现的点
数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出
现的点数为奇数},等等.
1.上述事件中哪些是必然事件?哪些是不可能事件?哪些是随机
5.事件D3与事件F能同时发生吗?
提示事件D3与事件F不能同时发生.
高中数学 第三章概率教案 新人教版必修3
第三章概率一、课时学习目标知识与技能1、掌握随机事件、必然事件、不可能事件的概念。
2、正确理解事件A出现的频率的意义。
3、正确理解概率的概率和意义,明确事件A发生的频率f n〔A〕与事件A发生的概率P〔A〕的区别与联系。
4、利用概率知识,正确理解现实生活中的实际问题。
过程与方法通过在抛硬币、抛骰子的试验中获取数据的过程,培养探索、归纳的能力和自主学习的能力。
情感、态度与价值观1、通过自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系。
2、培养辩证唯物主义观点,增强科学意识。
二、课前预习导学请同学们阅读P108—112,完成以下问题1、事件的有关概念〔1〕必然条件:在条件S下,_________会发生的事件,叫做相对于条件S的必然事件,简称必然事件;〔2〕不可能事件:在条件S下,__________会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;〔3〕确定事件:__________事件与___________事件统称为相对于条件S的确定事件,简称确定事件;〔4〕随机事件:在条件S下,___________的事件叫做相对于条件S的随机事件,简称随机事件。
〔5〕_________事件与________事件统称为事件,一般用________表示。
2、概率与频率〔1〕频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的_________,称事件A出现的比例fn〔A〕=nAn为事件A出现的__________,显然频率的取值X围是____________。
〔2〕概率:在大量重复试验后,随着试验次数的增加,事件A发生的频率如果逐渐________在区间[0,1]中的某个______上,这个便称为事件A的概率,用P〔A〕表示,显示概率的取值X围是[0,1],且不可能事件的概率为_________,必然事件的概率为___________。
人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共25张PPT)
事件“甲乙两人进行‘石头剪刀布’的 游戏,结果甲获胜”是哪一类事件?
为了估计上述随机事件发生的概率,我 们可以采用何种方法?
知识小结
1.随机事件的概念
在一定条件下可能发生也可能不发生的 事件,叫做随机事件. 2.随机事件的概率的统计定义
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
25
10 70 130 310 700 1500 2000 3000 试验次数
结论:当试验的油菜籽的粒数很多时,油菜籽发 芽的频率 m 接近于常数0.9,在它附近摆动。
n
思考:
1.事件A发生的频率 fn(A) 是不是不变的? 2.事件A的概率P(A)是不是不变的? 3.它们之间有什么区别与联系?
优等品的频率 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 50
100
200
500
1000 2000 试验次数
结频论率:m 当接抽近查于的常球数数0.很95多,时在,它抽附到近优摆等动品。的
n
某种油菜籽在相同条件下的发芽试验结果表:
某种油菜籽在相同条件下的发芽试验结果表:
发芽的频率
随机事件的概率
1. 引言
在一些人看来,总觉得数学都是研究现实世界中确定性 现象的数量规律,其实不然。大家知道,任何事物的发展 是既有偶然性又有必然性,为了研究一些无法确定的现象 的规律,早在十七世纪数学的重要分支概率统计便应运而 生,最初是欧洲保险业的发展促成这门学科的诞生,经过 几百年的发展和应用概率统计已遍布所有的领域,你比如 利用概率统计,二战中美军破译日军的电报密码,;利用概 率统计我国数学家得出《红楼梦》的前八十回与后四十回 出自两位作家的手笔,解决了红学家长期争论不休的问题; 还是利用概率统计使我们对变化莫测的天气的预报越来越 准……,总之,概率统计这门古老又十分有用的学科,如今 它已经渗透到生活的方方面面。
最新人教版高中数学必修3第三章《第三章概率》教材习题点拨
教材习题点拨复习参考题A 组1.326165点拨:因为P (“乙不输的概率”)653121=+=, P (“甲获胜的概率”)= P (“乙输的概率”)=1-P (“乙不输的概率”)61=, P (“甲不输的概率”)32646121==+=. 2.解:(1)P (“此人的体重减轻”)548.0500274=≈; (2)P (“此人的体重不变”)186.050093=≈; (3)P (“此人的体重增加”)266.0500133=≈. 点拨:500名志愿者服用此药,相当于做500次重复试验,大量重复试验下概率约等于频率的稳定值.3.解:将一枚质地均匀的硬币连续投掷4次,所有可能的结果有2×2×2×2=16(种),其中“2次正面朝上,2次反面朝上”的情况有)(6234种=⨯,所以P (“2次正面朝上,2次反面朝上”)83166==;“3次正面朝上,1次反面朝上”的情况有4种,所以P (“3次正面朝上,1次反面朝上”)41164==. 4.解:对130人进行调查,相当于进行130次重复试验,那么(1)P (“具有本科学历”)138130102050=++≈; (2) P (“35岁以下具有研究生学历”)26713035=≈; (3) P (“50岁以上”)65613012=≈. 5.解:因为两袋都是各自总共6个球,所以从两袋中各取一球的所有可能结果有6×6=36(种),其中“两球颜色相同”可以分为“两个都是白球”“两个都是红球”“两个都是黑球”共三个互斥事件,它们各自的结果种数分别为1×2=2(种)、2×3=6(种)、3×1=3(种),所以由互斥事件的概率和公式有P (“两球同色”)3611363366362=++=. 点拨:分别计算两球均为白球的概率,两球均为红球的概率,两球均为黑球的概率,然后相加.6.解:2个人在同一层离开的情况总共有6种,所以P (“2个人在同一层离开”)61666=⨯=,而事件“2个人在同一层离开”的对立事件为事件“2个人在不同层离开”,故P (“2个人在不同层离开”)=1-P (“2个人在同一层离开”)65611=-=. B 组1.解:因为每个均匀硬币的可能结果有2种,所以掷一枚均匀的硬币4次,所有可能的结果有24种,这些结果可分为三类:正面次数多于反面次数,正面次数少于反面次数,正、反面次数相等.所以“正反面次数相同”的结果数就是从4中选2的所有选法数,即)(6234种=⨯,所以P (“正反面次数相同”)83264==,故P (“正面次数多于反面次数”)1652831=-=. 2.解:根据互斥事件的特征:第一,互斥事件研究的是两个事件之间的关系;第二,所研究的两个事件是在一次试验中涉及的;第三,两个事件互斥是由试验的结果不能同时出现来确定的.可以判断出(1)(4)中两事件为互斥事件,(2)(3)中两事件不是互斥事件.3.解:3双鞋总共有6只,从这6只鞋中任意取2只的所有取法数有)(15256种=⨯. (1)“取出的鞋都不成对”的意思是所取2只鞋分别来自于3双不同的鞋子,即从每双鞋中各取1只,所以满足条件的取法数有2×2×3=12(种),故P (“取出的鞋都不成对”)541512==; (2)“取出的鞋都是左脚”的取法数有)(3223种=⨯,所以P (“取出的鞋都是左脚”)51153==; (3)“取出的鞋都是同一只脚”的取法数=“取出的鞋都是左脚”的取法数+“取出的鞋都是右脚”的取法数,所以“取出的鞋都是同一只脚”的取法数有3+3=6(种),故P (“取出的鞋都是同一只脚”)52156==; (4)P (“取出的鞋一只是左脚,一只是右脚,但它们不成对”)52=. 4.解:由题意,知抛物线y =x 2+1与直线y =6相交所得两点的横坐标为5±,所以基本事件区域为由直线5=x ,5-=x ,y =0,y =6围成的矩形,其面积为512526=⨯.利用计算机模拟撒豆子试验,首先由Excel 软件产生30组随机数,如下图所示,其中A1~A30单元格中的数据代表范围在]5,5[-内的点横坐标,B1~B30单元格中的数据代表范围在[0,6]之间的点的纵坐标,C1~C30单元格中的数据代表满足条件x 2+1≤y ≤6的豆子,其数据的统计值为18,所以533018==矩形区域内的豆子总数数落在阴影区域内的豆子,由矩形区域内的豆子总数落在阴影区域的豆子数矩形阴影≈S S ,得1.1651253≈⨯=阴影S .。
高中数学 必修3第三章知识点+经典习题
第三章 概率 3.1 事件与概率 3.1.1 随机现象一、必然现象与随机现象1. 必然现象:必然发生某种结果的现象注:必然现象具有确定性,它在一定条件下,肯定发生2. 随机现象:相同条件下,多次观察同一现象,每一次观察到的结果不一定相同,事先很难预料哪一种结果会出现注:⑴相同条件下,观察同一现象 ⑵多次观察⑶每次观察的结果不一定相同,且无法预料下一次的观察结果3.1.2 事件与基本事件空间一、不可能事件、必然事件、随机事件的概念1. 在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能发生,可能不发生称为随机事件2. 随机事件的记法:用大写字母A 、B 、C ……二、基本事件、基本事件空间1. 试验中不能再分的简单的随机事件,其他事件可用它们来描绘,这样的事件称为基本事件2. 所有基本事件构成的集合称为基本事件空间,用Ω表示3.1.3 频率与概率一、概率的定义及其理解1. 定义:一般地,在n 次重复进行的试验中,事件A 发生的频率m n,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记作()P A2. 区别:(1)频率随着试验次数的改变而改变,概率却是一个常数(2)频率有一定的稳定性,总在某个常数附近摆动,概率可看成频率在理论上的期望,它从数量上反映了随机事件发生的可能性的大小二、随机事件A 的概率()P A 的范围1. 设随机事件A 在n 次试验中发生了m 次,那么有0mn ≤≤,01mn ≤≤ ()01P A ≤≤当A 是必然事件时, ()1P A = 当A 是不可能事件时,()0P A =3.1.4概率的相关性质一、互斥事件的基本概念1. 互斥事件:事件A 与B 不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件2. 对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件,事件A 的对立事件记作A 二、事件A 与B 的并(或和)及互斥事件的概率加法公式1. 由事件A 和B 至少有一个发生所构成的集合C ,称为事件A 与B 的并(或和),记作:C A B =⋃2. 互斥事件的概率加法公式若事件A 、B 互斥,那么事件A B ⋃发生的概率等于事件A 、B 分别发生的概率的和,即)()()(B P A P B A P +=推广 ,)()()()(2121n n A P A P A P A A A P +++= 3. 注意:如果两个事件不互斥,就不能运用上面的公式 4. 对立事件:()()1P A P A +=3.2 古典概型一、古典概型1. 定义:(1)在一次试验中,所有可能出现的基本事件只有有限个 (2)每个基本事件出现的可能性相等2. 求法:(古典概率模型)若一次试验中的等可能基本事件共有n 个,那么每一个等可能事件的概率都是,如果随机事件A 中包含了其中的m 个等可能的基本事件,那么随机事件A 发生的概率为()m P A n= 二、概率的一般加法公式(选学) 1. 事件A 与B 的交(或积)事件A 和B 同时发生所构成的事件D ,称为事件A 与B 的交(或积),记作D A B =⋂(或D A B =)2. 概率的一般加法公式当A 、B 不是互斥事件时的基本事件总数中基本事件个数中基本事件个数中基本事件个数的基本事件总数中包含的基本事件数Ω-+=Ω=B A B A B A B A P )( 即)()()()(B A P B P A P B A P -+=三、练习题1. 下列现象中,随机现象有哪些? ⑴某体操元动员参加下周举行的运动会 ⑵同时掷两颗骰子,出现6点 ⑶某人购买福利彩票中奖⑷三角形中任意两边的和大于第三边 2. 判断下列现象是必然现象还是随机现象 ⑴掷一枚质地均匀的硬币的结果⑵行人在十字路口看到的交通信号灯的颜色⑶在10个同类产品中,有8个正品,2个次品,从中任意抽取出3个检验的结果⑷在10个同类产品中,有8个正品,2个次品,从中任意抽取出3个,至少有一个正品的结果 ⑸三角形的内角和是180︒3. 下面给出五个事件: ⑴某地2月3日下雪⑵函数xy a =(0a >且1a ≠)在其定义域上是增函数⑶实数的绝对值不小于0⑷在标准大气压下,水在1C ︒时结冰⑸,a b R ∈,则ab ba =其中必然事件是________,不可能事件是________,随机事件是________ 4. 以1,2,3,5中任取2个数字作为直线0Ax By +=的系数,A B ⑴写出这个实验的基本事件空间 ⑵求这个实验基本事件总数⑶写出“这条直线的斜率大于1-”这一事件所包括的基本事件5.袋中有红,白,黄,黑大小相同颜色不同的四个小球,按下列要求分别进行实验 ⑴从中任取一个球;⑵从中任取两个球;⑶先后不放回地各取一个球 分别写出上面试验的基本事件空间,并指出基本事件总数6. 某农场计划种植某种新作物,为此对这种作物的两个品种(分别成为品种甲和品种乙)进行田间试验,选取两大块地,每大块地n 个小块地,在总共n 2小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙,假设2=n ,求第一大块地都种植品种甲的概率7. 一个容量为100的样本,某数据的分组与各组的频数如下: 组别 (]0,10(]10,20(]20,30(]30,40(]40,50(]50,60(]60,70频数1213241516137则样本数据落在]40,10(上的频率为( )A . 0.13B . 0.39C . 0.52D . 0.648. 某种产品质量以其质量指标衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质点,现用两种新配方(分别成为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面的试验结果 A 配方的频数分布表 指标值分组 [)90,94[)94,98[)98,102[)102,106[)106,110频数82042228B 配方的频数分布表 指标值分组 [)90,94[)94,98[)98,102[)102,106[)106,110频数412423210分别估计用A 配方,B 配方生产的产品的优质品率9. 为了解学生身高情况,某校以10%的比例对全校100名学生按性别进行分层抽样调查,测得身高情况的统计图如图: ⑴估计该校男生人数⑵估计该校学生身高在cm 185~170之间的概率⑶以样本中身高在cm 190~180之间的男生中任选2人,求至少有1人身高在cm 190~185之间的概率10.在一个容量为66的样本,数据的分组及各组的频数如下:2)5.15,5.11[;4)5.19,5.15[;9)5.23,5.19[;18)5.27,5.23[;11)5.31,5.27[;12)5.35,5.31[;7)5.39,5.35[;3)5.43,5.39[ 根据样本的频率分布估计,数据落在)5.43,5.31[的概率约是( )A .61B .31C .21D .3211. 某城市有甲、乙两种报纸供居民们订阅,记事件A 为“只订甲报”,事件B 为“至少订一种报”,事件C 为“至多订一种报”,事件D 为“不订甲报”,事件E 为“一种报也不定”,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件⑴ A 与C ⑵ B 与E ⑶ B 与D ⑷ B 与C ⑸ C 与E12. 玻璃盒子里装有各色球12只,其中5红,4黑,2白,1绿,从中取1球,设事件A 为“取出1只红球”,事件B 为“取出1只黑球”,事件C 为“取出1只白球”,事件D 为“取出1只绿球”,已知121)(,61)(,31)(,125)(====D P C P B P A P ,求: ⑴“取出一球为红球或黑球”的概率 ⑵“取出1球为红球或黑球或白球”的概率13.现有8名奥运会志愿者,其中志愿者321,,A A A 通晓日语,321,,B B B 通晓俄语,21,C C 通晓韩语,从中选取通晓日语,俄语和韩语的志愿者各1名,组成一个小组 ⑴ 求1A 被选中的概率 ⑵求1B 和1C 不全被选中的概率身高频数 1510513 61271 男生2 4131452 身高频数15 10 5女生14. 设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程02=++c bx x 实根的个数(重根按一个计算),求方程02=++c bx x 有实根的概率15. 依次投掷两枚骰子,并记录骰子的点数 ⑴这个试验的基本事件空间包括多少个基本事件? ⑵事件“点数相同”包含哪几个基本事件? ⑶事件“点数之和为奇数”包含哪几个基本事件16. 袋中装有6个小球,其中4个白球,2个红球,从袋中任意取出2个球,求下列事件的概率: ⑴事件A :取出的2个球都是白球.⑵事件B :取出的2个球1个是白球,另一个是红球17. 从标有1,2,3,…,7的7个小球中取出一球,记下它上面的数字,放回后再取出一球,记下它上面的数字,求两球上的数字之和大于11或者能被4整除的概率18. 某初级中学共有学生2000名,各年级男女生人数如下表:初一年纪 初二年级初三年级女生 373 xy 男生377370z已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19 ⑴求x 的值⑵现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? ⑶已知245≥y ,245≥z 求初三年级中女生比男生多的概率19. 从长度分别为2,3,4,5的四条线中任意取出三条,则以这三条线段为边可以构成三角形的概率是________20. 某饮料公司对一名员工进行测试以便更确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一品尝后,从5杯饮料中选出3杯A 饮料,若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修3第三章 概率
单元测试卷
班级: 姓名: 座号: 评分:
一、选择题:(本大题共10题,每小题5分,共50分) 1.下列说法正确的是( )
A. 任何事件的概率总是在(0,1)之间
B. 频率是客观存在的,与试验次数无关
C. 随着试验次数的增加,频率一般会越来越接近概率
D. 概率是随机的,在试验前不能确定
2.给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”;③甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”;④甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”,其中属于互斥事件的有 ( )
A .1对
B .2对
C .3对
D .4对
3. 如图,一棵树上有两个果子(不妨设1号果、2号果), 一只猴子随机从底部向上爬,则这只猴子能摘到果子的 概率是 ( ) A. 27 B. 13 C. 17 D. 16
4.某人有5把钥匙,其中2把是房门钥匙,他忘记了开房门的是哪把,于是他不重复地试开,则3次内打开房门的概率是 ( ) 1.2
A 3.5
B 7.10
C 9
.10D
5.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85]( g )范围内的概率是( )
A. 0.62
B. 0.38
C. 0.02
D. 0.68 6.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( )
A.
21 B. 41 C. 31 D. 8
1
7.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( )
A.
31
. B. 41 C. 2
1 D.无法确定 8.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是 ( )
A. 1
B.
21 C. 31 D. 3
2 9.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则
取出的两个球同色的概率是 ( )
A.
21 B. 31 C. 41 D. 5
2 10.现有五个球分别记为A ,C ,J ,K ,S ,随机放进三个盒子,每个盒子只能放一个球,
则K 或S 在盒中的概率是 ( )
A.
101 B. 53 C. 103 D. 10
9
二、填空题(本大题共4题,每小题5分,共20分)
11. 袋中有a 只白球,b 只黑球,它们除颜色不同外,无其它差别,现把球随机地一只一
只地摸出来,第(1,2,
,)k k a b =+次摸出黑球的概率为________________.
12. 掷两枚骰子,出现点数之和为3的概率是_____________
13. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______________
14.在中国象棋的棋盘上任意放一只红“车”及一只黑 “车”,则它们正好可以互相“吃掉”
的概率是 .(每行9个交叉点,每列10个交叉点)
三、解答题(本大题共5题,共80分,)
15.(15分)如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,现
有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少?
16.(15分)10本不同的语文书,2本不同的数学书,从中任意取出2本,能取出数学书的概率有多大?
17.(17分)甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白,
三种颜色的球各2个,从两个盒子中各取1个球
(1)求取出的两个球是不同颜色的概率.
(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).
18. (17分)为了了解某市开展群众体育活动的情况,拟采用分层抽样的方法从,,A B C 三个区中抽取7个工厂进行调查,已知,,A B C 区中分别有18,27,18个工厂 (1)求从,,A B C 区中应分别抽取的工厂个数
(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有一个来自A 区的概率
19. (14分)将一枚质地均匀的正方形骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y . (1)求事件“3≤+y x ”的概率; (2)求事件2=-y x 的概率.
高中数学必修3第三章单元测试卷参考答案
一、选择题:(本大题共10题,每小题5分,共50分) 二、填空题(本大题共4小题,每小题5分,共20分)
11.
51 12. 181 13. 7
5 14. 0.25 三、解答题(本大题共3小题,共30分,解答应写出文字说明,证明过程 或演算步骤) 15. 解:因为均匀的粒子落在正方形内任何一点是等可能的 所以符合几何概型的条件。
设A =“粒子落在中间带形区域”则依题意得 正方形面积为:25×25=625
两个等腰直角三角形的面积为:2×
2
1
×23×23=529 带形区域的面积为:625-529=96
∴ P (A )=
625
96 16. 解:基本事件的总数为:12×11÷2=66
“能取出数学书”这个事件所包含的基本事件个数分两种情况: (1)“恰好取出1本数学书”所包含的基本事件个数为:10×2=20 (2)“取出2本都是数学书”所包含的基本事件个数为:1
所以“能取出数学书”这个事件所包含的基本事件个数为:20+1=21
因此, P (“能取出数学书”)=
22
7
17 解:
(1)设A =“取出的两球是相同颜色”,B =“取出的两球是不同颜色”.
则事件A 的概率为:
P (A )=
692323⨯⨯⨯+=9
2
由于事件A 与事件B 是对立事件,所以事件B 的概率为:
P (B )=1-P (A )=1-
92=9
7
(2)随机模拟的步骤:
第1步:利用抓阄法或计算机(计算器)产生1~3和2~4两组取整数
值的随机数,每组各有N 个随机数。
用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球。
第2步:统计两组对应的N 对随机数中,每对中的两个数字不同的对数
n 。
第3步:计算
N n 的值。
则N
n
就是取出的两个球是不同颜色的概率的近似值。