人教高一数学必修3第三章概率初步试卷
最新人教版高中数学必修3第三章第三章概率单元测试(第三章概率测评)
本章测评(时间90分钟,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1下列事件是随机事件的个数是( )①同种电荷,互相排斥;②明天天晴;③自由下落的物体做匀速直线运动;④函数y =log a x (a >0且a ≠1)在定义域上是增函数.A .0个B .1个C .2个D .3个2从四双不同的鞋中任意摸出4只,事件“4只全部成对”的对立事件是( )A .至多有两只不成对B .恰有两只不成对C .4只全部不成对D .至少有两只不成对3下列4个命题:①对立事件一定是互斥事件;②若A ,B 为两个事件,则P (A +B )=P (A )+P (B );③若事件A ,B ,C 彼此互斥,则P (A )+P (B )+P (C )=1;④若事件A ,B 满足P (A )+P (B )=1,则A ,B 是对立事件,其中错误的有( )A .0个B .1个C .2个D .3个4甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为70%,则甲、乙两人下一盘棋,你认为最可能出现的情况是( )A .甲获胜B .乙获胜C .甲、乙下成和棋D .无法得出5袋中装白球和黑球各3个,从中任取2个,则至多有一黑球的概率是( ) A.15 B.45 C.13 D.126从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率是( )A.15B.25C.35D.457利用简单随机抽样的方法抽查某工厂的100件产品,其中一等品为20个,合格品有70个,其余为不合格品,现在这个工厂随机抽查一件产品,设事件A =“是一等品”,B =“是合格品”,C =“是不合格品”,则下列结果错误的是( )A .P (B )=710 B .P (A +B )=910C .P (A ∩B )=0D .P (A ∪B )=P (C )8把12个人平均分成两组,每组任意指定正、副组长各1人,则甲被指定为正组长的概率为( )A.112 B .16 C .14 D .139若以连续两次掷骰子分别得到的点数m ,n 作为点P 的坐标(m ,n ),则点P 在圆x 2+y 2=25外的概率是…( )A.536 B .712 C .512 D .1310(2009安徽高考,文10)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于…( )A .1B .12C .13D .0二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11(2009江苏高考,5)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为________.12产品中有一、二、三等品及废品4种,一、二、三等品和废品率分别是60%,10%,20%,10%.任取一个产品检验其质量,那么取得一等品或二等品的概率是________.13在一次教师联欢会上,到会的女教师比男教师多12人.从这些教师中随机挑选一人表演节目,若选到男教师的概率为920,则参加联欢会的教师共有________人. 14有以下说法:①一年按365天计算,两名学生的生日相同的概率是1365.②买彩票中奖的概率为0.001,那么买1 000张彩票就一定能中奖.③乒乓球赛前,决定谁先发球,抽签方法是从1~10共10个数字中各抽取1个,再比较大小,这种抽签方法是公平的.④昨天没有下雨,则说明“昨天气象局的天气预报降水概率是90%”是错误的.根据我们所学的概率知识,其中说法正确的序号是______.15在区间[-1,1]上任取两数x和y,组成有序数对(x,y),记事件A为“x2+y2<1”,则P(A)=________.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤)16(本小题满分9分)已知集合A={-3,-1,0,2,4},在平面直角坐标系中,点(x,y)的坐标x∈A,y∈A且x≠y,计算:(1)点(x,y)不在x轴上的概率;(2)点(x,y)在第二象限的概率.17(本小题满分10分)设有一个等边三角形网格,其中每个最小等边三角形的边长都是4 3 cm,现用直径等于2 cm硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.18(本小题满分10分)从一副扑克牌(没有大小王)的52张牌中任取2张,求:(1)两张是不同花色牌的概率;(2)至少有一张是红心的概率.19(本小题满分11分)连续抛掷两颗骰子,设第一颗点数为m,第二颗点数为n,则求:(1)m+n=7的概率;(2)m=n的概率;(3)m·n为偶数的概率;(4)点P(m,n)在圆x2+y2=16内的概率.参考答案1解析:②④是随机事件;①是必然事件;③是不可能事件.答案:C2解析:从四双不同的鞋中任意摸出4只,可能的结果为“恰有2只成对”,“4只全部成对”,“4只都不成对”,∴事件{4只全部成对}的对立事件是{恰有2只成对}+{4只都不成对}={至少有两只不成对},故选D.答案:D3解析:①正确;②当且仅当A 与B 互斥时,P (A +B )=P (A )+P (B ),对于任意两个事件A ,B 满足P (A +B )=P (A )+P (B )-P (AB ),②不正确;③P (A +B +C )不一定是等于1,还可能小于1,∴③也不正确;④也不正确.例如,袋中有大小相同的红、黄、黑、蓝四个球,从袋中任摸一个球,设事件A ={红球或黄球},事件B ={黄球或黑球},显然事件A 与B 不互斥,但P (A )=12,P (B )=12,P (A )+P (B )=1. 答案:D4解析:分别将“甲胜”“和棋”“乙胜”的概率求出,并比较,因为甲获胜的概率为30%,甲和棋的概率为40%,甲输棋的概率为30%,故甲、乙下成和棋的可能性最大.答案:C5解析:从袋中任取2个球,有15种等可能取法(不妨将黑球编号为黑1、黑2、黑3,将白球编号为白1、白2、白3).取出的两个球都是白球有3种等可能取法,取出的两个球一白一黑有9种等可能取法,∴事件A =“取出的两个球至多1黑”,共有9+3=12(种)取法,∴P (A )=1215=45. 答案:B6解析:可以构成的两位数的总数为5×4=20(种),因为是“任取”两个数,所以每个数被取到的概率相同,可以采用古典概型公式求解,其中大于40的两位数有以4开头的:41、42、43、45共4种;以5开头的:51、52、53、54共4种.所以P =820=25. 答案:B7解析:根据事件的关系及运算求解,A 、B 、C 为互斥事件,故C 项正确,又因为从100件中抽取产品符合古典概型的条件,则A 、B 两项正确,D 项错误.答案:D8解析:12个人被平均分成两组,每组6个人,则甲必被分到其中一组,则只需研究该组即可.该组6个人中,甲被选为正组长的概率为16. 答案:B9解析:本题中涉及两个变量的平方和,类似于两变量的和或积的情况,可以用列表法(如下图),使x 2+y 2>25的次数与总试验次数的比就近似为本题结果.即2136=712. 答案:B10解析:正方体六个面的中心任取三个只能组成两种三角形.一种是等腰直角三角形,如图甲.另一种是正三角形,如图乙.若任取三个点构成的是等腰直角三角形,剩下的三个点也一定构成等腰直角三角形,若任取三个点构成的是正三角形,剩下的三点也一定构成正三角形.这是一个必然事件,因此概率为1.答案:A11解析:从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3 m 的事件数为2,分别是2.5和2.8,2.6和2.9,所求概率为0.2.答案:0.212解析:利用概率的加法公式P (A ∪B )=P (A )+P (B )易得.答案:0.713解析:本题为古典概型概率题目,设参加联欢会的男教师为x 名,女教师为12+x名,因为男教师被挑选出一人的概率为x 12+2x. 所以x 12+2x =920,则x =54,即参加联欢会的教师共有120人. 答案:12014解析:根据“概率的意义”求解,买彩票中奖的概率0.001,并不意味着买1 000张彩票一定能中奖,只有当买彩票的数量非常大时,我们可以看成大量买彩票的重复试验,中奖的次数为n 1 000;昨天气象局的天气预报降水概率是90%,是指可能性非常大,并不一定会下雨.答案:①③15解析:[-1,1]上任取的x 和y 组成有序数对(x ,y ),构成基本事件空间Ω,区域Ω是边长为2的正方形,子区域A 为圆面,所以P (A )=μA μΩ=π4.答案:π416分析:本题为古典概型概率,先根据题意求出基本事件总数,特别注意x ≠y 这一条件,很容易出现错误.解:∵x ∈A ,y ∈A 且x ≠y ,∴数对(x ,y )的取法共有5×4=20种.(1)事件A =“点(x ,y )不在x 轴上”即点(x ,y )的纵坐标y ≠0.∵y =0的点的取法有4种,∴P (A )=20-420=45. (2)事件B =“点(x ,y )在第二象限”即x <0,y >0,∴数对(x ,y )取法有2×2=4种.∴P (B )=420=15. 17分析:硬币落下后与格线没有公共点等价于硬币中心与格线的距离都大于半径1,在等边三角形内作三条与正三角形三边距离为1的直线,构成小等边三角形,当硬币中心在小等边三角形内时,硬币与三边都没有公共点,所以硬币与格线没有公共点就转化为硬币中心落在小等边三角形内的问题.解:记A ={硬币落下后与格线没有公共点}.在等边三角形内作小等边三角形,使其三边与原等边三角形三边距离都为1,如图所示,则小等边三角形的边长为43-23=23,由几何概率公式,得P (A )=S 小等边△S 大等边△=12×(23)2×3212×(43)2×32=14. 18分析:根据古典概型概率计算公式求解,要注意:抽取2张同样的牌,有先抽后抽之分,但是属于同一个基本事件.解:从52张牌中任取2张,取第一张时有52种取法,取第二张时有51种取法,但第一张取2、第二张取4和第一张取4、第二张取2是同一基本事件,故共有总取法种数为n=12×52×51. (1)记“两张是不同花色牌”为事件A ,取第一张时有52种取法,不妨设第一张取到了方块,则第二张需从红心、黑心、梅花共39张牌中任取一张,不妨设取到一张红心,但第一张取方块、第二张取红心和第一张取红心、第二张取方块是同一基本事件,所以事件A含的基本事件数为m 1=12×52×39. ∴P (A )=m 1n =3951=1317. (2)记“至少有一张是红心”为事件B ,其对立事件C 为“所取2张牌都不是红心”即两张都是方块、梅花、黑桃中取的,事件C 含的基本事件数为m 2=12×39×38. ∴P (C )=m 2n =1934. ∴由对立事件的性质,得P (B )=1-P (C )=1-1934=1534. 19分析:本题为古典概型问题,求解时可先求出基本事件总数,再求出各事件包含的基本事件数,最后求得结果.解:(m ,n )总的个数为36个.(1)事件A ={m +n =7}含基本事件为:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6个.则P (A )=636=16. (2)事件B ={m =n }含基本事件为:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)共有6个,则P (B )=636=16. (3)事件C ={m ·n 为偶数}含基本事件为:(1,2),(1,4),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,2),(3,4),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,2),(5,4),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共有27个.(也可以把事件{m ·n 为偶数}分类为:奇数×偶数,偶数×奇数,偶数×偶数.则所含基本事件个数为3×3+3×3+3×3=27.)∴P (C )=2736=34. (4)事件D ={点P (m ,n )在圆x 2+y 2=16内}包含基本事件为:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,则P (D )=836=29.。
高一数学必修3第三章概率测试题及答案(K12教育文档)
高一数学必修3第三章概率测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修3第三章概率测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修3第三章概率测试题及答案(word版可编辑修改)的全部内容。
一、选择题:1.下列说法正确的是( ).A.如果一事件发生的概率为十万分之一,说明此事件不可能发生B.如果一事件不是不可能事件,说明此事件是必然事件C.概率的大小与不确定事件有关D.如果一事件发生的概率为99.999%,说明此事件必然发生2.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有除颜色外完全相同的球的个数为( ).A.5个 B.8个 C.10个 D.15个3.下列事件为确定事件的有( ).(1)在一标准大气压下,20℃的纯水结冰(2)平时的百分制考试中,小白的考试成绩为105分(3)抛一枚硬币,落下后正面朝上(4)边长为a,b的长方形面积为abA.1个 B.2个 C.3个 D.4个4.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ).A.至少有1个白球,都是白球 B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球 D.至少有1个白球,都是红球5.从数字1,2,3,4,5中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400的概率是( ).A.2/5 B、2/3 C.2/7 D.3/46.从一副扑克牌(54张)中抽取一张牌,抽到牌“K”的概率是( ).A.1/54 B.1/27 C.1/18 D.2/277.同时掷两枚骰子,所得点数之和为5的概率为().A.1/4 B.1/9 C.1/6 D.1/128.在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是( ). A.5/6 B.4/5 C.2/3 D.1/29.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( ).A.60% B.30% C.10% D.50%10.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为().A.0.65 B.0.55 C.0。
(好题)高中数学必修三第三章《概率》测试卷(包含答案解析)(1)
一、选择题1.福建省第十六届运动会将于2018年在宁德召开,组委会预备在会议期间从3女2男共5名志愿者中任选2名志愿者参考接待工作,则选到的都是女性志愿者的概率为()A.110B.310C.12D.352.如图所示,已知圆1C和2C的半径都为2,且1223C C=,若在圆1C或2C中任取一点,则该点取自阴影部分的概率为()A33533π+B33533π+C331033π+D331033π+3.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜潮举行,长三角城市群包括,上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市".现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.7164.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为()A.910B.710C.310D.1105.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A,B两个贫困县各有15名村代表,最终A县有5人表现突出,B县有3人表现突出,现分别从A,B两个县的15人中各选1人,已知有人表现突出,则B县选取的人表现不突出的概率是()A.13B.47C.23D.566.如图,正方形ABNH、DEFM的面积相等,23CN NG AB==,向多边形ABCDEFGH内投一点,则该点落在阴影部分内的概率为()A .12B .34C .27D .387.若即时起10分钟内,甲乙两同学等可能到达某咖啡厅,则这两同学到达咖啡厅的时间间隔不超过3分钟的概率为( ) A .0.3B .0.36C .0.49D .0.518.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若5AD =,3BD =,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为( )A .964B .449C .225D .279.如图所示,ABC ∆是等边三角形,其内部三个圆的半径相等,且圆心都在ABC ∆的一条中线上.在三角形内任取一点,则该点取自阴影部分的概率为( )A .949π B .3349πC .33πD .9π10.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A.16 36B.1736C.12D.193611.七巧板是我国古代劳动人民发明的一种智力玩具,由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成. 如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A.14B.316C.38D.71612.在二项式42nxx的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.13二、填空题13.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.14.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的两球同色”,B=“取出的2球中至少有一个黄球”,C=“取出的2球至少有一个白球”,D“取出的两球不同色”,E=“取出的2球中至多有一个白球”.下列判断中正确的序号为________.①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件:④()1P C E=;⑤()()P B P C=.15.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.16.已知函数2()22f x x =-的定义域为M ,(())y f f x =的定义域为P ,在M 上随机取一个数x ,则x P ∈的概率是____________.17.某种产品每箱装6个,其中有4个合格,2个不合格,现质检人员从中随机抽取2个进行检测,则检测出至少有一个不合格产品的概率是_______.18.农历戊戌年即将结束,为了迎接新年,小康、小梁、小谭、小刘、小林每人写了一张心愿卡,设计了一个与此心愿卡对应的漂流瓶.现每人随机的选择一个漂流瓶将心愿卡放入,则事件“至少有两张心愿卡放入对应的漂流瓶”的概率为___19.从一堆产品(正品与次品都多于2件)中任取2件,观察正品件数和次品件数,则下列说法:①“恰好有1件次品”和“恰好2件都是次品”是互斥事件②“至少有1件正品”和“全是次品”是对立事件③“至少有1件正品”和“至少有1件次品”是互斥事件但不是对立事件 ④“至少有1件次品”和“全是正品”是互斥事件也是对立事件其中正确的有______(填序号). 20.已知下列命题:①ˆ856yx =+意味着每增加一个单位,y 平均增加8个单位 ②投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件 ③互斥事件不一定是对立事件,但对立事件一定是互斥事件④在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型 其中正确的命题有__________________.三、解答题21.安庆市某中学教研室从高二年级随机抽取了50名学生的十月份语文成绩(满分100分,成绩均为不低于40分的整数),得到如图所示的频率分布直方图.(1)若该校高二年级共有学生1000人,试估计十月份月考语文成绩不低于60分的人数; (2)为提高学生学习语文的兴趣,学校决定在随机抽取的50名学生中成立“二帮一”小组,即从成绩[]90,100中选两位同学,共同帮助[)40,50中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲乙恰好被安排在同一小组的概率.22.空气质量指数(Air Quality Index ,简称AQI )是定量描述空气质量状况的指数,空气质量按照AOI 大小分为六级.某地区一监测站记录自2019年9月起连续n 天空气质量状况,得如下频数统计表及频率分布直方图. 空气质量指数(AOI ) (0,50](50,100] (100,150] (150,200] (200,250] (250,)+∞空气质量等级 优 良 轻度污染 中度污染 重度污染 严重污染 频数(天)2540m105(Ⅰ)求m ,n 的值,并完成频率分布直方图;(Ⅱ)由频率分布直方图,求该组数据的平均数与中位数;(Ⅲ)在空气质量指数分别为(50,100]和(100,150]的监测数据中,用分层抽样的方法抽取6天,再从中任意选取2天,求事件“两天空气质量等级不同”发生的概率.23.从广安市某中学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,...,第八组[)190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校800名男生的身高的中位数。
高中数学第三章概率检测试题新人教A版必修3
第三章概率检测试题(时间:120分钟满分:150分)一、选择题(每小题5分,共60分)1. 下列说法正确的是(C )(A) 随机事件的概率总在[0,1]内(B) 不可能事件的概率不一定为0(C) 必然事件的概率一定为1(D) 以上均不对解析:随机事件的概率总在(0,1)内,不可能事件的概率为0,必然事件的概率为1.故选C.2. 下列说法中正确的是(D )(A) 若事件A与事件B是互斥事件,则P(A)+P(B)=1(B) 若事件A与事件B满足条件:P(A)+P(B)=1,则事件A与事件B是对立事件(C) 一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”是对立事件(D) 把红、橙、黄、绿4张纸牌随机分给甲、乙、丙、丁4人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件3. 王华向一个靶子投掷飞镖,投了n次,投中了m次,则他投中靶子的频率为,当n很大时,那么投中靶子这一事件发生的概率P(A)与的关系是(A )(A)P(A) ~ (B)P(A)<(C)P(A)> (D)P(A)=解析:大量重复试验下,概率是频率的稳定值,频率是概率的近似值,故选A.4. 从一批产品中取出三件产品,设A= “三件产品全不是次品”,B= “三件产品全是次品”,C=三件产品不全是次品” , 则下列结论正确的是( B )(A)A与C互斥(B)B 与C互斥(C) 任何两个均互斥(D) 任何两个均不互斥解析:因为事件B是表示“三件产品全是次品” ,事件C是表示“三件产品不全是次品” ,显然这两个事件不可能同时发生, 故它们是互斥的, 所以选 B.5. 如下四个游戏盘, 现在投镖, 投中阴影部分概率最大的是( A )解析:投中阴影部分的概率分别为, , , , 又>,>.且>,即最大.故选 A.6. 如图,在矩形ABCD中,点E为边CD的中点.若在矩形ABCD内部随机取一个点Q,则点Q取自△ ABE内部的概率等于(C )(A) (B) (C) (D)解析:不妨设矩形的长、宽分别为a,b,于是S矩形=ab,S △ ABE=ab,由几何概型的概率公式可知P==.故选 C.7. 给甲、乙、丙三人打电话, 若打电话的顺序是任意的, 则第一个打电话给甲的概率是( B )(A) (B) (C) (D)解析:给三人打电话的不同顺序有6种可能,其中第一个给甲打电话的可能有2种,故所求概率为P==. 故选 B.8. 手表实际上是个转盘, 一天24 小时, 分针指到哪个数字的概率最大( D )(A)12 (B)6(C)1 (D)12 个数字概率相等解析:手表设计的转盘是等分的,即分针指到1,2,3, - ,12中每个数字的机会都一样.故选D.9. 如图,四边形EFGH是以0为圆心、半径为1的圆的内接正方形•将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,则P(A)等于(D )(A) (B) (C)2 (D)解析:豆子落在正方形EFGH内是随机的,故可以认为豆子落在正方形EFGH内任一点是等可能的,属于几何概型•因为圆的半径为1,所以正方形EFGH的边长是,则正方形EFGH的面积是2, 又圆的面积是n ,所以P(A)=.10. 在面积为S的厶ABC的边AB上任取一点P,则厶PBC的面积大于的概率是(C )(A) (B) (C) (D)解析:如图所示,在边AB上任取一点P,因为△ ABC与△ PBC是等高的,所以事件“△ PBC的面积大于”等价于事件“ |BP| : |AB|> ” ,即P (△ PBC的面积大于)=.故选C.11. 掷一枚均匀的正六面体骰子,设A表示事件“出现2点”,B表示“出现奇数点”,则P(A UB)等于(B )(A) (B) (C) (D)解析:由古典概型的概率公式得P(A)=,P(B)==.又事件A与B为互斥事件,由互斥事件的概率和公式得P(A U B)=P(A)+P(B)= + =.12. 如图,等腰直角三角形的斜边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域M(图中阴影部分),若在此三角形内随机取一点,则此点取自区域M的概率为(D )(A) (B) (C) (D)1-解析:根据几何概型概率计算公式,此点取自区域M的概率P==1-.故选D.二、填空题(每小题5分,共20分)13. 一个口袋内装有大小相同的10个白球,5个黑球,5个红球,从中任取一球是白球或黑球的概率为_________ .解析:记“任取一球为白球”为事件A, “任取一球为黑球”为事件B,则P(A U B)=P(A)+P(B)= +答案:14. 甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图所示,如果分别从甲、乙两组中各随机选取一名同学,则这两名同学的成绩相同的概率是_____________ .解析:由题意可知从甲、乙两组中各随机选取一名同学,共有9种选法,其中这两名同学的成绩相同的选法只有1种,故所求概率P=.答案:2 215. 已知集合A={(x,y)|x +y=1},集合B={(x,y)|x+y+a=O}, 若A n B M ?的概率为1,则a 的取值范围是解析:依题意知,直线x+y+a=0与圆x2+y2=1恒有公共点,故w 1,解得-< a< .答案:[-,]16. 从1,2,3,4 这四个数字中,任取两个,这两个数字都是奇数的概率是 ____________ ,这两个数字之和是偶数的概率是__________ .解析:从1,2,3,4 四个数字中任取两个共有6种取法,取的两个数字都是奇数只有1,3 一种情况,故此时的概率为•若取出两个数字之和是偶数,必须同时取两个偶数或两个奇数,有1,3;2,4两种取法,所以所求的概率为=.答案:三、解答题(共70分)17. (本小题满分10分)对某班一次测验成绩进行统计,如表所示:(1) 求该班成绩在[80,100]内的概率;⑵求该班成绩在[60,100]内的概率.解:记该班的测试成绩在[60,70),[70,80),[80,90),[90,100] 内依次为事件A,B,C,D,由题意知事件A,B,C,D是彼此互斥的.(1) 该班成绩在[80,100]内的概率是P(C U D)=P(C)+P(D)=0.25+0.15=0.4.⑵该班成绩在[60,100] 内的概率是P(A U B U C UD)=P(A)+P(B)+P(C)+P(D)=0.17+0.36+0.25+0.15=0.93.18. (本小题满分12分)袋子中装有大小和形状相同的小球,其中红球与黑球各1个,白球n个.从袋子中随机取出1个小球,取到白球的概率是.(1) 求n的值;(2) 记从袋中随机取出的一个小球为白球得2分,为黑球得1分,为红球不得分.现从袋子中取出2个小球,求总得分为2分的概率.解:(1) 由题意可得=, 解得n=2,经检验n=2 是分式方程的根, 故n 的值为 2.(2) 设红球为a, 黑球为b, 白球为c1,c 2, 从袋子中取出2 个小球的所有基本等可能事件为(a,b),(a,c 1),(a,c 2),(b,c 1),(b,c 2),(c 1,c 2), 共有6 个, 其中得2 分的基本事件有(a,c 1),(a,c 2),所以总得分为 2 分的概率为=.19. (本小题满分12 分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖. 抽奖方法是:从装有2个红球A,A2和1个白球B的甲箱与装有2个红球a i,a2和2个白球b i,b2的乙箱中,各随机摸出1个球. 若摸出的2个球都是红球则中奖,否则不中奖.(1) 用球的标号列出所有可能的摸出结果;(2) 有人认为:甲箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗? 请说明理由.解:(1) 所有可能的摸出结果是{A1,a1},{A 1,a2},{A1,b1},{A 1,b2},{A2,a1},{A 2,a 2},{A 2,b 1},{A 2,b2},{B,a 1},{B,a 2},{B,b 1},{B,b 2}.(2) 不正确. 理由如下:由(1) 知, 所有可能的摸出结果共12 种, 其中摸出的 2 个球都是红球的结果为{A i,a i},{A i,a2},{A 2,a i},{A 2,a 2},共4种,所以中奖的概率为=,不中奖的概率为1-=>,故这种说法不正确. 20. (本小题满分i2 分)甲、乙两人约定晚上 6 点到7 点之间在某地见面, 并约定先到者要等候另一人一刻钟, 过时即可离开. 求甲、乙能见面的概率.解: 如图所示,以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间, 则两人能够会面的等价条件是|x-y|< i5.在平面直角坐标系内,(x,y)的所有可能结果是边长为60的正方形,而事件A “甲、乙能见面”的可能结果是阴影部分所表示的平面区域,由几何概型的概率公式得P(A)= = = =. 所以甲、乙能见面的概率是.21. (本小题满分12 分)已知集合Z={(x,y)|x € [0,2],y € [-1,1]}.⑴若x,y € Z,求x+y > 0的概率;⑵若x,y € R,求x+y > 0的概率.解:⑴设“x+y >0,x,y € Z” 为事件A,x,y € Z,x € [0,2],即x=0,1,2;y € [-1,1],即y=-1,0,1.则基本事件有(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1), 共9个.其中满足“x+y > 0 ”的基本事件有8 个,所以P(A)=.故x,y €乙x+y > 0的概率为.⑵设“ x+y > 0,x,y € R'为事件M,因为x € [0,2],y € [-1,1],则基本事件为如图四边形ABCD区域,事件M包括的区域为其中的阴影部分.所以P(M)=J故x,y € R,x+y > 0的概率为.21.( 本小题满分12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分, 绘制频率分布直方图( 如图所示), 其中样本数据分组区间为[40,50),[50,60), …,[80,90),[90,100].(1) 求频率分布直方图中a的值;(2) 估计该企业的职工对该部门评分不低于80的概率;(3) 从评分在[40,60) 的受访职工中,随机抽取2人,求此2人的评分都在[40,50) 的概率.解:⑴因为(0.004+a+0.018+0.022 X 2+0.028) X 10=1,所以a=0.006.⑵由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018) X 10=0.4,所以该企业职工对该部门评分不低于80 的概率的估计值为0.4.(3) 受访职工中评分在[50,60) 的有50X 0.006 X 10=3(人), 记为A1,A2,A3;受访职工中评分在[40,50)的有50X 0.004 X 10=2(人),记为B,B2.从这 5 名受访职工中随机抽取 2 人, 所有可能的结果共有10 种, 它们是{A 1,A 2},{A 1,A3},{A 1,B 1},{A 1,B2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A3,B2},{B 1,B2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B I,B2},故所求的概率为.22. (本小题满分12分) 袋中有五张卡片, 其中红色卡片三张, 标号分别为1,2,3; 蓝色卡片两张, 标号分别为1,2.(1) 从以上五张卡片中任取两张, 求这两张卡片颜色不同且标号之和小于4的概率;(2) 向袋中再放入一张标号为0 的绿色卡片, 从这六张卡片中任取两张, 求这两种卡片颜色不同且标号之和小于 4 的概率.解:(1) 标号为1,2,3 的三张红色卡片分别记为A,B,C, 标号为1,2 的两张蓝色卡片分别记为D,E, 从五张卡片中任取两张的所有可能的结果为(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E), 共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的. 从五张卡片中任取两张, 这两张卡片颜色不同且它们的标号之和小于 4 的结果为(A,D),(A,E),(B,D), 共 3 种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.(2)记F 是标号为0 的绿色卡片, 从六张卡片中任取两张的所有可能的结果为(A, B) , ( A, C) , ( A, D) , ( A, E) , ( A, F) , ( B, C) , ( B, D) , ( B, E), (B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F), 共15种.由于每一张卡片被取到的机会均等, 因此这些基本事件的出现是等可能的. 从六张卡片中任取两张, 这两张卡片颜色不同且它们的标号之和小于 4 的结果为(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F), 共8 种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.。
人教版高一数学必修3第三章概率测试题附答案
人教版高一数学必修3第三章概率测试题(附答案)高中数学必修3第三章 概率单元检测一、选择题1.任取两个不同的1位正整数,它们的和是8的概率是( ).A . 241B .61C .83D .1212.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ). A .31 B .π2C .21D .323.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为( ).A .103B .107C .53D .524.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ).A .103B .51C .101D .1215.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ).A .12513B .12516C .12518D .125196.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( ).A .21B .31C .41 D .161 7.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ).A .51B .52C .53D .548.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( ).A .61B .31C .21D .32 9.抛掷一骰子,观察出现的点数,设事件A 为“出现1点”,事件B 为“出现2点”.已知P (A )=P (B )=61,则“出现1点或2点”的概率为( ).A .21B .31C .61D .121 二、填空题10.某人午觉醒来,发觉表停了,他打开收音机想听电台报时,假定电台每小时报时一次,则他等待的时间短于10分钟的概率为___________.11.有A ,B ,C 三台机床,一个工人一分钟内可照看其中任意两台,在一分钟内A 未被照看的概率是 .12.抛掷一枚均匀的骰子(每面分别有1~6点),设事件A 为“出现1点”,事件B 为“出现2点”,则“出现的点数大于2”的概率为 .13.已知函数f (x )=log 2x , x ∈⎥⎦⎤⎢⎣⎡221 ,,在区间⎥⎦⎤⎢⎣⎡221 ,上任取一点x 0,使f (x 0)≥0的概率为 .14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.15.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b.则a+b能被3整除的概率为.三、解答题16.射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中环数小于8环的概率.17.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h,乙船停泊时间为2 h,求它们中的任意一艘都不需要等待码头空出的概率.18.同时抛掷两枚相同的骰子(每个面上分别刻有1~6个点数,抛掷后,以向上一面的点数为准),试计算出现两个点数之和为6点、7点、8点的概率分别是多少?19.从含有两件正品a1,a2和一件次品b的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.参考答案一、选择题 1.D解析:1位正整数是从1到9共9个数,其中任意两个不同的正整数求和有8+7+6+5+4+3+2+1=36种情况,和是8的共有3种情况,即(1,7),(2,6),(3,5),所以和是8的概率是121.2.A解析: 在区间⎥⎦⎤⎢⎣⎡2π2π- ,上随机取一个数x ,即x ∈⎥⎦⎤⎢⎣⎡2π2π- ,时,要使cos x 的值介于0到21之间,需使-2π≤x ≤-3π或3π≤x ≤2π,两区间长度之和为3π,由几何概型知cos x 的值介于0到21之间的概率为π3π=31.故选A. 3.D解析:从5个数中选出3个数的选法种数有10种,列举出各种情形后可发现,和等于6的两个数有1和5,2和4两种情况,故选出的3个数中任何两个数的和不等于6的选法有(10-3×2)种,故所求概率为104=52.4.A解析:从五个球中任取两个共有10种情形,而取出的小球标注的数字之和为3或6的只有3种情况:即1+2=3,2+4=6,1+5=6,,故取出的小球标注的数字之和为3或6的概率为3.105.D解析:由于一个三位数,各位数字之和等于9,9是一个奇数,因此这三个数必然是“三个奇数”或“一个奇数两个偶数”.又由于每位数字从1,2,3,4,5中抽取,且允许重复,因此,三个奇数的情况有两种:(1)由1,3,5组成的三位数,共有6种;(2)由三个3组成的三位数,共有1种.一个奇数两个偶数有两种:(1)由1,4,4组成的三位数,共有3种;(2)由3,2,4组成的三位数,共有6种;(3)由5,2,2组成的三位数,共有3种.再将以上各种情况组成的三位数的个数加起来,得到各位数字之和等于9的三位数,共有19种.又知从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数共有53=125种.因此,所求概率为19.125 6.D解析:所求概率为224π1π⨯⨯ =161.7.B 解析:区域Ω为区间[-2,3],子区域A 为区间(1,3],而两个区间的长度分别为5,2.8.A解析:所求概率即为四棱锥O -ABCD 与正方体的体积之比.9.B解析:A ,B 为互斥事件,故采用概率的加法公式P (A +B )=P (A )+(B )=61+61=31. 二、填空题10.61. 解析:因为电台每小时报时一次,我们自然认为这个人打开收音机时处于两次报时之间,例如(13∶00,14∶00),而且取各点的可能性一样,要遇到等待时间短于10分钟,只有当他打开收音机的时间正好处于13∶50至14∶00之间才有可能,相应的概率是6010=61. 11.31. 解析:基本事件有A ,B ;A ,C ;B ,C 共3个,A 未被照看的事件是B ,C ,所以A 未被照看的概率为31.12.32. 解析:A ,B 为互斥事件,故采用概率的加法公式得P (A +B )=31,1-P (A +B )=32. 13.32. 解析:因为f (x )≥0,即log 2 x 0≥0,得x 0≥1,故使f (x )≥0的x 0的区域为[1,2].14.34. 解析:从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P =43. 15.13. 解析:把一颗骰子抛掷2次,共有36个基本事件.设“a +b 能被3整除”为事件A ,有(1,2),(2,1),(1,5),(2,4),(3,3),(4,2),(5,1),(3,6),(4,5),(5,4),(6,3),(6,6),共12个.P (A )=13. 三、解答题16.解:设“射中10环”、“射中9环”、“射中8环”、“射中7环”、“射中7环以下”的事件分别为A ,B ,C ,D ,E ,则(1)P (A ∪B )=P (A )+P (B )=0.24+0.28=0.52.所以,射中10环或9环的概率为0.52.(2)P (A ∪B ∪C ∪D )= P (A )+P (B )+P (C )+P (D )=0.24+0.28+0.19+0.16=0.87.所以,至少射中7环的概率为0.87.(3)P (D ∪E )=P (D )+P (E )=0.16+0.13=0.29.所以,射中环数小于8环的概率为0.29.17.解:这是一个几何概型问题.设甲、乙两艘船到达码头的时刻分别为x 与y ,A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1h 以上或乙比甲早到达2h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )| y -x ≥1或x -y ≥2,x ∈[0,24],2322y ∈[0,24]}.A 对应图中阴影部分,全部结果构成集合Ω为边长是24的正方形.由几何概型定义,所求概率为P (A )=的面积的面积ΩA =22224212-24211-24⨯⨯+)()(=5765.506=0.879 34.18.解:将两只骰子编号为1号、2号,同时抛掷,则可能出现的情况有6×6=36种,即n =36.出现6点的情况有(1,5),(5,1),(2,4),(4,2),(3,3).∴m 1=5,∴概率为P 1=n m 1=365. 出现7点的情况有(1,6),(6,1),(2,5),(5,2),(3,4),(4,3).∴m 2=6,∴概率为P 2=n m 2=366=61. 出现8点的情况有(2,6),(6,2),(3,5),(5,3),(4,4).∴m 3=5, ∴概率为P 3=n m 3=365. 19.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b),(a2,a1),(a2,b),(b,a1),(b,a2)。
高中数学必修三第三章《概率》单元测试卷及答案
高中数学必修三第三章《概率》单元测试卷及答案高中数学必修三第三章《概率》单元测试卷及答案(2套)一、选择题1.下列说法正确的是()A。
甲、乙二人比赛,甲胜的概率为3/5,则比赛5场,甲胜3场B。
某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C。
随机试验的频率与概率相等D。
天气预报中,预报明天降水概率为90%,是指降水的可能性是90%2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是()A。
选出1人是班长的概率为1/40B。
选出1人是男生的概率是1/25C。
选出1人是女生的概率是1/15D。
在女生中选出1人是班长的概率是03.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()A。
1/2B。
1/3C。
1/4D。
1/84.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、XXX四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A。
对立事件B。
不可能事件C。
互斥但不是对立事件D。
以上答案都不对5.在2010年广州亚运会火炬传递活动中,在编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为()A。
1/10B。
3/10C。
7/10D。
9/106.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?()A。
①②B。
①③C。
②③D。
①②③7.矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为()A。
16B。
16.32C。
16.34D。
15.9688.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a<20的概率是()A。
3/10B。
人教版高一数学必修3第三章概率检查测试题(附答案)
高中数学必修3第三章 概率单元检测一、选择题1.任取两个不同的1位正整数,它们的和是8的概率是( ). A .241 B .61C .83D .121 2.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ).A .31B .π2C .21D .32 3.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为( ).A .103B .107C .53D .52 4.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ).A .103B .51C .101D .121 5.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ).A .12513B .12516C .12518D .12519 6.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( ).A .21B .31C .41D .161 7.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ).A .51 B .52 C .53D .54 8.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( ).A .61 B .31C .21D .32 9.抛掷一骰子,观察出现的点数,设事件A 为“出现1点”,事件B 为“出现2点”.已知P (A )=P (B )=61,则“出现1点或2点”的概率为( ). A .21 B .31C .61D .121 二、填空题10.某人午觉醒来,发觉表停了,他打开收音机想听电台报时,假定电台每小时报时一次,则他等待的时间短于10分钟的概率为___________.11.有A ,B ,C 三台机床,一个工人一分钟内可照看其中任意两台,在一分钟内A 未被照看的概率是 .12.抛掷一枚均匀的骰子(每面分别有1~6点),设事件A 为“出现1点”,事件B 为“出现2点”,则“出现的点数大于2”的概率为 .13.已知函数f (x )=log 2x , x ∈⎥⎦⎤⎢⎣⎡221 ,,在区间⎥⎦⎤⎢⎣⎡221 ,上任取一点x 0,使f (x 0)≥0的概率为 .14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 .15.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b .则a +b 能被3整除的概率为 .三、解答题16.射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中环数小于8环的概率.17.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h,乙船停泊时间为2 h,求它们中的任意一艘都不需要等待码头空出的概率.18.同时抛掷两枚相同的骰子(每个面上分别刻有1~6个点数,抛掷后,以向上一面的点数为准),试计算出现两个点数之和为6点、7点、8点的概率分别是多少?19.从含有两件正品a1,a2和一件次品b的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.参考答案一、选择题 1.D解析:1位正整数是从1到9共9个数,其中任意两个不同的正整数求和有8+7+6+5+4+3+2+1=36种情况,和是8的共有3种情况,即(1,7),(2,6),(3,5),所以和是8的概率是121. 2.A解析: 在区间⎥⎦⎤⎢⎣⎡2π2π- ,上随机取一个数x ,即x ∈⎥⎦⎤⎢⎣⎡2π2π- ,时,要使cos x 的值介于0到21之间,需使-2π≤x ≤-3π或3π≤x ≤2π,两区间长度之和为3π,由几何概型知cos x 的值介于0到21之间的概率为π3π=31.故选A.3.D解析:从5个数中选出3个数的选法种数有10种,列举出各种情形后可发现,和等于6的两个数有1和5,2和4两种情况,故选出的3个数中任何两个数的和不等于6的选法有(10-3×2)种,故所求概率为104=52. 4.A解析:从五个球中任取两个共有10种情形,而取出的小球标注的数字之和为3或6的只有3种情况:即1+2=3,2+4=6,1+5=6,,故取出的小球标注的数字之和为3或6的概率为103. 5.D解析:由于一个三位数,各位数字之和等于9,9是一个奇数,因此这三个数必然是“三个奇数”或“一个奇数两个偶数”.又由于每位数字从1,2,3,4,5中抽取,且允许重复,因此,三个奇数的情况有两种:(1)由1,3,5组成的三位数,共有6种;(2)由三个3组成的三位数,共有1种.一个奇数两个偶数有两种:(1)由1,4,4组成的三位数,共有3种;(2)由3,2,4组成的三位数,共有6种;(3)由5,2,2组成的三位数,共有3种.再将以上各种情况组成的三位数的个数加起来,得到各位数字之和等于9的三位数,共有19种.又知从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数共有53=125种.因此,所求概率为12519. 6.D解析:所求概率为224π1π⨯⨯ =161. 7.B解析:区域Ω为区间[-2,3],子区域A 为区间(1,3],而两个区间的长度分别为5,2. 8.A解析:所求概率即为四棱锥O -ABCD 与正方体的体积之比. 9.B解析:A ,B 为互斥事件,故采用概率的加法公式P (A +B )=P (A )+(B )=61+61=31. 二、填空题 10.61. 解析:因为电台每小时报时一次,我们自然认为这个人打开收音机时处于两次报时之间,例如(13∶00,14∶00),而且取各点的可能性一样,要遇到等待时间短于10分钟,只有当他打开收音机的时间正好处于13∶50至14∶00之间才有可能,相应的概率是6010=61. 11.31.解析:基本事件有A ,B ;A ,C ;B ,C 共3个,A 未被照看的事件是B ,C ,所以A未被照看的概率为31.12.32. 解析:A ,B 为互斥事件,故采用概率的加法公式得P (A +B )=31,1-P (A +B )=32.13.32. 解析:因为f (x )≥0,即log 2 x 0≥0,得x 0≥1,故使f (x )≥0的x 0的区域为[1,2]. 14.34. 解析:从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P =43. 15.13.解析:把一颗骰子抛掷2次,共有36个基本事件.设“a +b 能被3整除”为事件A ,有(1,2),(2,1),(1,5),(2,4),(3,3),(4,2),(5,1),(3,6),(4,5),(5,4),(6,3),(6,6),共12个.P (A )=13.三、解答题16.解:设“射中10环”、“射中9环”、“射中8环”、“射中7环”、“射中7环以下”的事件分别为A ,B ,C ,D ,E ,则(1)P (A ∪B )=P (A )+P (B )=0.24+0.28=0.52. 所以,射中10环或9环的概率为0.52.(2)P (A ∪B ∪C ∪D )= P (A )+P (B )+P (C )+P (D )=0.24+0.28+0.19+0.16=0.87. 所以,至少射中7环的概率为0.87.(3)P (D ∪E )=P (D )+P (E )=0.16+0.13=0.29. 所以,射中环数小于8环的概率为0.29.17.解:这是一个几何概型问题.设甲、乙两艘船 到达码头的时刻分别为x 与y ,A 为“两船都不需要等待 码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要 等待码头空出,当且仅当甲比乙早到达1h 以上或乙比甲 早到达2h 以上,即y -x ≥1或x -y ≥2.故所求事件构 成集合A ={(x ,y )| y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 对应图中阴影部分,全部结果构成集合Ω为边长是24的正方形. 由几何概型定义,所求概率为P (A )=的面积的面积ΩA =22224212-24211-24⨯⨯+)()(=5765.506=0.879 34.18.解:将两只骰子编号为1号、2号,同时抛掷,则可能出现的情况有6×6=36种,即n =36.出现6点的情况有(1,5),(5,1),(2,4),(4,2),(3,3).∴m 1=5, ∴概率为P 1=n m 1=365. 出现7点的情况有(1,6),(6,1),(2,5),(5,2),(3,4),(4,3). 23 22∴m 2=6, ∴概率为P 2=n m 2=366=61.出现8点的情况有(2,6),(6,2),(3,5),(5,3),(4,4). ∴m 3=5, ∴概率为P 3=n m 3=365. 19.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2),(a 1,b ),(a 2,a 1),(a 2,b ),(b ,a 1),(b ,a 2)。
高中数学 第三章 概率单元测评(含解析) 新人教A版必修
单元测评 概 率(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.编号为1,2,3的三位学生随意坐入编号为1,2,3的三个座位,每位学生坐一个座位,则三位学生所坐的座位号与学生的编号恰好都不同的概率是( )A.23B.13C.16D.56解析:编号为1,2,3的三位学生随意坐入编号为1,2,3的三个座位时,1号学生有3种坐法,2号学生有2种坐法,3号学生只有1种坐法,所以一共有6种坐法,其中座位号与学生的编号恰好都不同的坐法只有2种,所以所求的概率P =26=13.答案:B2.小明同学的QQ 密码是由0,1,2,3,4,5,6,7,8,9这10个数字中不同的6个数字组成的六位数码,由于长时间未登录QQ ,小明忘记了密码的最后一个数字,如果小明登录QQ 时密码的最后一个数字随意选取,则恰好能登录的概率是( )A.1105 B.1104 C.1100D.110解析:从0,1,2,3,4,5,6,7,8,9中任取一个数字有10个基本事件,恰巧是密码最后一位数字有1个基本事件,则恰好能登录的概率为110.答案:D3. 已知点P 是边长为4的正方形内任一点,则点P 到四个顶点的距离均大于2的概率是( ) A.π4 B .1-π4C.14D.π3解析:如图所示,边长为4的正方形ABCD ,分别以A 、B 、C 、D 为圆心,都以2为半径画弧截正方形ABCD 后剩余部分是阴影部分.则阴影部分的面积是42-4×14×π×22=16-4π,所以所求概率是16-4π16=1-π4.答案:B4.(2013·江西卷)集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( )A.23 B.12 C.13D.16解析:从A ,B 中各任意取一个数,对应的基本事件有:(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种,而这两个数之和等于4的基本事件有:(2,2),(3,1),共2种,故所求的概率为P =26=13. 答案:C5.从甲、乙、丙三人中,任选两名代表,甲被选中的概率为( ) A.12 B.13 C.14D.23解析:甲、乙、丙三人中任选两名代表有如下三种情况:(甲、乙)、(甲、丙)、(乙、丙),其中甲被选中包含两种,因此所求概率为P =23.答案:D6.(2013·安徽卷)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.910解析:从甲、乙、丙、丁、戊5人中录用3人的所有事件为:甲乙丙、甲乙丁、甲乙戊、乙丙丁、乙丙戊、丙丁戊、乙丁戊、甲丙丁、甲丙戊、甲丁戊,共10种,其中甲或乙被录用包含9个基本事件,故甲或乙被录用的概率为910.故选D.答案:D7.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( ) A.13 B.14 C.16D.112解析:由题意知(m ,n )的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6),共36种情况.而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种情况,故所求概率为336=112.答案:D8.在面积为S 的△ABC 的边AC 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.13B.12C.34D.14解析:如图,在△ABC 中,点F 是AC 边的四等分点,设△ABC 的高为AD ,△FBC 的高为FE ,则FE =14AD ,∴S △FBC =14S △ABC =S 4,要使△PBC 的面积大于S 4,则点P 需在线段FA 上选取,故P =FA CA =34.答案:C9.(2013·湖南卷)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB=( )A.12 B.14 C.32D.74解析:不妨设AB =1,AD =x ,则AD AB =x ,由图形的对称性和题意知,点P 应在EF 之间,EF =12.DE=CF =14,当点P 在E 点时,BP 最大为x 2+916,所以x 2+916=1,∴x =74. 答案:D10.(2013·陕西卷)对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A .0.09B .0.20C .0.25D .0.45解析:利用统计图表可知在区间[25,30)上的频率为1-(0.02+0.04+0.06+0.03)×5=0.25,在区间[15,20)上的频率为0.04×5=0.2,故所求二等品的概率为0.45.答案:D第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.(2013·湖北卷)在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =__________.解析:因为x 满足|x |≤m 的概率为56,所以由几何概型得,当-m ≤-2,即m ≥2时,m --24--2=56,解得m =3;当-m >-2,即0≤m <2时,m --m 4--2=56,解得m =52,不符合0≤m <2应舍去.故m =3.答案:312.(2013·重庆卷)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为__________.解析:三人站成一排有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲共6种不同的排法,其中甲乙相邻有4种排法,所以甲、乙相邻而站的概率为46=23.答案:2313.(2013·新课标全国卷Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________.解析:从1,2,3,4,5中任意取出两个不同的数的基本事件总数为10,其和为5有两个基本事件,所以其概率为0.2.答案:0.214.(2013·福建卷)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1<0”发生的概率为__________.解析:设事件A :“3a -1<0”,则a ∈⎣⎢⎡⎭⎪⎫0,13,所以P (A )=13-01=13. 答案:13三、解答题:本大题共4小题,满分50分.15.(12分)(2013·辽宁卷)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率; (2)所取的2道题不是同一类题的概率.解:(1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P (A )=615=25.(6分)(2)基本事件同(1),用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815.(12分)16.(12分)(2013·新课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000. 当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X <130,65 000,130≤X ≤150.(6分)(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.(12分)17.(12分)(2013·湖南卷)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的药物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4 Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米. (1)完成下表,并求所种作物的平均年收获量;Y51 48 45 42 频数4(2)在所种作物中随机选取一株,求它的年收获量至少为48 kg 的概率.解:(1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株.列表如下:Y51 48 45 42 频数246351×2+48×4+45×6+42×315=102+192+270+12615=69015=46.(6分)(2)由(1)知,P (Y =51)=215,P (Y =48)=415.故在所种作物中随机选取一株,它的年收获量至少为48 kg 的概率为P (Y ≥48)=P (Y =51)+P (Y =48)=215+415=25.(12分)18.(14分)(2013·广东卷)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量)[80,85) [85,90) [90,95) [95,100)(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率. 解:(1)苹果重量在[90,95)的频率为2050=25=0.4;(4分)(2)重量在[80,85)的苹果有55+15×4=1个;(8分) (3)在(2)中抽出的4个苹果中,有1个重量在[80,85)中,3个在[95,100)中.设“在[80,85)和[95,100)中各有1个苹果”为事件A ,则P (A )=36=12.故重量在[80,85)和[95,100)中各有1个苹果的概率为12.(14分)。
高一数学人教A版必修三练习:第三章概率3.3.2含解析
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.要产生[-3,3]上的均匀随机数y ,现有[0,1]上的均匀随机数x ,则y 不可取为( ) A.-3x B.3x C.6x -3D.-6x -3解析: 法一:利用伸缩和平移变换进行判断, 法二:由0≤x ≤1,得-9≤-6x -3≤-3,故y 不能取-6x -3.答案: D2.设x ,y 是两个[0,1]上的均匀随机数,则0≤x +y ≤1的概率为 ( ) A.12 B.14 C.29D.316解析: 如图所示,所求的概率为P =S 阴影S 正方形=12.答案: A3.用随机模拟方法求得某几何概型的概率为m ,其实际概率的大小为n ,则( ) A.m >n B.m <nC.m =nD.m 是n 的近似值解析: 随机模拟法求其概率,只是对概率的估计. 答案: D4.设一直角三角形两直角边的长均是区间[0,1]上的随机数,则斜边的长小于1的概率为( )A.12B.34C.π4D.3π16解析: 设两直角边分别为x ,y ,则x ,y 满足x ∈[0,1],y ∈[0,1],则P (x 2+y 2<1)=π4. 答案: C二、填空题(每小题5分,共15分)5.如图所示,在半径为2的半圆内放置一个长方形ABCD ,且AB =2BC ,向半圆内任投一点P ,则点P 落在长方形内的概率为 W.解析: P =2×112×π×(2)2=2π.答案:2π6.b 1是[0,1]上的均匀随机数,b =6(b 1-0.5),则b 是 上的均匀随机数. 解析: ∵b 1∈[0,1],∴b 1-0.5∈[-0.5,0.5], ∴6(b 1-0.5)∈[-3,3]. 答案: [-3,3]7.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1<0”的概率为 W. 解析: 已知0≤a ≤1,事件“3a -1<0”发生时,0<a <13,由几何概型得到其概率为13. 答案: 13三、解答题(每小题10分,共20分)8.甲、乙两辆货车都要停靠在同一个站台卸货,它们可能在一个昼夜的任意时刻到达.设甲、乙两辆货车停靠站台的时间分别为6小时和4小时,用随机模拟的方法估算有一辆货车停站台时必须等待一段时间的概率.解析: 由于所求的事件概率与两辆货车到达的时刻有关,故需要产生两组均匀随机数.设货车甲在x 时刻到达,货车乙在y 时刻到达,若有一辆货车需要等待,则需货车甲比货车乙不早到6小时,或货车乙比货车甲不早到4个小时,用数学语言来描述即为-6<x -y <4.记事件A ={有一辆货车停靠站台时必须等待一段时间}.(1)利用计算机或计算器产生两组[0,1]上的均匀随机数x 1=RAND ,y 1=RAND ; (2)经过伸缩变换:x =x 1*24,y =y 1*24,得到[0,24]上的均匀随机数; (3)统计出试验总次数N 和满足条件-6<x -y <4的点(x ,y )的个数n ; (4)计算频率f n (A )=nN,即为事件A 的概率近似值.9.如图所示,向边长为2的大正方形内投飞镖,利用随机模拟的方法求飞镖落在中央边长为1的小正方形中的概率.(假设飞镖全部落在大正方形内)解析: 用几何概型概率计算公式得P =S 小正方形S 大正方形=14.用计算机随机模拟这个试验,步骤如下:第一步,用计数器n 记录做了多少次投飞镖的试验,用计数器m 记录其中有多少次投在中央的小正方形内,设置n =0,m =0;第二步,用函数rand( )*4-2产生两个-2~2之间的均匀随机数x ,y ,x 表示所投飞镖的横坐标,y 表示所投飞镖的纵坐标;第三步,判断(x ,y )是否落在中央的小正方形内,也就是看是否满足|x |<1,|y |<1,如果是,则m 的值加1,即m =m +1,否则m 的值保持不变;第四步,表示随机试验次数的计数器n 加1,即n =n +1,如果还需要继续试验,则返回步骤第二步继续执行,否则,程序结束.程序结束后飞镖投在小正方形内的频率mn 作为所求概率的近似值.。
高一数学人教A版必修三练习:第三章概率3.1.1含解析
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.下列事件中,是随机事件的是( )A.长度为3,4,5的三条线段可以构成一个三角形B.长度为2,3,4的三条线段可以构成一个直角三角形C.方程x 2+2x +3=0有两个不相等的实根D.函数y =log a x (a >0且a ≠1)在定义域上为增函数解析: A 为必然事件,B 、C 为不可能事件.答案: D2.下列说法正确的是( )A.某事件发生的概率是P (A )=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然要发生的事件D.某事件发生的概率是随着试验次数的变化而变化的解析: 对于A ,事件发生的概率范围为[0,1],故A 错;对于C ,小概率事件有可能发生,大概率事件不一定发生,故C 错;对于D ,事件的概率是常数,不随试验次数的变化而变化,故D 错.答案: B3.下列说法一定正确的是( )A.一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况B.一枚硬币掷一次得到正面的概率是12,那么掷两次一定会出现一次正面的情况 C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元D.随机事件发生的概率与试验次数无关解析: 因为随机事件发生的概率与试验次数无关,概率是事件发生的可能性,但并不能确定在一次试验中事件一定发生或不发生,所以应选D.答案: D4.下列说法中,正确的是( )①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率m n就是事件A 的概率; ③频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.A.①②④B.①③④C.①②③D.②③④解析: 由频率、概率的相关定义,知①、③和④正确,故选B.答案: B二、填空题(每小题5分,共15分)5.姚明在一个赛季中共罚球124个,其中投中107个,设投中为事件A ,则事件A 出现的频数为 ,事件A 出现的频率为 W.解析: 因共罚球124个,其中投中107个,所以事件A 出现的频数为107,事件A 出现的频率为107124. 答案: 107 1071246.给出下列四个命题:①集合{x ||x |<0}为空集是必然事件;②y =f (x )是奇函数,则f (0)=0是随机事件;③若log a (x -1)>0,则x >1是必然事件;④对顶角不相等是不可能事件.其中正确命题是 W.解析: ∵|x |≥0恒成立,∴①正确;奇函数y =f (x )只有当x =0有意义时才有f (0)=0,∴②正确;由log a (x -1)>0知,当a >1时,x -1>1即x >2;当0<a<1时,0<x-1<1,即1<x<2,∴③正确,④正确.答案:①②③④7.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为W.解析:事件频率为60020 000=0.03,故概率近似为0.03.答案:0.03三、解答题(每小题10分,共20分)8.从含有两件正品a1,a2和一件次品b的三件产品中每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有结果;(2)设A为“取出两件产品中恰有一件次品”,写出事件A;(3)把“每次取出后不放回”这一条件换成“每次取出后放回”,其余不变,请你回答上述两个问题.解析:(1)这个试验的所有可能结果Ω={(a1,a2),(a1,b),(a2,b),(a2,a1),(b,a1),(b,a2)}.(2)A={(a1,b),(a2,b),(b,a1),(b,a2)}.(3)①这个试验的所有可能结果Ω={(a1,a1),(a1,a2),(a1,b),(a2,a1),(a2,a2),(a2,b),(b,a1),(b,a2),(b,b)}.②A={(a1,b),(a2,b),(b,a1),(b,a2)}.9.假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.解析: (1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,所以甲品牌产品寿命小于200小时的概率为14. (2)根据抽样结果,寿命大于200小时的产品有75+70=145(个),其中甲品牌产品是75个,所在在样本中,寿命大于200小时的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为1529.。
人教A版高中数学必修三试卷第三章概率3.1.2.docx
高中数学学习材料鼎尚图文*整理制作3.1.2概率的意义课时目标 1.通过实例,进一步理解概率的意义.2.会用概率的意义解释生活中的实例.3.了解“极大似然法”和遗传机理中的统计规律.1.对概率的正确理解随机事件在一次试验中发生与否是随机的,但随机性中含有________,认识了这种随机性中的________,就能比较准确地预测随机事件发生的________.2.游戏的公平性(1)裁判员用抽签器决定谁先发球,不管哪一名运动员先猜,猜中并取得发球的概率均为______,所以这个规则是______的.(2)在设计某种游戏规则时,一定要考虑这种规则对每个人都是______的这一重要原则.3.决策中的概率思想如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“_____________”可以作为决策的准则,这种判断问题的方法称为极大似然法,极大似然法是统计中重要的统计思想方法之一.4.天气预报的概率解释天气预报的“降水”是一个________,“降水概率为90%”指明了“降水”这个随机事件发生的______为90%,在一次试验中,概率为90%的事件也________,因此,“昨天没有下雨”并不能说明“昨天的降水概率为90%”的天气预报是______的.5.孟德尔与遗传机理中的统计规律孟德尔在自己长达七、八年的试验中,观察到了遗传规律,这种规律是一种统计规律.一、选择题1.某气象局预报说,明天本地降雪的概率为90%,下列解释正确的是()A.明天本地有90%的区域下雪,10%的区域不下雪.B.明天本地下雪的可能性是90%.C.明天本地全天有90%的时间下雪,10%的时间不下雪.D.明天本地一定下雪.2.已知某厂的产品合格率为90%,现抽出10件产品检查,则下列说法正确的是() A.合格产品少于9件B.合格产品多于9件C.合格产品正好是9件D.合格产品可能是9件3.每道选择题有4个选择项,其中只有1个选择项是正确的,某次考试共有12道选择题,某人说:“每个选择项正确的概率是14,我每题都选择第一个选择项,则一定有3道题选择结果正确”,这句话( )A .正确B .错误C .不一定D .无法解释4.同时向上抛掷100个质量均匀的铜板,落地时这100个铜板全都正面向上,则这100个铜板更可能是下面哪种情况( )A .这100个铜板两面是一样的B .这100个铜板两面是不一样的C .这100个铜板中有50个两面是一样的,另外50个两面是不一样的D .这100个铜板中有20个两面是一样的,另外80个两面是不一样的5.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车,乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应先调查哪个公司的车辆较合理( )A .甲公司B .乙公司C .甲与乙公司D .以上都对6.从12个同类产品(其中10个正品,2个次品),任意抽取6件产品,下列说法中正确的是( )A .抽出的6件产品中必有5件正品,一件次品B .抽出的6件产品中可能有5件正品,一件次品C .抽取6件产品时逐个不放回抽取,前5件是正品,第6件必是次品D .抽取6件产品时,不可能抽得5件正品,一件次品题 号1 2 3 4 5 6 答 案二、填空题7.盒中装有4只白球5只黑球,从中任意取出1只球.(1)“取出的球是黄球”是________事件,它的概率是________;(2)“取出的球是白球”是________事件,它的概率是________;(3)“取出的球是白球或黑球”是________事件,它的概率是________.8.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上数据可以估计该池塘约有________条鱼.9.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498497 501 502 504 496497 503 506 508 507492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g ~501.5 g 之间的概率约为________.三、解答题10.解释下列概率的含义:(1)某厂生产产品合格的概率为0.9;(2)一次抽奖活动中,中奖的概率为0.2.11.在一个试验中,一种血清被注射到500只豚鼠体内,最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞,被注射这种血清之后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染.根据试验结果,估计具有(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞的豚鼠分别被这种血清感染的概率.能力提升12.掷一枚骰子得到6点的概率是16,是否意味着把它掷6次一定能得到一次6点?13.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵化8513尾鱼苗,根据概率的统计定义解答下列问题:(1)这种鱼卵的孵化概率(孵化率)是多少?(2)30 000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5 000尾鱼苗,大概需备多少个鱼卵?(精确到百位)1.事件A 发生的概率P(A)=m n,在实际生活中并不意味着n 次试验中,事件A 一定发生m 次,有可能多于m 次,也有可能少于m 次,甚至有可能不发生或发生n 次.2.大概率事件经常发生,小概率事件很少发生.反之,一次试验中已发生了的事件其概率也必然很大,利用这一点可以推断事情的发展趋势,做出正确的决策.3.概率广泛应用于体育运动、管理决策、天气预报以及某些科学实验中,它在这些应用中起着极其重要的作用.答案:3.1.2 概率的意义知识梳理1.规律性 规律性 可能性 2.(1)0.5 公平(2)公平 3.使得样本出现的可能性最大 4.随机事件 概率 可能不出现 错误 作业设计1.B [概率的本质是从数量上反映一个事件发生的可能性的大小.]2.D3.B [解答一个选择题作为一次试验,每次试验选择的正确与否都是随机的,经过大量的试验其结果呈随机性,即选择正确的概率是14.做12道选择题,即进行12次试验,每个结果都是随机的,不能保证每题的结果选择正确,但有3道题选择结果正确的可能性比较大.同时也有可能都选错,或有2道题,4道题,甚至12道题都选择正确.故这句话是错误的.]4.A [一枚质量均匀的铜板,抛掷一次正面向上的概率为0.5,从题意中知抛掷100枚结果正面都向上,因此这100个铜板两面是一样的可能性最大.]5.B [由于甲公司桑塔纳的比例为100100+3 000=131, 乙公司桑塔纳的比例为 3 0003 000+100=3031,根据极大似然法可知应选B .] 6.B7.(1)不可能 0 (2)随机 49(3)必然 1 8.750解析 设池塘约有n 条鱼,则含有标记的鱼的概率为30n ,由题意得:30n×50=2,∴n =750.9.0.25解析 袋装食盐质量在497.5 g ~501.5 g 之间的共有5袋,所以其概率约为520=0.25. 10.解 (1)说明该厂产品合格的可能性为90%.也就是说每100件该厂的产品中大约有90件是合格品.(2)说明参加抽奖的人中有20%的人可能中奖,也就是说,若有100个人参加抽奖,约有20人中奖.11.解 (1)记“圆形细胞的豚鼠被感染”为事件A ,由题意知,A 为不可能事件,∴P(A)=0.(2)记“椭圆形细胞的豚鼠被感染”为事件B ,由题意知P(B)=50250=15=0.2. (3)记“不规则形状细胞的豚鼠被感染”为事件C ,由题意知事件C 为必然事件,所以P(C)=1.12.解 抛掷一枚骰子得到6点的概率是16,多次抛掷骰子,出现6点的情况大约占16,并不意味着掷6次一定得到一次6点,实际上,掷6次作为抛掷骰子的6次试验,每一次结果都是随机的.13.解 (1)这种鱼卵的孵化概率P =8 51310 000=0.851 3. (2)30 000个鱼卵大约能孵化30 000×8 51310 000=25 539(尾)鱼苗. (3)设大概需备x 个鱼卵,由题意知5 000x =8 51310 000. ∴x =5 000×10 0008 513=5 900(个). ∴大概需备5 900个鱼卵.。
必修三第三单元《概率》A卷
人教A 版高中数学必修三第三单元《概率》同步检测试卷 A 卷一.单项选择题:本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则A.m>nB.m<nC.m=nD.m 是n 的近似值(2)下列事件中,随机事件的个数为①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签.A .0B .1C .2D .3(3)在面积为S 的△ABC 的内部任取一点P ,则△PBC 的面积小于S 2的概率为A.14B.12C.34D.23(4)从一批产品中取出三件产品,设A 为“三件产品全不是次品”,B 为“三件产品全是次品”,C 为“三件产品不全是次品”,则下列结论正确的是A .A 与C 互斥B .B 与C 互斥C .任何两个均互斥D .任何两个均不互斥(5)某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为03.0,出现丙级品的概率为01.0,则对产品抽查一次抽得正品的概率是A .09.0B .98.0C .97.0D .96.0(6)从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[)85.4,8.4(g )范围内的概率是A .0.62B .0.38C .0.02D .0.68二.多项选择题:本大题共2小题,每小题4分,共8分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.(7)从1,2,3,4,5,6,7,8,9这9个数字中任取三个数,下列事件为互斥事件的是A 、恰有一个是奇数和有两个是偶数;B 、至少有两个是偶数和至少有两个是奇数;C 、至少有一个是奇数和三个数都是偶数;D 、至少有一个是奇数和至少有一个是偶数.(8)下列说法中正确的是A.事件A 、B 至少有一个发生的概率不一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件也是互斥事件D.互斥事件不一定是对立事件,而对立事件一定是互斥事件三、填空题:本大题共4题,每小题4分,共16分.(9)如图所示的矩形,长为5 m ,宽为2 m ,在矩形内随机地撒300粒黄豆,数得落在阴影部分的黄豆数为138粒,则我们可以估计出阴影部分的面积为________2m .(10)在箱子中装有十张卡片,分别写有1到10的十个整数;从箱子中任取一张卡片,记下它的读数x ,然后放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y ,则x+y 是10的倍数的概率为 .(11)从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是 .(12)在5张卡片上分别写有数字,5,4,3,2,1然后将它们混合,再任意排列成一行,则得到的数能被2或5 整除的概率是 .四、解答题:本大题共3小题,共52分,解答应写出文字说明,证明过程或演算步骤.(13)(本小题满分16分)某袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12. (1)求n 的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A 表示“a+b=2”,求事件A 的概率;②在区间[0,2]内任取2个实数x,y,求事件“()222x y a b +>-恒成立”的概率.(14)(本小题满分18分)小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?(2)规定:若x+y≥10,则小王赢;若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.(15)(本小题满分18分)一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当你到达路口时看见下列三种情况的概率各是多少?(1) 红灯(2) 黄灯(3) 不是红灯参考答案一.单项选择题:本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 【解析】选D .随机模拟法求其概率,只是对概率的估计.2. 【解析】选D . ①在明年运动会上,可能获冠军,也可能不获冠军;②李凯不一定被抽到;③任取一张不一定为1号签;故①②③均是随机事件.3. 【解析】选C .分别取AB,AC 边上的中点E,F ,则EF 为△ABC 的中位线.当点P 位于四边形BEFC 内时,PBC S 的面积小于S 2,又∵AEF S =14S ,BEFC S 四边形=34S.所以△PBC 的面积小于S 2的概率为P =34S S =34.4. 【解析】选B .因为事件B 是表示“三件产品全是次品”,事件C 是表示“三件产品不全是次品”,显然这两个事件不可能同时发生,故它们是互斥的,所以选B.5. 【解析】选D .()1()10.040.96P A P A =-=-=6. 【解析】选C .0.320.30.02-=二.多项选择题:本大题共2小题,每小题4分,共8分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分. 7. 【解析】选BC .至少有两个是偶数就不可能出现至少有两个是奇数;至少有一个是奇数就不可能出现三个数都是偶数。
高一数学人教A版必修三练习:第三章概率3.1.2含解析
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.下列正确的结论是()A.事件A的概率P(A)的值满足0<P(A)<1B.如P(A)=0.999,则A为必然事件C.灯泡的合格率是99%,从一批灯泡中任取一个,这是合格品的可能性为99%D.如P(A)=0.001,则A为不可能事件解析:根据必然事件和不可能事件的概念知,必然事件的概率为1,不可能事件的概率为0,从而排除A、B、D,故选C.答案: C2.根据某医疗所的调查,某地区居民血型的分布为:O型50%,A型15%,AB型5%,B型30%.现有一血型为O型的病人需要输血,若在该地区任选一人,那么能为病人输血的概率为()A.50%B.15%C.45%D.65%解析:仅有O型血的人能为O型血的人输血.答案: A3.事件A发生的概率接近于0,则()A.事件A不可能发生B.事件A也可能发生C.事件A一定发生D.事件A发生的可能性很大解析:不可能事件的概率为0,但概率接近于0的事件不一定是不可能事件.答案: B4.甲、乙两人做游戏,下列游戏中不公平的是()A.抛掷一枚骰子,向上的点数为奇数则甲获胜,向上的点数为偶数则乙获胜B.同时抛掷两枚硬币,恰有一枚正面向上则甲获胜,两枚都正面向上则乙获胜C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则甲获胜,扑克牌是黑色的则乙获胜D.甲、乙两人各写一个数字1或2,如果两人写的数字相同则甲获胜,否则乙获胜解析: B 中,同时抛掷两枚硬币,恰有一枚正面向上的概率为12,两枚都正面向上的概率为14,所以对乙不公平. 答案: B二、填空题(每小题5分,共15分)5.利用简单抽样法抽查某校150名男学生,其中身高为1.65米的有32人,若在此校随机抽查一名男学生,则他身高为1.65米的概率大约为 (保留两位小数).解析: 所求概率为32150≈0.21. 答案: 0.216.某射击教练评价一名运动员时说:“你射中的概率是90%.”你认为下面两个解释中能代表教练的观点的为 W.①该射击运动员射击了100次,恰有90次击中目标②该射击运动员射击一次,中靶的机会是90%.解析: 射中的概率是90%说明中靶的可能性,即中靶机会是90%,所以①不正确,②正确.答案: ②7.玲玲和倩倩下象棋,为了确定谁先走第一步,玲玲对倩倩说:“拿一个飞镖射向如图所示的靶中,若射中区域所标的数字大于3,则我先走第一步,否则你先走第一步”.你认为这个游戏规则公平吗?答: W.解析: 如题图所示,所标的数字大于3的区域有5个,而小于或等于3的区域则只有3个,所以玲玲先走的概率是58,倩倩先走的概率是38.所以不公平. 答案: 不公平三、解答题(每小题10分,共20分)8.已知5张票中有1张为奖票,5个人按照顺序从中各抽1张以决定谁得到其中的奖票,那么,先抽还是后抽(后抽人不知道先抽人抽出的结果),对每个人来说公平吗?解析: 公平,即每个人抽到奖票的概率相等.说明如下:不妨把问题转化为排序问题,即把5张票随机地排列在位置1,2,3,4,5上,对于这张奖票来说,由于是随机排列,因此它的位置有5种可能,故它排在任一位置上的概率都是15.5个人按排定的顺序去抽,比如甲排在第三位上,那么他抽得奖票的概率,即奖票恰好排在第三个位置上的概率为15,因此,不管排在第几个位置上去抽,在不知前面的人抽出的结果的前提下,得到奖票的概率都是15. 9.平面直角坐标系中有两个动点A 、B ,它们的起始坐标分别是(0,0)、(2,2),动点A 、B 从同一时刻开始每隔一秒钟向上、下、左、右四个方向中的一个方向移动1个单位.已知动点A 向左、右移动1个单位的概率都是14,向上、下移动1个单位的概率分别是13和p ;动点B 向上、下、左、右移动1个单位的概率都是q .求p 和q 的值.解析: 由于动点A 向四个方向移动是一个必然事件,所以14+14+13+p =1, 所以p =16;同理可得q =14.。
人教A版高中数学必修三试卷第三章概率3.1.1.docx
高中数学学习材料马鸣风萧萧*整理制作第三章概率3.1.1随机事件的概率课时目标在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.1.事件的概念及分类事件确定事件不可能事件在条件S下,______________的事件,叫做相对于条件S的不可能事件必然事件在条件S下,________的事件,叫做相对于条件S的必然事件随机事件在条件S下______________________的事件,叫做相对于条件S的随机事件2.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A出现的频率.3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率f n(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).一、选择题1.有下列事件:①连续掷一枚硬币两次,两次都出现正面朝上;②异性电荷相互吸引;③在标准大气压下,水在1℃结冰;④买了一注彩票就得了特等奖.其中是随机事件的有()A.①②B.①④C.①③④D.②④2.下列事件中,不可能事件是( )A .三角形的内角和为180°B .三角形中大角对大边,小角对小边C .锐角三角形中两内角和小于90°D .三角形中任两边之和大于第三边3.有下列现象:①掷一枚硬币,出现反面;②实数的绝对值不小于零;③若a>b ,则b<a.其中是随机现象的是( )A .②B .①C .③D .②③4.先后抛掷一枚均匀硬币三次,至多有一次正面向上是( )A .必然事件B .不可能事件C .确定事件D .随机事件5.下列说法正确的是( )A .某厂一批产品的次品率为5%,则任意抽取其中20件产品一定会发现一件次品.B .气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨.C .某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈.D .掷一枚均匀硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为50%.6.在进行n 次重复试验中,事件A 发生的频率为m n,当n 很大时,事件A 发生的概率P(A)与m n的关系是( ) A .P(A)≈m n B .P(A)<m nC .P(A)>m nD .P(A)=m n题 号1 2 3 4 5 6 答 案二、填空题7.将一根长为a 的铁丝随意截成三段,构成一个三角形,此事件是________事件.8.在200件产品中,有192件一级品,8件二级品,则下列事件:①“在这200件产品中任意选9件,全部是一级品”;②“在这200件产品中任意选9件,全部都是二级品”;③“在这200件产品中任意选9件,不全是一级品”.其中________是随机事件;________是不可能事件.(填上事件的编号)9.在一篇英文短文中,共使用了6 000个英文字母(含重复使用),其中字母“e”共使用了900次,则字母“e”在这篇短文中的使用的频率为________.三、解答题10.判断下列事件是否是随机事件.①在标准大气压下水加热到100℃,沸腾;②在两个标准大气压下水加热到100℃,沸腾;③水加热到100℃,沸腾.11.某射手在同一条件下进行射击,结果如下表所示:射击次数n10 20 50 100 200 500 击中靶心的次数m 8 19 44 92 178 455击中靶心的频率m n(1)计算表中击中靶心的各个频率;(2)这个射手射击一次击中靶心的概率约是多少?能力提升12.将一骰子抛掷1 200次,估计点数是6的次数大约是______次;估计点数大于3的次数大约是______次.13.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:直径 个数 直径 个数6.88<d ≤6.89 1 6.93<d ≤6.94 26 6.89<d ≤6.90 2 6.94<d ≤6.9515 6.90<d ≤6.91 10 6.95<d ≤6.96 8 6.91<d ≤6.92 17 6.96<d ≤6.972 6.92<d ≤6.93 17 6.97<d ≤6.982 从这100个螺母中任意抽取一个,求(1)事件A(6.92<d ≤6.94)的频率;(2)事件B(6.90<d ≤6.96)的频率;(3)事件C(d>6.96)的频率;(4)事件D(d ≤6.89)的频率.1.随机试验如果一个试验满足以下条件:(1)试验可以在相同的条件下重复进行;(2)试验的所有结果是明确可知的,但不止一个;(3)每次试验总是出现这些结果中的一个,但在试验之前却不能确定会出现哪一个结果. 则这样的试验叫做随机试验.2.频数、频率和概率之间的关系:(1)频数是指在n 次重复试验中事件A 出现的次数,频率是频数与试验总次数的比值,而概率是随机事件发生的可能性的规律体现.(2)随机事件的频率在每次试验中都可能会有不同的结果,但它具有一定的稳定性,概率是频率的稳定值,是频率的科学抽象,不会随试验次数的变化而变化.3.辩证地看待“确定事件”、“随机事件”和“概率”.一个随机事件的发生,既有随机性(对一次试验来说),又存在着统计规律性(对大量重复试验来说),这是偶然性和必然性的统一.就概率的统计定义而言,必然事件U 的概率为1,P(U)=1;不可能事件V 的概率为0,P(V)=0;而随机事件A 的概率满足0≤P(A)≤1.从这个意义上讲,必然事件和不可能事件可以看作随机事件的两个极端情况.答案:3.1.1 随机事件的概率知识梳理1.一定不会发生 一定会发生 可能发生也可能不发生 2.事件A 出现的次数n A 事件A 出现的比例f n (A)=n A n3.(1)可能性 (2)概率P(A) 频率f n (A) 作业设计1.B [①、④是随机事件,②为必然事件,③为不可能事件.]2.C [锐角三角形中两内角和大于90°.]3.B [①是随机现象;②③是必然现象.]4.D 5.D 6.A7.随机8.①③ ②解析 因为二级品只有8件,故9件产品不可能全是二级品,所以②是不可能事件. 9.0.15解析 频率=9006 000=0.15. 10.解 在①、②、③中“沸腾”是试验的结果,称为事件,但在①的条件下是必然事件,在②的条件下是不可能事件,在③的条件下则是随机事件.11.解 (1)由公式可算得表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89,0.91.(2)由(1)可知,射手在同一条件下击中靶心的频率虽然各不相同,但都在常数0.9左右摆动,所以射手射击一次,击中靶心的概率约是0.9.12.200 600解析 一粒骰子上的6个点数在每次掷出时出现的可能性(即概率)都是16,而掷出点数大于3包括点数为4,5,6三种.故掷出点数大于3的可能性为36=12,故N 1=16×1 200=200,N 2=12×1 200=600. 13.解 (1)事件A 的频率f(A)=17+26100=0.43. (2)事件B 的频率f(B)=10+17+17+26+15+8100=0.93. (3)事件C 的频率f(C)=2+2100=0.04. (4)事件D 的频率f(D)=1100=0.01.。
高一数学人教A版必修三练习第三章 概率3.2.2 Word版含解析
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题分,共分).用计算机随机模拟掷骰子的试验,估计出现点的概率,则下列步骤中不正确的是().用计算器的随机函数(,)或计算机的随机函数(,)产生个不同的到之间的取整数值的随机数,如果=,我们认为出现点.我们通常用计算器记录做了多少次掷骰子试验,用计数器记录其中有多少次出现点,置=,=.出现点,则的值加,即=+;否则的值保持不变.程序结束.出现点的频率作为概率的近似值解析:计算器的随机函数(,)或计算机的随机函数(,)产生的是到之间的整数(包括,),共个整数.答案:.小明同学的密码是由,,,,,,,,,这个数字中不同的个数字组成的六位数字,由于长时间未登录,小明忘记了密码的最后一个数字,如果小明登录时密码的最后一个数字随意选取,则恰好能登录的概率是( )解析:从,,,,,,,,,中任取一个数字有个基本事件,恰巧是密码最后一位数字有个基本事件,则恰好能登录的概率为.答案:.袋子中有四个小球,分别写有“伦”“敦”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生到之间取整数值的随机数,且用,,,表示取出小球上分别写有“伦”“敦”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了组随机数:据此估计,直到第二次就停止概率为( )解析:由随机模拟产生的随机数可知,直到第二次停止的有,,,,共个基本事件,故所求的概率为==.答案:.甲、乙两人一起去游“西安世园会”,他们约定,各自独立地从号到号景点中任选个进行游览,每个景点参观小时,则最后一小时他们同在一个景点的概率是( )解析:甲、乙最后一小时他们所在的景点共有×=种情况,甲、乙最后一小时他们同在一个景点共有种情况.由古典概型的概率公式知最后一小时他们同在一个景点的概率是==.答案:二、填空题(每小题分,共分).在利用整数随机数进行随机模拟试验中,整数到整数之间的每个整数出现的可能性是W.解析:[,]中共有-+个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是.答案:.抛掷一枚均匀的正方体骰子两次,用随机模拟方法估计朝上面的点数和为的概率,共进行了两次试验,第一次产生了组随机数,第二次产生了组随机数,那么这两次估计的结果相比较,第次准确.解析:用随机模拟方法估计概率时,产生的随机数越多,估计的结果越准确,所以第二次比第一次准确.答案:二.一个小组有位同学,选位小组长,用随机模拟方法估计甲被选中的概率,给出下列步骤:①统计甲的编号出现的个数;。
人教A版高中数学必修三试卷新课标高中章节素质测试题—第三章 概率.doc
高中数学学习材料马鸣风萧萧*整理制作新课标高中数学人教A 版必修3章节素质测试题——第三章 概率(考试时间120分钟,满分150分)姓名_______评价______一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确)1.(10北京文3)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则a b >的概率是( ) A.45 B.35 C.25 D.152.(12北京理2)设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.4π B.22π- C.6πD.44π-3.(07江西文6)一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132B.164C.332D.3644.(11新课标理4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .13B .12 C .23D .345.(11福建文7)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A .14B .13A BD E CC .12D .236.(11湖北5)已知随机变量ξ服从正态分布()22N ,a ,且8.0)4(=<ξP ,则=<<)20(ξP ( )A.0.6B .0.4C .0.3D .0.27.(09安徽文10)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于( ) A.1 B.21 C. 31D. 0 8.(10安徽文10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( ) A.318 B.418 C.518 D.6189.(09辽宁文9)ABCD 为长方形,AB=2,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A.4πB.14π-C.8πD.18π-10.(08辽宁理7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .3411.(12湖北理8)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )12.(12辽宁理10)在长为12cm 的线段AB 上任取一点C.现作一矩形,令边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( ) A.16 B. 13 C. 23 D. 45二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上) 13.(10江苏3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色A. π21-B.π121-C. π2D. π1不同的概率是_________.14.(11江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_________.15.(09湖南理13)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为_______. 16.(11江西理12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书,则小波周末不.在家看书的概率为_________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)17.(本题满分10分,11天津文15)编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得分记录如下: 运动员编号 1A2A3A4A5A6A7A8A得分 1535212825361834运动员编号 9A10A11A12A13A14A15A16A得分1726253322123138(Ⅰ)将得分在对应区间内的人数填入相应的空格;区间 [)10,20[)20,30[]30,40人数(Ⅱ)从得分在区间[)20,30内的运动员中随机抽取2人, (i )用运动员的编号列出所有可能的抽取结果; (ii )求这2人得分之和大于50的概率.18.(本题满分12分,12湖南文17)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x30 25 y10结算时间(分钟/人) 1 1.5 2 2.5 3已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)19.(本题满分12分,08广东19)某初级中学共有学生2000名,各年级男、女生人数如下表:初一年级初二年级初三年级女生373 x y男生377 370 z已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.(Ⅰ)求x 的值;(Ⅱ)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (Ⅲ)已知245,245y z ≥≥,求初三年级中女生比男生多的概率.20.(本题满分12分,11辽宁19)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. (Ⅰ)假设n =2,求第一大块地都种植品种甲的概率;(Ⅱ)试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表: 品种甲 403 397 390 404 388 400 412 406 品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=,其中x 为样本平均数.21.(本小题满分12分,10山东19)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2+<m n 的概率.22.(本小题满分12分,09山东19)一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A 轿车B 轿车C 舒适型 100 150 z 标准型300450600按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (Ⅰ)求z 的值;(Ⅱ)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(Ⅲ)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.新课标高中数学人教A 版必修3章节素质测试题——第三章 概率(参考答案)一、选择题:(本大题共12题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20分)13.21. 14. 31. 15. 40 . 16. 1613. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17. 解:(Ⅰ)4,6,6(Ⅱ)(i )解:得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种.(ii )解:“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 DDDACCACBCAC事件B )的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种. 所以51().153P B ==18. 解:(Ⅰ)由已知得251055,35,15,20y x y x y ++=+=∴==,该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为: 115 1.530225 2.5203101.9100⨯+⨯+⨯+⨯+⨯=(分钟).(Ⅱ)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,123,,A A A 分别表示事件“该顾客一次购物的结算时间为1分钟”, “该顾客一次购物的结算时间为1.5分钟”, “该顾客一次购物的结算时间为2分钟”.将频率视为概率,得123153303251(),(),()10020100101004P A P A P A ======. 123123,,,A A A A A A A =且是互斥事件, 123123()()()()()P A P A A A P A P A P A ∴==++33172010410=++=. 故一位顾客一次购物的结算时间不超过2分钟的概率为710.19. 解:(Ⅰ)∵19.02000x=,∴.380=x (Ⅱ)初三年级人数为.500)370380377373(2000=+++-=+z y现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:200048×500=12名. (Ⅲ)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z):由(Ⅱ)知500=+z y ,且y ,z ∈N , 基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个. 事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245)共5个.∴P(A)=115.20. 解:(Ⅰ)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个: (1,2),(1,3),(1,4),(2,3),(2,4),(3,4). 而事件A 包含1个基本事件:(1,2). 所以1().6P A =(Ⅱ)品种甲的每公顷产量的样本平均数和样本方差分别为:222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.21. 解:(Ⅰ)从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个. 从袋中随机取出的球的编号之和不大于4的事件有1和2,1和3,共2个.因此所求事件的概率为.3162==P (Ⅱ)先从袋中随机取一个球,记下编号为m ,放回后,在从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3)(4,4),共16个.有满足条件2+≥m n 的事件为(1,3)、(1,4)、(2,4),共3个,所以满足条件2+≥m n 的事件的概率为.1631=P 故满足条件2+<m n 的事件的概率为.1613163111=-=-=P P22. 解:(Ⅰ)设该厂本月生产轿车为n 辆,由题意得,5010100300n =+,解得.2000=n .400)600450150300100(2000=++++-=∴z(Ⅱ)设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本, 所以40010005m=,解得.2=m 也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S 1,S 2;B 1,B 2,B 3,则 从中任取2辆的所有基本事件为:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2), 所以从中任取2辆,至少有1辆舒适型轿车的概率为710. (Ⅲ)样本的平均数为1(9.48.69.29.68.79.39.08.2)98x =+++++++=, 那么与样本平均数之差的绝对值不超过0.5的数为9.4,8.6,9.2,8.7,9.3,9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为75.086=.。
高一年级数学数学必修3第三章概率初步试卷
数学必修3第三章概率初步试卷班级: 姓名: 座号: 评分:一、选择题:(本大题共10题;每小题5分;共50分) 1.下列说法正确的是( )A. 任何事件的概率总是在(0;1)之间B. 频率是客观存在的;与试验次数无关C. 随着试验次数的增加;频率一般会越来越接近概率D. 概率是随机的;在试验前不能确定 2.掷一枚骰子;则掷得奇数点的概率是( ) A.61 B. 21 C. `31 D. 413. 抛掷一枚质地均匀的硬币;如果连续抛掷1000次;那么第999次出现正面朝上的概率是( ) A.9991 B. 10001 C. 1000999 D. 214.从一批产品中取出三件产品;设A =“三件产品全不是次品”;B =“三件产品全是次品”;C =“三件产品不全是次品”;则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥5.从一批羽毛球产品中任取一个;其质量小于4.8g 的概率为0.3;质量小于4.85g 的概率为0.32;那么质量在[4.8;4.85]( g )范围内的概率是( )6.同时抛掷两枚质地均匀的硬币;则出现两个正面朝上的概率是( ) A.21 B. 41 C. 31 D. 817.甲;乙两人随意入住两间空房;则甲乙两人各住一间房的概率是( ) A.31. B. 41 C. 21 8.从五件正品;一件次品中随机取出两件;则取出的两件产品中恰好是一件正品;一件次品的概率是( )A. 1B.21 C. 31 D. 32 9.一个袋中装有2个红球和2个白球;现从袋中取出1球;然后放回袋中再取出一球;则取出的两个球同色的概率是( ) A.21 B. 31 C. 41 D. 52 10.现有五个球分别记为A ;C ;J ;K ;S ;随机放进三个盒子;每个盒子只能放 一个球;则K 或S 在盒中的概率是( ) A.101 B. 53 C. 103 D. 10911.设A,B 为互斥事件,则B A ,( )A.一定互斥,B. 一定不互斥, C 不一定互斥 D.与A+B 彼此互斥 12.如果A,B 互斥,那么( )A,A+B 是必然事件 B. B A 是必然事件 C. B A 与一定互斥 D. B A 与一定不互斥二、填空题(本大题共4小题;每小题5分;共20分)11. 某小组有三名女生;两名男生;现从这个小组中任意选出一名组长;则其中一名女生小丽当选为组长的概率是___________ 12. 掷两枚骰子;出现点数之和为3的概率是_____________13. 某班委会由4名男生与3名女生组成;现从中选出2人担任正副班长;其中至少有1名女生当选的概率是______________14. 我国西部一个地区的年降水量在下列区间内的概率如下表所示:则年降水量在 [ 200;300 ] (m,m )范围内的概率是___________三、解答题(本大题共3小题;共30分;解答应写出文字说明;证明过程或演算步骤)15.(8分)如图;在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形;现有均匀的粒子散落在正方形中;问粒子落在中间带形区域的概率是多少?16.(8分)10本不同的语文书;2本不同的数学书;从中任意取出2本;能取出数学书的概率有多大?17.(14分)甲盒中有红;黑;白三种颜色的球各3个;乙盒子中有黄;黑;白;三种颜色的球各2个;从两个盒子中各取1个球(1)求取出的两个球是不同颜色的概率.(2)请设计一种随机模拟的方法;来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).18.掷红,蓝两颗骰子,观察出现的点数,求至少一颗骰子出现偶数点的概率.19. 先后掷两个均匀正方体骰子(六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X,Y,Y=1的概率为多少?则log2X20.柜子里有4双不同的鞋,随机地取出4只,试求下列事件的概率.(1) 取出的鞋子都不成对;(2) 取出的鞋恰好有两只成对;(3) 取出的鞋至少有两只成对;(3)取出的鞋全部成对.高中数学必修3第三章单元测试卷参考答案一、选择题:(本大题共10题;每小题5分;共50分) 二、填空题(本大题共4小题;每小题5分;共20分) 11.51 12. 181 13. 75三、解答题(本大题共3小题;共30分;解答应写出文字说明;证明过程或演算步骤)15. 解:因为均匀的粒子落在正方形内任何一点是等可能的 所以符合几何概型的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修3第三章概率初步试卷
班级: 姓名: 座号: 评分:
一、选择题:(本大题共10题,每小题5分,共50分) 1.下列说法正确的是( )
A. 任何事件的概率总是在(0,1)之间
B. 频率是客观存在的,与试验次数无关
C. 随着试验次数的增加,频率一般会越来越接近概率
D. 概率是随机的,在试验前不能确定 2.掷一枚骰子,则掷得奇数点的概率是( ) A.
61 B. 21 C. `
31
D. 41 3. 抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( ) A.
9991 B. 10001 C. 1000
999
D. 21 4.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )
A. A 与C 互斥
B. B 与C 互斥
C. 任何两个均互斥
D. 任何两个均不互斥
5.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85]( g )范围内的概率是( ) A. 0.62 B. 0.38 C. 0.02 D. 0.68
6.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( ) A.
21 B. 41 C. 31 D. 8
1
7.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( ) A.
31
. B. 41 C. 2
1 D.无法确定 8.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是( )
A. 1
B.
21 C. 31 D. 3
2 9.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出
一球,则取出的两个球同色的概率是( ) A.
21 B. 31 C. 41 D. 5
2 10.现有五个球分别记为A ,C ,J ,K ,S ,随机放进三个盒子,每个盒子只能放 一个球,则K 或S 在盒中的概率是( ) A.
101 B. 53 C. 103 D. 10
9
11.设A,B 为互斥事件,则B A ,( )
A.一定互斥,
B. 一定不互斥, C 不一定互斥 D.与A+B 彼此互斥 12.如果A,B 互斥,那么( )
A,A+B 是必然事件 B. B A 是必然事件 C. B A 与一定互斥 D. B A 与一定不互斥
二、填空题(本大题共4小题,每小题5分,共20分)
11. 某小组有三名女生,两名男生,现从这个小组中任意选出一名组长,
则其中一名女生小丽当选为组长的概率是___________ 12. 掷两枚骰子,出现点数之和为3的概率是_____________
13. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,
其中至少有1名女生当选的概率是______________
14. 我国西部一个地区的年降水量在下列区间内的概率如下表所示:
则年降水量在 [ 200,300 ] (m,m )范围内的概率是___________
三、解答题(本大题共3小题,共30分,解答应写出文字说明,证明过程
或演算步骤)
15.(8分)如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,现有均匀
的粒子散落在正方形中,
问粒子落在中间带形区域的概率是多少?
16.(8分)10本不同的语文书,2本不同的数学书,从中任意取出2本,能取出数学书的概率有多
大?
17.(14分)甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白,
三种颜色的球各2个,从两个盒子中各取1个球
(1)求取出的两个球是不同颜色的概率.
(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同
颜色的概率(写出模拟的步骤).
18.掷红,蓝两颗骰子,观察出现的点数,求至少一颗骰子出现偶数点的概率.
19. 先后掷两个均匀正方体骰子(六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X,Y,
Y=1的概率为多少?
则log
2
X
20.柜子里有4双不同的鞋,随机地取出4只,试求下列事件的概率.
(1) 取出的鞋子都不成对;(2) 取出的鞋恰好有两只成对;(3) 取出的鞋至少有两只成对;(3)取出的鞋全部成对.
高中数学必修3第三章单元测试卷参考答案
一、选择题:(本大题共10题,每小题5分,共50分) 二、
填空
题(本大题共4小题,每小题5分,共20分) 11.
51 12. 181 13. 7
5
14. 0.25 三、解答题(本大题共3小题,共30分,解答应写出文字说明,证明过程
或演算步骤)
15. 解:因为均匀的粒子落在正方形内任何一点是等可能的 所以符合几何概型的条件。
设A =“粒子落在中间带形区域”则依题意得 正方形面积为:25×25=625
两个等腰直角三角形的面积为:2×2
1
×23×23=529
带形区域的面积为:625-529=96 ∴ P (A )=
625
96 16. 解:基本事件的总数为:12×11÷2=66
“能取出数学书”这个事件所包含的基本事件个数分两种情况: (1)“恰好取出1本数学书”所包含的基本事件个数为:10×2=20 (2)“取出2本都是数学书”所包含的基本事件个数为:1
所以“能取出数学书”这个事件所包含的基本事件个数为:20+1=21 因此, P (“能取出数学书”)=
22
7
17 解:
(1)设A =“取出的两球是相同颜色”,B =“取出的两球是不同颜色”.
则事件A 的概率为: P (A )=
692323⨯⨯⨯+=9
2
由于事件A 与事件B 是对立事件,所以事件B 的概率为: P (B )=1-P (A )=1-92=9
7
(2)随机模拟的步骤:
第1步:利用抓阄法或计算机(计算器)产生1~3和2~4两组取整数值的随机
数,每组各有N 个随机数。
用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球。
第2步:统计两组对应的N 对随机数中,每对中的两个数字不同的对数n 。
第3步:计算
N n 的值。
则N
n
就是取出的两个球是不同颜色的概率的近似值。
19. 解:掷两个均匀骰子事件总数有36种. 要,1log 2=Y X 有2X=Y ,其中X,Y ∈{1,2,3,4,5,6} 满足条件的有(1,2),(2,4),(3,6). 故有概率P:3/36=1/12 20.课本必修3,P141.B3。