2019-2020年高中数学必修一教案2-2-1 对数与对数运算(2)
人教版高中数学必修一《对数与对数运算》教案设计
2.2.1 对数与对数运算一、教材分析本节是高中数学新人教版必修1的第二章2.2对数函数的内容二、三维目标1.知识与技能(1).理解对数的概念,了解对数与指数的关系;(2).理解和掌握对数的性质;(3).掌握对数式与指数式的关系。
2.过程与方法(1)通过实例认识对数模型,体会引入对数的必要性;(2)通过观察分析得出对数的概念及对数式与指数式的互化;(3)通过分组探究进行活动,掌握对数的重要性质。
3.情感、态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质.三、教学重点教学重点:(1)对数的定义;(2)指数式与对数式的互化四、教学难点教学难点:推导对数性质五、教学策略讲练结合掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握六、教学准备(对数教学目标)—对数的文化意义、对数概念(讲一讲)—对数式与指数式转化(做一做)—例题(讲一讲)、习题(做一做)—两种特殊的对数(讲一讲)—求值(做一做)—评价、小结—作业。
八、板书设计第二章基本初等函数(I)2.2 对数函数2.2.1 对数与对数运算九、教学反思对数的教学采用讲练结合的教学模式。
教学中,以双基为教学主题,采用讲讲练练的教学程序,运用指数式与对数式的转化策略,通过教师的讲,数学家对对数的痴迷激发学生好奇,从实际问题导入对数概念、对数符号,理解对数的意义,通过典型例题的讲授,充分揭示对数式与指数式间的关系,掌握求对数值的方法,通过学生典型习题的练,使学生进一步理解对数式与指数式间的关系,掌握求对数的一些方法,在讲练结合中实现教学目标。
高一数学教案: 2.2.1 对数与对数运算(2课时)
第二课时师:在初中,我们学习了指数的运算法则,请大家回忆一下.生:m n m n a a a +⋅= (m,n ∈Z);()m n mna a = (m,n ∈Z);()n n nab a b =⋅ (n ∈Z),师:下面我们利用指数的运算法则,证明对数的运算法则.(板书)(1)正因数积的对数等于同一底数各个因数的对数的和,即log a (MN )=log a M+log a N .(请两个同学读法则(1),并给时间让学生讨论证明.)师:我们要证明这个运算法则,用眼睛一瞪无从下手,这时我们该想到,关于对数我们只学了定义和性质,显然性质不能证明此式,所以只有用定义证明.而对数是由指数加以定义的,显然要利用指数的运算法则加以证明,因此,我们首先要把对数等式转化为指数等式.师:(板书)设log a M=p ,log a N=q ,由对数的定义可以写成M=a p ,N=a q.所以M ·N=a p ·a q =a p+q, 所以 log a (M ·N )=p+q=log a M+log a N . 即 log a (MN )=log a M+log a N . 师:这个法则的适用条件是什么?生:每个对数都有意义,即M >0,N >0;a >0且a ≠1. 师:观察法则(1)的结构特点并加以记忆.生:等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算. 师:非常好.例如,(板书)log 2(32×64)=? 生:log 2(32×64)=log 232+log 264=5+6=11.师:通过此例,同学应体会到此法则的重要作用——降级运算.它使计算简化. 师:(板书)log 62+log 63=?生:log 62+log 63=log 6(2×3)=1.师:正确.由此例我们又得到什么启示? 生:这是法则从右往左的使用.是升级运算. 师:对.对于运算法则(公式),我们不仅要会从左往右使用,还要会从右往左使用.真正领会法则的作用!师:(板书)(2)两个正数的商的对数等于被除数的对数减去除数的对数.师:仿照研究法则(1)的四个步骤,自己学习. (给学生三分钟讨论时间.)生:(板书)设log a M=p ,log a N=q .根据对数的定义可以写成M=a p ,N=a q.所以师:非常好.他是利用指数的运算法则和对数的定义加以证明的.大家再想一想,在证明法则(2)时,我们不仅有对数的定义和性质,还有法则(1)这个结论.那么,我们是否还有其它证明方法?生:(板书)师:非常漂亮.他是运用转化归结的思想,借助于刚刚证明的法则(1)去证明法则(2).他的证法要比书上的更简单.这说明,转化归结的思想,在化难为易、化复杂为简单上的重要作用.事实上,这种思想不但在学习新概念、新公式时常常用到,而且在解题中的应用更加广泛.师:法则(2)的适用条件是什么?生:M>0,N>0;a>0且a≠1.师:观察法则(2)的结构特点并加以记忆.生:等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算.师:(板书)lg20-lg2=?师:可见法则(2)的作用仍然是加快计算速度,也简化了计算的方法.师:(板书)例1 计算:(学生上黑板解,由学生判对错,并说明理由.):(1)log93+log927=log93×27=log981=2;(3)log2(4+4)=log24+log24=4;生:第(2)题错!在同底的情况下才能运用对数运算法则.(板书)生:第(3)题错!法则(1)的内容是:生:第(4)题错!法则(2)的内容是:师:通过前面同学出现的错误,我们在运用对数运算法则时要特别注意什么?生:首先,在同底的情况下才能从右往左运用法则(1)、(2);其次,只有在正因数的积或两个正数的商的对数的情况下,才能从左往右运用运算法则(1)、(2).师:(板书)(3)正数的幂的对数等于幂的底数的对数乘以幂指数.即log a(N)n=n·log a N.师:请同学们自己证明(给几分钟时间)师:法则(3)的适用条件是什么?生:a>0,a≠1;N>0.师:观察式子结构特点并加以记忆.生:从左往右仍然是降级运算.师:例如,(板书)log332=log525=5log52.练习计算(log232)3.(找一好一差两名学生板书.)错解:(log232)3=log2(25)3=log2215=15.正确解:(log232)3=(log225)3=(5log22)3=53=125.(师再次提醒学生注意要准确记忆公式.)师:(板书)(4)正数的正的方根的对数等于被开方数的对数除以根指数.即师:法则(4)的适用条件是什么?生:a>0,a≠1;N>0.师:法则(3)和法则(4)可以合在一起加以记忆.即log a Nα=αlog a N(α∈R).(师板书)例2 用log a x,log a y,log a z表示下列各式:解:(注意(3)的第二步不要丢掉小括号.)例3 计算:解:(生板书)(1)log2(47×25)=log247+log225=7log24+5log22=7×2+5×1=19.师:请大家在笔记本上小结这节课的主要内容.小结:通过本节课,应使学生明确如何学习一种运算(从定义、记法、性质、法则等方面来研究);如何学习公式或法则(从公式推导,适用条件,结构特点和记忆以及公式作用四方面来研究).针对高中数学内容多、密度大、进度快的特点,应使学生尽早地掌握适应高中数学的学习方法.练习:课本第79页练习第1、2、3题。
人教A版数学必修一《2.2.1对数与对数运算(二)》教案
辽宁省沈阳市第十五中学高中数学《2.2.1对数与对数运算(二)》教案 新人教A 版必修1教学目标(一) 能力训练要求1.进一步熟悉对数定义与幂的运算性质; 2. 理解对数运算性质的推倒过程;3.熟悉对数运算性质的内容; 4.熟练运用对数的运算性质进行化简求值;5.明确对数运算性质与幂的运算性质的区别.一、复习引入:1.对数的定义 b N a =log 其中 ),1()1,0(+∞∈Y a 与 ),0(+∞∈N2.指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且)()(),()(),(R n b a ab R n m a a R n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+3.重要公式:⑴负数与零没有对数; ⑵01log =a ,1log =a a ⑶对数恒等式N a N a =log二、新授内容:1.积、商、幂的对数运算法则:如果 a > 0,a 1,M > 0, N > 0 有:)()(2N log M log NM log 1N log M log (MN)log a a a a a a -=+= b n m b a m a n log log =(3) 2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log zy x zxy a a . 例2. 计算 (1)25log 5, (2)1log 4.0, (3))24(log 572⨯, (4)5100lg例3.计算:(1);50lg 2lg )5(lg 2⋅+ (2) ;25log 20lg 100+ (3) .18lg 7lg 37lg214lg -+-例4.已知3010.02lg =,4771.03lg =, 求45lg例5.已知a =9log 18,518=b ,求45log 36 (备用题)。
高中数学必修一《对数与对数运算》优秀教学设计
人教A版必修1 第二章基本初等函数(Ⅰ)2.2.1 对数与对数运算一、教材分析:人教版普通高中数学课程标准实验教科书《必修①》中,本节课是在学生学习了指数函数及其性质之后学习的,其主要内容是对数概念及指对数互化、对数运算等。
教材采用欧拉提出的指对运算关系,通过实际问题直接引入对数概念,简明扼要地指出“对数”研究的必要性,揭示了对数与指数之间的内在关系,同时也很好地保持了“基本初等函数”这一章节的系统性。
本节学习内容蕴含转化化归数学思想,类比与对比等基本数学方法。
对数与指数的互化是对指数函数及其性质的巩固,也是后面学习对数函数的基础。
二、学情分析:学生在§2.1学习了指数以及指数函数的主要性质,对指数相关知识已很清晰;另外,在第一章学习了函数及其性质,对学习本课已具备前提条件。
尽管如此,对学生而言,“对数”毕竟是一种新的运算,它的表示及其运算规则都是之前所不熟悉的。
因此,接受起来还是比较困难,且不能很好的领悟其中的“算理”。
教材在“课后阅读与思考”中特别介绍了“对数的发明”,供学生了解对数的发展史。
但从实施情况来看,大部分学生并未给予应有的关注,而教师常常因为课时的限制未能将之纳入到课堂之内。
因此,对数这一在历史中近乎狂喜的发明也就被淹没了,学生体会不到其中的奥妙。
三、教学重难点:重点:对数概念的理解;对数与指数的互化.难点:对数概念的理解.四、教学目标依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:(1)知识技能目标①理解对数的概念;②熟练地进行指数式与对数式互换;③掌握对数的运算性质,并应用运算性质解决相关问题;(2)过程与方法目标①经历对数发展历程,引出对数的定义与性质,掌握指数式与对数式互化方法.②在得出对数运算性质的过程中通过证明强调数学的严谨同时体会转化化归思想.(3)情感态度与价值观①通过指数式与对数式的互化,使学生感受对数式是指数式的另一种表达形式,进一步体会运用指数式探求对数的基本思路及方法,发展学生的数学表达能力和严谨有序的思维品质.②让学生探索、体会、感受对数概念的形成和发展过程;了解历史发展过程,数学家的奋斗精神;以此激发学生的学习兴趣,增强学生的成功感体验,帮助学生认识自我、建立自信.五、教学流程六、教学过程【算理演化】(3)结合给出的规律填表并利用表格计算以下问题:=⨯164=⨯=⨯5121283216【发现数表之妙】让学生自己发现规律例1。
高中数学必修一导学案:2 2 1对数与对数运算(2)
第二章 基本初等函数2.2.1对数与对数运算(2)【导学目标】1.学生掌握对数的运算性质,知道对数换底公式;2.会用对数的性质解决一些实际问题;3. 在对数的运算性质、换底公式的推导中,体会数学推理过程,体验探究成功.【自主学习】 知识回顾:1.对数的概念;2.同底数幂的运算性质:=⋅n m a a ;=÷n m a a . 新知梳理:引例: 由=⋅n m a a ,如何探讨)(log MN a 和log a M 、log a N 之间的关系? (以)(log MN a =M a log +N a log 为例).m n m n a a a +⋅=,设m M a =,n N a =,则有MN = ___ __ .由对数的定义,有 __,N a log =n ,=+=n m MN a )(log .同样地,依照上述过程,由指数幂的运算性质________ 和_____ ___,得到对数运算的其他性质.2. 如果0a >,且1a ≠,0M >,0N >,那么,(1)log ()a MN = _ ___________;(2)log a MN = _______ ____________ ; (3)log n a M = _____ ____ (n ∈R ). (4))(log )(m a b n = .()0,,≠∈∈n R n R m 对点练习:1.若0>a ,1≠a ,0>x ,0>y ,y x >,下列式子中正确的个数是( )①⋅x a log y a log =)(log y x a +②x a log y a log -=)(log y x a - ③)(log yx a =x a log y a log ÷④=)(log xy a x a log y a log ⋅A.0B.1C. 2D.3 对点练习:2.5lg 2lg +=3.对数换底公式若0a >,且1a ≠;0c >,且1c ≠;0b >,则log a b = ________ .推导:对点练习:3. 2log 3log 32⋅的值为( )A.21B.1C. 23 D.2 一般的,有log log a b b a ⋅=___________思考探究:1.b a log 与a b log 是什么关系?2.a c b c b a log log log ⋅⋅=3.当0>⋅N M ,则式子)(log N M a ⋅=N M a a log log +,成立吗?为什么?【合作探究】典例精析例题1: 用x a log ,y a log ,z a log 表示下列各式.(1)z xy a log ; (2)32log zy x a .变式训练1:已知a =2lg ,b =3lg ,用b a ,表示108lg .例题2: 求下列各式的值:(1) )24(log 572⨯; (2) 5100lg .变式训练2:求下列各式的值: ⑴278log 32; ⑵5.0lg 85lg 5.12lg +-; (3)16log 9log 4343-.【课堂小结】。
2019-2020学年高中数学(人教A版必修一)教师用书:第2章 2.2.1 第2课时 对数的运算 Word版含解析
第2课时对数的运算1.理解对数的运算性质.(重点)2.能用换底公式将一般对数转化成自然对数或常用对数.(难点) 3.会运用运算性质进行一些简单的化简与证明(易混点).[基础·初探]教材整理1 对数的运算性质阅读教材P64至P65“例3”以上部分,完成下列问题.对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么:(1)log a(M·N)=log a M+log a N;(2)log a MN=log a M-log a N;(3)log a M n=nlog a M__(n∈R).判断(正确的打“√”,错误的打“×”)(1)积、商的对数可以化为对数的和、差.( )(2)log a xy=log a x·log a y.( )(3)log a(-2)3=3log a(-2).( )【解析】(1)√.根据对数的运算性质可知(1)正确;(2)×.根据对数的运算性质可知log a xy=log a x+log a y;(3)×.公式log a M n=n log a M(n∈R)中的M应为大于0的数.【答案】(1)√(2)×(3)×教材整理2 换底公式阅读教材P 65至P 66“例5”以上部分,完成下列问题. 对数换底公式:log a b =logcblogca (a >0,且a ≠1,b >0,c>0,且c ≠1); 特别地:log a b ·log b a =1(a >0,且a ≠1,b >0,且b ≠1).计算:log 29·log 34=________.【解析】 由换底公式可得log 29·log 34=2lg 3lg 2·2lg 2lg 3=4. 【答案】4[小组合作型](1)lg 14-2lg 73+lg 7-lg 18; 【导学号:97030098】 (2)2lg 2+lg 32+lg 0.36+2lg 2;(3)log 34273+lg 25+lg 4+7log 72; (4)2log 32-log 3329+log 38-52log 53.【精彩点拨】 当对数的底数相同时,利用对数运算的性质,将式子转化为只含一种或少数几种真数的形式再进行计算.【自主解答】 (1)法一 原式=lg (2×7)-2(lg 7-lg 3)+lg 7-lg (32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.法二 原式=lg 14-lg ⎝ ⎛⎭⎪⎫732+lg 7-lg 18=lg 14×7⎝ ⎛⎭⎪⎫732×18=lg 1=0.(2)原式=2lg 2+lg 32+lg 36-2+2lg 2=错误!=错误!=错误!.(3)原式=log 33343+lg (25×4)+2=log 33-14+lg 102+2=-14+2+2=154. (4)原式=2log 32-(log 325-log 39)+3log 32-5log 532 =2log 32-5log 32+2log 33+3log 32-9=2-9=-7.1.利用对数性质求值的解题关键是化异为同,先使各项底数相同,再找真数间的联系. 2.对于复杂的运算式,可先化简再计算;化简问题的常用方法:①“拆”:将积(商)的对数拆成两对数之和(差);②“收”:将同底对数的和(差)收成积(商)的对数.[再练一题]1.求下列各式的值: (1)lg 25+lg 2·lg 50;(2)23lg 8+lg 25+lg 2·lg 50+lg 25.【解】 (1)原式=lg 25+(1-lg 5)(1+lg 5)=lg 25+1-lg 25=1. (2)23lg 8+lg 25+lg 2·lg 50+lg 25=2lg 2+lg 25+lg 2(1+lg 5)+2lg 5=2(lg 2+lg 5)+lg 2 5+lg 2+lg 2·lg 5=2+lg 5(lg 5+lg 2)+lg 2=2+lg 5+lg 2=3.一种放射性物质不断变化为其他物质,每经过一年剩余的质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13(结果保留1个有效数字)?(lg 2≈0.301 0,lg 3≈0.477 1)【精彩点拨】 由题目可知经过一年物质剩余的质量约是原来的75%,由此首先找到剩余量与年数的关系,再利用对数计算.【自主解答】 设物质的原有量为a ,经过t 年,该物质的剩余量是原来的13,由题意可得a ·0.75t =13a ,∴⎝ ⎛⎭⎪⎫34t =13,两边取以10为底的对数得lg ⎝ ⎛⎭⎪⎫34t=lg 13,∴t(lg 3-2lg 2)=-lg 3, ∴t =-lg 3lg 3-2lg 2≈0.477 12×0.301 0-0.477 1≈4(年).解对数应用题的步骤[再练一题]2.地震的震级R 与地震释放的能量E 的关系为R =23(lgE -11.4).根据英国天空电视台报道,英格兰南部2007年4月28日发生地震,欧洲地震监测站称,地震的震级为5.0级,而2011年3月11日,日本本州岛发生9.0级地震,那么此次地震释放的能量是5.0级地震释放能量的________倍.【解】 设9.0级地震所释放的能量为E 1,5.0级地震所释放的能量为E 2.由9.0=23(lg E 1-11.4),得lg E 1=32×9.0+11.4=24.9. 同理可得lg E 2=32×5.0+11.4=18.9, 从而lg E 1-lg E 2=24.9-18.9=6.故lg E 1-lg E 2=lg E1E2=6,则E1E2=106=1 000 000,即9.0级地震释放的能量是5.0级地震释放能量的1 000 000倍.[探究共研型]探究1 假设log25log23=x ,则log 25=xlog 23,即log 25=log 23x ,从而有3x =5,进一步可以得到什么结论?【提示】 进一步可以得到x =log 35,即log 35=log25log23.探究2 由探究1,你能猜测logcblogca 与哪个对数相等吗?如何证明你的结论?【提示】 logcb logca =log a b .假设logcblogca =x ,则log c b =xlog c a ,即log c b =log c a x ,所以b =a x ,则x =log a b ,所以logcblogca =log a b.(1)已知log 1227=a ,求log 616的值;(2)计算(log 2125+log 425+log 85)(log 52+log 254+log 1258)的值.【导学号:02962014】【精彩点拨】 各个对数的底数都不相同,需先统一底数再化简求值. 【自主解答】 (1)由log 1227=a ,得3lg 32lg 2+lg 3=a ,∴lg 2=3-a2a lg 3. ∴log 616=lg 16lg 6=4lg 2lg 2+lg 3=4×3-a 2a1+3-a 2a=错误!. (2)法一 原式=⎝ ⎛⎭⎪⎫log253+log225log24+log25log28·log 52+log54log525+log58log5125=⎝ ⎛⎭⎪⎫3log25+2log252log22+log253log22log 52+2log522log55+3log523log55=⎝ ⎛⎭⎪⎫3+1+13log 25·(3log 52) =13log 25·log22log25=13.法二 原式=⎝ ⎛⎭⎪⎫lg 125lg 2+lg 25lg 4+lg 5lg 8lg 2lg 5+lg 4lg 25+lg 8lg 125=⎝ ⎛⎭⎪⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝ ⎛⎭⎪⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5 =⎝ ⎛⎭⎪⎫13lg 53lg 2⎝ ⎛⎭⎪⎫3lg 2lg 5=13. 法三 原式=(log 2153+log 2252+log 2351)·(log 512+log 5222+log 5323)=⎝ ⎛⎭⎪⎫3log25+log25+13log25(log 52+log 52+log 52)=3×⎝ ⎛⎭⎪⎫3+1+13log 25·log 52=3×133=13.1.在利用换底公式进行化简求值时,一般情况下是根据题中所给对数式的具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底.2.在运用换底公式时,还可结合底数间的关系恰当选用一些重要的结论,如log a b ·log b a =1,log a b ·log b c·log c d =log a d ,log a m b n =n m log a b ,log a a n =n ,等,将会达到事半功倍的效果.[再练一题]3.求值:log 225·log 3116·log 519=________.【解析】 原式=log 252·log 32-4·log 53-2=2lg 5lg 2·-4lg 2lg 3·-2lg 3lg 5=16. 【答案】 161.若a >0,且a ≠1,x ∈R ,y ∈R ,且xy >0,则下列各式不恒成立的是( ) ①log a x 2=2log a x ;②log a x 2=2log a |x |; ③log a (xy )=log a x +log a y ; ④log a (xy )=log a |x |+log a |y |. A .②④ B .①③ C .①④D .②③【解析】 ∵xy >0,∴①中,若x <0,则不成立;③中,若x <0,y <0也不成立,故选B . 【答案】 B2.lg 2516-2lg 59+lg 3281等于( ) A .lg 2 B .lg 3 C .lg 4D .lg 5【解析】 lg 2516-2lg 59+lg 3281=lg ⎝ ⎛⎭⎪⎫2516÷2581×3281=lg 2.故选A .【答案】 A3.(2016·宝鸡高一检测)已知log a 2=m ,log a 3=n ,则log a 18=________.(用m ,n 表示) 【解析】 log a 18=log a (2×32)=log a 2+log a 32=log a 2+2log a 3=m +2n . 【答案】 m +2n4.计算(lg 2)2+lg 2·lg 50+lg 25=________. 【解析】 原式=(lg 2)2+lg 2·(1+lg 5)+2lg 5 =lg 2(1+lg 5+lg 2)+2lg 5=2lg 2+2lg 5=2. 【答案】 25.已知log 189=a ,18b =5,求log 3645. 【导学号:97030099】 【解】 法一 ∵log 189=a ,18b =5,即log 185=b , 于是log 3645=log1845log1836=错误!=错误!=错误!=错误!. 法二 ∵log 189=a ,18b =5, 即log 185=b .于是log 3645=错误!=错误!=错误!.法三 ∵log 189=a ,18b =5,∴lg 9=alg 18,lg 5=blg 18. ∴log 3645=lg 45lg 36=错误!=错误!=错误!=错误!.。
新课标高中数学人教A版必修一全册教案2.2.1对数与对数运算(两课时)概要
221对数与对数运算第一课时(一)教学目标i •知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质3 •情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力(2)通过对数的运算法则的学习,培养学生的严谨的思维品质(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力(二)教学重点、难点(1)重点:对数式与指数式的互化及对数的性质(2)难点:推导对数性质的(三)教学方法启发式启发学生从指数运算的需求中,提出本节的研究对象一一对数,从而由指数与对数的关系认识对数,并掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算•引导学生在指数式与对数式的互化过程中,加深对于定义的理解,为下一节学习对数的运算性质打好基础•(四)教学过程log10 N 常记为lg N .②以无理数e=2.71828…为底的对数称为自然对数,log e N常记为In N .以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即IglOO =2.应用举例例1将下列指数式化为对数式,对数式化为指数式:(1)54=625;(2)26=—;641(3)( 1) m=5.73;3(4)log 1 16= —4;2(5)lg0.01= —2;(6)ln 10=2.303.例2:求下列各式中x的值2(1)log 64X = -_3(2)log x8=6(3)lg100 = x(4)-ln e2= x例1分析:进行指数式和对数式的相互转化,关键是要抓住对数与指数幕之间的关系,以及每个量在对应式子中扮演的角色.(生口答,师板书)解:(1) log 5625=4;(2)也丄二—6;64(3)log 1 5.73=m;31 —4(4)( - ) =16;2(5)10—2=0.01;(6) e =10.例2分析:将对数式化为指数式,再利用指数幕的运算性质求出x.解:(1)2 2x = (64)P =(43)刁2 ‘3(=) / 1=4 3 = 4 =—16通过这二个例题的解答,巩固所学的指数式与对数式的互化,提高运算能力.4. (1) 1; (2) 0; (3) 2;(4) 2; ( 5) 3; (6) 5.归纳 1.对数的定义及其记法; 先让学生回顾反思,然后 巩固本节 总结2.对数式和指数式的关系;师生共同总结,完善.学习成果,形3.自然对数和常用对数的概念 .成知识体系.课后 作业:2.2第一课时 习案学生独立完成 巩固新知 作业提升能力备选例题例1将下列指数式与对数式进行互化【分析】利用a x = N= x = log a N ,将(1) (2)化为对数式,(3) (4)化为指数式1⑵••• s -;」—(4):T og x 64 = -6 ,「. x 6 = 64.【小结】对数的定义是对数形式与指数形式互化的依据,同时,教材的“思考”说明了 这一点•在处理对数式与指数式互化问题时,依据对数的定义 a b = N= b = log a N 进行转换即可•例2求下列各式中的x.(1)log 8X=-3 ;3⑵ log x 27 蔦;(3) log 2 (log 5 x ) =0 ;(3) log i 27 ・-33(4) log x 64 二 _6【解析】(1)C )X =64, 4二 x = log 1 644(3)log r 27 = -33=2712【解析】(1)由log s x—232 2得x=8刁=(23)飞=2二即x=[.43(2)由log x27 =3,得x4=27 =33,44••• x 二(33卢=34=81.(3)由log? (log 5x) = 0 得log5X = 20= 1.• x = 5.【小结】(1)对数式与指数式的互化是求真数、底数的重要手段(2)第(3)也可用对数性质求解•如(3)题由Iog2(log5x) = 0及对数性质log a仁0. 知log5X = 1,又log55 = 1. • x = 5.第二课时(一)教学目标1 •知识与技能:理解对数的运算性质.2. 过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力” “等价转化”和“演绎归纳”的数学思想方法,以及创新意识.3. 情感、态态与价值观通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊一一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.(二)教学重点、难点1. 教学重点:对数运算性质及其推导过程.2. 教学难点:对数的运算性质发现过程及其证明.(三)教学方法针对本节课公式多、思维量大的特点,采取实例归纳,诱思探究,引导发现等方法.(四)教学过程性质直接化简.(1) log a xyzTog a xy-log a Z= lOg a X log a y-log a z 例2求下列各式的值.(1)log2(4725)(2)|g 5100例3计算:(1) lg14 - 2lg 7 +|g7 - lg18 ;3(2) lg 243;lg9= log a x20 —log a V Z 二log a X2log a . y -log a3Z1= 2log a X c log a y21.-§log a Z小结:此题关键是要记住对数运算性质的形式,要求学生不要记住公式.例2 解(1) log2(4725) 二log?47log? 25=14 5 =19(2) lg5100..J 2=lg105例3 (1)解法一:lg14 —2lg — +lg7 —lg183=lg (2 X7)—2 (lg7 —lg3)提高运算能力.(3) lg (27+Ig8-3lg ^10 lg1.2 .课本P79练习第1 , 2, 3.2+lg7 —lg (3 >2)=Ig2+Ig7 —2lg7+2lg3+lg7 —2lg3 —lg2=0.解法二:lg14 —2lg 7 +lg7—lg18=lg14 —lg ( 7) 2+lg7 —314沢7lg18=lg =lg1=0.(7)2X18(2)解:lg 243= lg 35= 51g3 = 5lg9 lg 322lg3 ~2'(3)解:lg J矛+Ig8-3lg V10lg1.21 13 — 3 —=lg(3 )2+lg 2 -31g102一23疋22lg --------1035(lg3 + 21g2—1) 3=Ig3+21g2-1 = 2.小结:以上各题的解答,体现对数运算法则的综合运用,应注意掌握变形技巧,每题的各部分变形要化到最简形式,同时注意分子、分母的联系,要避免错用对数运算性质•课本P79练习第1,2,3.答案:1.( 1)lg( xyz)=lgx+lgy+lgz;xy22(2)lg ------- =lg(xy)—Igzz22备选例题例1计算下列各式的值: (1) - lg 3^ -- lg 8 lg .. 245 ;249 3 2(2)lg 52 lg8 lg 5 lg 20 (lg 2)2. 3【解析】(1)方法一:3 1原式=1 (lg 25—lg 72)-4lg 22 - lg(725) 22 351 =Ig2—lg7—2lg2 Ig7 lg 5 22 1 1=尹2尹51(lg2 lg5)=-.22方法二:原式: =lg-lg 4 Tg 7、、57 4、2 7 .5=lg7汉4= lg(2)W.(2)原式=2lg5 + 2lg2 + lg5 (2lg2 + lg5) + (lg2)=2lg10 + (lg5 + lg2) =2 + (lg10) =2 + 1 = 3.【小结】易犯Ig52 = (|g5)2的错误. 这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、 差、积、商运用对数的运算法则将它们化为真数的积、商、幕、方根,然后化简求值•计算对数的值时常用到 Ig2 + Ig5 = Ig10 = 1.例 2:( 1)已知 Ig2 = 0.3010, Ig3 = 0.4771,求 lg , 45 ;(3) 已知 Igx = 2Ig a + 3Igb -5lgc ,求 x. 【分析】由已知式与未知式底数相同,实现由已知到未知,只须将未知的真数用已知的真数的乘、除、幕表示,借助对数运算法则即可解答______________ 1 1 90【解析】(1) Ig 45 Ig 45 Ig -2 2 21[Ig9 Ig10 -Ig 2] 2 1[2lg 3 1-Ig2] 211 1"Ig3 2 "^Ig^ 0.4771+0.5 -0.1505=0.82661 1 1= log a a 4log a X 3-log a y121 111 11 log a x log a y n m. 4 3 12 43 12(3) 由已知得:2. 32 3 5 a bIg x =lg a 2 Ig b 3 -Ig c=lg —,c 5a 2b 3 •- x ~c【小结】①比较已知和未知式的真数,并将未知式中的真数用已知式的真数的乘、除、 乘方表示是解题的关键,并且应注意对数运算法则也是可逆的;②第( 论:同底的对数相等,则真数相等.即log a N = log a M=N = M.(2)设 gx = m ,Iog a y = n ,用 m 、n 表示 Iog a [4 a 3 / ];⑵ Iog a [Va ^*]3 )小题利用下列结。
高中数学人教版必修1教案2.2.1 对数与对数运算(2)
第二课时一.教学目标:1.知识与技能①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能.②运用对数运算性质解决有关问题.③培养学生分析、综合解决问题的能力.培养学生数学应用的意识和科学分析问题的精神和态度.2. 过程与方法①让学生经历并推理出对数的运算性质.②让学生归纳整理本节所学的知识.3. 情感、态度、和价值观让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性.二.教学重点、难点重点:对数运算的性质与对数知识的应用难点:正确使用对数的运算性质三.学法和教学用具学法:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标.教学用具:投影仪四.教学过程1.设置情境复习:对数的定义及对数恒等式log b a N b a N =⇔= (a >0,且a ≠1,N >0),指数的运算性质.;m n m n m n m n a a a a a a +-⋅=÷=();m n m n mn n ma a a a == 2.讲授新课探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m n a a a +⋅=,那m n +如何表示,能用对数式运算吗?如:,,m n m n m n a a a M a N a +⋅===设。
于是,m n MN a += 由对数的定义得到 log ,log m n a a M a m M N a n N =⇔==⇔=log m n a MN a m n MN +=⇔+=log log log ()a a a M N MN ∴+=放出投影即:同底对数相加,底数不变,真数相乘提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗?(让学生探究,讨论)如果a >0且a ≠1,M >0,N >0,那么:(1)log log log a a a MN M N =+(2)log log log a a a M M N N=- (3)log log ()n a a M n Mn R =∈ 证明:(1)令,m nM a N a == 则:m n m n M a a a N-=÷= l o g a M m n N ∴-= 又由,m n M a N a ==log ,log a a m M n N ∴== 即:log log log a a aM M N m n N -=-= (3)0,log ,N n n a n N M M a ≠==时令则l o g ,bn a b n M M a ==则Nb n na a ∴= Nb ∴= 即log log log a a a M M N N=- 当n =0时,显然成立.l o g l o gn a a M n M ∴= 提问:1. 在上面的式子中,为什么要规定a >0,且a ≠1,M >0,N >0?1. 你能用自己的语言分别表述出以上三个等式吗?例题:1. 判断下列式子是否正确,a >0且a ≠1,x >0且a ≠1,x >0,x >y ,则有(1)log log log ()a a a x y x y ⋅=+ (2)log log log ()a a a x y x y -=-(3)log log log a a a x x y y=÷ (4)log log log a a a xy x y =- (5)(log )log n a a x n x = (6)1log log a ax x =-(7)1log log n a a x x n= 例2:用log a x ,log a y ,log a z 表示出(1)(2)小题,并求出(3)、(4)小题的值.(1)log a xy z (2)23log 8a x y (3)75log (42)z ⨯ (4)5lg 100 分析:利用对数运算性质直接计算:(1)log log log log log log aa a a a a xy xy z x y z z =-=+- (2)222333log log log log log log a a a a a a x y x y z x y z z =-=+-=112log log log 23a a a x y z +- (3)7575222log (42)log 4log 214519⨯=+=+=(4)2552lg 100lg105== 点评:此题关键是要记住对数运算性质的形式,要求学生不要记住公式.让学生完成P 68练习的第1,2,3题提出问题:你能根据对数的定义推导出下面的换底公式吗?a >0,且a ≠1,c >0,且e ≠1,b >0log log log c a c b b a= 先让学生自己探究讨论,教师巡视,最后投影出证明过程.设log ,log ,,M N c c M a N b a c b c ====则 且11,()N N M M M a c a a b ====N 所以c 即:log log ,log c a c b N N b M M a==又因为 所以:log log log c a c b b a = 小结:以上这个式子换底公式,换的底C 只要满足C >0且C ≠1就行了,除此之外,对C 再也没有什么特定的要求.提问:你能用自己的话概括出换底公式吗?说明:我们使用的计算器中,“log ”通常是常用对数. 因此,要使用计算器对数,一定要先用换底公式转化为常用对数. 如:2lg 3log 3lg 2= 即计算32log 的值的按键顺序为:“log ”→“3”→“÷”→“log ”→“2” →“=” 再如:在前面要求我国人口达到18亿的年份,就是要计算 1.0118log 13x = 所以 1.0118lg 18lg18lg13 1.2553 1.13913log 13lg1.01lg1.010.043x --===≈ =32.883733()≈年练习:P 68 练习4让学生自己阅读思考P 66~P 67的例5,例6的题目,教师点拨.3、归纳小结(1)学习归纳本节(2)你认为学习对数有什么意义?大家议论.4、作业(1)书面作业:P74 习题2.2 第3、4题 P 75 第11、12题2、思考:(1)证明和应用对数运算性质时,应注意哪些问题?(2)222log (3)(5)log (3)log (5)---+-等于吗?。
2019-2020年高中数学 2.2.1 对数与对数运算 第二课时教案精讲 新人教A版必修1
2019-2020年高中数学 2.2.1 对数与对数运算 第二课时教案精讲 新人教A 版必修1[读教材·填要点]1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么 (1)log a MN =log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ). 2.对数换底公式log a b =log c blog c a(a >0,a ≠1,b >0,c >0,c ≠1).[小问题·大思维]1.如果将“M >0,N >0”改为“MN >0”,则性质(1)和(2)还成立吗? 提示:不能.当M <0,N <0时,性质(1)和(2)都不成立. 2.若a >0,b >0,a ≠1,b ≠1,那么log a b ·log b a 为何值? 提示:log a b ·log b a =lg b lg a ·lg alg b=1.3.若log a b 有意义,如何用log a b 表示log an b n 和log am b n (其中m ≠0,n ≠0)? 提示:log an b n=lg b n lg a n =n lg b n lg a =lg blg a=log a b ;log am b n=lg b n lg a m =n lg b m lg a =nm log ab .对数运算性质的应用[例1] 求下列各式的值.(1)31+log 36-24+log 23+103lg3+(19)log34-1;(2)(lg2)3+(lg5)3+3lg2·lg5; (3)lg500+lg 85-12lg64+50(lg2+lg5)2.[自主解答] (1)原式=3·3log36-16·2log23+10lg27+32-log316=18-48+27+916=-3916.(2)原式=(lg2+lg5)[(lg2)2-lg2·lg5+(lg5)2]+3lg2·lg5 =(lg2)2-lg2·lg5+(lg5)2+3lg2·lg5 =(lg2+lg5)2=1.(3)法一:原式=lg(500×85)-lg 64+50[lg(2×5)]2=lg800-lg8+50=lg8008+50=lg100+50 =2+50=52.法二:原式=lg5+lg100+lg8-lg5-12lg82+50=lg100+50=52.——————————————————1在应用对数运算性质时,应注意保证每个对数式都有意义. 2对于底数相同的对数式的化简,常用的方法是: ①“收”,将同底的两对数的和差收成积商的对数; ②“拆”,将积商的对数拆成对数的和差. 3对数的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.————————————————————————————————————————1.求下列各式的值.(1)log 535-2log 573+log 57-log 51.8;(2)2log 32-log 3329+log 38-5log53.解:(1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55 =2log 55=2.(2)原式=2log 32-(log 332-log 39)+3log 32-3=5log 32-(5log 32-2log 33)-3=-1.换底公式的应用[例2] (1)计算:(log 43+log 83)·lg2lg3;(2)已知log 189=a,18b =5,求log 3645. [自主解答] (1)原式=(lg3lg4+lg3lg8)·lg2lg3=lg32lg2·lg2lg3+lg33lg2·lg2lg3=12+13=56. (2)因为log 189=a,18b =5,所以log 185=b ,于是 法一:log 3645=log 1845log 1836=log 189×5log 181829=log 189+log 1852log 1818-log 189=a +b2-a.法二:lg9=a lg18,lg5=b lg18,所以log 3645=lg45lg36=lg9×5lg 1829=lg9+lg52lg18-lg9=a lg18+b lg182lg18-a lg18=a +b2-a.保持例2(2)条件不变,求log 3036的值. 解:∵18b =5,∴log 185=b . ∴log 3036=log 1836log 1830=log 1818+log 182log 185+log 186=1+log 1818-log 189log 185+log 1818-log 183=2-a b +1-a 2=22-a2+2b -a .—————————————————— 1利用换底公式可以把不同底的对数化为同底的对数,要注意换底公式的正用、逆用以及变形应用.2题目中有指数式与对数式时,要注意将指数式与对数式进行互化,统一成一种形式.————————————————————————————————————————2.求值:(log 32+log 92)(log 43+log 83) 解:(log 32+log 92)(log 43+log 83)=⎝⎛⎭⎫lg2lg3+lg2lg9⎝⎛⎭⎫lg3lg4+lg3lg8=⎝⎛⎭⎫lg2lg3+lg22lg3⎝⎛⎭⎫lg32lg2+lg33lg2 =32lg2lg3×56lg3lg2=32×56=54.对数的综合应用[例3] 已知x ,y ,z 为正数,3x =4y =6z,2x =py . (1)求p ; (2)求证1z -1x =12y.[自主解答] 设3x =4y =6z =k (显然k >0,且k ≠1), 则x =log 3k ,y =log 4k ,z =log 6k , (1)由2x =py ,得2log 3k =p log 4k =p ·log 3klog 34,∵log 3k ≠0,∴p =2log 34.(2)1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2 =12log k 4=12y ,∴1z -1x =12y. ——————————————————解决此类问题的关键是利用对数运算性质,去掉对数符号,找出变量之间的关系或求出它们的值,再代入要求式,运算即可.————————————————————————————————————————3.设7a =8b =k ,且1a +1b =1,则k =________.解析:∵7a =k ,∴a =log 7k,8b =k ,∴b =log 8k . ∴1a +1b =log k 7+log k 8=log k 56=1.∴k =56. 答案:56解题高手 易错题审题要严,做题要细,一招不慎,满盘皆输,试试能否走出迷宫!已知lg x +lg y =2lg(x -2y ),求log 2xy 的值.[错解] ∵lg x +lg y =2lg(x -2y ) ∴xy =(x -2y )2,即x 2-5xy +4y 2=0. 即(x -y )(x -4y )=0,∴x =y 或x =4y . 即x y =1或x y =4.∴log 2x y =0或log 2xy=4. [错因] 忽略了对数的真数必须大于0这一前提,因而出现了0和4这两个结果. [正解] 由已知得xy =(x -2y )2, 即(x -y )(x -4y )=0, 得x =y 或x =4y . ∵x >0,y >0,x -2y >0, ∴x >2y >0.∴x =y 应舍去,∴x =4y 即xy =4.∴log 2xy=log 24=4.1.若a >0,且a ≠1,x ∈R ,y ∈R ,且xy >0,则下列各式不恒成立的是( ) ①log a x 2=2log a x ;②log a x 2=2log a |x |; ③log a (xy )=log a x +log a y ; ④log a (xy )=log a |x |+log a |y |. A .②④ B .①③ C .①④D .②③解析:∵xy >0.∴①中若x <0则不成立;③中若x <0,y <0也不成立. 答案:B2.(log 29)·(log 34)=( ) A.14 B.12 C .2D .4解析:(log 29)·(log 34)=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.答案:D3.已知lg2=a ,lg3=b ,则log 36=( )A.a +b aB.a +bbC.a a +bD.b a +b解析:log 36=lg6lg3=lg2+lg3lg3=a +bb .答案:B4.已知log 23=a,3b =7,则log 1256=________. 解析:∵3b =7,∴b =log 37,∴log 1256=log 356log 312=log 37×8log 34×3=log 37+3log 322log 32+1又∵log 23=a ,∴log 32=1a .原式=b +3a 2a +1=ab +3a 2+a a =ab +3a +2.答案:ab +3a +25.若lg x -lg y =a ,则lg(x 2)3-lg(y2)3=________.解析:∵lg x -lg y =a , ∴lg(x 2)3-lg(y 2)3=3(lg x 2-lg y2)=3(lg x -lg y )=3a . 答案:3a6.计算下列各式的值. (1)log 2748+log 212-12log 242; (2)log 225·log 34·log 59. 解:(1)原式=log 27×1248×42=log 212=-12.(2)原式=log 252·log 322·log 532 =8log 2·5log 32·log 53 =8lg 5lg 2·lg 2lg 3·lg 3lg 5=8.一、选择题1.lg 8+3lg 5的值为( )A .-3B .-1C .1D .3解析:lg 8+3lg 5=3lg 2+3lg 5=3(lg 2+lg 5)=3lg 10=3. 答案:D2.若log 34·log 8m =log 416,则m 等于( ) A .3 B .9 C .18D .27解析:原式可化为:log 8m =2log 34∴13log 2m =2log 43,∴m 13=3.m =27. 答案:D3.已知a =log 32,用a 来表示log 38-2log 36( ) A .a -2 B .5a -2 C .3a -(1+a )2D .3a -a 2-1解析:log 38-2log 36=3log 32-2(log 32+log 33) =3a -2(a +1)=a -2. 答案:A4.已知方程x 2+x log 26+log 23=0的两根为α、β,则(14)α·(14)β=( )A.136 B .36 C .-6D .6解析:由题意知:α+β=-log 26,(14)α·(14)β=(14)α+β=(14)-log26=4log26=22log26=36.答案:B 二、填空题5.2(lg 2)2+lg 2·lg 5+lg 22-lg 2+1=________.解析:原式=2(lg 2)2+lg 2·lg 5+1-lg 2 =2(lg 2)2+lg 2(lg 5-1)+1 =2(lg 2)2-2(lg 2)2+1=1. 答案:16.设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0ln x ,x >0,则g (g (12))=________.解析:∵12>0,∴g (12)=ln 12.而g (g (12))=g (ln 12)=e ln =12.答案:127.方程log 3(x -1)=log 9(x +5)的解是________. 解析:由题意知⎩⎪⎨⎪⎧x -1>0,x +5>0,x -12=x +5,解之得x =4.答案:x =48.已知x 3=3,则3log 3x -log x 23=________. 解析:3log 3x =log 3x 3=log 33=1, 而log x 23=log x 33=log 33=32,∴3log 3x -log x 23=1-32=-12.答案:-12三、解答题9.计算下列各式的值: (1)log 34log 98; (2)lg2+lg50+31-log92;(3)2log2+(169)+lg20-lg2-(log 32)·(log 23)+(2-1)lg1.解:(1)原式=log 322log 923=2log 3232log 32=43.(2)原式=lg2+lg 1002+3×3-log 322=lg2+(2-lg2)+3×3log32 =2+3×3log 32 =2+3×2=2+322.(3)原式=14+[(43)2] +lg 202-lg2lg3·lg3lg2+1=14+(43)-1+lg10-1+1=2. 10.设3x =4y =36,求2x +1y 的值.解:由已知分别求出x 和y ,∵3x=36,4y=36,∴x =log 336,y =log 436,由换底公式得:x =log 3636log 363=1log 363,y =log 3636log 364=1log 364,∴1x =log 363,1y =log 364, ∴2x +1y =2log 363+log 364 =log 36(32×4)=log 3636=1..。
2019-2020年高中数学 2.2.1对数与对数运算(二)全册精品教案 新人教A版必修1
2019-2020年高中数学 2.2.1对数与对数运算(二)全册精品教案新人教A版必修1(一)教学目标1.知识与技能:理解对数的运算性质.2.过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.3.情感、态态与价值观通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.(二)教学重点、难点1.教学重点:对数运算性质及其推导过程.2.教学难点:对数的运算性质发现过程及其证明.(三)教学方法针对本节课公式多、思维量大的特点,采取实例归纳,诱思探究,引导发现等方法.(四)教学过程备选例题例1 计算下列各式的值:(2)22)2(lg 20lg 5lg 8lg 325lg +⋅++.【解析】(1)方法一:原式=2122325)57lg(2lg 34)7lg 2(lg 21⨯+--=5lg 217lg 2lg 27lg 2lg 25++-- = =.方法二:原式== =.(2)原式=2lg5 + 2lg2 + lg5 (2lg2 + lg5) + (lg2)2 =2lg10 + (lg5 + lg2)2 = 2 + (lg10)2 = 2 + 1 = 3.【小结】易犯lg52 = (lg5)2的错误.这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值. 计算对数的值时常用到lg2 + lg5 = lg10 = 1.例2:(1)已知lg2 = 0.3010,lg3 = 0.4771,求lg ; (2)设log a x = m ,log a y = n ,用m 、n 表示; (3)已知lg x = 2lg a + 3lg b – 5lg c ,求x .【分析】由已知式与未知式底数相同,实现由已知到未知,只须将未知的真数用已知的真数的乘、除、幂表示,借助对数运算法则即可解答.【解析】(1)1190lg 45lg 222==0.4771+0.5 – 0.1505(2)1113412log log log a a a a x y =+-.1213141log 121log 3141m n y x a a -+=-+=(3)由已知得:532532lglg lg lg lg cb ac b a x =-+=,∴.【小结】①比较已知和未知式的真数,并将未知式中的真数用已知式的真数的乘、除、乘方表示是解题的关键,并且应注意对数运算法则也是可逆的;②第(3)小题利用下列结论:同底的对数相等,则真数相等. 即log a N = log a MN = M ..。
人教课标版高中数学必修一《对数与对数运算(第2课时)》教案-新版
2.2.2 对数与对数运算(第2课时)一、教学目标 (一)核心素养通过这节课学习,了解简单对数的运算以及简单对数式的化简,学好对数运算性质是学好对数函数的关键,增强学生的成就感,增强学生学习的积极性. (二)学习目标1.理解对数的运算性质;能熟练运用对数的运算性质进行化简、计算、证明. 2.让学生经历并推导出对数的运算性质并加以记忆; (三)学习重点掌握对数的运算性质及其推导过程,依据对数性质进行对数运算 (四)学习难点对数的运算性质及其推导过程 二、教学设计 (一)课前设计 1.预习任务读一读:阅读教材64-65页完成下列任务:(1)类比指数运算性质能得出其相应对数运算性质,并写出推导过程; (2)写出对数三条的运算性质及其各字母的取值范围并加以记忆. ①N M MN a a a log log log += ②N M NMa a alog log log -= ③)0,0,1,0(log log >>≠>=N M a a M n M a n a 2.预习自测(1)25log 20lg 100+的值为( ) A.2 B.-2C.21D.21-答案:A. (2)8log 932log 2log 2333+-的值为( ) A.21 B.2 C.3D.31 答案:B.(3)已知,23=a 用a 表示6log 4log 33-为_________. 答案:1-a . (二)课堂设计 1.知识回顾),0,0()(),,0()(),,0(R r b a b a ab R s r a a a R s r a a a a r r r rs s r s r s r ∈>>=∈>=∈>=+2.问题探究探究一 对数运算性质的探究●活动① 提出问题,对数与指数的关系及指数运算法则各是怎样的?N a b = ⇔ b N a =l o g (R b N a a ∈>≠>,0,1,0)【设计意图】引导学生根据指数的运算性质大胆尝试推导对数的运算性质,提高学生的建构能力和主动探究能力.●活动② 利用指数对数关系及指数的运算法则推导出对数的运算法则,以指数运算的第一个性质为例证明:q p a a a N a M q N p M ==∴==,log ,log 设MN q p a a a MN a q p q p log =+∴=∙=+MN N M a a a log log log =+【设计意图】规律总结,指出推导的关键是完成指数运算向对数运算的过渡. ●活动③ 理解并掌握对数的运算性质①N M MN a a a log log log += ②N M NMa a alog log log -= ③)0,0,1,0(log log >>≠>=N M a a M n M a n a 引导学生判断下列式子是否正确①)5(log )3(log )]5()3[(log 222-+-=-⨯-(错误) ②10log 210log 10210=(正确) ③N M MN a a a log log )(log ∙=(错误) ④N M N M a a a log log )(log +=+(错误)【设计意图】巩固对数的运算性质,提高学生发散思维及分析问题的能力. 探究二●活动① 基础型例题 例1.求下列各式的值:(1)352log (24)⨯ (2)125log 5 (3)2.1lg 12lg 23lg -+(4)22log log 【知识点】对数的运算性质. 【数学思想】转换与化归思想.【解题过程】(1)134log 534log 2log )42(log 25232532=+=+=⨯.(2)3555log 125log 53log 53===. (3)lg32lg 21lg3lg 41lg1.2lg1.2+-+-=lg1.21lg1.2==.(4)22log log2log =22log log 42===.【思路点拨】对数的运算性质.【答案】(1)13 ; (2)3 ; (3)1 ; (4)2.同类训练 求下列各式的值: (1)14log 501log 2log 235log 55215--+ (2)()2336618log 4log log 6+答案:(1)2;(2)1.解析:【知识点】对数的运算性质. 【数学思想】转换与化归思想. 【解题过程】21)145035(log 14log 50log 2log 35log 14log 501log 2log 235log )1(5552555215=-÷⨯=-+-=--+()()()()2366623666622236666266(2)原式log 2log 18log log 2(log 22log 3)log log 2log 2log 3log (log 3log 2)1=⋅+=⋅++=+⋅+=+=点拨:对数的运算性质.例2.计算(1)427125log 9log 25log 16⋅⋅(2)421938432log )2log 2)(log 3log 3(log -++答案:(1)98 ; (2)25.解析:【知识点】对数的运算性质. 【数学思想】转换与化归思想. 【解题过程】(1)原式985lg 32lg 43lg 35lg 22lg 23lg 2125lg 16lg 27lg 2514lg 9lg =⨯⨯=⨯⨯=g (2)原式=254523652log 45)2log 212(log )3log 313log 21(23322=+⨯=++⋅+.点拨:对数的运算性质.同类训练 已知b a ==7log ,3log 32, 用b a ,表示56log 42. 答案:31ab ab a +++.解析:【知识点】对数的运算性质. 【数学思想】转换与化归思想. 【解题过程】aa 12log ,3log 32=∴= 23334233333log (78)log 73log 3log 56log (237)log 2log 3log 711b ab a ab a b a+⨯++∴====⨯⨯++++++. 点拨:对数的运算性质. ●活动2 提升型例题 例3(1)1052==b a ,求ba 11+的值; (2)设3log 22=x ,求xx xx --+-222233的值.【知识点】对数的运算性质. 【数学思想】转换与化归思想.【解题过程】,10log ,10log ,1052)1(52==∴==b a b a15lg 2lg 11=+=+∴ba. 22log 22log 3,log 2=()由得a Nxx x aN==∴=61331333133222233=+-=+-∴--xx x x . 【思路点拨】对数的运算性质. 答案:(1)1;(2)613. 同类训练 求下列各式的值:设410=a ,5lg =b ,求b a -210的值 . 答案:516. 解析:【知识点】对数的运算性质. 【数学思想】转换与化归思想.【解题过程】由5lg =b ,得510=b ,∴ 516102=-b a .点拨:对数的运算性质. ●活动3 探究型例题例4.对于函数)32(log )(221+-=ax x x f ,解答下述问题:(1)若函数的定义域为R ,求实数a 的取值范围; (2)若函数的值域为R ,求实数a 的取值范围. 答案:(1))3,3(-;(2)),3[]3,(+∞--∞ . 解析:【知识点】对数的运算性质,二次函数的性质. 【数学思想】函数思想【解题过程】222233令()()u g x x ax x a a ==-+=-+-,(21030()对恒成立 的取值范围是min u x R u a x a >∈∴=->⇒<<∴(2)由u 21log 的值域为R ,即)(x g u =能取遍(0,+)∞的一切值.)(x g u = 的值域为),0(),3[2+∞⊇+∞-a ,∴ 命题等价于33032min ≥-≤⇒≤-=a a a u 或, ∴ a 的取值范围是),3[]3,(+∞--∞ . 点拨:对数的运算性质.同类训练 已知函数f(x)=x 2-2ax+3(1)若函数的定义域为),3()1,(+∞⋃-∞,求实数a 的值; (2)若函数的值域为]1,(--∞,求实数a 的值.答案:(1)2;(2)±1.解析:【知识点】对数的运算性质.【数学思想】数形结合思想,函数与方程思想. 【解题过程】由定义域的概念知,命题等价于 (1)不等式0322>+-ax x 的解集为{}31><x x 或,∴3,121==x x 是方程0322=+-ax x 的两根,2322121=∴⎩⎨⎧=⋅=+a x x a x x∴即a 的值为2.(2)函数的值域为]1,(--∞,即)(x g 的值域为),2[+∞, ∵)(x g 的值域是),3[2+∞-a ,∴命题等价于123)(2min ±=⇒=-=a a x g , 即a 的值为±1. 点拨:对数的运算性质 3.课堂总结 知识梳理①N M MN a a a log log log += ②N M NMa a alog log log -= ③)0,0,1,0(log log >>≠>=N M a a M n M a n a 重难点归纳掌握对数的运算性质及其推导过程,依据对数性质进行对数运算 (三)课后作业 基础型 自主突破 1.(1)=-3log 6log 22______; (2)=-15log 5log 33______; (3)=+31log 75log 55_______; (4)=+-)32(log 32_______.答案:(1)1;(2)-1;(3)2;(4)-1. 解析:【知识点】对数的运算. 【数学思想】转换与化归思想.【解题过程】对数的运算性质的灵活运用. 点拨:对数的运算性质的灵活运用.2.若12010log 3=x ,则=+-x x 20102010( )A.310 B.6C.38D.316 答案:A.解析:【知识点】对数的运算. 【数学思想】转化与化归思想.【解题过程】对数的运算性质的灵活运用.点拨:31020102010,3log ,12010log 20103=+∴=∴=-x x x x . 3.已知m>0,且,1lg )10lg(10mm x +=则x 等于________. 答案:0.解析:【知识点】对数的运算. 【数学思想】函数与方程思想 【解题过程】01011lg)10lg(=∴==+x mm x . 点拨:对数的运算性质的灵活运用. 4.计算3log 2333558log 932log 2log 2-+-的结果. 答案:-7.解析:【知识点】对数的运算. 【数学思想】转化与化归思想. 【解题过程】79)83294(log 3-=-⨯⨯=原式 点拨:对数的运算性质的灵活运用.5.计算:(1)18lg 7lg 37lg 214lg -+- (2)2lg 236.0lg 23lg 2lg 2+++答案:(1)0(2)21. 解析:【知识点】对数运算性质. 【数学思想】转化与化归思想.【解题过程】(1)原式=01lg 18)37(714lg18lg 7lg )37lg(14lg 22==⨯⨯=-+- (2)原式=213lg 22lg 43lg 2lg 22lg 2236lg 23lg 2lg 2=++=+-++点拨:对数运算性质的灵活应用.6.若,ln ln a y x =-则33)2ln(2ln y x -⎪⎭⎫⎝⎛等于( )A.2aB.aC.23a D.a 3 答案:D.解析:【知识点】对数的运算. 【数学思想】转化与化归思想.【解题过程】a y x y x 3)ln (ln 3)2ln(2ln 33=-=-⎪⎭⎫⎝⎛点拨:对数运算性质的灵活应用. 能力型 师生共研 7.设,52m b a ==且,211=+ba 则m 等于( ) A.10 B.10 C.20 D.100 答案:A.解析:【知识点】对数的运算. 【数学思想】转化与化归思想.【解题过程】m b m a m b a 52log ,log ,52==∴==101025log 2log 112=∴=∴=+=+∴m m ba m m 点拨:对数运算性质的灵活应用.8. 若正数b a ,满足2362log 3log log ()a b a b +=+=+,则ba 11+的值为( ) A .36 B .72 C .108 D .721 答案:C.解析:【知识点】对数运算性质. 【数学思想】转化与化归思想.【解题过程】设2362log 3log log ()=a b a b k +=+=+,所以有k k k b a b a 6,327,24=+==,所以b a ab k k k +==⨯=632108即10811=+ba . 点拨:对数运算性质的灵活应用,对数与指数的关系. 探究型 多维突破9.求值n n n 32log )3log ...27log 9log 3(log 92842++++ 答案:25. 解析:【知识点】对数运算性质. 【数学思想】转化与化归思想.【解题过程】∵ 3l o g 3l o g 22=n n , ∴ 原式=252log 3log 32log 3log 532922==n n 点拨:对数运算性质的灵活应用.10.已知a lg 和b lg 是关于x 的方程02=+-m x x 的两个根,而关于x 的方程0)lg 1()(lg 2=+--a x a x 有两个相等的实数根,求实数b a ,和m 的值. 答案:6,1000,1001-===m b a 解析:【知识点】对数运算性质.【数学思想】函数与方程.【解题过程】由题意可知⎪⎩⎪⎨⎧=++=⋅=+0)lg 1(4)(lg lg lg 1lg lg 2a a m b a b a 6,1000,1001-===∴m b a 点拨:对数运算性质的灵活应用.自助餐1.已知y x 32=,则=y x ________. 答案:lg3lg 2. 解析:【知识点】对数运算性质.【数学思想】转化与化归思想. 【解题过程】2lg 3lg 3lg 2lg 3lg 2lg =∴=∴=y x y x y x . 点拨:对数运算性质的灵活应用.2.已知,lg x a =则=+3a ( )A.)3lg(xB.)3lg(x +C.3lg xD.)1000lg(x答案:D.解析:【知识点】对数运算性质.【数学思想】转化与化归思想.【解题过程】由已知)1000lg(1000lg lg 3lg 3x x x a =+=+=+. 点拨:对数运算性质的灵活应用. 3.=---233)12(lg )150(lg ( )A.5lg 2B.0C.1-D.5lg 2-答案:B.解析:【知识点】对数运算性质.【数学思想】转化与化归思想.【解题过程】由于,012lg ,0150lg <->-所以原式0)2lg 1(150lg =---= 点拨:对数运算性质的灵活应用.4.已知集合},2{},41{A x x y y B x x A ∈-==<<=,-==+2{ln }1x C x y x , 则集合=⋂C B ( ) A.}11{<<-x x B.}11{≤≤-x x C. }21{<<-x x D.{}21≤<-x x答案:A.解析:【知识点】对数运算性质.【数学思想】转化与化归思想. 【解题过程】由已知}21{},12{<<-=<<-=x x C y y B 所以}11{<<-=⋂x x C B .点拨:对数运算性质的灵活应用. 5.=----+3232)827()32(log ________. 答案:913-. 解析:【知识点】对数运算性质.【数学思想】转化与化归思想.【解题过程】因为32132+=-,所以1)32(log 32-=-+,所以原式=913- 点拨:对数运算性质的灵活应用.6.10054==b a 设,的值求)21(2ba +. 答案:2.解析:【知识点】对数运算性质.【数学思想】转化与化归思想.【解题过程】对两边同时取以10为底的对数, 得2)21(25lg 2,4lg 225lg 4lg =+∴==∴==ba b a b a . 点拨:对数运算性质的灵活应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)
=
(3)
(4)
点评:此题关键是要记住对数运算性质的形式,要求学生不要记住公式.
让学生完成P79练习的第1,2,3题
提出问题:
你能根据对数的定义推导出下面的换底公式吗?
>0,且 ≠1, >0,且 ≠1, >0
先让学生自己探究讨论,教师巡视,最后投影出证明过程.
设
且
即:
所以:
小结:以上这个式子换底公式,换的底C只要满足C>0且C≠1就行了,除此之外,对C再也没有什么特定的要求.
1.你能用自己的语言分别表述出以上三个等式吗?
例题:1.判断下列式子是否正确, >0且 ≠1, >0且 ≠1, >0, > ,则有
(1) (2)
(3) (4)
(5) (6)
(7)
例2:用 , , 表示出(1)(2)小题,并求出(3)、(4)小题的值.
(1) (2) (3) (4)
分析:利用对数运算性质直接计算:
培养学生数学应用的意识和科学分析问题的精神和态度.
2.过程与方法
①让学生经历并推理出对数的运算性质.
②让学生归纳整理本节所学的知识.
3.情感、态度、和价值观
让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性.
教学重、
难点
教学重点:对数运算的性质与对数知识的应用。
教学难点:正确使用对数的运算性质。
2019-2020年高中数学必修一教案2-2-1对数与对数运算(2)
项目
内容
课题
2.2.1对数与对数运算
(共2课时)
修改与创新
教学
目标
1.知识与技能
①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能.
②运用对数运算性质解决有关问题.
③培养学生分析、综合解决问题的能力.
3、归纳小结
(1)学习归纳本节
(2)你认为学习对数有什么意义?大家议论.
4、作业
作业:P86习题2.2 第3、4题
板书设计
教学反思
如: 于是 由对数的定义得到
即:同底对数相加,性质吗?
(让学生探究,讨论)
如果 >0且 ≠1,M>0,N>0,那么:
(1)
(2)
(3)
证明:
(1)令
则:
又由
即:
(3)
即
当 =0时,显然成立.
提问:1.在上面的式子中,为什么要规定 >0,且 ≠1,M>0,N>0?
教学
准备
教学过程
第2课时
对数与对数运算(2)
1.设置情境
复习:对数的定义及对数恒等式
( >0,且 ≠1,N>0),
指数的运算性质.
2.讲授新课
探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道 ,那 如何表示,能用对数式运算吗?
提问:你能用自己的话概括出换底公式吗?
说明:我们使用的计算器中,“ ”通常是常用对数.因此,要使用计算器对数,一定要先用换底公式转化为常用对数.如:
即计算 的值的按键顺序为:“ ”→“3”→“÷”→“ ”→“2”→“=”
再如:在前面要求我国人口达到18亿的年份,就是要计算
所以
=
练习:P79练习4
让学生自己阅读思考P77~P78的例5,例的题目,教师点拨.