【精品】《平行线的判定和性质》课件-初中数学七年级下册(人教版)
人教版七年级数学课件《平行线的判定》
B.①③
C.①④
D.③④
2.如图,下列条件中,能判断直线.l1//l2的是( B )
A.∠2=∠3
C.∠4+∠5=180°
B.∠1=∠3
D.∠2=∠4
达标检测
人教版数学七年级下册
3.如图,下列条件中,能判断直线l1//l2的是( C )
A.∠1=∠2
C.∠1+∠3=180°
B.∠1=∠5
D.∠3=∠5
得∠1=∠2(等量代换),
内错角相等,两直线平行
所以_________(________________________).
AE∥GF
针对练习
人教版数学七年级下册
已知如图所示,∠ = ∠,点、、在同一条直线上,
∠ = ∠ + ∠,且平分∠,试说明 ∥ 的理由.
复习回顾
人教版数学七年级下册
如何用直尺和三角板过直线AB外一点P做AB的平行线CD.
知识精讲
人教版数学七年级下册
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
起着什么样的作用?
知识精讲
人教版数学七年级下册
可以看出,画直线AB的平行线CD,实际上就是过点P画与∠2
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
4.如图,下列结论中正确的是( C)
A.若∠1=∠4,则m//c
B.若∠1=∠2,则a//b
C.若∠1+∠3=180,则n//c
D.若∠2+∠3=180°,则m//n
达标检测
人教版数学七年级下册
5.如图(1),光线AB,CD被一个平面镜反射,此时
∥
CD
∠1=∠3,∠2=∠4,则AB // _____,BE_____DF.
5.3 平行线的性质 课件8(数学人教版七年级下册)
问题5 你能用符号语言表达性质2吗?
设计意图:在教师引导下逐步构建研究思路,循序渐进 地引导学生思考,从“说理”向“简单推理”过渡。
杨柳青第三中学
25分钟
问题2 在两条直线平行的条件下,我们研究了同位角和 内错角,那么同旁内角之间又有什么关系呢?你能由性 质1推出同旁内角之间的关系吗?
设计意图:逐步培养学生的推理能力。使学生初步养 成言之有据的习惯,从而能进行简单的推理。
杨柳青第三中学
初中数学新授课教学模式 (一)梳理旧知 引入新课 (二)新知导学 合作探究 (三)巩固训练 深化理解 (四)课堂小结 回归目标 (五)达标测验 当堂反馈
杨柳青第三中学
梳理旧知 引出新课 3分钟
说教学设计
达标测验 当堂反馈 9分钟
杨柳青第三中学
3分钟
问题1 问题2
上节课,学习了哪些平行线的判定方法? 你认为这三个判定方法中条件和结论分别是什么?
杨柳青第三中学
杨柳青第三中学
本课是在学生已经了解了平行线的概念,经历了两条直线 被第三条直线所截同位角相等、内错角相等、同旁内角互补可 以判定两条直线平行的基础上学习的。平行线的性质是证明角 相等、研究角的关系的重要依据,是研究几何图形位置关系与 数量关系的基础,是平面几何的一个重要内容和学习简单的逻 辑推理的素材。它不但为三角形内角和定理的证明提供了转化 (1)理解平行线的性质 的方法,而且也是今后学习三角形、四边形、平移等知识的基 (2)经历平行线性质的探究过程,从中体会研究几何图 础。平行线的性质是学生对图形性质的第一次系统研究,对今 形的一般方法 重点:得到平行线的性质的过程. 后学习其他图形性质起到“示范”的作用。
杨柳青第三中学
几何画板作图使学 生对性质1从特殊 到一般的数学思想 方法得到了渗透
专题 平行线的判定与性质(解析版)--七年级数学下册
专题02平行线的判定与性质1.(2022秋•项城市期末)如图,已知∠B=∠ADE,∠EDC=∠GFB,GF⊥AB,求证:CD⊥AB.把以下证明过程补充完整,并在括号内填写理由或数学式.证明:∵∠B=∠ADE(已知)∴DE∥BC(同位角相等,两直线平行)∴∠EDC=∠DCB(两直线平行,内错角相等)又∠EDC=∠GFB(已知)∴∠DCB=∠GFB(等量代换)∴GF∥CD(同位角相等,两直线平行)【分析】根据平行线的判定与性质即可证得.【解答】证明:∵∠B=∠ADE(已知),∴DE∥BC(同位角相等;两直线平行),∴∠EDC=∠DCB(两直线平行,内错角相等),又∠EDC=∠GFB(已知),∴∠DCB=∠DFG(等量代换),∴GF∥CD(同位角相等,两直线平行),故答案为:DE,BC,同位角相等,两直线平行,两直线平行,内错角相等,∠GFB,GF,CD,同位角相等,两直线平行.2.(2023秋•道里区校级期中)将下面的解答过程补充完整:如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知),所以∠DEF=∠CFE(两直线平行,内错角相等①),因为EF平分∠CED(已知),所以∠DEF=∠CFE②(角平分线的定义),所以∠CFE=∠CEF(等量代换③),因为∠A=∠CFE(已知),所以∠A=∠CEF④(等量代换),所以EF∥AB(同位角相等,两直线平行⑤).【分析】先根据两直线平行,内错角相等,得到∠DEF=∠CFE,再根据角平分线得出∠DEF=∠CEF,进而得到∠CFE=∠CEF,再根据∠A=∠CFE,即可得出∠A=∠CEF,进而根据同位角相等,两直线平行,判定EF∥BC.【解答】解:因为DE∥BC(已知),所以∠DEF=∠CFE(两直线平行,内错角相等①),因为EF平分∠CED(已知),所以∠DEF=∠CFE②(角平分线的定义),所以∠CFE=∠CEF(等量代换③),因为∠A=∠CFE(已知),所以∠A=∠CEF④(等量代换),所以EF∥AB(同位角相等,两直线平行⑤)故答案为:两直线平行,内错角相等,∠CFE.等量代换,∠CEF,同位角相等,两直线平行.3.(2022秋•尤溪县期末)如图,∠1+∠2=180°,∠B=∠3.(1)求证:DE∥BC;(2)若∠C=76°,∠AED=2∠3,求∠CEF的度数.【分析】(1)由已知条件可证得AB∥EF,从而有∠B=∠EFC,则得∠3=∠EFC,得证DE∥BC;(2)由(1)得DE∥BC,利用两直线平行,同旁内角互补可求解.【解答】(1)证明:∵∠1+∠2=180°,∠2=∠4,∴AB∥EF,∴∠B=∠EFC,∵∠B=∠3,∴∠3=∠EFC,∴DE∥BC;(2)解:∵DE∥BC,∠C=76°,∴∠C+∠DEC=180°,∠AED=∠C=76°,∵∠AED=2∠3,∴∠3=38°∵∠DEC=180°﹣∠C=104°,∴∠CEF=∠DEC﹣∠3=104°﹣38°=66°.4.(2023秋•怀宁县期中)如图,已知EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小明添加的条件:∠B=∠ADG.请你帮小明将下面的证明过程补充完整.证明:∵EF∥CD(已知)∴∠BEF=∠BCD(两直线平行,同位角相等)∵∠B=∠ADG(添加条件)∴BC∥DG(同位角互补,两直线平行)∴∠CDG=∠BCD(两直线平行,内错角相等)∴∠BEF=∠CDG(等量代换).【分析】证明BC∥DG即可解答.【解答】证明:∵EF∥CD(已知),∴∠BEF=∠BCD(两直线平行,同位角相等),∵∠B=∠ADG,∴BC∥DG(同位角相等,两直线平行),∴∠CDG=∠BCD(两直线平行,内错角相等),∴∠BEF=∠CDG(等量代换);故答案为:∠BCD,两直线平行,同位角相等;DG,同位角互补,两直线平行;∠BCD,两直线平行,内错角相等,等量代换.5.(2022秋•长春期末)请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A=∠D.求证:∠B=∠C证明:∵∠1=∠2,(已知)又:∵∠1=∠3,对顶角相等∴∠2=∠3,(等量代换)∴AE∥FD同位角相等,两直线平行∴∠A=∠BFD两直线平行,同位角相等∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∴AB∥CD内错角相等,两直线平行∴∠B=∠C两直线平行,内错角相等.【分析】先根据题意得出∠2=∠3,故可得出AE∥FD,故∠A=∠BFD,再由∠A=∠D可得出∠D=∠BFD,故可得出AB∥CD,进而可得出结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠3对顶角相等,∴∠2=∠3(等量代换),∴AE∥FD(同位角相等,两直线平行),∴∠A=∠BFD(两直线平行,同位角相等).∵∠A=∠D(已知),∴∠D=∠BFD(等量代换),∴AB∥CD(内错角相等,两直线平行).∴∠B=∠C(两直线平行,内错角相等).故答案为:对顶角相等;∠3;同位角相等,两直线平行;两直线平行,同位角相等;∠BFD;AB,内错角相等,两直线平行;两直线平行,内错角相等.6.(2022秋•闽清县期末)如图,AB∥CD,E是BC的延长线上的一点,AE交CD于点F,∠1=∠2,∠3=∠4.求证:(1)∠B=∠D;(2)AD∥BE.【分析】(1)根据∠3=∠4,可得∠AFD=∠3,再由三角形内角和定理,即可求证;(2)根据平行线的性质可得∠B+∠BCD=180°,从而得到∠BCD+∠D=180°,即可求证.【解答】证明:(1)∵∠AFD=∠4,∠3=∠4,∴∠AFD=∠3,∵∠B=180°﹣∠1﹣∠3,∠D=180°﹣∠2﹣∠AFD,又∠1=∠2,∴∠B=∠D;(2)∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=∠D.∴∠BCD+∠D=180°,∴AD∥BE.7.(2023春•石城县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠DBC,根据垂直推出BD∥EF,根据平行线的性质即可求出∠EFC.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)∵AD∥BC,∠ADB=36°,∴∠DBC=∠ADB=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠EFC=36°8.(2022秋•淇县期末)如图,已知AD∥FE,∠1=∠2.(1)试说明DG∥AC;(2)若∠BAC=70°,求∠AGD的度数.【分析】(1)只要证明∠2=∠DAC即可.(2)利用平行线的性质解决问题即可.【解答】解:(1)∵AD∥EF,∴∠1=∠DAC,∵∠1=∠2,∴∠2=∠DAC,∴DG∥AC.(2)∵DG∥AC,∴∠AGD+∠BAC=180°,∵∠BAC=70°,∴∠AGD=110°9.(2022秋•禅城区期末)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.【分析】(1)根据平行线的性质与判定方法证明即可;(2)设∠EDC=x°,由∠BFD=∠BDF=2∠EDC可得∠BFD=∠BDF=2x°,根据平行线的性质可得∠DFB=∠FDE=2x°,再根据平角的定义列方程可得x的值,进而得出∠B的度数.【解答】解:(1)证明:∵DF∥CA,∴∠DFB=∠A,又∵∠FDE=∠A,∴∠DFB=∠FDE,(2)设∠EDC=x°,∵∠BFD=∠BDF=2∠EDC,∴∠BFD=∠BDF=2x°,由(1)可知DE∥BA,∴∠DFB=∠FDE=2x°,∴∠BDF+∠EDF+∠EDC=2x°+2x°+x°=180°,∴x=36,又∵DE∥AB,∴∠B=∠EDC=36°.30.(2023春•驿城区校级期末)如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.【分析】(1)由平行线的性质可得∠BAD=∠1,从而可求得∠BAD+∠2=180°,即可判断;(2)由题意可求得∠1=38°,再由角平分线的定义可得∠CDG=∠1=38°,再利用平行线的性质即可求解.【解答】(1)证明:∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°,(2)解:∵∠1+∠2=180°,∠2=142°,∴∠1=38°,∵DG是∠ADC的平分线,∴∠CDG=∠1=38°,∵AB∥DG,∴∠B=∠CDG=38°.11.(2023秋•香坊区校级期中)完成下面推理过程,并在括号里填写推理依据:如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD.证明:∵AB∥EF(已知),∴∠APE=∠PEF,∵EP⊥EQ(已知),∴∠PEQ=90°),即∠QEF+∠PEF=90°,∴∠QEF+∠APE=90°,∵∠EQC+∠APE=90°(已知),∴∠EQC=∠QEF(同角的余角相等),∴EF∥CD(内错角相等,两直线平行),又∵AB∥EF,∴AB∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).【分析】根据平行线的性质、判定填空即可.【解答】解:∵AB∥EF,∴∠APE=∠PEF.∵EP⊥EQ,∴∠PEQ=90°(垂直的定义).即∠QEF+∠PEF=90°.∴∠APE+∠QEF=90°.∵∠EQC+∠APE=90°,∴∠EQC=∠QEF(同角的余角相等).∴EF∥CD(内错角相等,两直线平行).∴AB∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).故答案为:PEF;∠QEF;同角的余角相等;CD,内错角相等,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.12.(2022秋•邓州市期末)如图,点M在CD上,已知∠BAM+∠AMD=180°,AE平分∠BAM,MF平分∠AMC,请说明AE∥MF的理由.解:因为∠BAM+∠AMD=180°(已知),∠AMC+∠AMD=180°(平角的定义),所以∠BAM=∠AMC(等量代换).因为AE平分∠BAM,所以∠BAM(角平分线的定义).因为MF平分∠AMC,所以∠AMC,得∠1=∠2(等量代换),所以AE∥MF(内错角相等,两直线平行).【分析】根据角平分线的定义,平行线的判定定理完成填空即可求解.【解答】解:因为∠BAM+∠AMD=180°(已知),∠AMC+∠AMD=180°(平角的定义),所以∠BAM=∠AMC(等量代换).因为AE平分∠BAM,所以∠BAM(角平分线的定义).因为MF平分∠AMC,所以∠AMC,得∠1=∠2(等量代换),所以AE∥MF(内错角相等,两直线平行)故答案为:已知;平角的定义;等量代换;∠BAM;角平分线的定义;∠AMC;∠1=∠2;等量代换;AE∥MF;内错角相等,两直线平行.13.(2022秋•桐柏县期末)完成下面推理过程.如图:已知,∠A=112°,∠ABC=68°,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2.证明:∵∠A=112°,∠ABC=68°(已知)∴∠A+∠ABC=180°∴AD∥BC(同旁内角互补,两直线平行)∴∠1=∠3(两直线平行,内错角相等)∵BD⊥DC,EF⊥DC(已知)∴∠BDF=90°,∠EFC=90°(垂直的定义)∴∠BDF=∠EFC=90°∴BD∥EF(同位角相等,两直线平行)∴∠2=∠3(两直线平行,同位角相等)∴∠1=∠2(等量代换)【分析】根据推理过程,填上依据即平行线的性质或者判定.【解答】证明:∵∠A=112°,∠ABC=68°(已知),∴∠A+∠ABC=180°.∴AD∥BC(同旁内角互补,两直线平行).∴∠1=∠3(两直线平行,内错角相等).∵BD⊥DC,EF⊥DC(已知),∴∠BDF=90°,∠EFC=90°(垂直的定义).∴∠BDF=∠EFC=90°.∴BD∥EF(同位角相等,两直线平行).∴∠2=∠3(两直线平行,同位角相等).∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;∠3;两直线平行,内错角相等;垂直的定义;同位角相等,两直线平行;∠3;两直线平行,同位角相等;等量代换.14.(2023秋•天山区校级期中)已知,GP平分∠BGH,HP平分∠GHD,∠GPH=90°.(1)求证:AB∥CD;(2)若∠AGE=60°,求∠4的度数.【分析】(1)依据三角形内角和定理,即可得到∠1+∠3=90°,再根据角平分线的定义,即可得到∠BGH+∠DHG=2(∠1+∠3)=180°,进而得出AB∥CD;(2)依据对顶角相等以及平行线的性质,即可得到∠DHG=180°﹣60°=120°,再根据HP平分∠GHD,即可得到结论.【解答】解:(1)∵∠GPH=90°,∴△GHP中,∠1+∠3=90°,又∵GP平分∠BGH,HP平分∠GHD,∴∠BGH=2∠1,∠DHG=2∠3,∴∠BGH+∠DHG=2(∠1+∠3)=180°,∴AB∥CD;(2)∵∠BGH=∠AGE=60°,∴∠DHG=180°﹣60°=120°,又∵HP平分∠GHD,∴∠4=∠DHG=×120°=60°.15.(2023春•覃塘区期末)如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.【分析】(1)要证明EF∥BH,可通过∠E与∠EBH互补求得,利用平行线的性质说明∠EBH=∠CHB 可得结论.(2)要求∠CHO的度数,可通过平角和∠FHC求得,利用(1)的结论及角平分线的性质求出∠FHB 及∠BHC的度数即可.【解答】证明:(1)∵∠HCO=∠EBC,∴EB∥HC.∴∠EBH=∠CHB.∵∠BHC+∠BEF=180°,∴∠EBH+∠BEF=180°.∴EF∥BH.(2)解:∵∠HCO=∠EBC,∴∠HCO=∠EBC=64°,∵BH平分∠EBO,∴∠EBH=∠CHB=∠EBC=32°.∵EF⊥AO于F,EF∥BH,∴∠BHA=90°.∴∠FHC=∠BHA+∠CHB=122°.∵∠CHO=180°﹣∠FHC=180°﹣122°=58°.16.(2023春•新化县期末)如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O.已知∠1=∠B,∠A+∠2=90°.(1)求证:AB∥CD;(2)若AF=12,BF=5,AB=13,求点F到直线AB的距离.【分析】(1)应用平行线的判定与性质进行求解即可得出答案;(2)设点F到直线AB的距离为h,根据等面积法可得SAFB=,代入计算即可得出h△的值,即可得出答案.【解答】(1)证明:因为∠l=∠B(已知),所以CE∥BF(同位角相等,两直线平行),因为AF⊥CE(已知),所以AF⊥BF(垂直的性质),所以∠AFB=90°(垂直的定义),又因为∠AFC+∠AFB+∠2=180°(平角的定义).即∠AFC+∠2=90°,又因为∠A+∠2=90,所以∠AFC=∠A(同角的余角相等),所以AB∥CD(内错角相等,两直线平行);(2)解:因为AF⊥BF(已证),且AF=12,BF=5,AB=13.设点F到直线AB的距离为h.所以SAFB=,△所以,即h=,所以点F到直线AB的距离为.17.(2023春•温州月考)如图,已知∠1=∠3,∠2=∠B.(1)试判断DE与BC的位置关系,并说明理由;(2)若DE平分∠ADC,∠1=3∠B,求∠EFC的度数.【分析】(1)根据已知条件判定AB∥EF,再结合平行线的性质可得∠ADE=∠B,从而判定出最终结论.(2)设∠B=x,结合已知条件,分别把∠1,∠ADE,∠ADC表示出来,根据∠ADB是平角列出方程,求出x的值,进而求出∠EFC的度数.【解答】解:(1)DE∥BC,理由如下:∵∠1=∠3,∴AB∥EF,∴∠2=∠ADE,∵∠2=∠B,∴∠ADE=∠B,∴DE∥BC(2)设∠B=x,则∠1=3∠B=3x,∵DE∥BC,∴∠ADE=∠B=x,∵DE平分∠ADC,∴∠ADC=2∠ADE=2x,∴x=36°,∴∠ADC=2x=72°,∵AB∥EF,∴∠EFC=∠ADC=72°18.(2023春•仙居县期末)如图是一个汉字“互”字,其中,AB∥CD,HF∥GE,∠HGE=∠HFE,M、H、G三点在同一直线上,N、E、F三点在同一直线上.求证:(1)GH∥EF;(2)∠CMH=∠BNE.【分析】(1)根据“两直线平行,同旁内角互补”和“同旁内角互补,两直线平行”证明即可;(2)延长EF,与CD交于点I.根据“两直线平行,内错角相等”和角的等量代换证明即可.【解答】证明:(1)∵HF∥GE,∴∠HFE+∠GEF=180°(两直线平行,同旁内角互补).又∵∠HGE=∠HFE,∴∠HGE+∠GEF=180°,∴GH∥EF(同旁内角互补,两直线平行).(2)延长EF,与CD交于点I.∵GH∥EF,∴∠CMH=∠MIF.又∵AB∥CD,∴∠MIF=∠BNE.∴∠CMH=∠BNE.19.(2022秋•东阳市期末)如图,长方形纸片ABCD中,G、H分别是AB、CD边上的动点,连GH,将长方形纸片ABCD沿着GH翻折,使得点B,C分别落在点E,F位置.(1)若∠BGH=110°,求∠AGE的度数.(2)若∠FHD=20°,求∠CHG的度数.(3)已知∠BGH和∠CHG始终互补,若∠BGH=α,请直接写出∠FHC的度数(含α的代数式).【分析】(1)根据折叠得到∠BGH=∠EGH=110°,再根据平角的定义,利用∠AGE=∠BGH+∠EGH ﹣180°计算可得;(2)根据折叠得到∠CHG=∠FHG,再根据平角的定义计算即可;(3)根据互补得到∠BGH+∠CHG=180°,从而求出∠CHG=∠FHG=180°﹣α,继而可得结果.【解答】解:(1)由折叠可得:∠BGH=∠EGH=110°,∵∠BGH+∠AGH=180°,∴∠AGE=∠BGH+∠EGH﹣180°=40°;(2)由折叠可得:∠CHG=∠FHG,∴;(3)∵∠BGH和∠CHG始终互补,∴∠BGH+∠CHG=180°,∵∠BGH=α,∴∠CHG=180°﹣α,∴∠FHG=180°﹣α,∴∠FHC=∠FHG+∠CHG=360°﹣2α.20.(2023春•金牛区校级期中)如图1,直线GH与直线l1,l2分别交于B,A两点,点C在直线l2上,射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE.(1)求证:直线l1∥l2;(2)如图2,点Q在直线l1上(B点左侧),AM平分∠BAQ交l1于点M,过点M作MN⊥AD交AD于点N,请猜想∠BQA与∠AMN的关系;并证明你的结论;(3)若点P是线段AB上一点,射线EP交直线l2于点F,∠GBE=130°.点N在射线AD上,且满足∠EBN=∠EFC连接BN,请补全图形,探究∠BNA与∠FEA满足的等量关系,并证明.【分析】(1)根据角平分线的定义可得∠BAC=2∠BAE,等量代换可得∠GBE=∠BAC,根据平行线的判定定理,即可得证;(2)设∠DAB=∠DAC=α,∠BAM=∠QAM=β,根据三角形的内角和定理以及平行线的性质得出∠BQA,∠AMN,即可求解;(3)根据题意补充图形,分两种情况讨论,①当N在AE上时,设∠EBN=∠EFC=θ,根据平行线的性质以及三角形的外角的性质,分别表示出∠BNA,∠FEA,可的结论;②当点N在AE的延长线上时,根据平行线的性质,即可求解.【解答】(1)证明:∵射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE,∴∠BAC=2∠BAE,∴∠GBE=∠BAC,∴l1∥l2;(2)解:∠BQA=2∠AMN;理由如下,∵AD平分∠BAC,AM平分∠BAQ,∴,设∠DAB=∠DAC=α,∠BAM=∠QAM=β,∵MN⊥AD,∴∠MNA=90°,则∠AMN=90°﹣∠MAD=90°﹣(∠MAB+∠DAB)=90°﹣(α+β),∵l1∥l2,∴∠BQA=180°﹣∠QAC=180°﹣2(α+β),∴∠BQA=2∠AMN;(3)解:∠BNA+∠FEA=130°,理由如下,补全图形,如图所示,①当N在AE上时,∵∠EBN=∠EFC,设∠EBN=∠EFC=θ,∵l1∥l2,∠GBE=130°,∴∠BEF=∠EFC=θ,∠BAC=∠GBE=130°,∵AD平分∠BAC,,∵l1∥l2,∴∠BEA=∠EAC=65°,∴∠BNA=∠NBE+∠BEN=65°+θ,∠FEA=∠NEB﹣∠BEF=65°﹣θ,∴∠BNA+∠FEA=130°,②如图,当点N在AE的延长线上时,∠BNA=∠FEA,∵l1∥l2,∴∠BEF=∠EFC,∵∠EBN=∠EFC,∴∠BEF=∠EBN,∴BN∥EF,∴∠BNA=∠FEA.21.(2023春•义乌市校级期中)今年除夕夜长江两岸的灯光秀璀璨夺目,照亮山城的山水桥梁城市楼阁,人民欢欣鼓舞.观看表演的小语同学发现两岸的灯光运动是有规律的,如图1所示,灯A射出的光线从AQ开始顺时针旋转至AP便立即回转,灯B射出的光线从BM开始顺时针旋转至BN便立即回转,两灯不停旋转.假设长江两岸是平行的,即PQ∥MN,点A在PQ上,B、C、D在MN上,连接AB、AC、AD,已知AC平分∠BAP,AD平分∠CAP.(1)如图1,若∠ABD=40°,则∠CAQ=110°;(2)如图2,在PQ上另有一点E,连接CE交AD于点F,点G在MN上,连接AG,若∠CAG=∠CAE,∠EFD+∠DAG=180°,试证明:EC∥AB.(3)如图3,已知灯A射出的光线旋转的速度是每秒10°,灯B射出的光线旋转的速度是每秒30°,若灯B射出的光线从BM出发先转动2秒,灯A射出的光线才从AQ出发开始转动,设灯A转动的时间为t秒,在转动过程中,当0≤t≤12时,请直接写出灯A射出的光线与灯B射出的光线相交且互相垂直时的时间t的值.【分析】(1)根据两直线平行内错角相等,得出∠QAB=∠ABD=40°,再根据平角的定义,得出∠BAP =140°,再根据角平分线的定义,得出∠BAC=70°,再根据角之间的数量关系,计算即可得出答案;(2)根据角平分线的定义,得出∠CAE=2∠CAF,进而得出,再根据对顶角相等和三角形的内角和定理,得出∠EFD=∠AFC,∠AFC+∠ACE+∠CAF=180°,进而得出,再根据等量代换,得出∠ACE=∠CAE,即∠ACE=∠CAP,再根据角平分线的定义,得出∠CAP=∠CAB,再根据等量代换,得出∠ACE=∠CAB,再根据内错角相等两直线平行,即可得出结论;(3)根据题意,分三种情况:当0≤t≤4时、当4<t≤10时、当10<t≤12时,分别画出图形,根据角之间的数量关系,列出方程进行计算即可.【解答】解:(1)∵PQ∥MN,∠ABD=40°,∴∠QAB=∠ABD=40°,∴∠BAP=180°﹣∠QAB=180°﹣40°=140°,∵AC平分∠BAP,∴,∴∠CAQ=∠BAC+∠QAB=70°+40°=110°;故答案为:110°;(2)∵AD平分∠CAP,∴∠CAE=2∠CAF,∵,∴,∵∠EFD=∠AFC,∠AFC+∠ACE+∠CAF=180°,又∵,∴,∴,∴,∴,∴3∠CAF=∠ACE+∠CAF,即∠ACE=2∠CAF,∴∠ACE=∠CAE,即∠ACE=∠CAP,∵AC平分∠BAP,∴∠CAP=∠CAB,∴∠ACE=∠CAB,∴EC∥AB;(3)当0≤t≤4时,如图,∵∠M'AC=10°t,∠MBM'=30°(2+t),∵AQ'⊥BM',∴∠BM'A=90°﹣10°t,∵PQ∥MN,∴∠MBM'+∠AM'B=180°,即30°(2+t)+(90°﹣10°t)=180°,解得:;当4<t≤10时,如图,∵∠N'AC=10°t,∵AQ'⊥BN',∴∠BN'A=90°﹣10°t,∵∠NBN'=30°(t﹣4),∴90°﹣10°t=30°(t﹣4),解得:;当10<t≤12时,如图,∵∠MBM'=30(t﹣10),AQ'⊥BM',∴∠AQ'M=90+30(t﹣10),∵∠QAQ'=10t,PQ∥MN,∴90+30(t﹣10)=10t,解得:,在图形的左边垂直,10t+20t﹣120+30(t﹣10)=90,综上所述,t的值秒或秒或或9.75秒.22.(2022秋•萍乡期末)已知点A在射线CE上,∠C=∠ADB.(1)如图1,若AD∥BC,求证:AC∥BD;(2)如图2,若BD⊥BC,垂足为B,BD交CE于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并说明理由;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠BAC=∠BAD,∠DFE=8∠DAE时,求∠BAD的度数.【分析】(1)根据AD∥BC,可得∠DAE=∠C,再根据∠C=∠ADB,即可得到∠DAE=∠ADB,即可得证;(2)∠DAE+2∠C=90°.根据三角形外角的性质,可得到∠CGB=∠ADB+∠DAE,根据直角三角形两锐角互余,有∠CGB+∠C=90°,再根据∠C=∠ADB即可得到∠DAE与∠C的数量关系;(3)设∠DAE=α,则∠DFE=8α,∠AFD=180°﹣8α,根据DF∥BC,即可得到∠C=∠AFD=180°﹣8α,再根据∠DAE+2∠C=90°,即可得到α+2(180°﹣8α)=90°,求得α的值,即可运用三角形内角和定理得到∠BAD的度数.【解答】(1)证明:∵AD∥BC,∴∠DAE=∠C,又∵∠C=∠ADB,∴∠DAE=∠ADB,∴AC∥BD;(2)解:∠DAE+2∠C=90°理由如下:∵∠CGB是△ADG的外角,∴∠CGB=∠ADB+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴在△BCG中,∠CGB+∠C=90°,∴∠ADB+∠DAE+∠C=90°,又∵∠C=∠ADB,∴∠DAE+2∠C=90°;(3)解:设∠DAE=α,则∠DFE=8α,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵∠DAE+2∠C=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8×18°=36°,∴∠ADB=∠C=36°,又∵∠BAC=∠BAD,∴∠ABC=180°﹣∠C﹣∠BAC=180°﹣∠ADB﹣∠BAD=∠ABD,∵∠CBD=90°,∴,∴在△ABD中,∠BAD=180°﹣45°﹣36°=99°,∴∠BAD的度数为99°.23.(2022秋•鲤城区校级期末)如图①,已知AB∥CD,一条直线分别交AB、CD于点E、F,∠EFB=∠B,FH⊥FB,点Q在BF上,连接QH.(1)已知∠EFD=70°,求∠B的度数;(2)求证:FH平分∠GFD.(3)在(1)的条件下,若∠FQH=30°,将△FHQ绕着点F顺时针旋转,如图②,若当边FH转至线段EF上时停止转动,记旋转角为α,请求出当α为多少度时,QH与△EBF某一边平行?(4)在(3)的条件下,直接写出∠DFQ与∠GFH之间的关系.【分析】(1)由AB∥CD,得∠B=∠BFD,又∠B=∠EFB,得证;(2)由(1)∠EFB=∠BFD,由FH⊥FB,得∠BFD+∠DFH=90°,∠EFB+∠GFH=90°,由等角的余角相等,得∠DFH=∠GFH,命题得证;(3)由QH分别与△EBF的三边分别平行,分情况讨论处理;(4)在(3)的各种情况下,分别计算∠DFQ与∠GFH的度数,可得结论∠DFQ与∠GFH相差20°.【解答】解:(1)∵AB∥CD,∴∠B=∠BFD,又∠B=∠EFB,∴,∴∠B=35°;(2)∵FH⊥FB,∴∠BFD+∠DFH=90°,∠EFB+∠GFH=90°,∴∠DFH=∠GFH,∴FH平分∠GFD.(3)①QH与△EFB的边BF平行时,如下图1及图4,如图1,∵BF∥HQ,∴∠H+∠BFH=180°,又∠H=60°,∴∠BFH=120°,α=∠BFQ=120°﹣∠HFQ=120°﹣90°=30°;如图4,∠HFB=∠H=60°,α=∠1+∠2+∠3=360°﹣(∠HFB+∠HFQ)=360°﹣(60°+90°)=210°;②QH与△EFB的边BE平行时,如下图2,∠1=∠3=35°,∠2=∠4=30°,∴α=∠BFQ=∠1+∠2=35°+30°=65°;③QH与△EFB的边EF平行时,如下图3,∠3=∠Q=30°,∴α=∠BFQ=∠1+∠2+∠3=35°+110°+30°=175°,综上,旋转角为α=30°或65°或175°或210°.(4)α=30°时,∠DFQ=∠DFB﹣∠BFQ=35°﹣30°=5°,∠GFH=90°﹣∠EFB﹣∠BFQ=90°﹣35°﹣30°=25°;α=65°时,∠DFQ=65°﹣35°=30°,∠GFH=90°﹣∠GFQ=90°﹣(180°﹣35°﹣65°)=10°;α=175°时,∠DFQ=175°﹣35°=140°,∠GFH=180°﹣60°=120°;α=210°时,∠DFQ=210﹣35°=175°,∠GFH=360°﹣110°﹣35°﹣60°=155°;综上,∠DFQ与∠GFH相差20°.24.(2023秋•香坊区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,∠HPQ=45°,K是GH上一点,连接PK,作PQ平分∠EPK,若∠PHG=15°,求∠QPK的度数.【分析】(1)根据同旁内角互补,两条直线平行即可判断直线AB与直线CD平行;(2)先根据两条直线平行,同旁内角互补,再根据∠BEF与∠EFD的角平分线交于点P,可得∠EPF =90°,进而证明PF∥GH;(3)根据直角三角形的性质求出∠HPG=75°,根据角的和差及邻补角定义求出∠EPQ=60°,根据角平分线定义求解即可.【解答】(1)证明:∵∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:由(1)知,AB∥CD,∴∠BEF+∠EFD=180°,又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF,∵GH⊥EG,∴PF∥GH;(3)解:∵∠PHG=15°,GH⊥EG,∴∠HPG=90°﹣15°=75°,∵∠HPQ=45°,∴∠QPG=∠HPQ+∠HPG=120°,∵∠QPG+∠EPQ=180°,∴∠EPQ=60°,∵PQ平分∠EPK,∴∠QPK=∠EPQ=60°.25.(2023秋•吉林期中)如图①,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠ACB=∠E =90°,∠EDF=36°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,如图②,记∠ADF为α(0°<α<180°),在旋转的过程中:(1)当∠α=4°时,DE∥BC,当∠α=94°时,DE⊥BC;(2)如图③,当顶点C在△DEF的内部时,边DF、DE分别交BC、AC的延长线于点M、N.①求出此时∠α的度数范围;②∠1与∠2的度数和是否变化?若不变,请直接写出∠1与∠2的度数和;若变化,请说明理由.【分析】(1)由DE∥BC得∠EDA=∠ABC=40°,再根据α=∠EDA﹣∠EDF可得出答案;先求出∠A =50°,由DE⊥BC得DE∥AC,进而得∠EDA+∠A=180°,由此得∠EDA==130°,然后根据α=∠FDA=∠EDA﹣∠EDF可得出答案;(2)①先求出∠BCD=∠ACD=45°,∠CDA=85°,求出当DE和CD重合时α=∠CDA﹣∠EDF=49°,当EF与CD重合时,α=∠CDA=85°,据此可求出∠α的度数范围;②连接MN,在△CMN中得∠CNM+∠CMN+∠MCN=180°,则∠CNM+∠CMN=90°,在△MND中得∠DNM+∠DMN+∠MDN=180°,即∠2+∠CNM+∠1+∠CMN+∠MDN=180°,据此可得∠1+∠2的度数【解答】解:(1)∵∠ABC=40°,∴当DE∥BC时,∠EDA=∠ABC=40°,如图①所示:又∵∠EDF=36°,∴α=∠EDA﹣∠EDF=40°﹣36°=4°,故当∠α=4°时,DE∥BC;在△ABC中,∠ACB=90°,∠ABC=40°,∴∠A=180°﹣(∠ACB+∠ABC)=50°,当DE⊥BC时,则DE∥AC,如图②所示:∴∠EDA+∠A=180°,∴∠EDA=180°﹣∠A=130°,又∠EDF=36°,∴α=∠FDA=∠EDA﹣∠EDF=130°﹣36°=94°,故当α=94°时,DE⊥BC.故答案为:4,94.(2)①∵∠ACB=90°,CD平分∠ACB,∴∠BCD=∠ACD=45°,∴∠CDA=180°﹣(∠ACD+∠A)=180°﹣(45°+50°)=85°,当DE和CD重合时,α=∠CDA﹣∠EDF=85°﹣36°=49°,当EF与CD重合时,α=∠CDA=85°,∴当顶点C在△DEF的内部时,∠α的度数范围是:49°<α<85°.②∠1与∠2的度数和不发生变化,∠1+∠2=54°,理由如下:连接MN,如图③所示:在△CMN中,∠CNM+∠CMN+∠MCN=180°,∵∠MCN=∠ACB=90°,∴∠CNM+∠CMN=90°,在△MND中,∠DNM+∠DMN+∠MDN=180°,即∠2+∠CNM+∠1+∠CMN+∠MDN=180°,∵∠CNM+∠CMN=90°,∠MDN=∠EDF=36°,∴∠1+∠2+90°+36°=180°,∴∠1+∠2=180°﹣90°﹣36°=54°.。
七年级数学下册教学课件《平行线的性质》
d
c
21 a
34
65 b
78
对应训练
1.如图,直线a∥b,c是截线,若∠1=60°,则∠2的度数为 __1_2_0_°_.
2.如图,已知AB∥CD,BC是∠ABD 的平分线,若∠2=64°, 则∠3=__5_8_°__.
探究点2 两直线平行,内错角相等
你能结合图形,由性质1推出两条平行线被第三条直线截得的
内错角之间的关系吗?
c
两条直线平行
21 a
34
同位角相等
转化
内错角相等
65 b
78
探究点2 两直线平行,内错角相等
你能结合图形,由性质1推出两条平行线被第三条直线截得的
内错角之间的关系吗?
c
解:∵a∥b(已知), ∴∠1=∠5(两直线平行,同位角相等).
21 a
34
又∵∠1=∠3(对顶角相等),
∴∠3=∠5(等量代换).
拓展提升
我们生活中经常接触的小刀刀柄外形是一个直角梯形(下底 挖去一小半圆),刀片上、下是平行的.把处于闭合状态的 刀片打开,得到如图所示的图形. (1)若∠1=55°,求∠2的度数; (2)在刀片打开过程中,若∠2始终为钝角,试说明 ∠2=∠1+90°.
解:(1)如图,延长CB交AD于点E. 由题意可知∠BAG=90°,AG∥CE, ∴∠EAG=∠1+∠BAG=55°+90°=145°, ∠EAG=∠DEC. ∴∠DEC=145°. ∵刀片上、下是平行的,即AD∥CF, ∴∠2=∠DEC=145°. (2)由(1)可知 ∠DEC=∠DAG=∠1+∠BAG=∠1+90°, ∠2=∠DEC,∴∠2=∠1+90°.
21 a
5.3.1 平行线的性质(第2课时)平行线的性质和判定的综合运七年级数学下册同步备课系列(人教版)
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °,∠ 2 = 70 °(等量代换).
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
当堂巩固
1. 填空:如图,
A
(1)∠1=∠2 时,AB∥CD.
1
(2)∠3= ∠5 或∠4 时,AD∥BC. B
D
5 2
3 C
4 F
解:过点C作CF∥AB,
A
则 _∠__B_=_∠__1( 两直线平行,内错角相等 )
C
又∵AB∥DE,AB∥CF,
D
∴___C_F__∥__D_E___(平行于同一直线的两条直线互相平行 )
∴∠E=∠__2__( 两直线平行,内错角相等 )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
B 1F 2
感受中考
2.(3分)(2021•包头8/26)如图,直线l1∥l2,直线l3交l1于点A,交l2于点B, 过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于( )
A.80°
B.70°
C.60°
D.50°
【 分 析 】 由 题 意 得 , ∠ 2=60° , 由 平 角 的 定 义 可 得 ∠5=70°,再根据平行线的性质即可求解.
c 图1
b
c
a 图2
3. 运用平行线的性质填一填
图形
同a 位 角b
1 2 c
内 错 角
a 3
b
2
c
同 旁
a
内 角
b
42 c
已知 a//b
结果 ∠1 = ∠2
第2套人教初中数学七下 5.2.2 平行线的判定课件 【经典初中数学课件】
(方法二) 解:如图,画截线a,
度量∠1,∠2 若∠1=∠2 ,
1
2 a
则玻璃板的上下两边平行
(内错角相等,两直线平行)
练习:
3.如图, 如何判断这块玻璃板的上下两边 平行?
(方法三)
解:如图,画截线a,
1
度量∠1,∠2
2
a
若∠1+∠2 =180°,
则玻璃板的上下两边平行
(同旁内角互补,两直线平行)
谢谢同学们的努力!
Thank you!
第九章 9.3 一元一次不等式组(1)
第7课时
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (2) x<-2 (3) x<5 (4) x<-5
2、若把以上(1)、(2)两个不等式 合起来,这个一元一次不等式组中x取 值范围是多少呢?
一、新课引入
点
二
利用数轴体会:
两个不等式解集的 公共部分 就是不等
式组的解集。
三、研读课文
具体分析如下:
用数轴来表示一元一次不等式组的解集,
知
可分为四种情况.
识 点
⑴ x 2,
二
x
3.
在数轴上表示为:
简称:大大取较大 所以不等式组的解集是_______。
三、研读课文
具体分析如下:
用数轴来表示一元一次不等式组的解集,
A
C
E2
1
B
3F
D
变式1
AC
2
E1
3
B
F
D
变式2
平行线的判定2
① 如图: 如果∠1=∠3,
a
那么a与b平行吗?
b
内错角相等,两直线平行。
《平行线的性质》课件(共33张PPT)000
如图,是举世闻名的三星堆考古中发掘出 的一个梯形残缺玉片,工作人员从玉片上已经 量得∠A=115°,∠D=110°。已知梯形的两底 AD//BC,请你求出另外两个角的度数。
A
D
115° 110°
B
C
苹果
草莓
梨子
桃子
香蕉
桔子
西瓜
桃子题:
如图,梯子的各条横档互相平行, ∠1=1000,求∠2的度数。
解:∠1=∠3; ∠2 =∠4 理由如下:
∵AB∥DE (已知) A
DC
F
∴∠1=∠3(两直线平行, 同位角相等) ∵ ∠1=∠2 ,∠3=∠4
1
23
4
B
E
∴ ∠2=∠4 (等量代换)
(2 )反射光线BC与EF也平行吗?
平行:∵ ∠2=∠4 ∴ BC∥EF(同位角相等,两直
线平行)
比一比 、乐一乐:(分组比赛)
4
31
56
8
7
∠1=∠5
a b
探索新知
①已知直线a,画直线b,使b∥a,c
②任画截线c,使它与a、
11718°25°8°b
b都相交,则图中∠1与 ∠2是什么角?它们的 大小有什么关系?
21185728°° a
③旋转截线c,同位角
∠1与∠2的大小关系又
如何? ∠1=∠2
通过上面的实验测量,可以得到性质1(公理):
3 2
目前,它与 地面所成的 较小的角
为∠1=85º
1
苹果
草莓
梨子
桃子
香蕉
桔子
西瓜
杨梅
草莓题:
1 A
D
B
C
1、如果AD//BC,根据___________ 可得∠B= _______
人教版数学第5章平行线的性质与判定及辅助线模型
平行线判定和性质以及四大模型汇总第一部分平行线的判定判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.第二部分平行线的性质性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补第三部分平行线的四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.第四部分平行线的四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.第五部分平行线的四大模型的应用案例1如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .2如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.3如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .4如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .5如图所示,AB ∥CD ,∠E =37°,∠C = 20°,则∠EAB 的度数为 .6 如图,AB ∥CD ,∠B =30°,∠O =∠C .则∠C = .7如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.8如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).9如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .10如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.11如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.12如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°133如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .14如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .15 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.16已知AB∥EF,求∠l-∠2+∠3+∠4的度数.17如图(l ),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n ,∠B 1、∠B 2…∠B n -1之间的 关系.(2)如图(2),己知MA 1∥NA 4,探索∠A 1、∠A 2、∠A 3、∠A 4,∠B 1、∠B 2之间的关系. (3)如图(3),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n 之间的关系.如图所示,两直线AB ∥CD 平行,求∠1+∠2+∠3+∠4+∠5+∠6.18如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPBQ∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPBQ∠∠的值足否定值,请在图2中将图形补充完整并说明理由.第六部分 平行线的四大模型实战演练1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).A . 180°B . 270°C . 360°D . 450° 2 若AB ∥CD ,∠CDF =32∠CDE ,∠ABF =32∠ABE ,则∠E :∠F =( ).A .2:1B .3:1C .4:3D .3:23.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .5. 6. 7.8.如阁所示,AB∥CD,∠l=l l0°,∠2=120°,则∠α= .9.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .10.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .11.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.10.已知,直线AB∥CD.(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是.第七部分平行线的性质和判定综合应用1.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD =95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°2.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°3.如图,AE∥BF,∠1=110°,∠2=130°,求∠3的度数为()4.如图,∠B+∠C=180°,∠A=50°,∠D=40°,则∠AED=.5.如图,如果∠C=70°,∠B=135°,∠D=110°,那么∠1+∠2=6.如图,AB∥CD,求∠1+∠2+∠3+∠4=7.如图,AB∥CD,试找出∠B、∠C、∠BEC三者之间的数量关系.8.如图,三角形ABC中,点E为BC上一点(1)作图:过点E作EM∥AC交AB于M,过点E作EN∥AB交AC于N;(2)求∠A+∠B+∠C的度数,写出推理过程.9.如图,AB∥CD,BE平分∠ABF,DE平分∠CDF,∠BFD=120°,求∠BED.10.如图,AC∥BD.(1)作图,过点B作BM∥AP交AC于M;(2)求证:∠PBD﹣∠P AC=∠P.11.如图,AB∥CD,∠B=∠C,求证:BE∥CF.12.如图①,木杆EB与FC平行,木杆的两端B,C用一橡皮筋连接,现将图①中的橡皮筋拉成下列各图②③的形状,请问∠A、∠B、∠C之间的数量关系?。
初中数学平行线的性质及判定知识点
初中数学平行线的性质及判定知识点学校数学平行线的性质及判定学问点1平行线的性质及判定平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
通过上面对数学中平行线的性质及判定学问点的内容讲解学习,信任同学们已经能很好的把握了吧,盼望同学们会从中学习的更好。
学校数学平行线的性质及判定学问点2相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要留意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要留意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:推断对错:由于∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
( )相等的两个角互为对顶角。
( )2、垂直是两直线相交的特别状况。
留意:两直线垂直,是相互垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条相互垂直的直线的交点叫垂足。
垂直时,肯定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的全部线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
初中数学《平行线的判定》_1
达标检测:基 础 巩 固 题
4.如图所示,FE⊥CD,∠2=26°,猜想当∠1=____6_4_°____时,AB∥CD.
5∴、AD同//旁BC内(角内互错补角,相两等直,线两平直行线.平行) 5问、题同1旁:内画角图互过补程,中两,直 什线么平角行始.终保持相等? 与5、C同D平旁行内,角A互C补与,DE两也直平线行平行. 探经究过1直:线如外图一,点由,有3且= 只2有,一可条推直出线a/与/b吗已?知如直何线推平出行?。 如图3=所示2(,对FE顶⊥角C相D等,)∠2,=26°,猜想当∠1=__________时,AB∥CD.
内错角相等,两直线平行。
∴ 2= 3(同角的补角相等)
如图,三根木条相交成∠1,∠2,固定木条b、c,转动木条a , 观察∠1,∠2满足什么条件时直线a与b平行.
∵
(已知),
5、同旁内角互补,两直线平行.
初步了解推理论证的方法,会正确的书写简单的推理过程;
12
∴a//b(同位角相等,两直线平行)
同旁内角互补,两直线平行。
人教版数学七年级下册
第五章 相交线与平行线
5.2.2 平行线的判定
学习目标:
1. 掌握平行线的判定,并能解决一些简单的问题;
2. 初步了解推理论证的方法,会正确的书写简单的 推理过程;
新课导入:
回顾与思考 问题1 两条不重合的直线的位置关系有哪几种? 相交(包括垂直)和平行两种。 问题2 怎样的两条直线平行? 在同一平面内,不相交的两条直线平行。
a
如果同位角相等,那么这两条直线平行。
人教版初中数学《平行线的判定》_课件
【 获 奖 课 件 ppt】人 教版初 中数学 《平行 线的判 定》_ 课件1- 课件分 析下载
判定方法2
两条直线被第三条直线所截,如果
A
内错角相等,那么两条直线平行。
1
2 C 几何语言表述: ∵∠1=∠2(已知) ∴AB∥CD(内错角相等,两直线平行)
第五章 相交线与平行线
5.2.2 平行线的判定
检测1: 图中的角是直线谁被谁所截形成的?
检测2: 图中有公共顶点的角有什么角?
检测3: 图中没有公共顶点的角有什么角? 分别找出其中的同位角,内错角 和同旁内角。
回顾 & 思考
(完成下列填空) 两直线的位置关系:
在同一平面内
相交 平行
同一平面内,不相交 的两直线叫做平行线.
用判定定理1应 该注意:
①找出同位角; ②说明这两个同位角相等; ③得出“平行”的结论。
【 获 奖 课 件 ppt】人 教版初 中数学 《平行 线的判 定》_ 课件1- 课件分 析下载
想一想
2.如果∠2 =∠5, ∠1 =∠2 能判定哪两条直线平行? ∠3 =∠4
E
G
【 获 奖 课 件 ppt】人 教版初 中数学 《平行 线的判 定》_ 课件1- 课件分 析下载
【 获 奖 课 件 ppt】人 教版初 中数学 《平行 线的判 定》_ 课件1- 课件分 析下载
E B
D
【 获 奖 课 件 ppt】人 教版初 中数学 《平行 线的判 定》_ 课件1- 课件分 析下载
已知∠3=45 °,∠1与∠2互余,试求出 AB//CD
A 解:∵∠1=∠2°(对顶角相等)
人教版七年级下数学课件平行线的判定
携手共进,齐创精品工程
Thank You
世界触手可及
拓展点二 平行线的判定方法的综合运用 例2 如图,∠α=∠A,∠β=∠B.证明MN与CD平行.
分析:证明MN∥CD的思路有很多. (1)∠NMD=∠α.(2)∠NMD+∠MDC=180°.(3)∠AMN=∠ADC.(4)平 行公理的推论等.同时一种思路有可能有多种变式.本题根据题目 条件和图形特点,可选择的思路是:由∠A=∠α推出AB∥DC,由 ∠β=∠B推出AB∥MN,最后根据平行公理的推论得到MN∥CD.
教材习题答案
知识点一
知识点二
知识点三
例1 如图,已知∠AED=60°,∠2=30°,EF平分∠AED,可以判断 EF∥BD吗?为什么?
分析:本题可通过证直线EF与BD的内错角∠1和∠2相等,来得出 EF∥BD的结论.
解:EF∥BD.理由如下:
∵∠AED=60°,EF平分∠AED, ∴∠FED=∠1=30°. 又∵∠2=30°, ∴∠1=∠2. ∴EF∥BD(内错角相等,两直线平行).
知识点一
知识点二
知识点三
教材新知精讲
综合知识拓展
教材习题答案
知识点二 平行线的判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线 平行.简单地说,内错角相等,两直线平行. 名师解读 符号语言为:因为∠2=∠3,所以l1∥l2(内错角相等,两直 线平行).
教材新知精讲
综合知识拓展
教材新知精讲
综合知识拓展
教材习题答案
5.解:可以根据“同旁内角互补,两直线平行”,分别量出一对同旁内 角,看它们是否互补.也可以在上面画一条截线,利用平行线的判定 方法,测出相应的角度进行判断.
6.解:a∥b,c∥d,e⊥b,e⊥a. 7.解:(1)AB∥CD(同位角相等,两直线平行);(2)AD∥BC(内错角相 等,两直线平行);(3)AD∥EF(同旁内角互补,两直线平行). 8.学生课后独立完成. 9.解:a∥b,d∥e,f∥g,a⊥d,b⊥d,a⊥e,b⊥e,g⊥h,f⊥h. 10.解:通过度量图中的∠2,∠3,∠4,∠5等于90°,都可以说明平安大 街与长安街是互相平行的. 11.解:A1B1∥AB,AA1⊥AB,A1D1⊥C1D1,AD∥BC. 12.∠1=∠3时,a∥b.根据“同位角相等,两直线平行”. ∠2+∠3=180°时,a∥b.根据“同旁内角互补,两直线平行”.
5平行线的判定PPT课件数学七年级下册(人教版)
B
D
F
小结
平行线的判定示意图
判定
同位角相等等 内错角相等 同旁内角互补
两直线平 行 位置关系
数量关 系
作业题:
1.如图所示: (1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________; (2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是
③∵ ∠4 +___=180o(已知)
3. 如图:已知 ∠1=75o , ∠2 =105o 问:AB与CD平行吗?为什么?
A
B
13
54
C
D
2
想一想
“在同一平面内,垂直于同一条直 线的两条直线互相平行”是否可以 看做平行线判定方法的特殊情形?
C
1 A
E
如图:已知ABCD,
ABEF,那么
2
CD//EF吗?
(2) 如果∠1=________,那么EF∥ BC; ∵如果__∠__1++_∠__2_==118800oo,(已知)
内∴错__角_∥相_等__,两(直同线旁平内行角.互补,两直线平行) ②(3)如∵果∠已3 知= ∠51(+∠已2知=1)80°,则可判定___________∥______,其理由是__________________;
5.2.2 平行线的判定 及简单运用
学习目标
1、运用平行线的画法对平行线 的判定方法进行推导
2、学习平行线的判定方法的相 关内容
3、会正确运用平行线的判定方 法对两条直线的位置关系进行判定 即平行线判定的简单运用
一、知识回顾 1、两条直线的位置关系有哪几种? 2、怎样的两条直线平行? 3、平行线的公理及推论是什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
1
B
2 9
D
65
4 3
C
2、如图所示,已知∠OEB=130°, OF平分 ∠EOD,∠FOD=25°, AB∥CD吗?试说明.
解:∵∠2=∠3,而∠3=∠1( 对顶角相)等
a
∴∠1=∠2 (等量代换)
b
∴a∥b( 同位角相等,两直线平行 )
c
1
3
4
2
图2
知 识 点 二
平行线判定方法2 判定方法2: 两条直线被第三条直线所截,如果内错角
相等,那么这两条直线平行。 简单说成: 内错角相等,两直线平行 。
几何语言:
∵∠2=∠3(已知) ∴a∥b(内错角相等,两直线平行)
知 识 点 一
平行 线的 性质
性质2: 两条平行线被第三条直线 所截,内错角相等。
简单说成:两直线平行,内错角相等。
性质3: 两条平行线被第三条直线所 截,同旁内角互补。
简单说成:两直线平行,同旁内角互补
数学符号表示为:
知 识 点 一
平行 线的 性质
∵a∥b(已知) ∴∠1=∠5(两直线平行,
认真阅读课本第18至19页的内 容,完成练习并体验知识点的形 成过程.
知 识 点 一
平行 线的 性质
画两条平行线a//b,然后画 一条截线c与a、b相交,标 出如图的角. 用剪刀剪取任选 一组同位角、并通过叠合法 比较角的关系。
(1)发现: ∠1 =∠5 ∠2 ∠=6 ∠8 =
∠3 ∠7= ∠4
平行线判定方法1:同位角相等,两直线平行
平行线判定方法2: 内错角相等,两直线平行
平行线判定方法3: 同旁内角互补,两直线平行
平行线判定方法4: 在同一平面内,垂直于同一条直线的两条直线
2、学习反思:
互相平行
平行线的判定是由两个角的大小关系得到两条直线的位置关系。
1、如图,若∠2=∠6,则____A_D_∥____B_C__,
c
1
a
3
4
2 b
图2
练一练:
如图2,如果∠2+∠4=180 °, 能得出a∥b吗?请说明。 解:方法一:∵ ∠4+∠2=180°,而∠4+∠1=180°,
∴∠2=∠1(同角的补角相等), ∴a∥b( 同位角相等,两直线平行 )
知 识 点 二
如图2,如果∠2+∠4=180 °, 能得出a∥b吗?请说明。
解 : AB∥CD; ∵OF平分∠EOD,∠FOD=25° ∴∠EOD=50° ∵∠OEB=130° ∴∠EOD+OEB=180°
∴AB∥CD
平行线的性质
平行线的判定: 一、同位角相等,两直线平行。 二、内错角相等,两直线平行。 三、同旁内角互补,两直线平行。
1 掌握平行线的三条性质,并能用 它们进行简单的推理和计算.
∴∠A与∠D互补、∠B 与∠C 互,补 A
B
∴∠D=180°-∠ A =180°-100°= 80° ,
∠C=180°-∠ B =180°1- 15° = 65° ,
∴梯形的另外两个角分别是 80° 、65°。
一般地,平行线具有性质: 性质1:两条平行线被第三条直线所截,同位 角相等。
简单说成:两直线平行,同位角相等。
知 识 点 一
平行 线的 性质 2、3
(2)填一填
∵a∥b(已知)
∴∠1=∠5 ∵∠1=∠3(对顶角相等) ∴∠3 =∠5( 等量代)换 ∵a∥b(已知)
∴∠1=∠5 ∵∠4+∠1=180° ∴∠5+ ∠4= 18(0° 等量代)换
c
a
方法二: ∵∠4+∠2=180°,而∠4+∠3=180°, b ∴∠3=∠2( 同角的补角相等), ∴a∥b( 内错角相等,两直线平行)
1
3
4
2
图2
知 识 点 三
平行线判定方法3 判定方法3: 两条直线被第三条直线所截,如果同旁内 角互补,那么这两条直线平行。 简单说成: 同旁内角互补,两直线平行 。
图2
平行线判定方法4 判定方法4:在同一平面内,如果两条直线都垂直于 同一条直线,那么这两条直线 互相平行。
知
识
点
理由如下:(如右图)
bc
四
∵b⊥a,c⊥a, ∴∠1=∠2=90°
1
2
a
∴b∥c( 同位角相等,两直线平行)
练一练: 如图是木工师傅使用角尺画平行线,有什么道理?
1、本节课学习判定两直线平行的方法有四 种。分别是:
几何语言:
∵∠2+∠4=180°(已知) ∴a∥b(同旁内角互补,两直线平行)
c
1
a
3
4
2 b
图2
练一练
1、如图1所示,若∠1=62°,∠2=118°, 则__A_D__∥__B_C__,根据是__同__旁__内__角_互__补, 两直线平_行__。
图1
知
2、根据图2完成下列填空(括号内填写定理或公理)
同位角相等)
∵a∥b(已知) ∴∠3=∠5( 两直线平行, 内错角相等。)
∵a∥b(已知) ∴∠3+∠6=180°
(两直线平行,同旁内角互补)
知 识 点 一
平行 线的 性质
例题:如图是一块梯形铁片的残余部分,量得
∠A=100°,∠B=115°, 梯形另外两个角分别是多
少度?
D
C
解:∵梯形上、下两底互相平行,
(1)∵∠1=∠4(已知) ∴ AB ∥ CD ( 内错角相等,两直线平行) (2)∵∠ABC +∠ C=180°(已知) ∴AB∥CD( 同旁内角互补,两直线平行 )
识
点
三
(3)∵∠ 2=∠ 3(已知)
∴AD∥BC( 内错角相等,两直线平行) (4)∵∠5=∠ AB(C 已知)
∴AB∥CD( 同位角相等,两直线平行)
知 识 点 一
平行线判定方法1 1、判定方法1: 两条直线被第三条直线所截,如果同位角
相等,那么这两条直线平行
。
ห้องสมุดไป่ตู้
简单说成: 同位角相等,两直线平行 。
几何语言:
∵∠1=∠2(已知) ∴AB∥CD(同位角相等,两直线平行)
E
C
HP
1
D
A
G2 B
F
练一练:
如图2,如果∠2=∠3,能得出a∥b吗?请说明。
《平行线的判定和性质》 课件
1、画图:已知直线AB,点P在直线AB外,用直尺和三角尺画过 点P的直线CD,使CD∥AB.
2、反思:在用直尺和三角尺画平行线过程中,三角尺起着什么样的作 用.
答:利用三角尺的平移,得到同位角相等,两直线平行。
1
掌握平行线的四种判定方法
2
初步学会简单的论证和推理
认真阅读课本第12至14页的内容,完成下面 练习并体验知识点的形成过程.