八年级上册数学第三章复习

合集下载

八年级上册数学北师大版第三章知识点

八年级上册数学北师大版第三章知识点

八年级上册数学北师大版第三章知识点八年级上册数学北师大版第三章主要涵盖了线性方程和一次不等式的知识点。

本章的主要目标是通过学习和掌握线性方程和不等式的相关概念、性质和解法,培养学生运用代数方法解决实际问题的能力。

一、线性方程组的解1.定义和性质线性方程组指的是由一组线性方程构成的方程组。

在本章中,我们主要研究由两个未知数的线性方程组。

在二元一次方程组中,一般形式为:ax + by = cdx + ey = f其中a、b、c、d、e、f为已知数,x、y为未知数。

2.线性方程组的解的判定线性方程组的解主要通过消元法和代入法进行求解。

其中,消元法是将方程组中的某个未知数表示为其他未知数的函数,然后代入到其他方程中,进而求得未知数的值。

代入法则是将一个方程的解代入到另一个方程中,求得另一个未知数的值。

当线性方程组有解时,其解的形式为有序数对。

3.解线性方程组的方法解二元一次方程组的一般步骤为:(1)通过消元法或代入法得到一个未知数的值;(2)将得到的未知数的值代入到另一个方程中,求得另一个未知数的值;(3)验证求得的未知数值是否满足原来的方程组。

当方程组有无数解或者无解时,需要通过消元法或代入法的结果进行判断。

二、一次不等式的解集1.定义和性质一次不等式指的是含有未知数的一元一次方程,其一般形式为ax + b > 0或ax + b < 0。

一次不等式的解集表示为某个区间或某个区间的并集。

2.解一次不等式的方法解一次不等式的方法主要有两种:图像法和代数法。

图像法是通过绘制一次不等式的解集的数轴图,来直观地表示解集的范围。

代数法是通过转化一次不等式的形式,将其变为一个等价的一次方程,再求解方程的解集。

解一次不等式时要注意变号的性质,并对解进行验证。

三、实际问题与线性方程或不等式的应用1.实际问题的建模通过实际问题的建模,将问题转化为适合使用线性方程或不等式求解的代数关系式。

2.实际问题的求解将建模后的方程或不等式进行求解,得到满足实际问题要求的解。

北师大版数学八年级上册第三章位置与坐标知识归纳(含练习)

北师大版数学八年级上册第三章位置与坐标知识归纳(含练习)

2020年~2021年最新第三章 位置与坐标知识点1 坐标确定位置知识链接平面内特殊位置的点的坐标特征(1)各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0; ②第二象限:a <0,b >0;③第三象限:a <0,b <0; ④第四象限:a >0,b <0.(2)坐标轴上点P (a ,b )的坐标特征:①x 轴上:a 为任意实数,b=0;②y 轴上:b 为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P (a ,b )的坐标特征:①一、三象限:b a =; ②二、四象限:b a -=.同步练习1.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2 B .3 C .4 D .5考点:点到直线的距离;坐标确定位置;平行线之间的距离.解答:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上, ∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .2.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A 点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(3,3),白(3,1)B .黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3)考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案.解答:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错误;B、当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:B.3.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺考点:坐标确定位置.解答:依题意,OA=OC=400=AE,AB=CD=300,DE=400-300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700公尺,再向西直走DE=100公尺.故选:A.4.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)考点:坐标确定位置.解答:建立平面直角坐标系如图,城市南山的位置为(-2,-1).故选C.5.(2014•怀化模拟)小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A.向东走5千米B.向西走5千米C.向东走8千米D.向西走8千米考点:坐标确定位置.解答:小军从点O向东走了3千米,再向西走了8千米后在点O的西边5千米,所以,要回到点O的位置,小明需要向东走5千米.故选A.6.(2014•遵义二模)在一次寻宝游戏中,寻宝人找到了如图所示的两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都是10,则“宝藏”点的坐标是.考点:勾股定理的应用;坐标确定位置;线段垂直平分线的性质.解答:首先确定坐标轴,则“宝藏”点是C和D,坐标是:(5,2)和(1,-2).故答案是:(5,2)和(1,-2).7.(2014•曲靖模拟)在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都相等,则“宝藏”点的可能坐标是.考点:坐标确定位置.解答:如图,“宝藏”的可能坐标是(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).故答案为:(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).8.(2014•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标.考点:坐标确定位置.解答:建立平面直角坐标系如图,兵的坐标为(-2,3).故答案为:(-2,3).9.如图1,是由方向线一组同心、等距圆组成的点的位置记录图.包括8个方向:东、南、西、北、东南、东北、西南、西北,方向线交点为O,以O为圆心、等距的圆由内向外分别称作1、2、3、…n.将点所处的圆和方向称作点的位置,例如M(2,西北),N(5,南),则P点位置为.如图2,若将(1,东)标记为点A1,在圆1上按逆时针方向旋转交点依次标记为A2、A3、…、A8;到A8后进入圆2,将(2,东)标记为A9,继续在圆2上按逆时针方向旋转交点依次标记为A10、A11、…、A16;到A16后进入圆3,之后重复以上操作过程.则点A25的位置为,点A2013的位置为,点A16n+2(n为正整数)的位置为.考点:规律型:点的坐标;坐标确定位置.解答:由题意得出:P点在第3个圆上,且在东北方向,故P点位置为:(3,东北),由题意可得出每8个数A点向外移动一次,∵25÷8=3…1,故点A25所在位置与A1方向相同,故点A25的位置为(4,东),∵2013÷8=251…5,故点A2013所在位置与A5方向相同,故点A2013的位置为(252,西),∵(16n+2)÷8=2n…2,故点A16n+2所在位置与A2方向相同,故点A16n+2的位置为(2n+1,东北),故答案为:(3,东北),(4,东),(252,西),(2n+1,东北).10.有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.解:C点的位置如图.11.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?解:以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;现要给台阶铺上地毯,单位长度为1,要11个单位长度的地毯12.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3),方法2,用方向和距离表示,比如:B点位于A点的东北方向(北偏东45°等均可),距离A 3处.点2知识点2 平面直角坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2)2.说明:求直角坐标系内任意两点间的距离可直接套用此公式.同步练习1.(2014•台湾)如图的坐标平面上有P 、Q 两点,其坐标分别为(5,a )、(b ,7).根据图中P 、Q 两点的位置,判断点(6-b ,a-10)落在第几象限?( )A .一B .二C .三D .四考点:点的坐标.解答:∵(5,a )、(b ,7),∴a <7,b <5,∴6-b >0,a-10<0,∴点(6-b ,a-10)在第四象限.故选D .2.(2014•萧山区模拟)已知点P (1-2m ,m-1),则不论m 取什么值,该P 点必不在( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:分横坐标是正数和负数两种情况求出m 的值,再求出纵坐标的正负情况,然后根据各象限内点的坐标特征解答.解答:①1-2m >0时,m <21,m-1<0,所以,点P 在第四象限,一定不在第一象限; ②1-2m <0时,m >21,m-1既可以是正数,也可以是负数,点P 可以在第二、三象限, 综上所述,P 点必不在第一象限.故选A .3.(2014•闵行区二模)如果点P (a ,b )在第四象限,那么点Q (-a ,b-4)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据第四象限的点的坐标特征确定出a 、b 的正负情况,再确定出点Q 的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可.解答:∵点P (a ,b )在第四象限,∴a >0,b <0,∴-a <0,b-4<0,∴点Q (-a ,b-4)在第三象限.故选C .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.(2014•北海)在平面直角坐标系中,点M (-2,1)在( )2秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是______个.(3)当P点从点O出发______秒时,可得到整数点(10,5)考点:点的坐标.分析:(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10各单位,用10秒;再向上移动5个单位用5秒.解答:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0) 22秒(0,2),(2,0),(1,1) 33秒(0,3),(3,0),(2,1),(1,2) 4(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.知识点3 坐标与图形性质知识链接1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x 轴的距离与纵坐标有关,到y 轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.同步练习1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .考点:勾股定理;坐标与图形性质.分析:首先利用勾股定理求出AB 的长,进而得到AC 的长,因为OC=AC-AO ,所以OC 求出,继而求出点C 的坐标.解答:∵点A ,B 的坐标分别为(-6,0)、(0,8),∴AO=6,BO=8,∴AB=22BO AO =10,∵以点A 为圆心,以AB 长为半径画弧,∴AB=AC=10,∴OC=AC-AO=4,∵交x 正半轴于点C ,∴点C 的坐标为(4,0),故答案为:(4,0).2.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 .解答:C (3,5)3.如图,Rt △OAB 的斜边AO 在x 轴的正半轴上,直角顶点B 在第四象限内,S △OAB =20,OB :AB=1:2,求A 、B 两点的坐标.解答:A (10,0),B (2,-4)4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于21MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=-1C .2a-b=1D .2a+b=1 考点:作图—基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 与b 的数量关系.解答:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=-1,故选:B .5.如图,在平面直角坐标系中,有一矩形COAB ,其中三个顶点的坐标分别为C (0,3),O (0,0)和A (4,0),点B 在⊙O 上. (1)求点B 的坐标; (2)求⊙O 的面积.解答:(1) B (4,3) (2) 25π6.(2014•南平模拟)如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 在AB 边上,且∠CPB=60°,将△CPB 沿CP 折叠,使得点B 落在D 处,则D 的坐标为( )A .(2,32)B .(23 , 32-) C .(2,324-) D .(23,324-) 考点:翻折变换(折叠问题);坐标与图形性质.分析:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,根据正方形的性质∴OC=BC=4,∠B=90°,由∠BPC=60°得∠1=30°,再根据折叠的性质得到∠1=∠2=30°,CD=CB=4,所以∠3=30°,在Rt △CDE 中,根据含30度的直角三角形三边的关系得到DE=21CD=2,CE=3DE=32,则OE=324-,所DF=324-,然后可写出D 点坐标.解答:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,如图,∵四边形OABC 是正方形,点A 的坐标是(4,0), ∴OC=BC=4,∠B=90°, ∵∠BPC=60°, ∴∠1=30°,∵△CPB 沿CP 折叠,使得点B 落在D 处,∴∠1=∠2=30°,CD=CB=4, ∴∠3=30°, 在Rt △CDE 中,DE=21CD=2,CE=3DE=23, ∴OE=OC-CE=324-, ∴DF=OE=324-,∴D 点坐标为(2,324-).故选C .7.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,3),点C 的坐标为(21,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为 .考点:轴对称-最短路线问题;坐标与图形性质.分析:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,求出AM ,求出AD ,求出DN 、CN ,根据勾股定理求出CD ,即可得出答案.解答:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N , 则此时PA+PC 的值最小, ∵DP=PA ,∴PA+PC=PD+PC=CD , ∵B (3,3),∴AB=3,OA=3,∠B=60°,由勾股定理得:OB=32, 由三角形面积公式得:21×OA×AB=21×OB×AM ,∴AM=23, ∴AD=2×23=3,∵∠AMB=90°,∠B=60°, ∴∠BAM=30°, ∵∠BAO=90°, ∴∠OAM=60°, ∵DN ⊥OA , ∴∠NDA=30°,∴AN=21AD=23,由勾股定理得:DN=323, ∵C (21,0),∴CN=3-21-23=1,在Rt △DNC 中,由勾股定理得:DC==+22)323(1231, 即PA+PC 的最小值是231, 8.在直角坐标系中,有四个点A (-8,3)、B (-4,5)、C (0,n )、D (m ,0),当四边形ABCD 的周长最短时,nm的值为( ) A .73- B .23- C .27- D .23考点:轴对称-最短路线问题;坐标与图形性质.分析:若四边形的周长最短,由于AB 的值固定,则只要其余三边最短即可,根据对称性作出A 关于x 轴的对称点A′、B 关于y 轴的对称点B′,求出A′B′的解析式,利用解析式即可求出C 、D 坐标,得到nm .解答:根据题意,作出如图所示的图象:过点B 作B 关于y 轴的对称点B′、过点A 关于x 轴的对称点A′,连接A′B′,直线A′B′与坐标轴交点即为所求.解答:直线AB 方程为y=3x-9,直线OB 斜率为23-. 过O‘点平行于直线OB 的直线方程为:y=23-(x+1) . 联立两方程,解得交点B′的坐标为(35,-4).11.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为 .考点:平行四边形的性质;坐标与图形性质.分析:①CD 是平行四边形的一条边,那么有AB=CD ;②CD 是平行四边形的一条对角线,过C 作CM ⊥AO 于M ,过D 作DF ⊥AO 于F ,交AC 于Q ,过B 作BN ⊥DF 于N ,证△DBN ≌△CAM ,推出DN=CM=a ,BN=AM=8-a ,得出D ((8-a ,6+a ),由勾股定理得:CD 2=(8-a-a )2+(6+a+a )2=8a 2-8a+100=8(a-21)2+98,求出即可.解答:有两种情况:①CD 是平行四边形的一条边,那么有AB=CD=2286+=10 ②CD 是平行四边形的一条对角线,*12.如图,△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上.若线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为( )A .(2m ,n ) B .(m ,n ) C .(m ,2n ) D .(2m ,2n ) 考点:位似变换;坐标与图形性质.分析:根据A ,B 两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.解答:∵△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上,即A 点坐标为:(4,6),B 点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为:(2m ,2n). 故选D .*13.(2014•海港区一模)如图,在直角坐标系中,有16×16的正方形网格,△ABC 的顶点分别在网格的格点上.以原点O 为位似中心,放大△ABC 使放大后的△A′B′C′的顶点还在格点上,最大的△A′B′C′的面积是( ) A .8 B .16 C .32 D .64考点:位似变换;坐标与图形性质.分析:根据题意结合位似图形的性质与三角形最长边即为216,进而得出答案.解答:如图所示:△A′B′C′即为符合题意的图形, 最大的△A′B′C′的面积是:21×8×16=64.故选:D .知识点4 坐标与图形的变化知识链接1 坐标与图形变化---对称 (1)关于x 轴对称横坐标相等,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ). (2)关于y 轴对称 纵坐标相等,横坐标互为相反数.即点P (x ,y )关于y 轴的对称点P′的坐标是(-x ,y ). (3)关于直线对称①关于直线x=m 对称,P (a ,b )⇒P (2m-a ,b ) ②关于直线y=n 对称,P (a ,b )⇒P (a ,2n-b ) 2 坐标与图形变化---平移 (1)平移变换与坐标变化向右平移a 个单位,坐标P (x ,y )⇒P (x+a ,y ) 向左平移a 个单位,坐标P (x ,y )⇒P (x-a ,y ) 向上平移b 个单位,坐标P (x ,y )⇒P (x ,y+b ) 向下平移b 个单位,坐标P (x ,y )⇒P (x ,y-b )(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.) 3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ). (2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O(0,0),A(1,3),线段OA向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y=−34x+4与x 轴、y 轴分别交于A 、B 两点,把△A0B 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B′的横坐标等于OA+OB ,而纵坐标等于OA ,进而得出B′的坐标.解答:直线y=-34x+4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O′AO=90°,∠B′O′A=90°∴OA=O′A ,OB=O′B′,O′B′∥x 轴,∴点B′的纵坐标为OA 长,即为3,横坐标为OA+OB=OA+O′B′=3+4=7,故点B′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B′位置的特殊性,以及点B′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P=153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2, 则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2).故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A′B′,其中点A ,B 的对应点分别为A′,B′.如图1,若点A 表示的数是-3,则点A′表示的数是______;若点B′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A′B′C′D′及其内部的点,其中点A ,B 的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.分析:(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.解答:(1)点A′:-3×31+1=-1+1=0,设点B 表示的数为a ,则31a+1=2, 解得a=3,设点E 表示的数为b ,则31b+1=b , 解得b=23;。

北师大版八年级上册数学第三章复习

北师大版八年级上册数学第三章复习

第三章位置与坐标一、选择题1、一只七星瓢虫自点(-2,4)先水平向右爬行3个单位,然后又竖直向下爬行2个单位,则此时这只七星瓢虫的位置是()(A)(-5,2)(B)(1,4)(C)(2,1)(D)(1,2)2、若点P的坐标为)0,(a,且a<0,则点P位于()(A)x正半轴(B)x负半轴(C)y轴正半轴(D)y轴负半轴3、若点P),(b a在第四象限,则Q)+在()a-,1(b(A)第一象限(B)第二象限(C)第三象限(D)第四象限4、点M(-2,5)关于x轴的对称点是N,则线段MN的长是()(A)10 (B)4 (C)5 (D)25、如右图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则点B′的坐标为()A、(2,3)B、(-2,4)C、(4,2)D、(2,-4)二、填空题6、如右下图,Rt △AOB 的斜边长为4,一直角边OB 长为3,则点A 的坐标是_____,点B 的坐标是_____.7、如右图,∠OMA =90°,∠AOM =30°,AM =20米,OM =203米,站在O 点观察点A ,则点A 的位置可描述为:在北偏东_____. 8、点A )2,(a 和点B ),3(b 关于x 轴对称,则ab =_____.9、将点P (2,1)绕原点O 按顺时针方向旋转90°到点Q ,则点Q 的坐标是_____.10、(2012山东泰安)如左下图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为 . A O 北三、解答题11、 如图,每个小方格都是边长为1的正方形,在平面直角坐标系中.A B C D O E x y(1)写出图中从原点O出发,按箭头所指方向先后经过A、B、C、D、E多点的坐标;(2)按图中所示规律,标出下一个点F的位置.12、(1)在左下的直角坐标系中作△ABC,使点A、B、C的坐标分别为(0,0),(-1,2),(-3,-1);(2)作出△ABC关于x轴和y轴的对称图形.13、在右上的平面直角坐标系中作点A(4,6),B(0,2),C(6,0),并求△ABC的周长和面积.做好时间规划才能更有效率充分——利用你的一天时间我们都知道,对于中学生来讲,很大程度上,一个人学习成绩的好坏,是与他是否会管理自己的时间有关的。

北师大版八年级数学上册第三章 位置与坐标复习(共30张PPT)

北师大版八年级数学上册第三章 位置与坐标复习(共30张PPT)

面示意图.借助刻度尺、量 14
角器,解决如下问题: 13 12
(1)服装区位于入口的 11
什么 方向?到入口的图上
10 9
距离是多少?实际距离是 8
多少?
7
6
(2)用两种不同方法确 5
定总经理室位置;
4
3
(3)确定出口的位置。 2
1
.总经理室
.服装区
.入口
.出口
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
以A点为原点建立直
角坐标系,则B点坐
标为

y
7
6
. 5
A
4
3
2
.1 B
-6 -5 -4 -3 -2 -1-1 1 2 3 4 5 6 x
-2
-3
-4
-5
-6
-7
针对练习
一、确定平面上点的位置的常用方法
1、如图,A、B、C是棋子在方格纸上摆出的三个位置,如果用(2,5) 表示A的位置,则B表示为_(__1_,__4)_____,C表示为__(_4_,__4_)_____。
5
解: (1)
4
3
图形变化前后点的坐标分别为:
2
234 5678
变化前 (3,0) (7,0) (2,2) (3,2) (7,2) (8,2) (5,4)
变化后
( 3 ,0)
2
( 7 ,0) (1,2)
2
(3
2
7
,2) ( 2
,2)
(4,2)
描点,按原来方式连结.
所得图案与原图案相比,被横向压缩了一半.
2、如图是灯塔A的方位图,A的位置需要__两___个数据来确定,它们是 方__位__角_,_A_与_O__点_的__距_离______。

八年级上册数学第三单元复习要点(精选9篇)

八年级上册数学第三单元复习要点(精选9篇)

八年级上册数学第三单元复习要点〔精选9篇〕篇1:八年级上册数学第三单元复习要点平移:在平面内,将一个图形沿某个方向挪动一定间隔,这样的图形运动称为平移。

平移的根本性质:经过平移,对应线段、对应角分别相等;对应点所连的线段平行且相等。

旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点叫旋转中心,转动的角度叫旋转角。

旋转的性质:旋转后的图形与原图形的大小和形状一样;旋转前后两个图形的对应点到旋转中心的间隔相等;对应点到旋转中心的连线所成的角度彼此相等。

篇2:八年级上册数学第三单元复习要点一次函数的表达式是y=kx+b〔k≠b,k、b是常数〕,其中是x自变量,y 是因变量,读作y是x的一次函数,当x取一个值时,y有且只有一个值与x对应,假如有两个或两个以上的值与x对应,那么这个函数就不是一次函数。

一次函数表达式求解:一次函数也叫做线性函数,一般在X,Y坐标轴中用一条直线来表示,当一次函数中的一个变量的值确定的情况下,可以用一元一次方程来解答出另一个变量的值。

一次函数的表达方式一般都为y=kx+b的函数,叫做Y是X的一次函数,当常数项为零时的一次函数,可表示为y=kx 〔k≠0〕,这时的`常数k也叫比例系数。

常用来表示一次函数的方法有解析法,图像法和列表法。

一次函数的解析式一般分为点斜式,两点式,截距式。

解答一次函数的作法最简单的就是列表法,取一个满足一次函数表达式的两个点的坐标,来确定另一个未知数的值。

还有一个描点法。

一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。

通常情况下y=kx+b〔k≠0〕的图象过〔0,b〕和〔―b/k,0〕两点即可画出。

一次函数与一次方程之间的关系:一次函数、方程和不等式是初中数学的主要内容之一,也是中考的必考知识点,新课程标准把三局部的关系提到了十清楚朗化的程度。

因此,应该重视这局部内容的教学在教学中,可以从以下几个知识点进展辨析。

八年级上册数学第三章知识点

八年级上册数学第三章知识点

八年级上册数学第三章知识点八年级上册数学第三章知识点一、平面直角坐标系:在平面内有公共原点而且互相垂直的两条数轴,构成了平面直角坐标系。

二、知识点与题型总结:1、由点找坐标:A 点的坐标记作A( 2,1 ),规定:横坐标在前, 纵坐标在后。

2、由坐标找点:例找点B( 3,-2 ) ?由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点。

3、各象限点坐标的符号:① 若点P(x,y)在第一象限,则x 0,y 0 ;② 若点P(x,y)在第二象限,则x 0,y 0 ;③ 若点P(x,y)在第三象限,则x 0,y 0 ;④ 若点P(x,y)在第四象限,则x 0,y 0 。

典型例题:例1、点P的坐标是(2,-3),则点P在第四象限。

例2、若点P(x,y)的坐标满足xy0,则点P在第一或三象限。

例3、若点A 的坐标为(a^2+1, -2–b^2) ,则点A在第四象限。

4、坐标轴上点的坐标符号:坐标轴上的点不属于任何象限。

① x 轴上的点的纵坐标为0,表示为(x,0),② y 轴上的点的横坐标为0,表示为(0,y),③ 原点(0,0)既在x轴上,又在y轴上。

例4、点P(x,y ) 满足xy = 0, 则点P 在x 轴上或y 轴上。

.5、与坐标轴平行的两点连线:① 若AB‖ x 轴,则A、B 的纵坐标相同;② 若AB‖ y 轴,则A、B 的横坐标相同。

例5、已知点A(10,5),B(50,5),则直线AB 的位置特点是(A )A、与x 轴平行B、与y 轴平行C、与x 轴相交,但不垂直D、与y 轴相交,但不垂直6、象限角平分线上的点:① 若点P 在第一、三象限角的平分线上, 则P( m, m );② 若点P 在第二、四象限角的平分线上,则P( m, -m )。

例6、已知点A(2a+1,2+a)在第二象限的平分线上,试求A 的坐标。

解:由条件可知:2a+1 +(2+a)=0 ,解得a = -1 ,∴ A(-1,1)。

年八年级数学上册第三章知识点

年八年级数学上册第三章知识点

—八年级数学上册第三章知识点对于初中学生朋友,学习是一个循序渐进的过程,需要日积月累。

提供了八年级数学上册第三章知识点,希望对大家学习有所帮助。

(1)平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点。

(2)平移的性质:
①对应点的连线平行(或共线)且相等
②对应线段平行(或共线)且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形(四个端点共线除外)
③对应角相等,对应角两边分别平行,且方向一致。

(3)用坐标表示平移:如果把一个图形各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形向右(或向左)平移a个单位长;如果把一个图形各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形向上(或向下)平移a个单位长。

(4)平移的条件:图形的原来位置、方向、距离
(5)平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对
应点连线法、全等图形法。

现在是不是觉得新学期学习很简单啊,希望这篇八年级数学上册第三章知识点,可以帮助到大家。

努力哦!。

八年级上册数学第三章知识点总结(10分钟让你的学习提升20分)

八年级上册数学第三章知识点总结(10分钟让你的学习提升20分)

八年级上册数学第三章知识点总结
10分钟让你的学习提升20分
1、确定位置(一般需要两个数学)比如:北偏东30度,1500米
处,向阳路50号等。

2、平面直角坐标系的概念:在平面内画两条相互垂直且有公共原
点的数轴,这样的图形就称为平面直角坐标系。

如图:
3、在平面直角坐标系中找出点的位置:比如找出A(-3,1)的位置;
方法:先过3做x轴的垂线,再过1做y的垂线,两条垂线的交叉点就是点A的位置。

如图:
4、在平面直角坐标系中给出一个点找出他的坐标,比如:找出点
M的坐标。

方法:过M分别作x、y轴的垂线,垂足点即为对应的坐标。

5、切记,在平面直角坐标系中,找一个点的坐标直接过这个点分
别向x,y轴做垂线,垂足点就是对应的坐标,反之两垂线交叉
点就是点的位置。

6、给一个图形,通过建立直角坐标系,找出点的坐标。

这类题型
建立平面直角坐标系主义一点,怎么好找出点的坐标怎么去画
图,一般:通过左侧或者中央建立坐标系,比如正方形、三角
形,一般从正方形左边线和中心位置建立;如图:
7、平面直角坐标系中:对称性问题。

(1)关与X轴对称x的值不变y的值变为相反数;关于y轴对称y 的值不变x的值变为相反数;总之关于那条轴对称那个的值不
变,另一个的值变为原来的相反数。

理解:试想关于x轴对称
是不是在x轴的上下两侧,那么也就是y的值在变化而且互为
相反数。

反之,关于y轴对称那么在y轴的两侧,也就是x的
值在边,且互为相反数。

比如:点A(3,-7),则关于x轴对称坐标就变为(3,7);关于。

[初中数学+]+第三章位置与坐标章末复习课件+北师大版数学八年级上册+

[初中数学+]+第三章位置与坐标章末复习课件+北师大版数学八年级上册+

个单位,得到点 A2;点 A2 向上平移 2 个单位,再向右
平移 4 个单位,得到点 A3;点 A3 向上平移 4 个单位,
再向右平移 8 个单位,得到点 A4,…,按这个规律平
移得到点 A2020,则点 A2020 的横坐标为 ( )
A. 22019
y
A4
B. 22020−1 C. 22020 D. 22020+1
(2) 若 D (a−3,a+2),且 S三角形ABD =15,求点 D 的坐标.
解:∵ S三角形ABD=15,且 AB=5, ∴ AB 边上的高为 6. ∵ AB 在 x 轴上, ∴ 点 D 到 x 轴的距离是 6, ∴ 点 D 的纵坐标为 6 或 −6. 当 a+2=6 时,a=4,点 D 的坐标为(1,6); 当 a+2=−6 时,a=−8,点 D 的坐标为(−11,−6).
10. 如图,四边形 ABCD 顶点的坐标分别为 A ( − 2,5),
B (−5,−3), C (−2,−4), D (4,−1), 求四边形 ABCD
的面积.
解:如图,连接AC,
∵ 点 A 与点 C 的横坐标相同,
∴ AC//y 轴.
过点 B 作 BE⊥AC 于点 E,
F
E
过点 D 作DF⊥AC 于点 F,
坐标轴
水平的数轴称为 x 轴或横轴, 竖直的数轴称为 y 轴或纵轴
由点的位置确定点的坐标
点的坐标
由点的坐标确定点的位置
“平行于两轴的直线上的点”的坐标特征: (1) 平行于x轴的直线上的点:纵坐标相同; (2)平行于y轴的直线上的点:横坐标相同.
“两坐标轴上的点”的坐标特征: (1)x轴上的点的坐标:纵坐标为0. (2)y轴上的点的坐标:横坐标为0.

八年级数学上册第三章位置与坐标课时练习题及答案

八年级数学上册第三章位置与坐标课时练习题及答案

八(上)第三章位置与坐标分节练习题和本章复习题带答案第1节确定位置1、【基础题】下列数据不能确定物体位置的是()★A. 4楼8号B.北偏东30度C.希望路25号D.东经118度、北纬40度2、【基础题】如左下图是某学校的平面示意图:如果用(2:5)表示校门的位置:那么图书馆的位置如何表示?图中(10:5)处表示哪个地点的位置?★3、【基础题】如右上图:雷达探测器测得六个目标A、B、C、D、E、F:目标C、F的位置表示为C(6:120°)、F(5:210°):按照此方法在表示目标A、B、D、E的位置时:其中表示不正确的是()★A.A(5:30°)B.B(2:90°)C.D(4:240°)D.E(3:60°)30方向:距学校1000m处:则学校在小明家的_______. ★4、【综合题】小明家在学校的北偏东○第2节平面直角坐标系5、【基础题】写出左下图中的多边形ABCDEF各个顶点的坐标. ★★★6、【基础题】在右上图的平面直角坐标系中:描出下列各点:A(-5:0):B(1:4):C(3:3):D(1:0):E(3:-3):F(1:-4). ★★★6.1【基础题】在右边的直角坐标系中描出下列各组点:并将各组内的点用线段依次连接起来:并观察这几组点所连的线段合在一起像什么? ★第一组:(0:0)(6:0)(6:7)(0:7)(0:0) 第二组:(1:4)(2:6) 第三组:(4:6)(5:5) 第四组:(2:0)(2:3)(4:3)(4:0) 7、【综合题】如左上图:若点E 的坐标为(-2:1):点F 的坐标为(1:-1):则点G 的坐标为______. ★ 8、【基础题】如右图:对于边长为4的正△ABC :建立适当的直角坐标系:写出各个顶点的坐标. ★ 9、【基础题】在平面直角坐标系中:下面的点在第一象限的是( ) ★ A. (1:2) B. (-2:3) C. (0:0) D. (-3:-2) 【综合题】若023=++-b a :则点M (a :b )在( ) ★ A.第一象限 B.第二象限 C.第三象限 D.第四象限10、【基础题】在平面直角坐标系中:点P (1:2-m )在第四象限:则m 的取值范围是_________. ★10.1【基础题】点),(b a P 是第三象限的点:则( ) ★(A )b a +>0 (B )b a +<0 (C )ab >0 (D )ab <011、【基础题】点P 在第二象限:若该点到x 轴的距离为3:到y 轴的距离为1:则点P 的坐标是______. ★★★11.1【基础题】已知点)68(,-Q :它到x 轴的距离是____:它到y 轴的距离是____:它到原点的距离是_____. ★ 12、【提高题】在平面直角坐标系中:点A 的坐标为(-3:4):点B 的坐标是(-1:-2):点O 为坐标原点:求△AOB 的面积. ☆第3节 轴对称与坐标变化13、【基础题】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是_______:关于x 轴的对称点的坐标是_______:关于原点的对称点的坐标是_______:点M 到原点的距离是_______. ★★★13.1【综合题】如右图:在直角坐标系中:△AOB 的顶点O 和B 的坐标分别是O (0:0):B (6:0):且∠OAB =90°:AO =AB :则顶点A 关于x 轴的对称点的坐标是 ( ) ★(A )(3:3) (B )(-3:3)(C )(3:-3) (D )(-3:-3)O AB y14、【综合题】△ABC 在平面直角坐标系中的位置如图所示. ★★★ (1)作出△ABC 关于x 轴对称的△A 1B 1C 1:并写出点A 1的坐标: (2)作出将△ABC 绕点O 顺时针旋转180°后的△A 2B 2C 2: (3)求S △ABC .15、【提高题】 在如图所示的直角坐标系中:四边形ABCD 的各个顶点的坐标分别是A (0:0):B (2:5):C (9:8):D (12:0):求出这个四边形的面积. ★本章复习题一、选择题1、一只七星瓢虫自点(-2:4)先水平向右爬行3个单位:然后又竖直向下爬行2个单位:则此时这只七星瓢虫的位置是 ( ) (A )(-5:2) (B )(1:4) (C )(2:1) (D )(1:2)2、若点P 的坐标为)0,(a :且a <0:则点P 位于 ( )(A )x 正半轴 (B )x 负半轴 (C )y 轴正半轴 (D )y 轴负半轴 3、若点P ),(b a 在第四象限:则Q ),1(b a -+在 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限4、点M (-2:5)关于x 轴的对称点是N :则线段MN 的长是 ( ) (A )10 (B )4 (C )5 (D )25、如右图:把矩形OABC 放在直角坐标系中:OC 在x 轴上:OA 在y 轴上:且OC=2:OA=4:把矩形OABC 绕着原点顺时针旋转90°得到矩形OA ′B ′C ′:则点B ′的坐标为( ) A 、(2:3) B 、(-2:4) C 、(4:2) D 、(2:-4)二、填空题6、如右下图:Rt △AOB 的斜边长为4:一直角边OB 长为3:则点A 的坐标是_____:点B 的坐标是_____.DCBAyx123459678101112108769543217、如右图:∠OMA =90°:∠AOM =30°:AM =20米:OM =203米:站在O 点观察点A :则点A 的位置可描述为:在北偏东_____度的方向上:距离点O_____米.8、点A )2,(a 和点B ),3(b 关于x 轴对称:则ab =_____.9、将点P (2:1)绕原点O 按顺时针方向旋转90°到点Q :则点Q 的坐标是_____. 10、(2012山东泰安)如左下图:在平面直角坐标系中:有若干个横坐标分别为整数的点:其顺序按图中“→”方向排列:如(1:0):(2:0):(2:1):(1:1):(1:2):(2:2)…根据这个规律:第2012个点的横坐标为 .三、解答题11、 如图:每个小方格都是边长为1的正方形:在平面直角坐标系中.(1)写出图中从原点O 出发:按箭头所指方向先后经过A 、B 、C 、D 、E 多点的坐标: (2)按图中所示规律:标出下一个点F 的位置. 12、(1)在左下的直角坐标系中作△ABC :使点A 、B 、C 的坐标分别为(0:0):(-1:2):(-3:-1): (2)作出△ABC 关于x 轴和y 轴的对称图形.13、在右上的平面直角坐标系中作点A (4:6):B (0:2):C (6:0):并求△ABC 的周长和面积.AOM北A B C DO E x y 11题八(上) 第三章位置与坐标 分节练习答案第1节确定位置 答案 1、【答案】 选B 2、【答案】 图书馆的位置表示为(2:9):图中(10:5)表示旗杆的位置. 3、【答案】 选D 4、【答案】 南偏西○30方向:距小明家1000 m 处.第2节平面直角坐标系 答案 5、【答案】 A (-2:0): B (0:-3): C (3:-3): D (4:0): E (3:3): F (0:3). 6、【答案】略. 6.1【答案】 囧 (注意:右眉毛短一点) 7、【答案】 (1:2) 8、【答案】 略 9、【答案】 选A 9.1【答案】 选 D10、【答案】 2<m 10.1【答案】 选C 11、【答案】 (-1:3) 11.1【答案】 6:8:10. 12、【答案】 △AOB 的面积是5.第3节 轴对称与坐标变化 答案 13、【答案】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是(3:4):关于x 轴的对称点的坐标是 (-3:-4):关于原点的对称点的坐标是(3:-4)::点M 到原点的距离是5. 13.1【答案】 选C 14、【答案】(1)A 1的坐标是(-2:-3)(2)关于原点对称的点的横、纵坐标都互为相反数. (3)S △ABC 15、【答案】本章复习题 答案 一、选择题 答案 1、【答案】 选D 2、【答案】 选B 3、【答案】 选A 4、【答案】 选A 5、【答案】 选 C 二、填空题 答案6、【答案】 )7,0( (3:0)7、 【答案】 60 408、【答案】 -69、【答案】 (1:-2) 10、【答案】 45 三、解答题11、【答案】 (1)A(1:0):B(1:2):C(-2:2):D(-2: -2):E(3:-2):(2)F (3:4).12、【答案】 略13、【答案】 周长是24104+:面积是16.。

北师大版八年级上册数学《变化的鱼》位置与坐标说课教学课件复习导学

北师大版八年级上册数学《变化的鱼》位置与坐标说课教学课件复习导学

关系?
y
“鱼”先向右平
移3个单位,
(5, 4)
(8, 4)
再向下平移2个 单位。
(8, 2)
O
x
巩固练习
1、(1) 将“鱼”的“顶点” 纵坐标保持不变,横 坐标分别加4,所得到的“鱼”与原来的“鱼”相 比有什么变化? y
O
x
巩固练习
1、(2) 将“鱼”的“顶点”横坐标保持不变,纵 坐标分别加–1,所得到的“鱼”与原来的“鱼” 相比有什么变化? y
合作交流
ⅲ、将“鱼”的“顶点”的横坐标保持不变,纵 坐标变为原来的2倍,所得到的“鱼”与原来的 “鱼”有什么变化? y
整条“鱼”被纵 向拉伸为原来 的2倍。
O
x
(4, –2)
(4, –4)
合作交流
ⅳ、将“鱼”的“顶点”的横坐标保持不变,纵 坐标变为原来的2倍,所得到的“鱼”与原来的 “鱼”有什么变化? y
(–5, –2) (–4, –2) (4, –2) (5, –2)
合作交流
ⅰ、如果将黑色“鱼”的横坐标保持不变,纵坐

分别变为原来的– 1倍,得到的红y色“鱼”与原来

黑样两对色 的条称“位“ 。鱼 置鱼”关”有系关什?于么x轴
(4, 2)
O
x
(4, –2)
新知归纳
直角坐标系内的对称规律:
(1)纵坐标不变,横坐标分别乘以–1,所得图形 与原图形关于y轴对称; (2)横坐标不变,纵坐标分别乘以–1,所得图形 与原图形关于x轴对称;
纵坐标变为原 来 1 的呢?
2
整条“鱼”被纵
向压缩为原来 的一半。
O
x (4, –1)
(4, –2)
新知归纳

2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》期末综合复习题(附答案)

2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》期末综合复习题(附答案)

2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》期末综合复习题(附答案)一.选择题(共8小题,满分40分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.据气象台预报,2019年某日武侯区最高气温33℃,最低气温24℃,则当天气温(℃:)的变化范围是()A.t>33B.t≤24C.24<t<33D.24≤t≤333.下列说法中,正确的是()A.x=1是不等式2x<1的解B.x=3是不等式﹣x<1的解集C.x>﹣1是不等式﹣2x<1的解集D.不等式﹣x<1的解集是x>﹣14.不等式组的解集是()A.x<3B.x>5或x<3C.x>5D.无解5.若a+b=﹣2,且a≥2b,则()A.有最小值B.有最大值1C.有最大值2D.有最小值6.一个正数m的平方根是a﹣3与1﹣2a,则关于x的不等式ax+>2x的解集为()A.x>B.x<C.x>D.x<7.若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为()A.﹣3B.﹣2C.﹣1D.08.若关于x的一元一次不等式组的解集是x≤k,且关于y的方程2y=3+k有正整数解,则符合条件的所有整数k的和为()A.5B.8C.9D.15二.填空题(共8小题,满分40分)9.若2x﹣y=1,且0<y<1,则x的取值范围为.10.已知关于x的不等式(2a﹣b)x>a﹣2b的解集是,则关于x的不等式ax+b<0的解集为.11.如果关于x的不等式3x﹣a≤0只有3个正整数解,则a的取值范围.12.不等式的负整数解的积是.13.符号表示运算ac﹣bd,对于整数a,b,c,d,已知1<<3,则b+d的值是.14.不等式组的解集是.15.不等式组无解,则m的取值范围为.16.若关于x的不等式组有3个整数解,则m的取值范围是.三.解答题(共6小题,满分40分)17.已知a+1>0,2a﹣2<0.(1)求a的取值范围;(2)若a﹣b=3,求a+b的取值范围.18.已知x=1满足不等式组,求a的取值范围.19.(1)解不等式:x+2﹣3(x+1)>1;(2)解不等式组.20.求不等式组的整数解.21.先阅读理解下面例题,再按要求解答下列问题:例:解不等式x2﹣9<0.解:∵x2﹣9=(x+3)(x﹣3),∴原不等式可化为(x+3)(x﹣3)<0.由有理数乘法法则:两数相乘,异号得负,得:①,或②.解不等式组①得﹣3<x<3,解不等式组②无解,∴原不等式x2﹣9<0的解集为﹣3<x<3.请你模仿例题的解法,解决下列问题:(1)不等式x2﹣4>0解集为;(2)不等式x2+3x≤0解集为;(3)拓展延伸:解不等式.22.某学校计划购进一批电脑和电子白板,购买1台电脑和2台电子白板需要3.5万元;购进2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有哪几种购买方案?(3)请你求出学校在(2)的购买活动中最多需要多少资金?参考答案一.选择题(共8小题,满分40分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:由题意知:武侯区的最高气温是33℃,最低气温24℃,所以当天武侯区的气温(t℃)的变化范围为:24≤t≤33.故选:D.3.解:A、解不等式得到解集是x,则x=1不是不等式2x<1的解,故不符合题意.B、不等式﹣x<1的解集是x>﹣1,∴x=3是它的一个解,而不是解集,故不符合题意.C、不等式﹣2x<1的解集是x>﹣,∴x>﹣1不是它的解集,故不符合题意.D、不等式﹣x<1的解集是x>﹣1,故符合题意.故选:D.4.解:∵比大的大比小的小无解,故选D.5.解:∵a+b=﹣2,∴a=﹣b﹣2,b=﹣2﹣a,又∵a≥2b,∴﹣b﹣2≥2b,a≥﹣4﹣2a,移项,得﹣3b≥2,3a≥﹣4,解得,b≤﹣<0(不等式的两边同时除以﹣3,不等号的方向发生改变),a≥﹣;由a≥2b,得≤2 (不等式的两边同时除以负数b,不等号的方向发生改变);A、当a>0时,<0,即的最小值不是,故本选项错误;B、当﹣≤a<0时,≥,有最小值是,无最大值;故本选项错误;C、有最大值2;故本选项正确;D、无最小值;故本选项错误.故选:C.6.解:根据题意得a﹣3+1﹣2a=0∴a=﹣2,∴a﹣3=﹣5,∴m=25,∴不等式为﹣2x+>2x,解得x<,故选:B.7.解:,①﹣②得:x﹣y=3m+2,∵关于x,y的方程组的解满足x﹣y>﹣,∴3m+2>﹣,解得:m>﹣,∴m的最小整数解为﹣1,故选:C.8.解:,解不等式①得x≤k,解不等式②得x<7,由题意得k<7,解关于y的方程2y=3+k得,y=,由题意得,>0,解得k>﹣3,∴k的取值范围为:﹣3<k<7,且k为整数,∴k的取值为﹣2,﹣1,0,1,2,3,4,5,6,当k=﹣2时,y==,当k=﹣1时,y==1,当k=0时,y==,当k=1时,y==2,当k=2时,y==,当k=3时,y==3,当k=4时,y==,当k=5时,y==4,当k=6时,y==,∵为整数,且k为整数,∴符合条件的整数k为﹣1,1,3,5,∵﹣1+1+3+5=8,∴符合条件的所有整数k的和为8.故选:B.二.填空题(共8小题,满分40分)9.解:∵2x﹣y=1,∴y=2x﹣1,∵0<y<1,∴0<2x﹣1<1,解得<x<1.故答案为:.10.解:∵关于x的不等式(2a﹣b)x>a﹣2b的解集是,∴2a﹣b>0,x>∴2a>b,=∴2a﹣4b=10a﹣5b∴8a=b∴2a>8a∴a<0∵ax+b<0∴ax<﹣b∴x>﹣∵8a=b∴x>﹣8故答案为:x>﹣8.11.解:3x﹣a≤0的解集为x≤;其正整数解为1,2,3,则3≤<4,所以a的取值范围9≤a<12.12.解:不等式的解集是x>﹣,因而负整数解是:﹣1,﹣2,则其积是2.13.解:根据题意得:,解得:1<bd<3,∵b、d是整数,∴bd=2,则b、d的值是1和2,或﹣1,﹣2.则b+d=3或﹣3.故答案是:±3.14.解:,解不等式①得:x>﹣1,解不等式②得:x<4,∴不等式组的解集为﹣1<x<4,故答案为:﹣1<x<4.15.解:,解不等式①,得x≥3,∵不等式组无解,∴m<3,故答案为:m<3.16.解:解不等式2x﹣3>5,得:x>4,解不等式x﹣m<1,得:x<m+1,不等式租的解集为4<x<m+1,∵不等式组仅有3个整数解,∴7<m+1≤8,∴6<m≤7,故答案为:6<m≤7.三.解答题(共6小题,满分40分)17.解:(1)根据题意得,解①得a>﹣1,解②得a<1,则a的范围是﹣1<a<1;(2)∵a﹣b=3,∴b=a﹣3,∴a+b=2a﹣3,∵﹣1<a<1,∴﹣2<2a<2,∴﹣5<2a﹣3<﹣1,即﹣5<a+b<﹣1.18.解:将x=1代入3x﹣5≤2x﹣4a,得4a≤4,解得a≤1;将x=1代入3(x﹣a)<4(x+2)﹣5,得a>﹣.不等式组解集是﹣<a≤1,a的取值范围是﹣<a≤1.19.解:(1)x+2﹣3(x+1)>1,x+2﹣3x﹣3>1,x﹣3x>1﹣2+3,﹣2x>2,x<﹣1;(2)解不等式5x﹣1≤3(x+1),得:x≤2,解不等式≥x﹣1,得:x≤4,则不等式组的解集为x≤2.20.解:由①得,由②得x≤1,所以这个不等式组的的解集是,∴不等式组的整数解是﹣1,0,1.21.解:(1)∵x2﹣4>0,∴(x+2)(x﹣2)>0,则①,②,解不等式组①,得:x>2,解不等式组②,得:x<﹣2,∴不等式x2﹣4>0解集为x>2或x<﹣2,故答案为:x>2或x<﹣2;(2)∵x2+3x≤0,∴x(x+3)≤0,则①,②,解不等式组①,得:不等式组无解;解不等式组②,得:﹣3≤x≤0,故答案为:﹣3≤x≤0;(3)∵≤0,∴①,②,解不等式组①,得:﹣3≤x≤5,解不等式组②,得:不等式组无解;所以原不等式的解集为﹣3≤x≤5.22.解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得,,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑m台,则购进电子白板(30﹣m)台,根据题意得:,解得:15≤m≤17,又∵m为正整数,∴m可以为15,16,17,∴共有3种购买方案:方案1:购进电脑15台,电子白板15台;方案2:购进电脑16台,电子白板14台;方案3:购进电脑17台,电子白板13台.(3)选择方案1所需费用为0.5×15+1.5×15=30(万元);选择方案2所需费用为0.5×16+1.5×14=29(万元);选择方案3所需费用为0.5×17+1.5×13=28(万元).∵30万元>29万元>28万元,∴学校在(2)的购买活动中最多需要30万元.。

八上数学总复习各章知识点总结及整理

八上数学总复习各章知识点总结及整理

八上数学总复习各章知识点总结及整理.doc八年级上册数学总复习各章知识点总结及整理引言随着学期的结束,对八年级上册数学知识点进行全面的复习和整理是十分必要的。

这不仅有助于学生巩固已学知识,还能帮助他们为即将到来的考试做好准备。

以下是对八年级上册数学各章节知识点的详细总结及整理。

第一章:实数1.1 实数的概念理解实数的分类:有理数和无理数。

掌握实数的性质和运算规则。

1.2 算术平方根学习如何计算一个数的算术平方根。

理解平方根的性质。

1.3 平方根掌握平方根的概念和计算方法。

了解平方根与算术平方根的区别。

第二章:代数基础2.1 代数式理解代数式的定义和基本运算。

学习合并同类项的方法。

2.2 一元一次方程掌握一元一次方程的解法。

学习方程的应用问题。

2.3 因式分解学习因式分解的基本方法:提公因式法和公式法。

理解因式分解在解方程中的应用。

第三章:几何初步3.1 线段、角学习线段的性质和角的概念。

掌握角度的分类和计算。

3.2 相交线与平行线理解相交线的性质。

学习平行线的判定和性质。

3.3 三角形掌握三角形的基本性质。

学习三角形的分类和内角和定理。

第四章:函数4.1 函数的概念理解函数的定义和表示方法。

学习函数的三种表示形式:解析式、列表和图形。

4.2 一次函数掌握一次函数的性质和图象。

学习一次函数的解析式和应用问题。

4.3 反比例函数理解反比例函数的概念和性质。

掌握反比例函数的图象和解析式。

第五章:统计与概率5.1 数据的收集与处理学习数据收集的方法和数据的整理。

掌握数据的描述性统计指标。

5.2 概率初步理解概率的基本概念。

学习概率的计算方法。

复习策略系统复习:按照章节顺序,系统地复习每个知识点。

重点强化:针对重点和难点进行强化训练。

习题练习:通过大量的习题练习,巩固知识点。

错题回顾:对错题进行总结和回顾,避免重复错误。

模拟测试:定期进行模拟测试,检验复习效果。

结语通过对八年级上册数学各章知识点的总结及整理,学生可以更加清晰地掌握每个章节的核心内容,为期末考试和未来的学习打下坚实的基础。

八年级上册数学第三章知识点总结

八年级上册数学第三章知识点总结

第一篇嘿,小伙伴们!今天咱们来聊聊八年级上册数学第三章的那些知识点哟!先来说说位置与坐标。

你得知道平面直角坐标系这个超级重要的东西,就像给每个点都安了个家,有了它咱们就能准确找到每个点的位置啦。

横的叫 x 轴,竖的叫 y 轴,交点就是原点,记住原点的坐标是(0, 0)哟。

还有不同象限里点的坐标特点也得记住。

第一象限里的点,横坐标和纵坐标都是正数,那叫一个“正正得正”,开心得很。

第二象限呢,横坐标是负数,纵坐标是正数,一负一正,有点调皮。

第三象限,横纵坐标都是负数,惨兮兮的。

第四象限,横坐标正数,纵坐标负数,也是一正一负。

坐标平移也蛮好玩的。

向左平移,横坐标就减;向右平移,横坐标就加。

向上平移,纵坐标加;向下平移,纵坐标减。

可别弄混啦!关于轴对称和中心对称,也得好好琢磨琢磨。

轴对称就是沿着一条线对折,两边能完全重合。

中心对称呢,是绕着一个点旋转 180 度能重合。

怎么样,这些知识点是不是还挺有趣的?好好掌握,数学可难不倒咱们!第二篇亲爱的小伙伴们,咱们又见面啦,今天来唠唠八年级上册数学第三章的知识点哟!这一章啊,讲了好多和位置坐标相关的有趣东西。

你想想,平面直角坐标系就像一个大棋盘,每个点都能在上面找到自己的位置。

比如点(3, 4),就表示在 x 轴上走 3 个单位,y 轴上走 4 个单位。

然后呢,不同象限里的点可有不同的特点哦。

第一象限里的点,都是正数组合,就像阳光灿烂的日子。

第二象限,负正组合,有点小特别。

第三象限,全是负数,感觉有点小可怜。

第四象限,正负组合,也挺有个性的。

再说坐标平移,这就像是让点在棋盘上走来走去。

往左走,横坐标变小;往右走,横坐标变大。

往上走,纵坐标变大;往下走,纵坐标变小。

可别搞错方向哟!还有对称这一块,轴对称图形美美的,沿着对称轴对折两边一样。

中心对称呢,绕着中心点转个圈能重合,也很神奇是不是?这一章的知识点虽然有点多,但只要咱们用心去理解,多做几道题练练手,肯定能轻松拿下!加油呀小伙伴们!。

八年级数学上册第三章

八年级数学上册第三章

八年级数学上册第三章一、知识点汇总。

1. 确定位置。

- 在平面内,确定一个物体的位置需要两个数据。

例如,在电影院中确定一个座位的位置,需要知道排数和列数这两个数据。

- 生活中确定位置的多种方法:- 用经纬度确定地球上某一地点的位置。

- 用方位角和距离确定海上船只相对于某一观测点的位置。

2. 平面直角坐标系。

- 概念:在平面内,两条互相垂直、原点重合的数轴组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

- 坐标:- 对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

- 坐标平面被x轴和y轴分成四个象限,右上部分叫做第一象限(横、纵坐标都为正数),左上部分叫做第二象限(横坐标为负,纵坐标为正),左下部分叫做第三象限(横、纵坐标都为负),右下部分叫做第四象限(横坐标为正,纵坐标为负)。

坐标轴上的点不属于任何象限,x轴上的点纵坐标为0,y轴上的点横坐标为0。

3. 轴对称与坐标变化。

- 关于x轴对称的点的坐标特征:点(x,y)关于x轴对称的点的坐标为(x, - y)。

- 关于y轴对称的点的坐标特征:点(x,y)关于y轴对称的点的坐标为(-x,y)。

二、典型例题。

1. 确定位置。

- 例:小明在班级中的位置是第3排第4列,用数对表示为(4,3),这里数对的两个数分别表示什么?- 解:数对中的第一个数4表示列数,第二个数3表示排数。

2. 平面直角坐标系。

- 例:在平面直角坐标系中,点A(2, - 3)在第几象限?- 解:因为点A的横坐标2>0,纵坐标-3 < 0,所以点A在第四象限。

- 例:求点P(-3,4)到x轴和y轴的距离。

- 解:点P(-3,4)到x轴的距离是它的纵坐标的绝对值,即|4| = 4;到y轴的距离是它的横坐标的绝对值,即| - 3|=3。

八年级上册数学第三章位置与坐标 知识点复习

八年级上册数学第三章位置与坐标 知识点复习

在x轴上的点的坐标特征是在y轴上的点的坐标特征是3.一、三象限角平分线上的点的特征是二、四象限角平分线上的点的特征是4.关于x轴对称的两点的坐标特征关于y轴对称的两点的坐标特征关于原点对称的两点的坐标特征5.与x轴平行的直线上的点的特征是与y轴平行的直线上的点的特征是6.点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于(2)点P(x,y)到y轴的距离等于(3)点P(x,y)到原点的距离等于1.平行于y轴的直线上任意两点的坐标关系是()A、纵坐标相等,横坐标不相等B、横坐标相等,纵坐标不相等C、横坐标和纵坐标都相等D、横坐标和纵坐标都不相等2.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A、平行于y轴B、平行于x轴C、与y轴相交D、与y轴垂直3.已知点B的坐标为(3,-4),而直线AB平行于y轴,那么A点坐标可能为()A、(3,-2)B、(2,4)C、(-3,2)D、(-3,-4)4.已知A(-3,m),B(n,4),若AB∥x轴,则m=,并确定n的取值范围5.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为6.已知点A(3,2),AC⊥x轴,垂足为C,则C点的坐标为7.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B坐标为8.已知线段MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为9.已知AB∥x轴,A点的坐标为(-3,2),并且AB=4,则B点的坐标为10.在平面直角坐标系中,若点M(-1,3)与点N(x,3)之间的距离是5,则x 的值是11.正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为1.在坐标系中若点P到x轴的距离为3,到y轴的距离为4,则点P坐标是2.已知点m到x轴的距离为3,到y轴距离为2,且在第四象限内,则点m的坐标为3.如果点p在第一象限,p到x轴的距离是4,到y轴的距离是3,那么点p的坐标是4.已知点p在平面直角坐标系中的第二象限内,且点p到x轴的距离为4,到y 轴的距离为3,则点p的坐标为5.若点P在第二象限,到x轴的距离为a,到y轴的距离为b,则点P坐标(用a,b式子表示)5.已知点M(3,-2)与点N(a,b)在同一条平行于x轴的直线上,且点N到y 轴的距离等于4,则点N的坐标是6.已知平面直角坐标系中A(-5,12),则点A到x轴的距离为,到y轴距离为,到原点的距离为7.若点P(a,5)在第二象限,且到原点的距离是7,则a=8.若点P(m,n)在x轴上,且与点Q(3,4)的连线平行于y轴,则点(n-5,m+9)到原点的距离为9.已知平面内有一点A的横坐标为-6,且到原点的距离等于10,则A点的坐标为10.已知点P在y轴的右侧,点P到x轴的距离为6,且它到y轴的距离是到x 轴距离的一半,则P点的坐标是11.已知点p的坐标为(2m+1,m-4)并且满足点p到到x轴、y轴的距离相等,则点p的坐标为12.已知点M(3a-2,a+6),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点N的坐标为(2,5),且直线MN∥x轴;(3)点M到两坐标轴的距离相等.13.已知点A(1,2a-1),点B(-a,a-3).①若点A在第一、三象限角平分线上,求a值.②若点B到x轴的距离是到y轴距离的2倍,求点B所在的象限.14.已知平面直角坐标系中有一点M(2m-3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,-1)且MN∥x轴时,求点M的坐标.。

八年级上册数学第三章复习

八年级上册数学第三章复习

八年级上册数学第三章复习学号姓名一、选择题(共10小题,每小题3分,满分30分)1.下列几何体中,不属于多面体的是()A.正方体B.三棱柱C.长方体D.圆柱2.下列说法中正确的是()A.直四棱柱是四面体B.直棱柱的侧棱长度不一定相等C.直五棱柱有5个侧面D.正方体是直四棱柱,长方体不是直四棱柱3.一个几何体的主视图和左视图如右图,该物体的形状是( )A.四棱柱B.五棱柱C.六棱柱D.三棱柱4.如图,是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC,BC,CD剪开展成平面图形,则所得的平面图形是()5.由四个大小相同的小正方体搭成的几何体的左视图如图所示,则这个几何体的搭法不能是()6.下列各图中,不可能...折成无盖的长方体的是()7.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A,B,C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的数互为相反数.则填在A,B,C内的三个数依次是( )A.0,―2,1 B.0,1,―2C.1,0,―2 D.―2,0,18.一张桌子上重叠摆放了若干枚面值为1元的硬币,它的三种视图如图所示,则这张桌子上共有1元硬币()A.7枚B.9枚C.10枚D.11枚(第9题)主视图俯视图ABC DABC A B C DA B DC(第8题)俯视图主视图左视图9.一天,小明的爸爸送给小明一个礼物,小明打开包装后画出它的主视图与俯视图如图所示,根据小明画的视图,请你猜礼物是()A.钢笔B.生日蛋糕C.光盘D.一套衣服10.由若干个相同的小立方体搭成的几何体的俯视图如图,各小方格内的数字表示叠在该层位置的小立方体的个数,则这个几何体的左视图是()二、填空题(共10小题,每小题3分,满分30分)11.下列几何体中,直棱柱的是.(填序号)①②③④⑤12.如果一个几何体的俯视图是一个圆那么这个几何体可能是(填2个)13.一个直棱柱有7个面,则它有个顶点,条棱,表面上至少有个直角.(第14题)(第17题)14.如图所示的平面图形折叠后围成的立体图形是.15.如图,右边的图形是物体的图(填“主视图”、“左视图”或“俯视图”).16.如图为一个立方体的表面展开图,现将它折叠成立方体,则左侧面上标有的数字是.17.水平放置的立方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学第三章复习
学号姓名
一、选择题(共10小题,每小题3分,满分30分)
1.下列几何体中,不属于多面体的是()
A.正方体B.三棱柱C.长方体D.圆柱
2.下列说法中正确的是()
A.直四棱柱是四面体B.直棱柱的侧棱长度不一定相等
C.直五棱柱有5个侧面D.正方体是直四棱柱,长方体不是直四棱柱
3.一个几何体的主视图和左视图如右图,该物体的形状是( )
A.四棱柱B.五棱柱
C.六棱柱D.三棱柱
4.如图,是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC,BC,CD剪开展成平面图形,则所得的平面图形是()
5.由四个大小相同的小正方体搭成的几何体的左视图如图所示,则这个几何体的搭法不能是()
6.下列各图中,不可能
...折成无盖的长方体的是()
7.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A,B,C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的数互为相反数.则填在A,B,C内的三个数依次是( )
A.0,―2,1 B.0,1,―2
C.1,0,―2 D.―2,0,1
A B C
B''
D A
B
C
D
A
B
C
D
A
B
D
C
8.一张桌子上重叠摆放了若干枚面值为1元的硬币,它的三种视图如图所示,则这张桌子上共有1元硬币( )
A .7枚
B .9枚
C .10枚
D .11枚
(第8题) 俯视图 主视图
左视图
9.一天,小明的爸爸送给小明一个礼物,小明打开包装后画出它的主视图与俯视图 如图所示,根据小明画的视图,请你猜礼物是(
) A .钢笔 B .生日蛋糕 C
.光盘 D .一套衣服
10.由若干个相同的小立方体搭成的几何体的俯视图如图,各小方格内的数字表示
叠在该层位置的小立方体的个数,则这个几何体的左视图是( )
二、填空题(共10小题,每小题3分,满分30分) 11.下列几何体中,直棱柱的是
.(填序号)
① ② ③ ④ ⑤
12.如果一个几何体的俯视图是一个圆那么这个几何体可能是 (填2个) 13.一个直棱柱有7个面,则它有 个顶点 , 条棱,表面上至少有 个直角.
(第14题) (第17题) 14.如图所示的平面图形折叠后围成的立体图形是 . 15.如图,右边的图形是物体的 图(填“主视图”、“左视图”或“俯视图”) . 16.如图为一个立方体的表面展开图,现将它折叠成立方体,则左侧面上标有的数字
是 .
17.水平放置的立方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示。

如图
是一个立方体的平面展开图,若图中的“进”表示立方体的前面,“步”表示右面,“习”表示下面,则“祝”、“你”、“学”分别表示立方体的 .
18.由若干个相同的小立方块搭成的几何体的三视图如图,则小立方块的个数为 个.
(第9题)
主视图 俯视图
3 1 2
A .
B .
C .
D .
(第15题) 3
615241
(第16题)
祝你学习进步
(第
18题)
(第20题)
19.一个立方体的每个面上都标有数字1、2、3、4、5、6,根据图中该立方体A 、B 、 C 三
种状态所显示的数字,可推出“?”处的数字是 .
( A ) (B ) (C )
20.已知一个几何体的三视图如图所示,则该几何体的体积为 cm 3. 三、解答题(每小题分,满分分):
21.说出下列三视图所表示的几何体的名称。

(1)
(2)
22.小山准备制作一个封闭的正方形纸盒子,他先用5个大小一样的正方形制作如上图所示
的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后成为一个封闭的正方体盒子。

(要求:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)
第2题
4 5 1 1 2 3 3 5 ?
23.如图是一多面体的展开图,每个面上都标住了字母,请根据要求回答问题:(1)如果面A在多面体的上面,那么哪一面在底部?
(2)如果F在前面,从右面看是面B,那么哪一面在上面?
(3)从左面看是面C,面D在后面,那么哪一面在上面?
A
B C D
E F
24.由一些大小相同的小立方块所搭的几何体,它的主视图和俯视图如图,
(1)请画出这个几何体的一种左视图
(2)若组成这个几何体的小正方形的块数为n,请你写出n的所有可能值。

25.已知一个几何体的三视图和有关的尺寸如图所示,
描述该几何体的形状,并根据图中数据计算它的表面积。

3cm
4cm
2cm。

相关文档
最新文档