[配套k12学习]2017_2018学年高中数学课时作业31.3三视图北师大版必修2
(北师大版)数学必修二课时作业:1.3三视图(含答案)
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(三)三视图一、选择题(每小题3分,共18分)1.(2018·江西高考)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )【解析】选B.因为俯视图是几何体在下底面上的投影,所以选B.2.(2018·福州高一检测)一个几何体的三视图形状都相同,大小均相等,则该几何体不可以是( )A.球B.三棱锥C.正方体D.圆柱【解析】选D.圆柱的三视图分别是矩形,矩形,圆,不可能三个视图都一样,球的三视图都是圆,三棱锥的三视图都是三角形,正方体的三视图都是正方形.3.(2018·广州高一检测)如图,△A′B′C′为正三角形,与底面不平行,且CC′>BB′>AA′,则多面体的主视图为( )【解析】选D.因为△A′B′C′为正三角形,面A′B′BA向前,所以主视图不可能是A,B,C,只能是D.4.一个几何体由几个相同的小正方体组合而成,它的主视图、左视图、俯视图如图所示,则这个几何体包含的小正方体的个数是( )A.7B.6C.5D.4【解析】选C.由三视图知小正方体底层4个,上层1个,共5个.【变式训练】该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A.8B.7C.6D.5【解析】选C.由主视图和左视图,知该几何体由两层小正方体拼接成,由俯视图可知,最下层有5个小正方体,由主、左视图知上层仅有一个小正方体,则共有6个小正方体.5.(2018·四川高考)一个几何体的三视图如图所示,则该几何体的直观图可以是( )【解析】选D.根据几何体的三视图中正视图与侧视图一致,并且俯视图是两个圆,可知只有选项D适合,故选D.6.(2018·北京高一检测)一个长方体去掉一个长方体,所得几何体的主视图与左视图分别如图所示.则该几何体的俯视图为( )【解题指南】从主视图和左视图上分析,去掉长方体的位置所在的方位,然后判断俯视图的正确图形.【解析】选C.由主视图可知去掉的长方体在正视线的方向,从左视图可以看出去掉的长方体在原长方体的左侧,可知俯视图为C.二、填空题(每小题4分,共12分)7.下图中三视图表示的几何体是________.【解析】由主视图和左视图知为柱体,又底面为四边形,所以此几何体为四棱柱.答案:四棱柱8.如图所示,图①②③是图④表示的几何体的三视图,其中图①是____________,图②是____________,图③是____________(填写视图名称).【解析】由三视图可知,①为主视图,②为左视图,③为俯视图.答案:主视图左视图俯视图9.(2018·南昌高一检测)一个三棱柱的左视图和俯视图如图:则该三棱柱主视图的面积为________.【解析】由题知主视图如图,其高与左视图中三角形的高相等,由俯视图的高为2,知左视图的底边为2,故左视图为正三角形,而主视图的长为1,高为,则主视图的面积为1×=.答案:三、解答题(每小题10分,共20分)10.画出如图所示物体的三视图.【解析】此物体的三视图如图所示:11.(2018·洛阳高一检测)如图所示是一个半圆柱OO1与三棱柱ABC A1B1C1的组合体,其中,圆柱OO1的轴截面ACC1A1是边长为4的正方形,△ABC为等腰直角三角形,AB⊥BC,试画出此组合体的三视图.【解析】由题意可知几何体的主视图与左视图都是中间有一条线段的矩形,俯视图由半圆与等腰三角形组成,如图:一、选择题(每小题4分,共16分)1.(2018·阜阳高一检测)如图是长和宽分别相等的两个矩形,给定下列三个 A.3B.2C.1D.0【解析】选A.对于①可以为放倒的直三棱柱;②可以为长方体;③可以为放倒的圆柱.2.(2018·泸州高一检测)将一个正方体沿其棱的中点截去两个三棱锥后所得几何体如图所示,则其俯视图为( )【解题指南】根据正方体的几何特征,分析几何体俯视图外轮廓的形状及截面截正方体表面所得的棱能否看到,进而得到答案.【解析】选C.将一个正方体沿其棱的中点截去两个三棱锥后所得几何体的俯视图满足:外轮廓是一个正方形,左上角能看到上底面被截所成的棱,为实线,右下角看不到下底面被截所成的棱,为虚线,故选C.3.如图,直三棱柱的所有棱长均为2,主视图和俯视图如图所示,则其左视图的面积为( )A.2B.2C.4D.4【解题指南】先确定出左视图的形状,再求面积.【解析】选B.左视图是长为2,宽为底面三角形的高,即为的矩形.所以S=2×=2.4.(2018·湖南高考)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【解题指南】先由三视图画出直观图,判断这个几何体是底面是边长为6,8,10的直角三角形,高为12的躺下的直三棱柱,底面的内切圆的半径就是做成的最大球的半径.【解析】选B.由三视图画出直观图如图,判断这个几何体是底面是边长为6,8,10的直角三角形,高为12的躺下的直三棱柱,直角三角形的内切圆的半径为r==2,这就是做成的最大球的半径.二、填空题(每小题5分,共10分)5.(2018·淮北高一检测)正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的周长是__________cm.【解析】正方形旋转一周,所得几何体是圆柱,主视图是矩形,矩形的长为6cm,宽是3cm,因此,所得几何体的主视图的周长为2×(6+3)=18(cm).答案:186.用n个体积为1的正方体搭成一个几何体,其主视图、左视图都是如图所示的图形,则n的最大值与n的最小值之差是________.【解析】由主视图、左视图可知,正方体个数最少时,底层有3个小正方体,上面有2个,共5个;个数最多时,底层有9个小正方体,上面有2个,共11个.故n的最大值与最小值之差是6.答案:6三、解答题(每小题12分,共24分)7.如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm).试画出它的三视图.【解析】这个几何体是由一个长方体挖去一个圆柱体构成的,三视图如图所示.【拓展延伸】画三视图的诀窍由三视图的作图原则可知:(1)主视图和俯视图共同反映了物体左右方向的尺寸.(2)主视图和左视图共同反映了物体上下方向的尺寸.(3)俯视图和左视图共同反映了物体前后方向的尺寸.因此画一个物体的三视图不仅要确定其形状,而且要确定三视图之间的线段大小关系.画三视图时一般遵循从下层向上层,从左边到右边的原则.【变式训练】如图,BC⊥CD,且CD⊥MN,ABCD绕AD所在直线MN旋转,在旋转前,点A可以在DM上选定.当点A选在射线DM上的不同位置时,形成的几何体大小、形状不同,分别画出它的三视图并比较异同.【解析】(1)当点A在图(a)中射线DM的位置时,绕MN旋转一周所得几何体为底面半径为CD的圆柱和圆锥叠加而成,其三视图如图(a).(2)当点A在图(b)中射线DM的位置时,即点A是B到MN作垂线的垂足时旋转后的几何体为圆柱,其三视图如图(b).(3)当点A在图(c)中所示位置时,其旋转所得几何体为圆柱中挖去同底的圆锥,其三视图如图(c).(4)当点A位于点D时,如图(d)中,旋转体为圆柱中挖去同底等高的圆锥,其三视图如图(d).8.如图是由小立方块组成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请画出它的主视图和左视图.【解题指南】从俯视图可以看出,其主视图应该是3列,每列的立方块的个数分别是4,4,3;左视图应该是4列,每列的立方块的个数分别是3,3,4,3,由此可以想象该几何体的形状,得到其主视图和左视图.【解析】该几何体的主视图和左视图如图:【变式训练】某座楼由相同的若干个房间组成,该楼的三视图如图所示,其中图中每一个小矩形表示一个房间.该楼有几层?最多有多少个房间?画出房间最多时此楼的大致形状.【解析】由主视图和左视图可知,该楼共3层,由俯视图可知该楼一层共5个房间,结合主视图和左视图可知二楼最多有四个房间,三楼一个房间,故最多有10个房间,此时楼的大致形状如图所示.关闭Word文档返回原板块。
北师大高中数学必修二课时跟踪检测:第一章 立体几何初步 §3 31 32 含解析
第一章立体几何初步§3三视图3.1简单组合体的三视图3.2由三视图还原成实物图课时跟踪检测一、选择题1.以下说法正确的是()A.任何物体的三视图都与物体摆放位置有关B.任何物体的三视图都与物体摆放位置无关C.有的物体的三视图与物体的摆放位置无关D.正方体的三视图一定是三个全等的正方形解析:大部分物体三视图与物体摆放位置有关,但球的三视图与摆放位置无关.答案:C2.如图(1)、(2)、(3)为三个几何体的三视图,根据三视图可以判断这三个几何体依次分别为()A.三棱台、三棱柱、圆锥B.三棱台、三棱锥、圆锥C.三棱柱、正四棱锥、圆锥D.三棱柱、三棱台、圆锥解析:由三视图知,(1)是横放的三棱柱,(2)是正四棱锥,(3)是圆锥.答案:C3.在一个几何体的三视图中,主视图和俯视图如右图所示,则相应的左视图可以为()解析:此几何体为半个圆锥与三棱锥构成的组合体,左视图为三角形,且左视图中有看到的棱,所以选D.答案:D4.(2018·天津卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析:观察图形图可知,俯视图为,故答案为A.答案:A5.已知几何体的三视图如图,则这个几何体自上而下依次为()A.四棱台圆台B.四棱台四棱台C.四棱柱四棱柱D.不能判断解析:由主视图与左视图可判断为上、下都为台体,由俯视图可确定为棱台.答案:B6.(2018·北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2C.3 D.4解析:由三视图可得四棱锥P-ABCD,在四棱锥P-ABCD中,PD=2,AD=2,CD=2,AB=1,由勾股定理可知,P A=22,PC=22,PB=3,BC=5,则在四棱锥中,直角三角形有:△P AD,△PCD,△P AB共三个,故选C.答案:C二、填空题7.根据下列物体的三视图,可知该几何体的名称为________.解析:由主视图和左视图可判断为柱体,由俯视图知为棱柱.答案:三棱柱8.一个几何体的主视图为一个三角形,则这个几何体可能是下列几何体中的________.①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱解析:三棱锥、四棱锥和圆锥的主视图都是三角形,当三棱柱的一个侧面平行于水平面,底面对着观察者时其主视图是三角形,其余的主视图均不是三角形.答案:①②③⑤9.一个正三棱柱的侧棱长和底面边长均等于43,它的三视图中的俯视图如图所示,左视图是一个矩形,则该矩形的面积为________.解析:俯视图与左视图均可体现三棱柱的宽,即左视图宽为43×32=6,左视图的高为43,∴面积为6×43=24 3.答案:24 3三、解答题10.画出如下图所示几何体的三视图(阴影部分为主视方向).解:(1)(2)11.如图所示,是一个零件的直观图,画出这个几何体的三视图.解:12.已知一个几何体的三视图如图,试根据三视图想象物体的原形,并试着画出实物草图.解:由三视图知,该物体下部为长方体、上部为一个与长方体等高的圆柱,且圆柱的底面相切于长方体的上底面,由此可画出实物草图如图.13.如图所示是由几个小立方体所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方体的个数,请画出这个几何体的主视图和左视图.解:由俯视图画主视图和左视图,方法有二:一是先摆出几何体,再画主视图和左视图;二是先由俯视图确定主视图,左视图的列数及每列上小正方体的个数:①主视图与俯视图列数相同,其每列小正方体数是俯视图中该列中的最大数字;②左视图的列数与俯视图中的行数相同,其每列的小正方体数是俯视图中该行中的最大数字,该几何体的主视图和左视图如下:。
2017-2018学年高二数学北师大必修2课时跟踪检测:(三) 三视图
课时跟踪检测(三)三视图层级一 学业水平达标1.若一个几何体的主视图和左视图都是等腰三角形,俯视图是带圆心的圆,则这个几何体可能是( )A.圆柱 B.三棱柱 C.圆锥 D.球体解析:选C 主视图和左视图都是等腰三角形,俯视图是带圆心的圆说明此几何体是圆锥.2.如图所示的是一个立体图形的三视图,此立体图形的名称为( )A.圆锥B.圆柱C.长方体D.圆台解析:选B 由俯视图可知几何体的上、下底面是全等的圆,结合主视图和左视图,可知其为圆柱.3.如图所示,五棱柱的左视图应为( )解析:选B 从五棱柱左面看,是2个矩形,上面的小一点,故选B.4.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:选B 将三视图还原为几何体即可.如图,几何体为三棱柱.5.如图所示,画出四面体AB1CD1三视图中的主视图,以面AA1D1D为投影面,则得到的主视图可以为( )解析:选A 显然AB1,AC,B1D1,CD1分别投影得到主视图的外轮廓,B1C为可见实线,AD1为不可见虚线.故A正确.6.如图所示的几何体中,主视图与左视图都是长方形的是________.解析:②的左视图是三角形,⑤的主视图和左视图都是等腰梯形,其余的都符合条件.答案:①③④7.如图所示,在正方体ABCDA1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥PABC的主视图与左视图的面积的比值为________.解析:三棱锥PABC的主视图与左视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.答案:18.如下图,图②③④是图①表示的几何体的三视图,其中图②是________,图③是________,图④是________(说出视图名称).解析:由几何体的位置知,②为主视图,③为左视图,④为俯视图.答案:主视图 左视图 俯视图9.画出图中几何体的三视图.解:该几何体的三视图如图所示.10.根据如图所示的三视图,画出几何体.解:由主视图、左视图可知,该几何体为简单几何体的组合体,结合俯视图为大正方形里有一个小正方形,可知该组合体上面为一个正方体,下面为一个下底面是正方形的倒置的四棱台.如图所示.层级二 应试能力达标31.直角边分别为1和的三角形,绕一条直角边所在直线旋转,形成的圆锥的俯视图是半径为1的圆,则它的主视图是( )3A.等腰直角三角形 B.边长为的等边三角形C.边长为2的等边三角形D.不能确定3解析:选C 由俯视图知长为的边在轴上.因此主视图为边长为2的等边三角形.2.如图是一几何体的直观图、主视图和俯视图.在主视图右侧,按照画三视图的要求画出的该几何体的左视图是( )解析:选B 由直观图和主视图、俯视图可知,该几何体的左视图应为面PAD,且EC投影在面PAD上,故B正确.3.底面水平放置的正三棱柱的所有棱长均为2,当其主视图有最大面积时,其左视图的面积为( )3A.2 B.33C.D.4解析:选A 当主视图的面积最大时,可知其正三棱柱某个侧面的面积,可以按如图所示放置,此时S左=2.34.一四面体的三视图如图所示,则该四面体四个面中最大的面积是( )A .2B .22C. D .233解析:选D 由四面体的三视图知其直观图为如图所示的正方体中的四面体A BCD ,由三视图知正方体的棱长为2.所以S △ABD =×2×2=2,1222S △ADC =×2×2×=2,1222323S △ABC =×2×2=2,1222S △BCD =×2×2=2.12所以所求的最大面积为2.故选D.35.若一个正三棱柱(底面为正三角形,侧面为矩形的棱柱)的三视图如图所示,则这个正三棱柱的侧棱长和底面边长分别为________、________.解析:左视图中尺寸2为正三棱柱的侧棱长,尺寸2为俯视图正三角形的高,所以3正三棱柱的底面边长为4.答案:2 46.由小正方体木块搭成的几何体的三视图如图所示,则该几何体由________块小正方体木块搭成.解析:小木块的排列方式如图所示.由图知,几何体由7块小正方体木块搭成.答案:77.如图所示的几何体是由一个长方体木块锯成的.(1)判断该几何是否为棱柱;(2)画出它的三视图.解:(1)是棱柱.因为该几何体的前、后两个面互相平行,其余各面都是矩形,而且相邻矩形的公共边都互相平行.(2)该几何体的三视图如图所示.8.已知,图①是截去一个角的长方体,试按图示的方向画出其三视图;图②是某几何体的三视图,试说明该几何体的构成.解:图①几何体的三视图为:图②所示的几何体是上面为正六棱柱、下面为倒立的正六棱锥的组合体.。
高中数学课时跟踪检测(三)三视图北师大版必修2
高中数学课时跟踪检测(三)三视图北师大版必修2课时跟踪检测(三)三视图一、基本能力达标1.若一个几何体的主视图和左视图都是等腰三角形,俯视图是带圆心的圆,则这个几何体可能是( )A.圆柱B.三棱柱C.圆锥D.球体解析:选C 主视图和左视图都是等腰三角形,俯视图是带圆心的圆说明此几何体是圆锥.2.已知一个几何体的三视图如图所示,则此几何体的组成为( )A.上面为棱台,下面为棱柱B.上面为圆台,下面为棱柱C.上面为圆台,下面为圆柱D.上面为棱台,下面为圆柱解析:选C 结合三视图,易知该几何体上面为圆台,下面为圆柱.3.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )解析:选A 由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.4.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:选B 将三视图还原为几何体即可.如图,几何体为三棱柱.5.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的主视图、左视图、俯视图依次是( )A.①②⑥B.①②③C.④⑤⑥D.③④⑤解析:选B 四面体ABCD的主视图是边长分别为3,4的矩形,对角线左上至右下为虚线,左下至右上为实线,为①;左视图是边长分别为4,5的矩形,对角线左上至右下为实线,左下至右上为虚线,为②;俯视图是边长分别为3,5的矩形,对角线左上至右下为实线,左下至右上为虚线,为③,故选B.6.如图所示的几何体中,主视图与左视图都是长方形的是________.解析:②的左视图是三角形,⑤的主视图和左视图都是等腰梯形,其余的都符合条件.答案:①③④7.如图所示,在正方体ABCDA1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥PABC的主视图与左视图的面积的比值为________.解析:三棱锥PABC的主视图与左视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.答案:18.如图,E,F分别是正方体ABCDA1B1C1D1的面ADD1A1和面BCC1B1的中心,则四边形BFD1E 在该正方体的面上的正投影可能是________(把所有可能图形的序号都填上).解析:图②是在平面DCC1D1或平面ABCD上的正投影;图③是在平面BCC1B1上的正投影.图①④均不符合.答案:②③9.画出图中几何体的三视图.解:该几何体的三视图如图所示.10.根据如图所示的三视图,画出几何体.解:由主视图、左视图可知,该几何体为简单几何体的组合体,结合俯视图为大正方形里有一个小正方形,可知该组合体上面为一个正方体,下面为一个下底面是正方形的倒置的四棱台.如图所示.二、综合能力提升1.直角边分别为1和3的三角形,绕一条直角边所在直线旋转,形成的圆锥的俯视图是半径为1的圆,则它的主视图是( )A.等腰直角三角形B.边长为3的等边三角形C.边长为2的等边三角形D.不能确定解析:选C 由俯视图知长为3的边在轴上.因此主视图为边长为2的等边三角形.2.在一个几何体的三视图中,主视图和左视图是两个完全相同的图形,如图所示,则相应的俯视图可以为( )A.①②B.②③C.③④D.②④解析:选D 若俯视图为图①,则该几何体的主视图的上方三角形应该没有高线,故俯视图不可能为图①,排除选项A;若俯视图为图③,则该几何体的左视图的上方应该没有左边小三角形,故俯视图不可能为图③,排除选项B、C;若俯视图为图②,则该几何体是由上面是正四棱锥,下面是正方体组合而成的简单组合体;若俯视图为图④,则该几何体是由上面是正四棱锥,下面是圆柱组合而成的简单组合体.故选D.3.底面水平放置的正三棱柱的所有棱长均为2,当其主视图有最大面积时,其左视图的面积为( )A.2 3 B.3C. 3 D.4解析:选A 当主视图的面积最大时,可知其正三棱柱某个侧面的面积,可以按如图所示放置,此时S左=2 3.4.一四面体的三视图如图所示,则该四面体四个面中最大的面积是( )A .2B .2 2 C. 3D .2 3解析:选D 由四面体的三视图知其直观图为如图所示的正方体中的四面体A BCD ,由三视图知正方体的棱长为2.所以S △ABD =12×2×22=22,S △ADC =12×22×22×32=23, S △ABC =12×2×22=22, S △BCD =12×2×2=2.所以所求的最大面积为2 3.故选D.5.若一个正三棱柱(底面为正三角形,侧面为矩形的棱柱)的三视图如图所示,则这个正三棱柱的侧棱长和底面边长分别为________、________.解析:左视图中尺寸2为正三棱柱的侧棱长,尺寸23为俯视图正三角形的高,所以正三棱柱的底面边长为4.答案:2 46.由小正方体木块搭成的几何体的三视图如图所示,则该几何体由________块小正方体木块搭成.解析:小木块的排列方式如图所示.由图知,几何体由7块小正方体木块搭成.答案:77.如图所示的几何体是由一个长方体木块锯成的.(1)判断该几何是否为棱柱; (2)画出它的三视图.解:(1)是棱柱.因为该几何体的前、后两个面互相平行,其余各面都是矩形,而且相邻矩形的公共边都互相平行.(2)该几何体的三视图如图所示.探究应用题8.如图,在正四棱柱ABCD A 1B 1C 1D 1中,AB =1,AA 1=2,点P 是平面A 1B 1C 1D 1内的一个动点,求三棱锥P ABC 的主视图与俯视图的面积的比值的最大值.解:点P 是平面A 1B 1C 1D 1内的一个动点,则三棱锥P ABC 的主视图始终是一个底为1,高为2的三角形,其面积S 1=12×1×2=1.当点P 在底面ABCD 内的投影点在△ABC 的内部或边界上时,其俯视图的面积最小,最小面积S 2=12×1×1=12,所以三棱锥P ABC 的主视图与俯视图的面积的比值的最大值为S 1S 2=2.。
2017-2018学年高中数学北师大版必修2同步练习:1.3三视图(含答案)
第一章§3一、选择题1.下列说法正确的是()A.若长方体的长、宽、高各不相同,则长方体的三视图中不可能有正方形(以长×宽所在的平面表示观察视角的正面)B.照片是三视图中的一种C.若三视图中有圆,则原几何体中一定有球体D.圆锥的三视图都是等腰三角形[答案] A[解析]按定义,三视图必须是包含主、左、俯三种视图,所以B不对;圆柱、圆锥等图形的三视图中也可能有圆,故C不对;圆锥的视图中有圆,故D不对.按A题意,可知其三视图都为非正方形的长方形.2.(2014·江西理,5)一几何体的直观图如下图,下列给出的四个俯视图中正确的是()[答案] B[解析]本题考查三视图.由俯视图的概念可知选B.3.以下说法正确的是()A.任何物体的三视图都与物体摆放位置有关B.任何物体的三视图都与物体摆放位置无关C.有的物体的三视图与物体的摆放位置无关D.正方体的三视图一定是三个全等的正方形[答案] C[解析]球不管从何位置看三视图均为圆,故A错;正方体从不同角度观察,其三视图是不一样的,故B、D错.4.(2014·新课标Ⅰ文,8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱[答案] B[解析]本题考查三视图由三视图知识几何体是三棱柱,注意是平放的三棱柱.5.三棱柱ABC-A1B1C1,如图所示,以BCC1B1的前面为正前方,画出的三视图,正确的是()[答案] A[解析]正面是BCC1B1为矩形,故主视图为矩形,左侧为△ABC,所以左视图为三角形,俯视图为两个有公共边的矩形,公共边为CC1在面ABB1A1内的投影.6.一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为()[答案] C[解析]由主视图可以看出去掉的小长方体在主视图的左上角,从左视图可以看出去掉的小长方体在左视图的右上角,由以上各视图的描述可知,该几何体如图所示,则易知俯视图为选项C.二、填空题7.如图所示是一个空间几何体的三视图,则该几何体为______________.[答案]正六棱台8.图中三视图代表的立体图形分别是____________.[答案](1)代表直四棱柱,(2)代表一个圆柱和一个长方体的组合体,(3)代表正六棱锥,(4)代表两个圆台的组合体.9.添线补全下面物体的三视图.[解析]如图所示.一、选择题1.已知一几何体的主视图与左视图如图所示,则下列图形中,可以是该几何体的俯视图的图形有()A.①②③⑤B.②③④⑤C.①②④⑤D.①②③④[答案] D[解析]可以结合实物想象,对于①,可认为该几何体的最下部为棱柱,上部为两个圆柱;对于②,可认为该几何体的上部为两个棱柱,下部为圆柱;对于③,可认为该几何体的上部为圆柱,下部为两个棱柱;对于④,可认为该几何体的上部是底面为等腰直角三角形的棱柱,中间为一圆柱,底部为四棱柱;对于⑤,由原几何体最下部的两个视图可知,其俯视图不可能是一个三角形.2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为()[解析]根据正投影的性质,并结合左视图要求及如图所示,AB的正投影为A′B′,BC的正投影为B′C′,BD′的正投影为B′D′,综上可知应选D.二、填空题3.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为________.[答案]2 3[解析]根据三视图还原成实物图,图中四棱锥P-ABCD即是,所以最长的一条棱的长为PB=2 3.4.给出下列几个命题,其中真命题的个数是________.①如果一个几何体的三视图是完全相同的,则这个几何体是正方体;②如果一个几何体的三视图都是矩形,则这个几何体是长方体;③如果一个几何体的主视图和左视图都是等腰梯形,则这个几何体是圆台.[答案] 1[解析]①是错误的,因为球的三视图也是完全相同的;③也可能是棱台;只有②正确.三、解答题5.如图所示是一个零件的实物图,画出这个几何体的三视图.[解析]该零件由一个长方体和一个半圆柱拼接而成,并挖去了一个小圆柱(形成圆孔).主视图反映了长方体的侧面和半圆的底面、小圆柱的底面,左视图反映了长方体的侧面、半圆柱的侧面、小圆柱的侧面,俯视图反映了长方体的底面、半圆柱的侧面和小圆柱的侧面投影后的形状.它的三视图如图所示.6.如图所示的是一个几何体的直观图,请画出这个几何体的三视图.[解析]如图所示.俯视图是一个正方形.(1)在给定的直角坐标系中作出这个几何体的直观图;(不写作法)(2)求这个几何体的高.[解析](1)直观图如图.它的底面边长为2,高在主视图(或左视图)中可求,高h=2sin60°= 3.。
2017-2018学年高中数学必修2北师大版 三视图 教案
教学设计整体设计教学分析在上一节认识空间几何体直观图的基础上,本节来学习空间几何体的表示形式,以进一步提高对空间几何体结构特征的认识,主要内容是画出空间几何体的三视图.比较准确地画出几何图形,是学好立体几何的一个前提.因此,本节内容是立体几何的基础之一,教学中应当给以充分的重视.画三视图是立体几何中的基本技能.同时,通过三视图的学习,可以丰富学生的空间想象力.“视图”是将物体按正投影法向投影面投射时所得到的投影图.光线自物体的前面向后投影所得的投影图称为“主视图”,自左向右投影所得的投影图称为“左视图”,自上向下投影所得的投影图称为“俯视图”.用这三种视图即可刻画空间物体的几何结构,这种图称之为“三视图”.三维目标1.了解空间图形的不同表示形式和相互转化,发展学生的空间想象能力,培养学生转化与化归的数学思想方法.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,并能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,提高学生识图和画图的能力,培养其探究精神和意识.重点难点教学重点:画出简单组合体的三视图,根据三视图还原或想象出原实际图的结构特征.教学难点:识别三视图所表示的几何体.课时安排1课时教学过程导入新课思路1.能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?我们常用三视图和直观图表示空间几何体,三视图是观察者从三个不同位置观察同一个几何体而画出的图形;直观图是观察者站在某一点观察几何体而画出的图形.三视图和直观图在工程建设、机械制造以及日常生活中具有重要意义.本节我们将在学习投影知识的基础上学习空间几何体的三视图.教师指出课题:三视图.思路2.“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实地反映出物体的结构特征,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图.在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(主视图、左视图、俯视图),你能画出空间几何体的三视图吗?教师点出课题:三视图.推进新课新知探究提出问题①在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图,请你回忆三视图包含哪些部分?②主视图、左视图和俯视图各是如何得到的?③一般地,怎样排列三视图?④主视图、左视图和俯视图分别是从几何体的正前方、正左方和正上方观察到的几何体的正投影图,它们都是平面图形.观察长方体的三视图,你能得出同一个几何体的主视图、左视图和俯视图在形状、大小方面的关系吗?讨论结果:①三视图包含主视图、左视图和俯视图.②光线从几何体的前面向后面正投影,得到的投影图叫该几何体的主视图(又称正视图);光线从几何体的左面向右面正投影,得到的投影图叫该几何体的左视图(又称侧视图);光线从几何体的上面向下面正投影,得到的投影图叫该几何体的俯视图.③三视图的位置关系:一般地,左视图在主视图的右边;俯视图在主视图的下边.如图1所示.图1④投影规律:1°主视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;左视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度.2°一个几何体的主视图和左视图高度一样,主视图和俯视图长度一样,左视图和俯视图宽度一样,即主、俯视图——长对正;主、左视图——高平齐;俯、左视图——宽相等.画组合体的三视图时要注意的问题:a.要确定好主视、左视、俯视的方向,同一物体放置的位置不同,所画的三视图可能不同.b.判断简单组合体的三视图是由哪几个基本几何体组成的,注意它们的组成方式,特别是它们的交线位置.c.若相邻两物体的表面相交,表面的交线是它们的分界线.在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线用虚线画出.d.要检验画出的三视图是否符合“长对正、高平齐、宽相等”的基本特征,即主、俯视图长对正;主、左视图高平齐;俯、左视图宽相等,前后对应.由三视图还原为实物图时要注意的问题:我们由实物图可以画出它的三视图,实际生产中,工人要根据三视图加工零件,需要由三视图还原成实物图.这要求我们能由三视图想象它的空间实物形状,主要通过主、俯、左视图的轮廓线(或补充后的轮廓线)还原成常见的几何体.还原实物图时,要先从三视图中初步判断简单组合体的组成,然后利用轮廓线(特别要注意虚线)逐步作出实物图.应用示例思路1例1 螺栓是棱柱和圆柱构成的组合体,如图2,画出它的三视图.解:该物体是由一个正六棱柱和一个圆柱组合而成的,主视图反映正六棱柱的三个侧面和圆柱侧面,左视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图为图3.图2图3 点评:在绘制三视图时,应注意:若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出.例如图3中,表示上面圆柱与下面棱柱的分界线是主视图中的线段AB、左视图中的线段CD以及俯视图中的圆.变式训练说出下列图4中两组三视图分别表示的几何体.图4答案:图4(1)是正六棱锥;图4(2)是两个相同的圆台组成的组合体.例2 试画出图5所示的矿泉水瓶的三视图.活动:引导学生认识这种容器的结构特征.矿泉水瓶是我们熟悉的一种容器,这种容器是简单的组合体,其主要结构特征是从上往下分别是圆柱、圆台和圆柱.图5 图6解:三视图如图6所示.点评:本题主要考查简单组合体的三视图.对于简单空间几何体的组合体,一定要认真观察,先认识它的基本结构,然后再画它的三视图.变式训练画出图7所示的几何体的三视图.图7 图8。
2017_2018学年高中数学第一章立体几何初步1.3三视图学案北师大
§3三视图3.1 简单组合体的三视图3.2 由三视图还原成实物图1.了解组合体的两种基本的组成形式.2.理解三视图的成图原理,掌握绘制三视图的规律——“长对正、高平齐、宽相等”.(重点、易错点)3.能识别三视图所表示的立体模型,并能画出它们的实物草图.(难点)[基础·初探]教材整理1 组合体阅读教材P13至P14“三、简单组合体的三视图”以上部分,完成下列问题.1.定义:由基本几何体生成的几何体叫作组合体.2.基本形式:有两种,一种是将基本几何体拼接成组合体;另一种是从基本几何体中切掉或挖掉部分构成组合体.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是( )A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个大圆锥挖去一个同底的小圆锥【解析】如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.【答案】 D教材整理2 三视图阅读教材P14“三、简单组合体的三视图”以下至P15部分,完成下列问题.1.三视图的特点:(1)空间几何体的三视图是指主视图、左视图、俯视图.(2)三视图的主视图、俯视图、左视图分别是从正前方、正上方、正左侧观察同一个几何体,所画出的空间几何体的平面图形.(3)三视图的排列规则是俯视图放在主视图的下方,长度与主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.2.绘制三视图时的注意事项:(1)首先,确定主视、俯视、左视的方向,同一物体放置的位置不同,所画三视图可能不同.(2)其次,简单组合体是由哪几个基本几何体生成的,并注意它们的生成方式,特别是它们的交线位置.(3)分界线和可见轮廓线都用实线画出;不可见轮廓线都用虚线画出.一个圆柱的三视图中一定没有的图形是( )A.圆B.矩形C.三角形D.正方形【解析】直立圆柱的主视图、左视图都是矩形,也可以是正方形,俯视图是圆.【答案】 C[小组合作型]画出如图131所示的空间几何体的三视图.(阴影面为主视面,尺寸不作严格要求)图131【精彩点拨】观察图形,确定观察的方向,进行空间想象,按照规则画三视图.【自主解答】三视图如下图所示:1.在画三视图时,先要想象几何体的后面、右面、下面各有一个屏幕,一组平行光线分别从前面、左面、上面垂直照射,我们画的是影子的轮廓,再验证几何体的轮廓线,能看到的画实线,不能看到的画虚线.2.作三视图时,要遵循三视图的排列规划,即“长对正,高平齐,宽相等”.3.画完三视图草图后,要再对照实物图验证其正确性.[再练一题]1.画出如图132所示的空间几何体的三视图.(阴影面为主视面,尺寸不作严格要求)图132【解】三视图如下.如图.【导学号:39292010】图133【精彩点拨】观察图形,分析结构,画出组合体的三视图.【自主解答】它的三视图如图所示:1.画组合体的三视图的步骤:(1)分析组合体的组成形式;(2)把组合体分解成简单几何体;(3)画分解后的简单几何体的三视图;(4)将各个三视图拼合成组合体的三视图.2.画三视图时要注意的问题:(1)先画主体部分,后画次要部分;(2)几个视图要配合着画,一般是先画主视图再确定左视图和俯视图;(3)组合体的各部分之间要画出分界线.[再练一题]2.如图134所示是一个零件的直观图,试画出这个几何体的三视图.图134【解】从整体上观察,可知此几何体由四棱柱和半个圆柱组合而成,且中间挖去了一个圆柱,该几何体的三视图如图所示.[探究共研型]探究1 .图135【提示】从观察三视图的特征入手,联想简单几何性三视图,从而确定几何体的名称.探究2 如图136是某一几何体的三视图,你能想象几何体的结构特征,并画出几何体的直观图吗?图136【提示】由几何体的三视图可知,几何体是一个倒立的三棱台,即上底面面积大,下底面面积小,直观图如图.根据三视图想象物体原形,并画出物体的实物草图.图137【精彩点拨】观察三视图时可将该几何体分解为上下两部分进行判断,易知该物体是由一个圆柱和一个长方体组合而成的.【自主解答】由俯视图并结合其他两个视图可以看出,这个物体是由一个圆柱和一个长方体组合而成,它的实物草图如图所示.由三视图还原空间几何体的策略:通过主视图和左视图确定是柱体、锥体还是台体.若主视图和左视图为矩形,则原几何体为柱体;若主视图和左视图为等腰三角形,则原几何体为锥体;若主视图和左视图为等腰梯形,则原几何体为台体.通过俯视图确定是多面体还是旋转体.若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.[再练一题]3.如图138是一个物体的三视图,则此三视图所描述物体的大致直观图是( )图138【解析】由三视图可知,该几何体是一个圆柱与一个圆锥的组合体,则该几何体的直观图应为选项D中的几何体.【答案】 D1.下列几何体各自的三视图中,只有两个视图相同的是( )图139A.①③B.②③C.②④D.③④【解析】①③的三个三视图都相同,②④的主视图和左视图相同.故选C.【答案】 C2.如图1310所示的一个几何体,它的俯视图可能是( )图1310【解析】根据三视图的画法及特点可知C正确.【答案】 C3.三视图如图1311的几何体是________.图1311【解析】根据主视图和俯视图可知该几何体为四棱锥.【答案】四棱锥4.如图1312是由小正方体组成的几何图形的三视图,则组成它的小正方体的个数是________.【导学号:39292011】图1312【解析】由三视图我们可以得出该几何体的直观图,如图所示.【答案】 55.画出如图1313所示几何体的三视图.图1313【解】三视图如图所示:。
2017-2018学年北师大版必修2三视图学案word版
典例精讲例1图1-2-3是一个零件的三视图,试画出这个零件的实物图.1-2-3思路解析:三视图所表示的几何体为:由长为34 mm、高和宽都为17 mm的长方体与直径为34 mm、宽度为17 mm的半圆柱组成几何体后,又从圆柱轴心切去半径为17 mm的圆柱,其实物直观图如图1-2-14所示.答案:所绘制图形如图1-2-4所示:图1-2-4绿色通道:一是要看所给的三视图是由哪些简单几何体组成的,二是可以把绘制后的实物图的三视图与原图作比较,即可看出是不是想象得正确.黑色陷阱:所画的实物图残缺,主要是缺乏空间想象力和对原来实物图画出三视图时的基本制图不熟悉.变式训练说出图1-2-5三视图的几何体名称.图1-2-5答案:六棱锥.例2画出图1-2-6中几何体的三视图(阴影面为视角正面).图1-2-6思路解析:仔细观察实物模型,想象从三个角度各看到了什么,进而准确地画出几何体的三视图.答案:如图1-2-7.(1)的三视图(2)的三视图(3)的三视图图1-2-7绿色通道:画物体的三视图时可以想象自己就站在物体的正前方、正上方、正左方,观察它是由哪些基本几何体组合而成的,它的外轮廓线是什么,然后再去画图,有条件的还可以观察实物模型,也可以自己去把模型做出来,这是一个从模型到图形的过程,从具体到抽象再到具体的过程,是提高空间想象能力的有效做法.变式训练画出图1-2-8所示几何体的三视图.图1-2-8答案:图1-2-9例3如图1-2-10,直角梯形ABCD绕底边AD所在直线EF旋转,在旋转前,非直角的腰的端点A可以在DE上选定.当点A选在射线DE上的不同位置时,形成的几何体大小、形状不同,分别画出它的三视图并比较其异同点.图1-2-10思路解析:本题关键在于要对A选在射线DE上的不同位置分别讨论,看旋转后的几何体可由哪些简单几何体构成.答案:(1)当点A在图1-2-11所示位置时,绕EF旋转一周所得几何体为底面半径为CD的圆柱和圆锥组合而成,其三视图如图:图1-2-11 图1-2-12(2)当点A在图1-2-13所示位置时,即B到EF所作垂线的垂足时,旋转后几何体为圆柱,其三视图如图:图1-2-13 图1-2-14(3)当点A位于如图1-2-15所示位置时,其旋转所得几何体为圆柱中挖去同底的圆锥,其三视图如图:图1-2-15 图1-2-16(4)当点A位于点D时,如图1-2-17,此时旋转体为圆柱中挖去一个同底等高的圆锥,其三视图如图:图1-2-17 图1-2-18绿色通道:(1)由轴截面想到旋转体,由旋转所得组合体画出三视图,综合性很强,同时也显示了旋转体的三视图特点,即主视图与左视图完全相同,并且俯视图为圆.故旋转体的三视图可简化为“二视图”.(2)现实生活中,很多物体都是由基本几何体组合而成.要多留心观察这些物体,联想它们各组成部分所表示的基本几何体,并善于解剖这些物体,进而正确地画出它们的三视图.变式训练图1-2-19是从某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm),试画出它的三视图.图1-2-19思路解析:这个几何体是由一个长方体和一个圆柱体构成的.答案:三视图如图1-2-20所示:图1-2-20问题探究问题旋转体的三视图有哪些特征?是否存在着主视图、俯视图、左视图完全相同的几何体?导思:画旋转体的三视图,一要明确常见旋转体的定义,即分别以矩形的一边、直角三角形的一条直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫做圆柱、圆锥、圆台.二要明确三视图的规则要求.三视图画法的要点是:主、俯视图长对正;主、左视图高平齐;俯、左视图宽相等.探究:旋转体是平面图形绕轴旋转而构成的几何体,这就决定了旋转体的三视图具有共同特征:当旋转轴为竖直方向时,旋转体的主视图与左视图相同,即旋转体的轴截面,而俯视图都是圆面或圆环面.存在三视图中主视、左视、俯视图完全相同的几何体.如正方体、球等,它们的三视图如图1-2-21所示,均是正方形或圆.图1-2-21。
[K12配套]2017_2018学年高中数学课时作业31.3三视图北师大版必修2
课时作业3三视图|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )解析:本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C,都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.答案:D2.如图所示,甲、乙、丙是三个几何体的三视图,则甲、乙、丙对应的几何体分别为( )①长方体;②圆锥;③三棱锥;④圆柱.A.④③②B.①③②C.①②③ D.④②③解析:由于甲中的俯视图是圆,则甲对应的几何体是旋转体,又主视图和左视图均是矩形,所以该几何体是圆柱;易知乙对应的几何体是三棱锥;由丙中的俯视图,可知丙对应的几何体是旋转体,又主视图和左视图均是三角形,所以该几何体是圆锥.答案:A3.(2016·河北名师俱乐部3月模拟)某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则( ).如图为某组合体的三视图,则俯视图中的长和宽分别为根据三视图中的“主、俯视图长对正,主、左视图高平齐,可知俯视图的长和主视图的长相等,为2+6+2=10,俯视图的宽与左视图的宽相等,为解析:如图,画出原正方体的侧视图,显然对于三棱锥P-A1B1A余各点均在,从而其侧视图为D.分).桌上放着一个半球,如图所示,则在它的三视图及右面看到的图形中,有三________.的底面边长为2,高为解析:由三视图的画法可知,该几何体的左视图是一个矩形,其底面边长为根据三视图可知该几何体是一个四棱锥,其底面是正方形,四棱锥.其侧视图与正视图是完全一样的正三角形.故其面积为试画出如图所示的正四棱台的三视图..根据图中的三视图想象物体原形,并画出物体的实物草图.由俯视图并结合其他两个视图可以看出,这个物体是由上面一个正四棱台和下面一个正方体组合而成的,它的实物草图如图所示.|能力提升|(20分钟,40分)11.(2016·广东省台山市华侨中学高二上期末)定义:底面是正三角形,侧棱与底面垂直的三棱柱叫做正三棱柱.将正三棱柱截去一个角(如图1所示,M,N分别是AB,BC的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图为( )解析:N的投影是C,M的投影是AC的中点.对照各图.选D.答案:D12.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析:三棱锥、四棱锥和圆锥的正视图都是三角形,当三棱柱的一个侧面平行于水平面,底面对着观测者时其正视图是三角形,四棱柱、圆柱无论怎样放置,其正视图都不可能是三角形.答案:①②③⑤13.如图所示,是一个长方体截去一个角所得多面体的直观图和它的主视图和左视图(单位:cm).请在正视图下面,按照画三视图的要求画出该多面体的俯视图.解析:依据三视图的绘图原则,可作出该几何体的俯视图如图.14.某建筑由相同的若干房间组成,该楼房的三视图如图所示,问:(1)该楼房有几层?从前往后最多要经过几个房间?(2)最高一层的房间在什么位置?请画出此楼房的大致形状.解析:(1)由主视图和左视图可以知道,该楼房有3层;由俯视图知道,从前往后最多要经过3个房间;(2)从主视图和左视图可以知道,最高一层的房间在左侧的最后一排的房间.楼房大致形状如图所示.。
北师大版数学高一作业 1.3三视图
§3三视图1.下列说法正确的是()A.任何物体的三视图都与物体的摆放位置有关B.任何物体的三视图都与物体的摆放位置无关C.有的物体的三视图与物体的摆放位置无关D.正方体的三视图一定是三个全等的正方形解析对于A,球的三视图与物体摆放位置无关,故A错;对于B,D,正方体的三视图与摆放位置有关,故B,D错;故选C.答案 C2.在一个几何体的三视图中,主视图和俯视图如图所示,则相应的左视图可以为()解析由几何体的主视图和俯视图可知,该几何体的底面为半圆和等腰三角形,其左视图可以是一个由等腰三角形及底边上的高构成的平面图形.答案 D3.一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为()解析由三视图中的主视图、左视图得到几何体如图所示,所以该几何体的俯视图为C.答案 C4.若一个正三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.解析三棱柱的高同左视图的高,左视图的宽度恰为底面正三角形的高,故底面边长为4.答案2 45.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为________.解析依题意得三棱锥P-ABC的主视图与左视图分别是一个三角形,且这两个三角形的底边长都等于正方体的棱长,底边上的高也都等于正方体的棱长,因此三棱锥P-ABC的主视图与左视图的面积的比值为1.答案 16.已知如下三视图,试分析该几何体结构特征并画出物体的实物草图.解由三视图可知该几何体为四棱锥P-ABCD,对应空间几何体如图:PA⊥AB,PA⊥AD,AB⊥AD.7.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?解由于主视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.能力提升8.如图所示,正三棱柱ABC-A1B1C1的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为()A.8 3B.4 3C.2 3D.16解析由主视图可知三棱柱的高为4,底面边长为4,所以底面正三角形的高为23,所以左视图的面积为4×23=8 3.故选A.答案 A9.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的主视图的面积不可能等于()A.1B. 2C.2-12 D.2+12解析由题意知正方体的底面水平放置.当主视图为正方形时,其面积最小为1;当主视图为对角面时,其面积最大为 2.则正方体的主视图的面积的范围为[1,2].而2-12<1,故C不可能.答案 C10.一个锥体的主视图和左视图如图所示,下列选项中不可能是该锥体的俯视图的是()解析在三视图中,俯视图的宽度应与左视图的宽度相等,而在选项C中,其,与题中所给的左视图的宽度为1不相等,故选C.宽度为32答案 C11.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于____________.解析由图可得该几何体为三棱柱,因为主视图、左视图、俯视图的内切圆最小的是主视图(直角三角形)所对应的内切圆,所以最大球的半径为主视图中直角三角形的内切圆的半径r.由题意,得8-r+6-r=82+62.解得r=2.答案 212.一个物体由几块相同的正方体组成,其三视图如图所示,试据图回答下列问题:(1)该物体有多少层?(2)该物体的最高部分位于哪里?(3)该物体一共由几个小正方体构成?解 (1)该物体一共有两层,从主视图和左视图都可以看出来.(2)该物体最高部分位于左侧第一排和第二排.(3)从左视图及俯视图可以看出,该物体前后一共三排,第一排左侧2个,右侧1个;第二排左侧2个,右侧没有;第三排左侧1个,右侧1个.该物体一共由7个小正方体构成.13.(选做题)某几何体的一条棱长为7,在该几何体的主视图中,这条棱的投影是长为a 的线段,在该几何体的左视图与俯视图中,这条棱的投影分别是长为6和b 的线段,求a 2+b 2的值. 解 如图所示,设长方体的长、宽、高分别为m ,n ,k ,体对角线长为7,体对角线在三个相邻面上的投影长分别为a ,6,b .则由题意,得m 2+n 2+k 2=7,n 2+k 2=6,解得m =1或m =-1(舍去),则⎩⎪⎨⎪⎧k 2+1=a ,n 2+1=b ,所以(a 2-1)+(b 2-1)=6,即a 2+b 2=8.。
2017-2018学年高中数学 第一章 立体几何初步 1.3 三视图学案 北师大版必修2
1.3 三视图[核心必知]1.三视图中的实虚线在绘制三视图时,分界线和可见轮廓线都用实线画出.不可见边界轮廓线,用虚线画出.2.绘制三视图时的注意事项(1)绘制三视图时,要注意:①主、俯视图长对正;②主、左视图高平齐;③俯、左视图宽相等,前后对应.(2)画简单组合体的三视图的注意事项:①首先,确定主视、俯视、左视的方向.同一物体放置的位置不同,所画的三视图可能不同.②其次,注意简单组合体是由哪几个基本几何体组成的,并注意它们的组成方式,特别是它们的交线位置.3.简单几何体的两种基本组成形式(1)将基本几何体拼接成组合体.(2)从基本几何体中切掉或挖掉部分构成组合体.[问题思考]一个简单几何体的三视图:主视图、左视图和俯视图完全一样,这个几何体是正方体或球,对吗?提示:不一定是正方体.球的主视图、左视图和俯视图是完全一样的圆,而正方体的三视图与观察角度有关,有时三种视图的形状不完全相同.讲一讲1.画出如下图所示的空间几何体的三视图(阴影面为主视面)(尺寸不作严格要求).[尝试解答] 三视图如图所示:1.在画三视图时,要想象几何体的后面、右面、下面各有一个屏幕,一组平行光线分别从前面、左面、上面垂直照射,我们画的是影子的轮廓,再验证几何体的轮廓线,看到的画实线,不能看到的画虚线.2.作三视图时,一般俯视图放在主视图的下面,长度和主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图一样.练一练1.画出如图所示的空间几何体的三视图(阴影面为主视面)(尺寸不作严格要求).解:三视图如图.讲一讲2.画出下列几何体的三视图(阴影面为主视面).[尝试解答] 三视图如图所示.对既有拼接,又有切、挖较复杂的组合体,关键是观察清楚轮廓线和分界线,并注意被遮挡部分的轮廓线用虚线表示,在画三视图时,很容易漏画轮廓线,或把虚线画成了实线,要注意检查.练一练2.画出如图所示的组合体的三视图.(阴影部分为主视面,尺寸不作严格要求)解:这个组合体的三视图如图:讲一讲3.如图所示的是一些立体图形的三视图,画出它的实物图.[尝试解答]根据三视图还原几何体实物,要仔细分析和认真观察三视图,进行充分的空间想象,综合三视图的形状,从不同的角度去还原.看图和想图是两个重要的步骤,“想”于“看”中,形体分析的看图方法是解决此类问题的常用方法.练一练3.根据以下三视图想象物体原形,并画出物体实物草图.解:实物草图如图:画出右图的物体的三视图.[错解][错因] 三视图出现多处错误.首先,主视图和左视图的高应该是相同的,而所画的视图没有做到这一点;其次,左视图的宽应该和俯视图的高一致,这一点也没有做到;再次,主视图的长与俯视图的长应对齐,这点还是没有做到;最后,图中有一条看不到的棱应该用虚线表示出来,所以答案存在多处错误.[正解] 如图所示.1.如图所示的一个几何体,它的俯视图是( )解析:选C 根据三视图的画法及特点可知C正确.2.(湖南高考)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )解析:选C A是两个圆柱的组合体,B是一个圆柱和一个四棱柱的组合体,C选项的正视图与侧视图不相同,D可以是一个底面为等腰直角三角形的直三棱柱与一个四棱柱的组合体.3.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的左视图为( )解析:选B 依题意,侧视图中棱的方向从左上角到右下角,故选B.4.一个几何体的主视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱解析:只要判断正视图是不是三角形就行了,画出图形容易知道三棱锥、四棱锥、圆锥一定可以,对于三棱柱,只需要倒着放就可以了,所以①②③⑤均符合题目要求.答案:①②③⑤5.如图是由小正方体组成的几何图形的三视图,则组成它的小正方体的个数是________.解析:由三视图我们可以得出该几何体的直观图,如图所示.答案:56.画出该组合体的三视图.解:组合体由正六棱柱和圆柱组合而成,其三视图如图所示.一、选择题1.已知某空间几何体的三视图如图所示,则此几何体为( )A.圆台B.四棱锥C.四棱柱 D.四棱台解析:选D 由主视图和左视图可以判断一定为棱台或圆台,又由俯视图可知其一定为棱台且为四棱台.2.(湖南高考)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32B.1C.2+12D. 2解析:选D 由已知,正方体的正视图与侧视图都是长为2,宽为1的矩形,所以正视图的面积等于侧视图的面积,为 2.3.三棱柱ABCA1B1C1,如下图所示,以BCC1B1的前面为正前方画出的三视图,正确的是( )解析:选A 正面是BCC1B1的矩形,故主视图为矩形,左侧为△ABC,所以左视图为三角形,俯视图为两个有一条公共边的矩形,公共边为CC 1在面ABB 1A 1内的投影.4.(福建高考)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱解析:选D 球的三视图是三个相同的圆;当三棱锥为正三棱锥时其三视图可能是三个全等的三角形;正方体的三视图可能是三个相同的正方形;不论圆柱如何放置,其三视图形状都不会完全相同.5.一个几何体的三视图如图所示,其中主视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的左视图的面积为( )A.32B.23C .12D .6 解析:选A 由主视图、左视图、俯视图之间的关系可以判断该几何体是一个底面为正六边形的正六棱锥.∵主视图中△ABC 是边长为2的正三角形,此三角形的高为3,∴左视图的高为 3.俯视图中正六边形的边长为1,其小正三角形的高为32,∴左视图的底为32×2=3, ∴左视图的面积为12×3×3=32.二、填空题6.如图所示,为一个简单几何体的三视图,它的上部是一个________,下部是一个________.解析:由三视图可知该几何体图示为所以,其上部是一个圆锥,下部是一个圆柱.答案:圆锥圆柱7.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体的个数最多为________个.(其中小正方形内的数字表示小正1B1的中心,则四边形BED1F在该正).解析:根据平行投影的理论,从正方体的上下、前后、左右三个角度分别投影,从上往下投影,选择②,从前往后投影,选择②,从左往右投影,选择③.答案:②③三、解答题9.如图所示,图②是图①中实物的主视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出它的左视图.解:图①是由两个长方体组合而成的,主视图正确,俯视图错误.俯视图应该画出不可见轮廓(用虚线表示),左视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.10.某建筑由若干个面积相同的房间组成,其三视图如下,其中每一个小矩形表示一个房间.(1)该楼有几层?共有多少个房间?(2)画出此楼的大致形状.解:(1)由主视图和左视图可知,该楼共3层,由俯视图可知,该楼一楼有5个房间,结合主视图与左视图,易知二楼和三楼分别有4个,1个房间,故共10个房间.(2)此楼的大致形状如图:11。
2017_2018学年高三数学课时作业31.3三视图北师大版必修47
课时作业3 三视图|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )解析:本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C,都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.答案:D2.如图所示,甲、乙、丙是三个几何体的三视图,则甲、乙、丙对应的几何体分别为( )①长方体;②圆锥;③三棱锥;④圆柱.A.④③② B.①③②C.①②③ D.④②③解析:由于甲中的俯视图是圆,则甲对应的几何体是旋转体,又主视图和左视图均是矩形,所以该几何体是圆柱;易知乙对应的几何体是三棱锥;由丙中的俯视图,可知丙对应的几何体是旋转体,又主视图和左视图均是三角形,所以该几何体是圆锥.答案:A3.(2016·河北名师俱乐部3月模拟)某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则( ).如图为某组合体的三视图,则俯视图中的长和宽分别为主、俯视图长对正,主、左视图高平齐,俯、左视图宽相等可知俯视图的长和主视图的长相等,为2+6+2=10,俯视图的宽与左视图的宽相等,为(二))如图,在正方体ABCD-A1B1C1( )分).桌上放着一个半球,如图所示,则在它的三视图及右面看到的图形中,有三________.解析:俯视图为圆,主视图与左视图均为半圆.的底面边长为2,高为解析:由三视图的画法可知,该几何体的左视图是一个矩形,其底面边长为根据三视图可知该几何体是一个四棱锥,其底面是正方形,侧棱相等,所以这是一个正四棱锥.其侧视图与正视图是完全一样的正三角形.故其面积为试画出如图所示的正四棱台的三视图..根据图中的三视图想象物体原形,并画出物体的实物草图.解析:由俯视图并结合其他两个视图可以看出,这个物体是由上面一个正四棱台和下面一个正方体组合而成的,它的实物草图如图所示.|能力提升|(20分钟,40分)11.(2016·广东省台山市华侨中学高二上期末)定义:底面是正三角形,侧棱与底面垂直的三棱柱叫做正三棱柱.将正三棱柱截去一个角(如图1所示,M,N分别是AB,BC的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图为( )解析:N的投影是C,M的投影是AC的中点.对照各图.选D.答案:D12.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析:三棱锥、四棱锥和圆锥的正视图都是三角形,当三棱柱的一个侧面平行于水平面,底面对着观测者时其正视图是三角形,四棱柱、圆柱无论怎样放置,其正视图都不可能是三角形.答案:①②③⑤13.如图所示,是一个长方体截去一个角所得多面体的直观图和它的主视图和左视图(单位:cm).请在正视图下面,按照画三视图的要求画出该多面体的俯视图.解析:依据三视图的绘图原则,可作出该几何体的俯视图如图.14.某建筑由相同的若干房间组成,该楼房的三视图如图所示,问:(1)该楼房有几层?从前往后最多要经过几个房间?(2)最高一层的房间在什么位置?请画出此楼房的大致形状.解析:(1)由主视图和左视图可以知道,该楼房有3层;由俯视图知道,从前往后最多要经过3个房间;(2)从主视图和左视图可以知道,最高一层的房间在左侧的最后一排的房间.楼房大致形状如图所示.。
2018学年北师大版高中数学必修2课件:1.3三视图 精品
画简单几何体的三视图 如图所示,四棱台 ABCD-A1B1C1D1 中,上底是边长为 2 cm 的正 方形,下底是边长为 3 cm 的正方形,上、下底面间的距离为 2 cm,画出它的三 视图.
[思路探究] 定性分析形状 ―→ 初步定位 ―→ 定量确定长度 ―→ 画出三视图
[边听边记] 该四棱台的主视图和左视图都是上底为 2 cm,下底为 3 cm,高为 2 cm 的等腰梯形;其俯视图是 两个边长分别为 2 cm 和 3 cm 的正方形,且对应顶点相连, 其三视图如图所示:
[自主练习] 1.下图所示几何体,其俯视图为( )
解析: 由实物图知,该物体是由一个长方体和一个截角三棱柱组成,结 合它们的轮廓和交线,它的俯视图应为C.
答案: C
2.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可 以为( )
解析: 由几何体的正视图和俯视图可知,该几何体的底面为半圆和等腰三 角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形.
答案: D
3.下图中的三视图表示的几何体是________.
解析: 根据三视图的生成可知,该几何体为三棱柱. 答案: 三棱柱
4.如图是截去一角的长方体,画出它的三视图.
解析: 该物体三个视图的构成都是矩形,长方体截角后,截面是一个三角 形,在每个视图中反映为不同的三角形,三视图如图所示.
合作探究·课堂互动
[强化拓展] (1)在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡部分用虚线 画出. (2)在画图时要注意做到“长对正、高平齐、宽相等”或“主、侧一样高,主、 俯一样长,俯、侧一样宽”. (3)同一物体放置的位置不同,所画的三视图可能不同. (4)画组合体的三视图时,首先要清楚组合体是由哪几个基本几何体组成的, 并明确它们的组成方式,特别要注意它们的交线位置与形状.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业3三视图
|基础巩固|(25分钟,60分)
一、选择题(每小题5分,共25分)
1.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )
解析:本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C,都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.
答案:D
2.如图所示,甲、乙、丙是三个几何体的三视图,则甲、乙、丙对应的几何体分别为( )
①长方体;②圆锥;③三棱锥;④圆柱.
A.④③②B.①③②
C.①②③ D.④②③
解析:由于甲中的俯视图是圆,则甲对应的几何体是旋转体,又主视图和左视图均是矩形,所以该几何体是圆柱;易知乙对应的几何体是三棱锥;由丙中的俯视图,可知丙对应的几何体是旋转体,又主视图和左视图均是三角形,所以该几何体是圆锥.
答案:A
3.(2016·河北名师俱乐部3月模拟)某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则( )
.如图为某组合体的三视图,则俯视图中的长和宽分别为
根据三视图中的“主、俯视图长对正,主、左视图高平齐,
可知俯视图的长和主视图的长相等,为2+6+2=10,俯视图的宽与左视图的宽相等,为
解析:如图,画出原正方体的侧视图,显然对于三棱锥P-A1B1A
余各点均在,从而其侧视图为D.
分)
.桌上放着一个半球,如图所示,则在它的三视图及右面看到的图形中,有三
________.
的底面边长为2,高为
解析:由三视图的画法可知,该几何体的左视图是一个矩形,其底面边长为
根据三视图可知该几何体是一个四棱锥,其底面是正方形,
四棱锥.其侧视图与正视图是完全一样的正三角形.故其面积为
试画出如图所示的正四棱台的三视图.
.根据图中的三视图想象物体原形,并画出物体的实物草图.
由俯视图并结合其他两个视图可以看出,这个物体是由上面一个正四棱台和下面一个正方体组合而成的,它的实物草图如图所示.
|能力提升|(20分钟,40分)
11.(2016·广东省台山市华侨中学高二上期末)定义:底面是正三角形,侧棱与底面垂直的三棱柱叫做正三棱柱.将正三棱柱截去一个角(如图1所示,M,N分别是AB,BC的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图为( )
解析:N的投影是C,M的投影是AC的中点.对照各图.选D.
答案:D
12.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).
①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.
解析:三棱锥、四棱锥和圆锥的正视图都是三角形,当三棱柱的一个侧面平行于水平面,底面对着观测者时其正视图是三角形,四棱柱、圆柱无论怎样放置,其正视图都不可能是三角形.
答案:①②③⑤
13.如图所示,是一个长方体截去一个角所得多面体的直观图和它的主视图和左视图(单位:cm).请在正视图下面,按照画三视图的要求画出该多面体的俯视图.
解析:依据三视图的绘图原则,可作出该几何体的俯视图如图.
14.某建筑由相同的若干房间组成,该楼房的三视图如图所示,问:
(1)该楼房有几层?从前往后最多要经过几个房间?
(2)最高一层的房间在什么位置?请画出此楼房的大致形状.
解析:(1)由主视图和左视图可以知道,该楼房有3层;由俯视图知道,从前往后最多要经过3个房间;
(2)从主视图和左视图可以知道,最高一层的房间在左侧的最后一排的房间.楼房大致形状如图所示.。