实际问题与反比例函数—八年级数学

合集下载

初中数学八年级下册苏科版11.3用反比例函数解决问题教学课件说课稿

初中数学八年级下册苏科版11.3用反比例函数解决问题教学课件说课稿
(二)教学目标
1.知识与技能目标:使学生掌握反比例函数在实际问题中的应用,培养学生运用反比例函数解决实际问题的能力。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生主动探索、解决问题的能力,提高学生的数学思维水平。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自主学习能力,使学生感受到数学与生活实际的紧密联系,提高学生运用数学知识解决实际问题的意识。
(二)学习障碍
在学习本节课之前,学生需要具备对反比例函数的基本理解和运用能力,能够从实际问题中抽象出反比例函数模型。此外,他们需要能够理解和运用比例关系,以及基本的代数运算。在学习障碍方面,部分学生可能对反比例函数的概念理解不深,难以将其应用于实际问题中;还有部分学生可能在代数运算上存在困难,影响他们对反比例函数解决问题的掌握。
初中数学八年级下册苏科版11.3用反比例函数解决问题教学课件说课稿
一、教材分析
(一)内容概述
本节课的教学内容是初中数学八年级下册苏科版11.3用反比例函数解决问题。这部分内容在整个课程体系中处于反比例函数知识点的深化与运用阶段,是对反比例函数知识的巩固和提高。主要知识点包括:反比例函数在实际问题中的应用,如何根据实际问题选择合适的函数模型,以及如何利用反比例函数解决实际问题。
(二)媒体资源
为了辅助教学,我将使用多媒体课件、实物模型和计算器等资源。多媒体课件可以帮助我更直观地展示反比例函数的图像和实际应用,使学生更容易理解和记忆。实物模型则可以帮助学生更直观地理解反比例函数的概念和原理。计算器则可以为学生提供实际的操作平台,让他们在解决实际问题时能够更准确地进行计算。
(三)互动方式
在教学过程中,我计划设计多种师生互动和生生互动的环节。例如,在引入新知识时,我会提出问题,引导学生进行思考和讨论,以激发他们的学习兴趣。在讲解反比例函数的应用时,我会组织学生进行小组合作,共同解决实际问题,以培养他们的团队合作和解决问题的能力。此外,我还会设置一些练习题,让学生进行互相讲解和评价,以提高他们的理解和表达能力。通过这些互动方式,我希望能够促进学生的积极参与和合作,提高他们的学习效果。

八年级数学《实际问题与反比例函数》第一课时 教案

八年级数学《实际问题与反比例函数》第一课时 教案
教师出示题组三,引导学生探求解题策略。
[设计意图]
反比例函数在实际问题的应用过程中,研究两个变量之间的关系。能够熟练地由已知一个变量求另一个变量。
[设计意图]
在这个过程中,学生活学活用,培养学生自主探究的学习品质,
活动四归纳小结,内化新知。
1.通过今天的学习,你们都有哪些收获想和同学们交流分享?
2.能和老师谈谈你们的困惑吗?愿意给其他同学以友情提示吗?
(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?
(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?
(2)d=30(cm)
教师出示题组一,提出答题要求,学生回答,师根据学生的表现适时评价。
教师出示题组二1题,学生理解题意,独立解决问题,师巡视指导,帮助学困生。
[设计意图]
1、对所学的知识和所获得的方法进行巩固运用。




知识与技能
1.、运用反比例函数的概念和性质解决实际问题。
2、利用反比例函数求出问题中得值。
过程与方法
在运用反比例函数解决实际问题的过程中,进一步体会数学建模思想,培养学生的数学应用意识,在“实际问题——建立模型——拓展应用”的过程中,发展学生分析问题、解决问题的能力。
情感态度与价值观
运用反比例函数解决实际问题的过程中,体验数学的实用性,提高学生学习的兴趣,同时也进一步培养了合作交流的意识。
教学程序
问题与情境
师生互动
媒体使用与教学评价
活动一创设情境,导入新课
问题1:反比例函数图象有哪些性质?
问题2:本节课学习目标:运用反比例函数的图象和性质解决实际问题。
问题3:你吃过拉面吗?你知道在做拉面的过程中渗透着数学知识吗?

反比例函数的实际应用、 实际问题与反比例函数(教案)

反比例函数的实际应用、 实际问题与反比例函数(教案)

26.2 实际问题与反比例函数第1课时反比例函数的实际应用(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.26.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)——面积问题与装卸货物问题一、新课导入1.课题导入前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决问题中所起的作用.这节课我们进一步探讨如何利用反比例函数解决实际问题.2.学习目标(1)掌握常见几何图形的面积(体积)公式.(2)能利用工作总量、工作效率和工作时间的关系列反比例函数解析式.(3)从实际问题中抽象出数学问题,建立函数模型,运用所学的数学知识解决实际问题.3.学习重、难点重点:面积问题与装卸货物问题.难点:分析实际问题中的数量关系,正确写出函数解析式.二、分层学习1.自学指导(1)自学内容:教材P12例1.(2)自学时间:8分钟.(3)自学指导:抓住问题的本质和关键,寻求实际问题中某些变量之间的关系.(4)自学参考提纲:①圆柱的体积=底面积×高,教材P12例1中,圆柱的高即是d,故底面积410Sd .②P12例1的第(2)问实际是已知S=500,求d.③例1的第(3)问实际是已知d=15,求S.④如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.a.求y与x之间的函数关系式;60 yx ⎛=⎫ ⎪⎝⎭b.若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC 的长都是整米数,求出满足条件的所有围建方案.(AD=5 m,DC=12 m;AD=6m,DC=10 m;AD=10 m,DC=6 m.)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握利用面积(体积)公式列反比例函数关系式.②差异指导:辅导关注学困生.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例1的解题思路和解答过程.(2)面积公式与体积公式中的反比例关系.(3)练习:已知某矩形的面积为20 cm2.①写出其长y与宽x之间的函数表达式;②当矩形的长为12 cm时,宽为多少?当矩形的宽为4 cm,长为多少?③如果要求矩形的长不小于8 cm,其宽最多是多少?答案:①20yx=②53cm;5 cm③52cm1.自学指导(1)自学内容:教材P13例2.(2)自学时间:5分钟.(3)自学方法:认真分析例题,积极思考,结合自学参考提纲自学.(4)自学参考提纲:①工作总量、工作时间和工作效率(或速度)之间的关系是怎样的?②教材例2中这艘船共装载货物240吨,卸货速度v(吨/天)与卸货时间t(天)的关系是240 vt =.③如果列不等式求“平均每天至少要卸载多少吨”,你会怎样做?写出你的解答过程.④一司机驾汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.a.当他按原路匀速返回时,汽车速度v(千米/小时)与时间t(小时)有怎样的函数关系?480 vt⎛=⎫ ⎪⎝⎭b.如果该司机必须在4小时之内返回甲地,则返程时的速度不得低于多少?(120千米/小时)c.若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过120千米/小时,最低车速不得低于60千米/小时,试问返程所用时间的范围是多少?(4~8小时)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会根据反比例函数关系解决实际问题.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例2的解题思路和解答过程.(2)练习:某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能对全部学生售饭完毕.①共有多少学生就餐?②设开放x 个窗口时,需要y 小时才能让当天就餐的同学全部买上饭,试求出y 与x 之间的函数关系式;③已知该学校最多可以同时开放20个窗口,那么最少多长时间可以让当天就餐的学生全部买上饭?答案:①1800个;②10y x=;③30分钟. 三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).函数是初中数学的难点之一,当函数遇到实际应用,可谓是难上加难,但也使解题多了几种途径.对于这些实际问题,要善于运用函数的观点去处理.因此在教学过程要注意培养学生的审题能力,理解文字中隐藏的已知条件,合理地建立函数模型,然后根据模型找出实际生活中的数据与模型中的哪些量相对应.将实际问题置于已有的知识背景中,用数学知识重新解释这是什么,可以是什么,逐步培养解决实际问题的能力.一、基础巩固(70分)1.(10分)某轮船装载货物300吨,到港后,要求船上货物必须不超过5日卸载完毕,则平均每天至少要卸载(B )A.50吨B.60吨C.70吨D.80吨2.(10分) 用规格为50 cm×50 cm 的地板砖密铺客厅恰好需要60块.如果改用规格为a cm×a cm 的地板砖y 块也恰好能密铺该客厅,那么y 与a 之间的关系为(A ) A.2150000y a = B.150000y a = C.y=150000a 2 D.y=150000a3.(10分) 如果以12 m 3/h 的速度向水箱注水,5 h 可以注满.为了赶时间,现增加进水管,使进水速度达到Q (m 3/h ),那么此时注满水箱所需要的时间t (h )与Q (m3/h)之间的函数关系为(A)A.60tQ= B.t=60QC.6012tQ=- D.6012tQ=+4.(10分) 如果等腰三角形的底边长为x,底边上的高为y,当它的面积为10时,x与y 的函数关系式为(D)A.10yx= B.5yx= C.20xy= D.20yx=5.(10分) 已知圆锥的体积V=13Sh(其中S表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10 cm时,底面积为30 cm2,则h关于S的函数解析式为300 hS =.6.(10分)小艳家用购电卡购买了1000度电,那么这些电能够使用的天数m 与小艳家平均每天的用电度数n有怎样的函数关系?如果平均每天用电4度,这些电可以用多长时间?解:1000mn=;250天.7.(10分)某农业大学计划修建一块面积为2×106 m2的长方形试验田.(1)试验田的长y(单位:m)关于宽x(单位:m)的函数关系式是什么?(2)如果试验田的长与宽的比为2∶1,则试验田的长与宽分别是多少?解:(1)6210yx⨯=;(2)长:2×103 m,宽:103 m.二、综合应用(20分)8. (10分)某地计划用120~180天(含120天与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?解:(1)360yx=(2≤x≤3);(2)设原计划每天运送土石方x万立方米,实际每天运送土石方(x+0.5)万立方米.则360360240.5x x+=+().解得x=2.5.因此,原计划每天运送土石方2.5万立方米,实际每天运送土石方3万立方米.9.(10分)正在新建中的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需瓷砖的块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2∶2∶1,则需三种瓷砖各多少块?解:(1)n=5×103S;(2)设需灰、白、蓝三种瓷砖分别为2x、2x、x块.(2x+2x+x)·80=5×103×104x=1.25×105因此,需灰、白、蓝三种瓷砖分别为2.5×105块、2.5×105块、1.25×105块.三、拓展延伸(10分)10.(10分) 水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现这种海产品每天的销售量y(千克)是销售价格x(元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且以后每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)12000y x;不选一次函数是因为y 与x 之间不成正比例关系. (2)30+40+48+12000240+60+80+96+100=504(千克), (2104-504)÷12000150=20(天). (3)(20-15)×12000150÷2=200(千克),12000÷200=60(元/千克).。

八下数学课件 用反比例函数解决实际问题(第二课时)

八下数学课件 用反比例函数解决实际问题(第二课时)
数学(苏科版)
八年级 下册第十一章 反比例数11.3 用反比例函数解决实际问题
(第二课时)
学习目标
学习目标
1)运用反比例函数的知识解决实际问题。
2)经历“实际问题-建立模型-拓展应用”的过程,发展学生分析、解决问题的能力。
3)经历运用反比例函数解决实际问题的过程,体会数学建模的思想。
重点
运用反比例函数解决实际问题。
数图象的部分,下列选项错误的是( )
A.4月份的利润为50万元
B.污改造完成后每月利润比前一个月增加30万元
C.治污改造完成前后共有4个月的利润低于100万元 D.9月份该厂利润达到200万元
【详解】
治污改造完成前后,1-6月份的利润分别为200万元、100万元、
的利润低于100万元,C选项错误;
9月份的利润为30 × 9 − 70 = 200万元,D选项正确;
(1)动力 F 与动力臂 L 有怎样的函数关系?
(2)当动力臂为1.5米时,撬动石头至少需要多大的力?
(3)若想使动力F不超过题(2)中所用力的一半, 则动力臂至少要加长多少米?
2)把L=1.5带入到函数解析式F=
600

解得,F=400(N)
则对于函数F=
600
,当L=1.5米时,F=400 N,此时

段是恒温阶段,BC段是双曲线 = 的一部分,请根据图中信息解答下列问题:
(1)求k的值;
(2)恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有多少小时?

(1)把B(12,20)代入 = 中得:k=12×20=240;
(2)设AD的解析式为:y=mx+n.
把(0,10)、(2,20)代入y=mx+n中

初中数学 反比例函数在实际问题中的应用有哪些

初中数学 反比例函数在实际问题中的应用有哪些

初中数学反比例函数在实际问题中的应用有哪些反比例函数在实际问题中有许多应用,下面列举一些常见的应用场景:1. 速度和时间的关系:在物理学和运动学中,速度和时间之间的关系通常可以用反比例函数来描述。

例如,当一个物体以恒定速度运动时,它所用的时间与所走的距离成反比。

反比例函数可以帮助我们计算在给定速度下所需的时间,或者在给定时间内所能达到的距离。

2. 工作和时间的关系:在工程学和生产领域中,工作和时间之间的关系通常可以用反比例函数来描述。

例如,如果一台机器在单位时间内完成的工作量是恒定的,那么完成某项工作所需的时间与工作量成反比。

反比例函数可以帮助我们计算在给定工作量下所需的时间,或者在给定时间内可以完成的工作量。

3. 面积和边长的关系:在几何学中,许多图形的面积和边长之间存在反比例关系。

例如,正方形的面积与边长的平方成反比,圆的面积与半径的平方成反比。

反比例函数可以帮助我们计算在给定面积下的边长,或者在给定边长下的面积。

4. 电阻和电流的关系:在电学中,电阻和电流之间的关系通常可以用反比例函数来描述。

根据欧姆定律,电阻与电流成反比。

反比例函数可以帮助我们计算在给定电阻下的电流,或者在给定电流下的电阻。

5. 质量和密度的关系:在物理学中,物体的质量和密度之间通常存在反比例关系。

根据定义,密度等于物体的质量除以其体积。

因此,当质量增加时,密度会减小,反之亦然。

反比例函数可以帮助我们计算在给定密度下的质量,或者在给定质量下的密度。

6. 投资和收益的关系:在金融领域中,投资和收益之间通常存在反比例关系。

例如,当我们投资的金额增加时,相同的投资收益率下的收益会减少。

反比例函数可以帮助我们计算在给定投资金额下的收益,或者在给定收益率下的投资金额。

这些都是反比例函数在实际问题中的一些常见应用。

通过将实际问题转化为反比例函数的形式,我们可以更好地理解和解决这些问题,并在实际生活中应用数学知识。

初中数学利用反比例函数关系式解决实际问题建议收藏

初中数学利用反比例函数关系式解决实际问题建议收藏

初中数学利用反比例函数关系式解决实际问题建议收藏反比例函数是数学中的一种函数关系,其中变量之间存在倒数关系。

在实际生活中,我们经常会遇到一些与反比例关系相关的问题,如物体的速度与时间的关系、工人的工作效率与工作时间的关系等等。

利用反比例函数关系式解决这些实际问题是非常重要的数学应用。

首先,让我们先回顾一下反比例函数的定义和特性。

反比例函数是指当两个变量的乘积为常数时,它们之间存在反比关系。

具体而言,如果变量x和y之间满足xy=k(k为常数),则可以表示为y=k/x。

在这个函数中,x称为自变量,y称为因变量,k称为比例常数。

通过理解反比例函数的特性,我们可以利用它来解决实际问题。

下面举几个例子来说明。

例子1:电动车每小时行驶的距离与电池电量之间存在反比例关系。

当电池电量为100%,电动车可以行驶100km。

那么当电池电量为80%时,电动车可以行驶多远?首先,我们已知电池电量与行驶距离之间存在反比例关系。

设电池电量为x%,行驶距离为y km,则有xy=100。

由题可知,当电池电量为100%时,行驶距离为100km。

代入反比例关系式得100y=100,推导出y=1、所以当电池电量为80%时,电动车可以行驶1 km。

例子2:工人完成一件工作需要10小时。

如果增加一个助手,工作效率翻倍。

那么增加两个助手后,需要多少小时完成这件工作?我们已知工作时间与工作效率之间存在反比例关系。

设工作时间为x小时,工作效率为y,根据题意可得xy=10。

由题可知,增加一个助手后工作效率翻倍,即2y。

代入反比例关系式得2xy=10,推导出x=5、所以增加两个助手后,需要5小时完成这件工作。

例子3:水池自来水管每分钟注满该水池的1/4、如果将水池换成大水缸,注满水缸需要25分钟。

那么换成同样的自来水管,注满水缸需要多少分钟?我们已知注水时间与水池容积之间存在反比例关系。

设注水时间为x 分钟,水池容积为y,根据题意可得xy=25、由题可知,注满水缸需要25分钟。

反比例函数的应用与问题解决

反比例函数的应用与问题解决

反比例函数的应用与问题解决反比例函数是数学中常见的一种函数形式,其特点是自变量和因变量之间的关系满足倒数关系。

在实际应用中,反比例函数可以用来描述一些与数量和比例有关的问题,同时也可以帮助我们解决一些实际生活中的难题。

本文将介绍反比例函数的基本性质和常见应用,并通过实例来讨论一些与反比例函数相关的问题解决方法。

一、反比例函数的基本性质反比例函数的一般形式为y = k/x,其中k是常数,x和y分别表示自变量和因变量。

反比例函数的基本性质如下:1. 定义域和值域:自变量x的取值范围为除0以外的实数集,当x趋近于0时,函数值趋于无穷大;因变量y的取值范围为除0以外的实数集,当x趋近于无穷大时,函数值趋近于0。

2. 奇偶性:反比例函数不具有奇偶性,即不满足f(-x) = f(x)或f(-x)= -f(x)。

3. 对称轴:反比例函数的图像关于原点对称。

二、反比例函数的应用反比例函数在实际应用中具有广泛的应用,常见的领域包括物理学、经济学和工程学等。

下面将介绍几个常见的反比例函数应用实例:1. 电阻与电流关系:根据欧姆定律,电阻R与通过其的电流I之间的关系为R = U/I,其中U为电压常数。

可以看出,当电流增大时,电阻减小,两者成反比关系。

2. 速度与时间关系:对于匀速直线运动,速度v与时间t之间的关系为v = s/t,其中s为位移常数。

可以看出,当时间增加时,速度减小,两者成反比关系。

3. 药物浓度与体积关系:在化学实验中,溶液的浓度C与溶质在溶剂中的体积V之间的关系为C = n/V,其中n为溶质的量。

可以看出,当体积增大时,浓度减小,两者成反比关系。

三、反比例函数问题的解决方法在实际问题中,与反比例函数相关的问题可能涉及到函数值的计算、变量之间的关系以及最值的求解等。

下面将针对几种常见问题提供解决方法。

1. 计算函数值:根据反比例函数的定义,要计算函数在某一点的值,只需将该点的自变量代入函数表达式中即可。

八年级数学下册 第十七章 实际问题与反比例函数

八年级数学下册 第十七章 实际问题与反比例函数

第十七章 实际问题与反比例函数导学案21.把握反比例函数在其他学科中的运用,体验学科整合思想.2.深刻明白得反比例函数在现实生活中的应用.3.体会数学与物理间的紧密联系,增强应用意识,提高运用代数方式解决问题的能力。

重点:将反比例函数与其他学科整合.难点:如何从实际问题中抽象数学问题、成立数学模型、再解决其他学科问题.1什么叫反比例函数,写出它的标准形式?用函数观点解实际问题,一要弄清题目中的大体数量关系,将实际问题抽象成数学问题,看看各变量间应知足什么样的关系式(包括已学过的大体公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练把握反比例函数的意义、图象和性质,专门是图象,要做到数形结合,如此有利于分析和解决问题。

这是解决实际问题的大体思路。

1.必然质量的氧气,密度是体积V 的反比例函数,当V =8m 3时,ρ=1.5kg/m 3,那么ρ与V 的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R =20时,电流强度I =0.25A .那么(1)电压U =______V ; (2)I 与R 的函数关系式为______;(3)当R =12.5时的电流强度I =______A ;(4)当I =0.5A 时,电阻R =______.学始于疑1.小明家新买了几桶墙面漆,预备从头粉刷墙壁,请问如何打开这些未开封的墙面漆桶呢?其原理是什么? 课中探究 二 三 一2.台灯的亮度、风扇的转速都能够调剂,你能说出其中的道理吗?探讨点 实际问题与反比例函数[例3]小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,别离为1200牛顿和0.5米.(1)动力F 与动力臂l 有如何的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?(2)假假想使动力F 不超过题(1)中所使劲的一半,那么动力臂至少要加长多少? 试探1:物理中的杠杆定律:阻力⨯ =动力⨯ .由“杠杆定律”知变量动力与动力臂成反比关系,写出函数关系式。

初二数学主要学什么内容怎么样提高成绩

初二数学主要学什么内容怎么样提高成绩

初二数学主要学什么内容怎么样提高成绩初二数学主要学分式、反比例函数、勾股定理、四边形、数据分析。

其中:分式包括分式运算和分式方程。

反比例函数包括实际问题与反比例函数。

勾股定理包括勾股定理的证明与勾股定理的逆定理。

四边形包括平行四边形以特殊的平行四边形与梯形。

数据包括数据代表和数据波动。

初二数学主要学习内容初二数学主要学分式、反比例函数、勾股定理、四边形、数据分析。

其中:分式包括分式运算和分式方程。

反比例函数包括实际问题与反比例函数。

勾股定理包括勾股定理的证明与勾股定理的逆定理。

四边形包括平行四边形以特殊的平行四边形与梯形。

数据包括数据代表和数据波动。

代数部分:1、有理数、无理数、实数2、整式、分式、二次根式3、一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式4、函数(一次函数、二次函数、反比例函数)5、统计初步几何部分:1、线段、角2、相交线、平行线3、三角形4、四边形5、相似形6、圆初二数学怎么快速提高成绩一、要认真分析数学差的原因。

如果是因为基础较差,对所学知识无法较快的、很好的理解,导致成绩越来越差,建议从基础抓起,好好利用即将到来的两个月时间,稳扎稳打,把基础打扎实,逐步提高成绩。

如果是自己不愿意学习数学,上课不认真,作业不愿做,那就要提升学习数学的兴趣,对自己的未来进行规划,产生学习动力才行,不然,不愿意学,做什么都是没有效果的。

二、要制定具体的学习计划。

在解决学习动力之后,就要制定学习计划。

没有计划的、盲目的补习也是不可取的。

在暑假前制定一个详细的辅导计划,什么时间完成那些知识的学习和复习,严格执行,循序渐进,真正沉下心去,认真学习。

三、要培养良好的学习习惯。

学习过程中,要逐步养成良好的学习习惯,比如在假期里找老师辅导时,一定要做好如下工作:上课前要做好预习,下课后及时复习,通过反复训练巩固所学知识,把那些概念、公式、定理背熟。

理解透彻;对于自己了解不透、不会运用的地方,一定要及时请教老师,把知识学深透。

人教版-数学-八年级下册- 实际问题与反比例函数 导学案(含答案)

人教版-数学-八年级下册- 实际问题与反比例函数 导学案(含答案)

17.2 实际问题与反比例函数(一)【学习目标】掌握从实际问题中建构反比例函数模型(学科内应用).(重点、难点)【自主预习】某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.(1)请你解释他们这样做的道理.m)的变化,人和木板对地(2)当人和木板对湿地的压力一定时,随着木板面积S(2面的压强p(Pa)将如何变化?(3)如果人和木板对湿地的压力合计600N,那么①用含S的代数式表示p,p是S的反比例函数吗?为什么?m时,压强是多少?②当木板面积为0.22③如果要求压强不超过6 000Pa,木板面积至少要多大?④在直角坐标系中,作出相应的函数图象.⑤请利用图像对(2)和(3)作出直观解释.【自主探究】如右图,某玻璃器皿制造公司要制造一种容积为1升(1升=1•立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?【自主检测】1.已知甲、乙两地相距skm,汽车从甲地匀速行驶到乙地,•如果汽车每小时耗油量为aL,那么从甲地到乙地汽车的总耗油量y(L)与汽车的行驶速度v(km/h)的函数图象大致是()2.面积为2的△ABC,一边长为x,这边上的高为y,则y与x•的变化规律用图象表示大致是()cm,写出其长y与宽x之间的函数表达式;3.(1)已知某矩形的面积为202(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?(3)如果要求矩形的长不小于8cm,其宽至多要多少?4.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103m2.(1)所需的瓷砖块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是80cm2,灰、白、蓝瓷砖使用比例为2:2:1,•则需要三种瓷砖各多少块?【自主小结】参考答案【学习目标】掌握从实际问题中建构反比例函数模型(学科内应用).(重点、难点) 【自主预习】某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.(1)请你解释他们这样做的道理.(2)当人和木板对湿地的压力一定时,随着木板面积S (2m )的变化,人和木板对地面的压强p (Pa )将如何变化?(3)如果人和木板对湿地的压力合计600N ,那么①用含S 的代数式表示p ,p 是S 的反比例函数吗?为什么? ②当木板面积为0.22m 时,压强是多少?③如果要求压强不超过6 000Pa ,木板面积至少要多大? ④在直角坐标系中,作出相应的函数图象. ⑤请利用图像对(2)和(3)作出直观解释.解:(1)他们这样做主要是为了减少人和木板对地面压强,避免人陷入烂泥湿地; (2)当人和木板对湿地的压力一定时,随着木板面积S (2m )的增大,人和木板对地面的压强p (Pa )将减小;当木板面积S (2m )减小,人和木板对地面的压强p (Pa )将增大;(3)①SP 600=,P 是S 的反比例函数.因为函数SP 600=符合反比例函数的基本形式,满足反比例函数的概念;②当木板面积为0.22m 时,压强是3000 Pa ;③如果要求压强不超过6 000Pa ,木板面积至少要0.12m ④图略⑤根据图形可知,木板面积越小,人和木板对地面的压强就越大;木板面积越大,人和木板对地面的压强就越小;无论木板面积多大,人和木板对地面的压强始终存在. 【自主探究】如右图,某玻璃器皿制造公司要制造一种容积为1升(1升=1•立方分米)的圆锥形漏斗.(1)漏斗口的面积S 与漏斗的深d 有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?解:(1)根据圆锥的体积公式有:131=Sd∴漏斗口的面积S 与漏斗的深d 的函数关系为dS 3=(2)如果漏斗口的面积为100厘米2,即1=S 平方分米 ∴漏斗的深3=d 分米30=厘米.【自主检测】1.已知甲、乙两地相距skm ,汽车从甲地匀速行驶到乙地,•如果汽车每小时耗油量为aL ,那么从甲地到乙地汽车的总耗油量y (L )与汽车的行驶速度v (km /h )的函数图象大致是( C )2.面积为2的△ABC ,一边长为x ,这边上的高为y ,则y 与x •的变化规律用图象表示大致是( C )3.(1)已知某矩形的面积为202cm ,写出其长y 与宽x 之间的函数表达式; (2)当矩形的长为12cm 时,求宽为多少?当矩形的宽为4cm ,求其长为多少? (3)如果要求矩形的长不小于8cm ,其宽至多要多少?解:(1)当某矩形的面积为202cm 时,其长y 与宽x 之间的函数表达式为xy 20=; (2)当矩形的长为12cm 时,宽为cm cm 351220= 当矩形的宽为4cm 时,长为cm cm 5420=(3)如果要求矩形的长不小于8cm ,其宽至多cm 5.24.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103m 2.(1)所需的瓷砖块数n 与每块瓷砖的面积S 有怎样的函数关系? (2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是80cm 2,灰、白、蓝瓷砖使用比例为2:2:1,•则需要三种瓷砖各多少块?解:(1)所需的瓷砖块数n 与每块瓷砖的面积S 的函数关系为Sn 5000=(2)∵每块瓷砖的面积都是80cm 2=0.008m 2,∴625000008.05000==n (块)∴需要灰瓷砖25000052625000=⨯(块),白瓷砖250000块,蓝瓷砖125000块.【自主小结】反比例函数学科内应用面积问题 体积问题图象均在一项限 变量取值大于0。

人教版八年级数学下册反比例函数知识点归纳(重点)

人教版八年级数学下册反比例函数知识点归纳(重点)

人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.答案:(1)D.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。

数学实际问题与反比例函数

数学实际问题与反比例函数
反比例函数的图像在平面直角坐标系中表现为双 曲线,其两支分别位于第一、三象限或第二、四 象限。
渐近线
双曲线有两条渐近线,分别是x轴和y轴。当x趋 近于0或y趋近于0时,双曲线无限接近这两条渐 近线。
对称性
反比例函数的图像关于原点对称,即如果点(x, y) 在图像上,那么点(-x, -y)也在图像上。
实验改进
针对实验反思中发现的问题和不足, 提出改进措施和建议。
实验拓展
在反思和改进的基础上,进一步拓 展实验内容和范围,深化对反比例 函数的研究。
06
结论与展望
研究结论
反比例函数在实际问题中的应用广泛性
本研究通过多个实际案例的分析,证实了反比例函数在描述和解决现实生活中的多种问题 时的有效性,如物理、经济、工程等领域。
反比例函数的性质
当 $k > 0$ 时,反比例函数在第一、三象限内单调 递减;当 $k < 0$ 时,反比例函数在第二、四象限 内单调递增。
02
数学实际问题中的反比例关系
生活中的反比例关系
速度、时间和距离的关系
当距离一定时,速度和时间成反比。例如,从家到学校的距离是固定的,如果 走路速度越快,所需时间就越短。
培养学生的数学应用能力和问题解决能力
通过实际问题与反比例函数的结合,帮助学生理解数学在实际生 活中的应用,并提高其数学应用能力和问题解决能力。
反比例函数的概念
反比例函数的定义
形如 $y = frac{k}{x}$($k$ 为常数,$k neq 0$)的 函数称为反比例函数。
反比例函数的图像
反比例函数的图像是一条双曲线,位于第一、三象 限或第二、四象限。
函数的连续性
反比例函数在其定义域内是连 续的,但在x=0处没有定义, 因此不连续。

八年级数学实际问题与反比例函数1(1)

八年级数学实际问题与反比例函数1(1)
1LpH=6和1LpH=8的盐水溶液混合后其溶液的[H+]等于。A、10-7B、10-6C、10-8D、10-7.5 监理招标有哪些特点? 手术室应设有工作人员出入通道、患者出入通道,物流做到洁污分开,流向合理。A.正确B.错误 [单选,共用题干题]某计算机的Cache采用相联映像,Cache容量为16KB,每块8个字,每个字32位,并且将Cache中每4块分为一组。若主存最大容量为4GB且按字节编址,则主存地址应为(1)位,组号应为(2)位。若Cache的命中率为0.95,且Cache的速度是主存的5倍,那么与不采用Cache相 用Cache后速度大致提高到(3)倍。空白(1)处应选择A.24B.32C.36D.40 一致百虑 产褥感染确定病原体的方法不宜A.分泌物涂片B.病原体培养C.检查病原体抗原D.检测特异性抗体E.诊刮取内膜病检 [单选,共用题干题]VRMLisa(1)for3DmultimediaandsharedvirtualworldsontheWWW.IncomparisontoHTML,VRMLaddsthenextlevelofinteraction,structuredgraphics,andextra(2)(zandtime)tothepresentationofdocuments.TheapplicationsofVRMLare(3), rangingfromsimplebusinessgraphicstoentertainingWWWpagegraphics,manufacturing,scientific,entertainment,andeducationalapplications,and3Dsharedvirtualworldsandcommunities.X3DisthenameunderwhichthedevelopmentofVRMLisco

反比例函数的性质与应用

反比例函数的性质与应用

反比例函数的性质与应用反比例函数是数学中一类特殊的函数,其形式为y=k/x,其中k为常数。

反比例函数具有一些特殊的性质和广泛的应用。

本文将探讨反比例函数的性质以及其在实际问题中的应用。

一、反比例函数的性质1. 反比例函数的图像特点:反比例函数的图像呈现出一条双曲线,曲线在坐标系的第一和第三象限中。

当x趋于正无穷或负无穷时,y趋于0,当x为0时,y趋于无穷大或无穷小。

2. 反比例函数的单调性:反比例函数在定义域内是单调的,即如果x1>x2,则k/x1<k/x2或k/x1>k/x2。

3. 反比例函数的对称性:反比例函数具有关于原点的对称性,即对于任意实数x,有k/x=-k/(-x)。

4. 反比例函数的渐近线:反比例函数的图像有两条渐近线,即x轴和y轴,当x趋于正无穷大或负无穷大时,反比例函数的图像趋近于x 轴;当y趋于正无穷大或负无穷大时,反比例函数的图像趋近于y轴。

二、反比例函数的应用反比例函数在实际问题中有着广泛的应用,以下是几个常见的应用领域:1. 电阻与电流关系:欧姆定律可以表示为U=RI,其中U为电压,I 为电流,R为电阻。

当电阻保持不变时,电压与电流成反比例关系;当电流保持不变时,电压与电阻成正比例关系。

2. 时间与速度关系:在旅行中,速度等于路程除以时间,即v=s/t。

当路程保持不变时,速度与时间成反比例关系;当速度保持不变时,速度与路程成正比例关系。

3. 投资收益率:在投资领域,投资的收益率与投资金额成反比例关系。

投资金额越大,收益率越低;投资金额越小,收益率越高。

4. 物体质量与重力关系:牛顿第二定律可以表示为F=ma,其中F 为物体受到的力,m为物体的质量,a为物体的加速度。

当力保持不变时,加速度与物体质量成反比例关系;当加速度保持不变时,力与物体质量成正比例关系。

以上仅是反比例函数的一些常见应用示例,实际上反比例函数在各个科学领域都有广泛的应用,如经济学、物理学、工程学等。

实际问题与反比例函数洋葱数学

实际问题与反比例函数洋葱数学

实际问题与反比例函数洋葱数学
反比例函数是一种广泛应用的函数形式,可以用来模拟许多实际现象。

洋葱数学就是利用
反比例函数来模拟近距离射击成功率的一个模型。

通常都是应用于战争游戏中,但它也可
以用来解决实际问题,比如说最少时间拜访多个地点的路线规划。

在洋葱数学模型中,每次射击的命中率都会随目标距离的增加而减少,其函数表达式为:
T(d) = 1 / (1 + d),其中d是射击目标和射手之间的距离,T(d)是射击命中率。

可以看到,随着距离增加,攻击命中率越来越低,被攻击者则有越来越高的机会逃脱。

同样,反比例
函数也可以用来解决实际问题,如最短时间拜访多个地点的路线规划问题。

在路线规划的问题中,可以用反比例函数来表示每个节点之间的距离。

在这个模型中,可
以以节点i为起点,计算它到节点j的最短距离,其函数表达式可以写为: D(i, j) = 1 / (1
+ |i - j|),其中|i - j|表示i和j之间的距离。

由于每个节点之间距离都是采用反比例函数来
表示,因此可以有效地避免节点之间重复访问,从而可以减少路线寻址的时间。

总之,反比例函数可以应用于多种实际问题求解,比如洋葱数学中的近距离射击命中率模型,以及路线规划中的节点距离表达式。

通过反比例函数,我们不仅可以解决战争游戏中
的射击成功率问题,而且还可以解决实际问题,比如说最短时间拜访多个地点的路线规划。

初中数学八年级17.2实际问题与反比例函数优质课PPT多媒体课件

初中数学八年级17.2实际问题与反比例函数优质课PPT多媒体课件

实际 问题
建立数学模型 运用数学知识解决
反比例 函数
补充:某商场出售一批进价为2元的贺卡,在市 场营销中发现此商品的日销售单价x元与日销售量y 之间有如下关系: X(元) 3 Y(个) 20 4 5 6 15 12 10
(1)猜测并写出y与x之间的函数关系式 ; (2)设经营此贺卡的销售利润为w元,试求出w与x之 间的函数关系式,若物价局规定此贺卡的销售价最 高不能超过10元/个,请你求出当日销售单价x定 为多少元时,才能获得最大日销售利润?
2OLeabharlann AP2.如果另一辆车行驶时间和平 均速度的关系可用左边的曲 线表示,你认为它们行驶的 总路程一样吗?
50
B
V (km/h)
复习: 利用反比例函数处理实际问题的步骤: 1.列出反比例函数关系式;
2.利用反比例函数关系式确定变量的值; (要注意数形结合) 3.理解你所求出值的实际意义.
公元前3世纪,古希腊科学家阿基米德说:”给我 一个支点,我可以撬动地球!”你觉得可能吗?
(2)用电器输出功率的范围多大?
练习: 一封闭电路中,电流 I (A) 与电阻 R (Ω)之间的 函数图象如下图,回答下列问题:
(1)写出电路中电流 I (A)与电阻R(Ω)之间的函数关系 式. I /A (2)如果一个用电器的电 阻为 5 Ω,其允许通过的 最大电流为 1 A,那么把这 个用电器接在这个封闭电 路中,会不会烧坏?试通过 2 计算说明.
0
3
(3) 若允许的电流不得超过 4 A 时, 那么 电阻R 的取值应控制在什么范围?
R /Ω
生活中的反比例关系:
1.重型坦克,推土机要在轮子上安装又宽 又长的履带,这是为什么呢?为什么大型载 重卡车装有许多车轮呢? __ F P= S 你能用反比例函数的知识解释它吗? 600 p ( s 0) 请赋予这个关系式实际意义 s 2.你一定熟悉这样一种现象:生活中常用 的刀具,使用一段时间后就会变钝,用起 来很费劲,如果把刀刃磨细,刀具就会锋 利起来,你知道这是为什么吗?

八年级数学实际问题与反比例函数1(1)

八年级数学实际问题与反比例函数1(1)
女性,40岁。双侧腮腺区反复肿大,伴双眼异物感、无泪、口干,饮水量增加。检查发现双侧腮腺肿大,质软,无压痛,张口度正常,口腔粘膜干燥,发红。腮腺导管口无红肿,分泌液清,但量少。为明确诊断,需进一步作一系列检查,其中对诊断帮助不大的是()A.Schirmer试验B.腮腺平 造影D.唇腺活检E.空腹血糖 可用于预防甲型肝炎的被动免疫制剂是A.甲型肝炎减毒活疫苗B.乙型肝炎基因重组疫苗C.血清白蛋白D.丙种球蛋白E.核酸 儿童期生长激素分泌不足会导致()</br>儿童生长激素过度分泌会导致()</br>成人生长激素过度分泌会导致()</br>儿童甲状腺激素分泌不足会导致()</br>成人甲状腺激素过度分泌会导致()A.侏儒症B.巨人症C.呆小病D.肢端肥大症E.Graves病 防排烟的设计理论就是对的理论。A.烟气控制B.火灾控制C.人员疏散控制D.火灾扑救 饱和温度与饱和压力的关系是什么? 按相关规定医院每年应组织几次以上的应急演练A.1次B.2次C.3次D.4次E.不限 下述哪些是腹膜透析的相对禁忌证A.妊娠B.多囊肾C.马蹄肾D.腹腔粘连E.双肾盂畸形 运球是运动员在跑动中,用脚连续球。A、踢捅B、击扣C、推拨D、弹击 男性,68岁。患慢性支气管炎和肺气肿10余年,近3d来咳嗽、气急加重,痰稍黄就诊。痰涂片见球状革兰氏阴性小杆菌。其可能病原体是A.肺炎链球菌B.铜绿假单胞菌C.流感嗜血杆菌D.肺炎克雷白杆菌E.不动杆菌 HCV感染的主要传播途径是A.粪-口途径传播B.输血C.集体预防接种D.母婴垂直传播E.生活密切接触 平行停车方式是车辆停放时车身方向与通道平行,其特点是。A.出入时占用车行道宽度较小B.车辆驶出方便迅速C.停车带和通道的宽度最小D.能适应同时停放不同车型的车辆E.占用停车道宽度最大 利用油脂的沸点远高于水的沸点的温度条件,对肉品进行热加工处理的过程称为.A.烘烤B.干燥C.烟熏D.油炸 关于注意缺陷障碍(伴多动)的病因及发病机制,叙述错误的是A.有家族聚集性B.左侧大脑功能低下C.铅暴露D.多巴胺功能异常E.家庭关系严重不和 不属于下腔静脉属支的静脉是A.肝静脉B.肝门静脉C.肾静脉D.腰静脉E.髂总静脉 周期性运动 阅读以下关于Java企业级应用系统开发体系结构选择方面的叙述,在答题纸上回答问题1至问题3。博学公司承担了某中小型企业应用软件开发任务,进度要求紧迫。为了按时完成任务,选择合适的企业应用系统开发体系结构非常重要。因此,首席架构师张博士召集了相关技术人员进行方案讨论, 案论证时,项目组成员提出了两种开发思路。(1)谢工建议采用J2EE和EJB进行开发。理由是J2EE定义了标准的应用开发体系结构和部署环境,EJB是J2EE的基础和核心。J2EE的主要目标是简化开发。(2)王工建议采用Struts、Spring和Hibernate轻量级开源框架相结合的方式。理由是随着Ja 目阵营的发展壮大,一些基于POJOs(PlanOldJavaObjects)的开源框架被广泛地引入到Java企业应用开发中来,与重量级的EJB框架相比,这些轻量级的框架有很多优点。针对这两种思路,张博士仔细比较和分析了两种方案的特点、优点和不足之处。认为王工和谢工的建议都合理,但是,从结 目实际情况出发,最后决定采用王工建议。 事务所应当周期性地选取已完成的业务进行检查,周期最长不得超过年。在每个周期内,应对每个项目合伙人的业务至少选取项进行检查。A.3;1B.1;3C.1;1D.2;2 患儿,4岁,缺铁性贫血,为改善贫血症状,最佳的食物是()A.海带、紫菜B.白菜、西红柿C.鱼、罐头、水果D.果汁、米粉E.动物肝脏、乳制品 负责奥运会形象与景观的设计和管理工作的部门是A.媒体运行部B.文化生活部C.交通部D.奥运会新闻中心 慢性支气管炎急性发作期是指多长时间内出现脓性或粘液脓性痰,痰量明显增加等症状。A.3天B.1周C.2周D.3周E.1个月 水泥砂浆中水泥用量不应小于㎏/M3。A、100B、200C、300D、400 汽缸壁的热应力与其内、外壁温差及壁厚A.无关B.平方成正比C.成反比D.成正比 不属于气逆临床表现的是A.咳喘B.呃逆C.嗳气D.腹泻E.呕吐 开放教育毕业证书属于国民教育系列高等教育学历证书。A.正确B.错误 一般来讲,急性间质性肾炎的尿蛋白特点为A.大量蛋白尿B.中度蛋白尿C.轻度蛋白尿D.微量蛋白尿E.以上均不是 铁路运输中,按月签订货物合同的合同文件,可以用“”代替。A.铁路货物运单B.交货单C.月度要车计划表D.提单 矿产资源的开采工作中,对于超越批准的矿区范围进行采矿的,应当。A.责令退回本矿区范围内进行开采,并赔偿损失B.越界开采矿产品所得利润由相关单位平均分配C.处以罚款,并直接吊销采矿许可证D.直接追究刑事责任 是指所有接受产品、服务或信息的组织和个人。A.供应商B.客户C.需求方D.物流企业 的集中化和组织化,为期货交易的产生和期货市场的形成奠定了基础。A.即期现货交易B.商品交易C.远期现货交易D.期权交易 大咯血时,应采取体位是A.健侧卧位B.患侧卧位C.平卧位D.俯卧位E.坐位 经研究,安氏Ⅲ类骨性畸形的咀嚼效能比正常减少A.20%B.30%C.60%D.55%E.40% 对整个工程实际发生的合理成本与原成本之差额提出的索赔属于。A.补偿索赔B.综合索赔C.单项索赔D.道义索赔 货位管理的储存模式是。A.静态货位、动态商品B.静态货位、静态商品C.动态货位、动态商品D.静态货位、静态商品 在我国目前分税制财政管理体制下,中央政府国家收入有等。A.增值税B.资源税C.消费税D.证券交易(印花)税E.关税 不属细菌性食物中毒临床表现的是A.多有呕吐B.多为脓血便C.可有发热D.多无里急后重E.多有腹痛 铝方通吊顶:

八年级数学下册 实际问题与反比例函数 人教新课标版

八年级数学下册 实际问题与反比例函数 人教新课标版
(参看学生活动记录表)
活动4
练习
活动5
归纳总结。
作业
教师提出实际生活中的
问题,学生提出解决办
法,教师引出利用杠杆原
理问决问题。
公元前3世纪,古希腊的科学家阿基米德发现了著名的:“杠杆定律”:
阻力×阻力臂=动力×动力臂
他形象地说:给我一个支点,我可以把地球撬动。
分析问题中变量间的关

分析动力F与力臂L的关
本活动是考察学生对“杠杆原理”的理解。
在阻力和阻力臂一定
的情况下,动力是动力臂的反比例函数
通过巩固练习,让学生进一步加深对发反比例
函数的运用和理解,
深层次体会建立反比
例函数模型解决实际
问题的思想,巩固和
提高所学知识。
通过小结,使学生把
所学知识进一步内
化,系统化。
系,将石头的实际问题转
化为反比例函数问题
由抽象到具体,验证
几个具体的数值。
通过验证几个数值,进行
列表描点,作出图像观察
规律,进一步从图像的变化趋势上解释规律。
学生分组活动,完成测弹
簧秤示数的过程,并体会
弹簧秤示数就是距离的
。反比例函数。
教师展示练习,学生认真
审题,思考。
学生认真审题后自主探
究。
学生建立了反比例函数关系后求值。
活动1
如何打开一个未开封的奶粉桶?
活动2
问题:
几位同学玩撬石头的游戏,已知阻力和阻力臂不变,分别是1200牛顿和0.5米,设动力为F,动力臂为L.回答下列问题:
(1)动力F与动力臂L有怎样的函数关系?
(2)小刚,小强,小明,小华分别选取了动力臂为1米,1.5米,2米,3米的撬棍,你能得出他们各自撬动石头至少需要多大的力吗?

《实际问题与反比例函数》教案

《实际问题与反比例函数》教案

《实际问题与反比例函数》教案课标要求能用反比例函数解决简单实际问题.教学目标知识与技能:1.能灵活列出表达式解决一些实际问题;2.能综合利用几何、方程、反比例函数的知识解决实际问题.过程与方法:1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题;2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力;3.初步形成自己构建数学模型的能力.情感、态度与价值观:1.积极参与交流,并积极发表自己的见解,相互促进;2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具,体验数学的实用性.教学重点综合运用反比例函数的解析式、图象和性质解决实际问题.教学难点综合运用反比例函数的知识解决较复杂的实际问题.教学流程一、情境引入问题:反比例函数kyx=的图象是什么样的?它有什么性质?引出课题:前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决实际问题中的作用.今天,我们进一步探讨如何利用反比例函数解决实际问题.二、探究归纳例1:市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15 m时,公司临时改变计划,把储存室的深度改为15 m.相应地,储存室的底面积应改为多少(结果保留小数点后两位)?解:(1)根据圆柱的体积公式,得Sd =104,所以S关于d的函数解析式为410Sd =.(2)把S=500代入410Sd=,得410 500d=解得:d=20(m)答:如果把储存室的底面积定为500 m2,施工时应向地下掘进20 m深.(3)把d=15代入410Sd=,得41015S=解得:S≈666.67(m2)答:当储存室的深度为15 m时,底面积约为666.67 m2.例2:码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数解析式为240vt=.(2)把t=5代入240vt=,得240485v==(吨).∴如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.∵对于函数240vt=,当t>0时,t越小,v越大.∴若货物不超过5天卸载完,则平均每天至少要卸载48吨.问题1:公元前 3 世纪,有一位科学家说了这样一句名言:“给我一个支点,我可以撬动地球!”你们知道这位科学家是谁吗?这里蕴含什么样的原理呢?杠杆原理:阻力×阻力臂=动力×动力臂例3:小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200 N 和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?解:(1)根据“杠杆原理”,得Fl=1200×0.5,所以F关于l的函数解析式为600Fl=.当l=1.5 m时,6004001.5F==(N).对于函数600Fl=,当l=1.5 m 时,F=400N,此时杠杆平衡.因此,撬动石头至少需要400N的力.(2)当14002002F=⨯=时,由600 200l=得6003 200l==(m),3-1.5=1.5(m).对于函数600Fl=,当l>0时,l越大,F越小.因此,若想用力不超过400N的一半,则动力臂至少要加长1.5m.追问:在我们使用撬棍时,为什么动力臂越长越省力?问题2:电学知识告诉我们,用电器的功率P(单位:W)、两端的电压U(单位:V)以及用电器的电阻R(单位:Ω)有如下关系:PR=U2.这个关系也可写为P=2UR,或R=2UP.例4:一个用电器的电阻是可调节的,其范围为110~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围多少?解:(1)根据电学知识,当U=220时,得2220PR=.(2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻R 最小值=110代入2220P R =,得P 最大值=2220440110=(W ); 把电阻R 最大值=220代入2220P R =,得P 最小值=2220220220=(W ); 因此用电器功率的范围为220~440W .追问:想一想为什么收音机的音量、某些台灯的亮度以及电风扇的转速可以调节. 三、应用提高1.如图,某玻璃器皿制造公司要制造一种容积为1L (1L =1dm 3)的圆锥形漏斗. (1)漏斗口的面积S (单位:dm 2)与漏斗的深度d 有怎样的函数关系? (2)如果漏斗口的面积为100cm 2,则漏斗的深为多少?答案:(1)3S d=(2)30 cm 2.一司机驾驶汽车从甲地去乙地,他以80 km /h 的平均速度用6 h 到达目的地. (1)当他按原路匀速返回时,汽车的速度v 与时间t 有怎样的函数关系? (2)如果该司机必须在4h 之内回到甲地,那么返程时的平均速度不能小于多少? 答案:(1)480V t=(2)120 km /h 3.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103m 2.(1)所需的瓷砖块数n 与每块瓷砖的面积S (单位:m 2)有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,建筑师决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是80cm 2,且灰、白、蓝瓷砖使用数量的比为2∶2∶1,需要三种瓷砖各多少块?答案:(1)3510n S⨯=(2)250000块,250000块,125000块四、体验收获 说一说你的收获.1.我们如何建立反比例函数模型,并解决实际问题?2.在这个过程中要注意什么问题?五、拓展提升1.某校科技小组进行野外考察,途中遇到一片十几米宽的湿地.为了安全、迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1)木板面积S 与人和木板对地面的压强p 有怎样的函数关系?(2)当木板面积为0.2 m2时,压强是多少?(3)要求压强不超过6000 Pa,木板面积至少要多大?答案:(1)600(0)p SS=>(2)3000 Pa(3)至少0.1m22.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)请写出这个反比例函数的解析式.(2)蓄电池的电压是多少?(3)完成下表:范围?答案:(1)36IR=(2)36V(3)12,9,7.2,6,5.14,4.5,4,3.6(4)R≥3.6六、课内检测1.已知甲、乙两地相距s(单位:km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)关于行驶速度v(单位:km/h)的函数图象是()答案:C2.在某一电路中,电源电压U 保持不变,电流I (A )与电阻R (Ω)之间的函数关系如图所示. (1)写出I 与R 之间的函数解析式;(2)结合图象回答当电路中的电流不超过12 A 时,电路中电阻R 的取值范围是多少Ω?答案:(1)36I R=(2)电阻R 大于或等于3 Ω 3.密闭容器内有一定质量的二氧化碳,当容器的体积V (单位:m 3)变化时,气体的密度ρ(单位:kg /m 3)也会随之变化.已知密度ρ与体积V 是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V 的函数解析式; (2)求V =9 m 3时,二氧化碳的密度ρ.答案:(1)9.9Vρ=(2)1.1 kg /m 3 七、布置作业必做题:教材16页习题26.2第2、3、4、7题. 选做题:教材17页习题26.2第9题. 附:板书设计教学反思:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档