渣气孔缺陷原因
铸造缺陷-气孔的描述及分析
铸造缺陷-----气孔的概述以及分析一、术语含义:金属液在凝固过程中陷入金属中的气泡,在铸件中形成的孔洞,称为气孔。
还有气眼、气泡、呛火、呛等非正规名称,是孔壁光滑的孔洞类铸造缺陷。
二、目视特征:是指肉眼看到的铸件缺陷的形态特征,是区分气孔、缩孔、砂眼、加渣及确定气孔种类性质的依据。
1、形状:一般为球形或近似于球形、泪滴形、梨形、蠕虫状、长针形等气孔孔洞。
2、表面面貌:在肉眼观察下,气孔孔壁是平滑的,表面颜色有的发亮,有的金属本色,有的发蓝,灰铸铁孔洞表面有的附着一层碳膜。
3、尺寸:由于形成气孔原因复杂,尺寸变动是无规律的,有的大到10至20几毫米,有的小到不到1毫米。
4、部位:是指孔洞在铸件截面中的位置,一般可分为表面气孔,一落砂就可发现,内部气孔只有在机加工后才能显示出来,有的皮下气孔在喷砂后或机加工去除表面硬皮后才能发现。
多出现在浇注位置的上面。
5、危害性:气孔是铸件常见和多发性缺陷,一般情况下,气孔使铸件报废数量约占铸件废品率的25%-80%。
6、气孔种类:从气孔形成原因、形成过程、形成机理来分类,气孔可分为5种,及侵入气孔、裹挟气孔、析出气孔和内外反应气孔。
下面先说一说最常见、发生最多的侵入型气孔。
一、从浇注到铸件凝固成壳期间,砂型、砂芯发生的气体侵入金属液时产生的气孔称为侵入性气孔。
1、它的形状特征:团球形、梨形、泪滴形,小头所指是气体来源的方向。
2、表面面貌:孔壁平滑,铸件侵入气体主要成分是CO时,孔壁呈蓝色;是氢气时,孔壁是金属色,发亮;是水蒸气时,孔壁是氧化色,孔壁发暗,灰色。
3、一般尺寸较大,在几毫米以上。
4、部位:按浇注位置来说,常处于铸件上表面,去掉浇冒口或气针后可看到,有的粗加工后表现出来。
5、分布:大多情况下是单个或几个聚集的尺寸较大的气孔,很少成为弥散性气孔或针孔。
二、形成机理:1、砂型:砂型中的气体侵入金属液,分为两种:①不润湿型:组成砂型型砂粒度细、强度高、紧实度大(硬),如静压线造型。
铸造缺陷分类标准
铸造缺陷分类标准铸造是一种广泛用于工业生产的工艺,它涉及到将熔融的金属倒入模具中,待其冷却凝固后形成所需形状的金属零件。
然而,铸造过程中可能会产生各种缺陷,这些缺陷会影响到产品的质量和性能。
为了更好地理解和控制铸造过程,制定一个铸造缺陷分类标准是非常必要的。
以下是一个基于常见铸造缺陷的分类标准:一、孔洞类缺陷孔洞类缺陷是指在铸造过程中,由于气泡或挥发物未能及时逸出,导致在铸件内部或表面形成的孔洞。
这类缺陷包括以下几种:1. 气孔:由于气体在金属液中形成气泡,未能及时逸出而形成的孔洞。
2. 夹渣孔:由于金属液中夹杂物未及时排除而形成的孔洞。
二、裂纹和冷隔类缺陷裂纹和冷隔类缺陷是指在铸造过程中,由于冷却速度过快、金属液收缩等因素导致的铸件开裂或冷隔现象。
这类缺陷包括以下几种:1. 热裂纹:由于金属液冷却速度过快,导致铸件内部应力过大而产生的裂纹。
2. 冷裂纹:由于铸件冷却过程中受到外力作用,导致铸件开裂。
3. 冷隔:由于金属液在冷却过程中未能完全融合,形成的分隔区域。
三、缩松和缩孔类缺陷缩松和缩孔类缺陷是指在铸造过程中,由于金属液冷却过程中体积收缩,导致在铸件内部或表面形成的缩松或缩孔。
这类缺陷包括以下几种:1. 缩松:由于金属液冷却过程中体积收缩不均匀,导致铸件内部形成的细小孔洞。
2. 缩孔:由于金属液冷却过程中体积收缩过大,导致铸件内部形成的较大孔洞。
四、气孔、夹杂和夹渣类缺陷气孔、夹杂和夹渣类缺陷是指在铸造过程中,由于金属液中混入气体、杂质或夹渣物而导致的缺陷。
这类缺陷包括以下几种:1. 气孔:由于金属液中混入气体而形成的气泡。
2. 夹渣:由于金属液中夹杂的固体颗粒物而形成的夹渣。
五、形状和表面类缺陷形状和表面类缺陷是指在铸造过程中,由于模具设计、制造或操作不当导致的铸件形状或表面质量的缺陷。
这类缺陷包括以下几种:1. 模具痕迹:由于模具设计或制造不当,导致铸件表面留下的痕迹。
2. 表面粗糙:由于金属液冷却过程中表面收缩不均匀,导致铸件表面粗糙。
焊接缺陷及产生原因
焊接缺陷产生原因及防止措施一、焊接缺陷定义焊接接头的不完整性称为焊接缺陷,主要有焊接裂纹、未焊透、夹渣、气孔和焊缝外观缺陷等。
这些缺陷减少焊缝截面积,降低承载能力,产生应力集中,引起裂纹;降低疲劳强度,易引起焊件破裂导致脆断。
其中危害最大的是焊接裂纹和气孔。
二、焊接缺陷的分类焊接生产中产生焊接缺陷的种类是多种多样的,按其在焊接接头中所处的位置和表现形式的不同,可以把焊接缺陷大致分为两类:一类是外部缺陷;另一类是内部缺陷。
焊接缺陷的详细分类如图1所示。
图1 焊接缺陷分类图焊接缺陷示意图如图2所示:(a)裂纹(b)焊瘤(c)焊穿(d)弧坑(e)气孔(f)夹渣(g )咬边 (h )未融合 (i )未焊透图2 焊接缺陷示意图三、影响焊接缺陷的因素1. 材料因素所谓材料因素是指被焊的母材和所使用的焊接材料,如焊丝、焊条、焊剂及保护气体等。
这些材料在焊接时都直接参与熔池或熔合区的物理化学反应,其中,母材本身的材质对热影响区的性能起着决定性的作用,当然,所采用的焊接材料对焊缝金属的成分和性能也是关键因素。
如果焊材与母材匹配不当,不仅可能引起焊接区内的裂纹、气孔等各种缺陷,也可能引起脆化、软化等性能变化。
所以,为了保证得到良好的焊接接头,必须对材料因素予以重视。
2.工艺因素同一种母材,在采用不同的焊接方法和工艺措施的条件下,其焊接质量会表现出很大的差别。
焊接方法对焊接质量的影响主要在两个方面:首先是焊接热源的特点,其可以直接改变焊接热循环的各项参数,如线能量、高温停留时间、冷却速度等;其次是对熔池和接头附近区域的保护方式,如渣保护、气保护等。
焊接热过程和冶金过程必然对接头的质量和性能会有决定性的影响。
3.结构因素焊接接头的结构设计影响其受力状态,其既可能影响焊接时是否发生缺陷,又可能影响焊后接头的力学性能。
设计焊接结构时,应尽量使接头处于拘束度较小、能自由伸缩的状态,这样有利于防止焊接裂纹的产生。
4.使用条件焊接结构必须符合使用条件的要求,如载荷的性质、工作温度的高低、工作介质有无腐蚀性等,其必然会影响到接头的使用性能。
钢铁材料常见缺陷及其产生原因
钢铁材料常见缺陷及其产生原因引言钢铁材料是工业生产中常用的材料之一,具有良好的力学性能和耐久性。
然而,由于制造过程中的各种因素,钢铁材料往往会出现一些缺陷。
本文将介绍钢铁材料常见的缺陷,探讨其产生的原因,并提出相应的解决方案。
一、气孔气孔是钢铁材料中常见的缺陷之一。
它们是由于熔体中的气体无法完全排除而形成的孔洞。
气孔的出现会降低钢铁材料的强度和韧性,导致材料易于断裂。
产生原因气孔的产生主要与以下几个因素有关:1.气体残留:在钢铁制造过程中,熔体中的气体不能完全排除,导致气孔的形成。
2.不良包壳材料:在铸造过程中使用的包壳材料可能含有化学成分,当熔体进入包壳时,会释放出气体并形成气孔。
3.渣浆不均匀:如果熔体中的渣浆没有均匀分布,会导致气孔的形成。
解决方案为了减少气孔的产生,可以采取以下措施:1.加强熔体的搅拌:通过加大搅拌力度,可以促使气体顺利排除。
2.选择合适的包壳材料:使用不含有气体产生物质的包壳材料,可以减少气孔的形成。
3.控制渣浆成分:保证渣浆成分的均匀分布,可以防止气孔的出现。
二、夹杂物夹杂物是钢铁材料中常见的缺陷之一。
它们是由于在钢铁制造过程中,杂质无法被完全排除而形成的。
夹杂物会降低钢铁材料的力学性能和耐蚀性,影响其使用寿命。
产生原因夹杂物的产生主要与以下几个因素有关:1.不纯净原材料:如果原材料中存在杂质,这些杂质可能无法被完全去除,从而形成夹杂物。
2.冶炼过程不当:在冶炼过程中,温度、压力等因素的控制不当会导致夹杂物的形成。
3.金属液流动不畅:如果金属液的流动不畅,如存在死角、漩涡等情况,会导致夹杂物的形成。
解决方案为了减少夹杂物的产生,可以采取以下措施:1.选择优质原材料:使用净化程度高的原材料,能够有效降低夹杂物的含量。
2.控制冶炼参数:严格控制冶炼过程中的温度、压力等参数,确保金属的纯净度。
3.优化液流动态:通过改善冶炼设备的结构和增加搅拌力度,可以改善金属液的流动状态,减少夹杂物的形成。
焊接中的常见缺陷的成因和防止措施
焊接中的常见缺陷的成因和防止措施焊接是保证结构强度的关键,是保证质量的关键,是保证安全和作业的重要条件。
如果焊接存在着缺陷,就有可能造成结构断裂、渗漏,甚至引起事故。
据对脆断事故调查表明,40%脆断事故是从焊缝缺陷处开始的。
在进行检验的过程中,对焊缝的检验尤为重要。
因此,应及早发现缺陷,把焊接缺陷限制在一定范围内,以确保安全。
焊接缺陷种类很多,按其位置不同,可分为外部缺陷和内部缺陷。
常见缺陷有气孔、夹渣、焊接裂纹、未焊透、未熔合、焊缝外形尺寸和形状不符合要求、咬边、焊瘤、弧坑等。
一、气孔气孔是指在焊接时,熔池中的气泡在凝固时未能逸出而形成的空穴。
产生气孔的主要原因有:坡口边缘不清洁,有水份、油污和锈迹;焊条或焊剂未按规定进行焙烘,焊芯锈蚀或药皮变质、剥落等。
此外,低氢型焊条焊接时,电弧过长,焊接速度过快;埋弧自动焊电压过高等,都易在焊接过程中产生气孔。
由于气孔的存在,使焊缝的有效截面减小,过大的气孔会降低焊缝的强度,破坏焊缝金属的致密性。
预防产生气孔的办法是:选择合适的焊接电流和焊接速度,认真清理坡口边缘水份、油污和锈迹。
严格按规定保管、清理和焙烘焊接材料。
不使用变质焊条,当发现焊条药皮变质、剥落或焊芯锈蚀时,应严格控制使用范围。
埋弧焊时,应选用合适的焊接工艺参数,特别是薄板自动焊,焊接速度应尽可能小些。
二、夹渣夹渣就是残留在焊缝中的熔渣。
夹渣也会降低焊缝的强度和致密性。
产生夹渣的原因主要是焊缝边缘有氧割或碳弧气刨残留的熔渣;坡口角度或焊接电流太小,或焊接速度过快。
在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。
进行埋弧焊封底时,焊丝偏离焊缝中心,也易形成夹渣。
防止产生夹渣的措施是:正确选取坡口尺寸,认真清理坡口边缘,选用合适的焊接电流和焊接速度,运条摆动要适当。
多层焊时,应仔细观察坡口两侧熔化情况,每一焊层都要认真清理焊渣。
封底焊渣应彻底清除,埋弧焊要注意防止焊偏。
常见的焊接缺陷及产生原因和预防措施
(1)焊缝尺寸不符合要求:如焊缝超高、超宽、过窄、高低差过大、焊缝过渡到母材不圆滑等。
(2)焊接表面缺陷:如咬边、焊瘤、内凹、满溢、未焊透、表面气孔、表面裂纹等。
(3)焊缝内部缺陷:如气孔、夹渣、裂纹、未熔合、夹钨、双面焊的未焊透等。
(4)焊接接头性能不符合要求:因过热、过烧等原因导致焊接接头的机械性能、抗腐蚀性能降低等。
W18Cr4V(高速工具钢)-45钢棒
对接电阻焊缝中的夹渣断口照片
钢板对接焊缝X射线照相底片
V型坡口,手工电弧焊,局部夹渣
钢对接焊缝X射线照相底片
V型坡口,钨极氩弧焊打底+手工电弧焊,夹钨
(5)裂纹:焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。
焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性变形,超过材料的强度极限则导致开裂。裂纹的存在大大降低了焊接接头的强度,并且焊缝裂纹的尖端也成为承载后的应力集中点,成为结构断裂的起源。裂纹可能发生在焊缝金属内部或外部,或者在焊缝附近的母材热影响区内,或者位于母材与焊缝交界处等等。根据焊接裂纹产生的时间和温度的不同,可以把裂纹分为以下几类:
焊接缺陷对焊接构件的危害,主要有以下几方面:
(1)引起应力集中。焊接接头中应力的分布是十分复杂的。凡是结构截面有突然变化的部位,应力的分布就特别不均匀,在某些点的应力值可能比平均应力值大许多倍,这种现象称为应力集中。造成应力集中的原因很多,而焊缝中存在工艺缺陷是其中一个很重要的因素。焊缝内存在的裂纹、未焊透及其他带尖缺口的缺陷,使焊缝截面不连续,产生突变部位,在外力作用下将产生很大的应力集中。当应力超过缺陷前端部位金属材料的断裂强度时,材料就会开裂破坏。
六种铸件常见缺陷的产生原因及防止方法
六种铸件常见缺陷的产⽣原因及防⽌⽅法⽓孔(⽓泡、呛孔、⽓窝)特征⽓孔是存在于铸件表⾯或内部的孔洞,呈圆形、椭圆形或不规则形,有时多个⽓孔组成⼀个⽓团,⽪下⼀般呈梨形。
呛孔形状不规则,且表⾯粗糙,⽓窝是铸件表⾯凹进去⼀块,表⾯较平滑。
明孔外观检查就能发现,⽪下⽓孔经机械加⼯后才能发现。
形成原因1、模具预热温度太低,液体⾦属经过浇注系统时冷却太快。
2、模具排⽓设计不良,⽓体不能通畅排出。
3、涂料不好,本⾝排⽓性不佳,甚⾄本⾝挥发或分解出⽓体。
4、模具型腔表⾯有孔洞、凹坑,液体⾦属注⼊后孔洞、凹坑处⽓体迅速膨胀压缩液体⾦属,形成呛孔。
5、模具型腔表⾯锈蚀,且未清理⼲净。
6、原材料(砂芯)存放不当,使⽤前未经预热。
7、脱氧剂不佳,或⽤量不够或操作不当等。
防⽌⽅法1、模具要充分预热,涂料(⽯墨)的粒度不宜太细,透⽓性要好。
2、使⽤倾斜浇注⽅式浇注。
3、原材料应存放在通风⼲燥处,使⽤时要预热。
4、选择脱氧效果较好的脱氧剂(镁)。
5、浇注温度不宜过⾼。
缩孔(缩松)特征缩孔是铸件表⾯或内部存在的⼀种表⾯粗糙的孔,轻微缩孔是许多分散的⼩缩孔,即缩松,缩孔或缩松处晶粒粗⼤。
常发⽣在铸件内浇道附近、冒⼝根部、厚⼤部位,壁的厚薄转接处及具有⼤平⾯的厚薄处。
形成原因1、模具⼯作温度控制未达到定向凝固要求。
2、涂料选择不当,不同部位涂料层厚度控制不好。
3、铸件在模具中的位置设计不当。
4、浇冒⼝设计未能达到起充分补缩的作⽤。
5、浇注温度过低或过⾼。
防⽌⽅法1、提⾼磨具温度。
2、调整涂料层厚度,涂料喷洒要均匀,涂料脱落⽽补涂时不可形成局部涂料堆积现象。
3、对模具进⾏局部加热或⽤绝热材料局部保温。
4、热节处镶铜块,对局部进⾏激冷。
5、模具上设计散热⽚,或通过⽔等加速局部地区冷却速度,或在模具外喷⽔,喷雾。
6、⽤可拆缷激冷块,轮流安放在型腔内,避免连续⽣产时激冷块本⾝冷却不充分。
7、模具冒⼝上设计加压装置。
8、浇注系统设计要准确,选择适宜的浇注温度。
铸造缺陷(气孔与缩孔
(3)、疏松:又称为 显微缩松,是铸件凝固缓 慢的区域因微观补缩通道 堵塞而在枝晶间及枝晶的 晶壁之间形成细小孔洞, 疏松的宏观断口形貌与缩 松类似,微观形貌为分布 在晶界和晶壁间,伴有粗 大树枝晶的显微孔穴,缩 孔、缩松、疏松的形成与 合金的凝固特性关系密 切,凝固温度间隔窄的合 金具有逐曾凝固的特性, 在顺序凝固条件下易形成 集中缩孔,补缩容易,凝 固温度间隔宽的合金具有 体积凝固特性,补缩困 难,易形成缩松和疏松。
10、降低球墨铸铁的硫、磷含量 和残留镁量,用稀土镁合金处理 时,应适当提高碳、硅含量 11、降低浇注温度和浇注速度, 延长浇注时间 12、点冒口,在浇注后一段时间 内,想明冒口内补注高温金属 液,以提高冒口内补缩金属液 量,延长冒口内补缩金属液量保 持高温的时间,提高冒口的补缩 效率 13、捣冒口,用棒搅动明冒口内 的金属液,阻止其表面过早凝 壳,以提高明冒口的补缩效率 14、鉴于合金的缩松倾向具有遗 传性,在选择合金的成分和熔炼 工艺时,除了要注意加强精练和 变质处理,降低合金中低熔点杂 质元素的含量外,还应注意对金 属炉料的选择,例如,在生产易 产生缩松的厚截面球墨铸铁件 时,应选择本身没有缩松的优质 生铁作为金属炉料,并应控制回 炉料和废铸铁的用量
8、冒口数量、尺寸、形 状、设置部位以及冒口与 铸件连接不合理,补缩效 果差 9、内浇道尺寸或位置不 当,使铸件不能顺序凝固 或在铸件中形成局部热节 10、合金中易形成低熔点 粗的杂质元素含量过多, 使凝固温度间隔增大,例 如铸铁中硫、磷含量过多 时会在凝固后期形成低熔 点共晶,使铸件产生疏松 11、砂箱、芯骨刚度差, 型、芯紧实度和强度低而 不均,使铸件同时产生胀 型、缩沉和缩孔(缩松) 缺陷,对凝固过程中会产 生石墨化膨胀压力的球墨 铸铁件,情况更加严重 12、最新的研究表明:合 金的缩松倾向具有遗传 性,例如在化学成分相同 的条件下,用缩松严重的 生铁熔炼的铸铁液浇注的 铸件缩松缺陷严重
铸造常见的缺陷与产生原因
铸造常见的缺陷与产生原因铸造是一种常用的金属加工方法,其用途广泛,但在生产过程中常常会产生一些缺陷,如气孔、夹渣、缩孔等。
这些缺陷不仅会影响铸件的外观质量,还可能降低其力学性能和使用寿命。
下面我将从不同的缺陷类型和产生原因两个方面详细介绍。
一、缺陷类型1. 气孔:气体在铸造过程中产生,并被封入铸件内部,形成孔隙。
气孔的尺寸和分布形态不同,可能是小孔、球形孔、管状孔等。
气孔的产生主要与以下几个因素有关:(1) 铝液中的气体:铝液中含有的氧和氢会在高温下产生氧化反应和水解反应,释放出氧气和氢气。
(2) 表面液相:铝液在铸模表面形成的氧化膜或润滑剂残留等可能导致铝液表面的液相存在,进一步促使气体产生。
(3) 细小颗粒:铝液中存在的颗粒会成为气体生成的核心,进而形成气孔。
2. 夹渣:铝液在充填过程中携带入模型腔内的杂质、氧化物或熔渣等,最终导致铸件内部出现夹杂物。
夹渣的产生原因主要有:(1) 原材料中的杂质:铝合金原材料中可能含有一些杂质,如氧化物、砂粒等。
(2) 熔化过程中的氧化:铝液在高温条件下容易与空气发生氧化反应,形成氧化物。
(3) 流动过程中的杂质:铝液在流动过程中可能带动模具内部的砂粒、润滑剂残留等。
3. 缩孔:铸件内部或者表面出现的凹陷或裂纹。
缩孔的产生原因主要有:(1) 升温不均:铝液升温不均会导致热胀冷缩不一致,从而在铸件内部产生收缩应力,进一步造成缩孔。
(2) 施加过大应力:当铸件过早地受到了外界应力(例如从模型中取出时),铸件内部的温度还没有完全降低,容易产生缩孔。
(3) 金属液体凝固时的收缩:铝合金在凝固过程中会出现一定的收缩,如果凝固过程中支撑不稳定,就会导致缩孔产生。
二、缺陷产生的原因1. 原材料:如果原材料中含有过多的杂质或者粒度过大、成分不均匀等情况,会直接导致铝液在充填模具的过程中产生缺陷。
2. 熔化处理:熔炼过程中的温度不稳定、炉温控制不当,以及熔化时间过长等问题都会导致铝液中含气量增加,从而产生气孔等缺陷。
铸件缺陷的种类产生的原因
铸件缺陷的种类产生的原因铸造生产工序繁多,铸件缺陷的种类很多,产生的原因也很复杂。
类别缺陷名称和特征主要原因分析孔洞气孔铸件内部出现的孔洞,常为梨形、球形,孔的内壁较光滑1.砂型和型芯紧实度过高2.型砂太湿,起模、修型时刷水过多3.砂芯未烘干或通气道堵塞4.浇注系统不正确,气体排不出去缩孔铸件厚截面处出现的形状极不规则的孔洞,孔的内壁粗糙缩松铸件截面上细小而分散的缩孔1.浇注系统或冒口设置不正确,无法补缩或补缩不足2.浇注温度过高,金属液收缩过大3.铸件设计不合理,壁厚不均匀无法补缩4.与金属液化学成分有关,铸铁中C、si含量少、合金元素多时易出现缩松砂眼铸件内部或表面带有砂粒的孔洞1.型砂和芯砂强度不够或局部没舂实,掉砂2.型腔、浇注系统内散砂未吹净3.合箱时砂型局部挤坏,掉砂4.浇注系统不合理,冲坏砂型(芯)渣气孔铸件浇注时的上表面充满熔渣的孔洞,常与气孔并存,大小不一,成群集结1.浇注温度太低,熔渣不易上浮2.浇注时没挡住熔渣3.浇注系统不正确,挡渣作用差表面缺陷机械粘砂铸件表面粘附着一层砂粒和金属的机械混合物,使表面粗糙1.砂型舂得太松,型腔表面不致密2.浇注温度过高,金属液渗透力大3.砂粒过粗,砂粒间空隙过大夹砂铸件表面产生的疤片状.金属突起物。
表面粗糙,边缘锐利,在金属片和铸件之间夹有一层型砂1.型砂热湿强度较低,型腔表面受热膨胀后易鼓起或开裂2.砂型局部紧实度过大,水分过多,水分烘干后,易出现脱皮3.内浇道过于集中,使局部砂型烘烤厉害4.浇注温度过高,浇注速度过慢裂纹热裂铸件开裂,裂纹断面严重氧化,呈暗蓝色,外形曲折而不规则冷裂裂纹断面不氧化,并发亮,有时轻微氧化,呈连续直线状1.砂型(芯)退让性差,阻碍铸件收缩而引起过大的内应力2.浇注系统开设不当,阻碍铸件收缩3.铸件设计不合理,薄厚差别大。
壳型铸造曲轴常见缺陷与对策浅析
当铁水表面形成的液态渣进入型腔时后,曲轴在凝固时,渣中所含的FeO就会同铁水中的C发 生反应生成CO气体。
2.2防止渣气孑L缺陷对策
2.2.1合理确定浇注工艺温度范围 温度的降低是铁水氧化的根本原因,为此我们把浇注温度由以前的1360‘C左右提高到目前的 1390"--1450℃,冬季控制在上限,有效地防止了铁水在低浇注温度时的快速氧化。 2.2.2合理选用过滤网 我厂生产曲轴时为了降低渣孔缺陷一直使用直孔陶瓷过滤网。小型曲轴一般采用孔径为
球墨铸铁在浇注前用硅铁进行孕育处理时,如果孕育不庭,将导致铁水凝固时析出大量渗碳体,
从而使凝固收缩增加,产生缩孔或者缩松。
1 1
5浇注系统及冒口设计不合理 内浇口的位置及尺寸不正确可能会造成铁水在凝固时发生石墨化膨胀,铁水经内浇口倒流回直
浇道,从而使曲轴产生缩孔和缩松。冒口尺寸及冒口颈尺寸设计不当造成曲轴不能实现顺序凝固, 可能导致曲轴产生缩孔和缩松。
3.1曲轴动平衡不合格成因分析
3.1 3 1 3 3 1 1
1曲轴在制造过程中产生较大的变形量.导致曲轴不平衡量太大。 2曲轴由于涨壳造成连杆颈及主轴颈粗细不一。影响加工定位。 3曲轴清理不到位.定位点和夹紧点有凸起物引起定位偏差。 4加工厂设备平衡能力不足及缺乏动平衡经验。
3.2防止曲轴动平衡不合格对策
1.缩孔、缩松
缩孔、缩松是球墨铸铁特有的废品现象,也是曲轴常见缺陷之一,其产生原因与凝固方式、凝 固顺序、铁水的碳当量和冒口补缩等因素有很大关系。我厂壳型工艺生产的曲轴采用的立式浇注工 艺,曲轴的法兰端朝上,所以法兰盘中部和第五主轴径处最后凝固,比较容易出现缩孔、缩松缺陷。 其在曲轴上的主要表现形式为大头孔洞、大头内部缩松和五主轴缩陷(如图l、2)。它严重影响曲 轴内部的致密性和外部的无缺陷要求,尤其像大头内部缩松此类缺陷在加工过程不容易被发现,最
焊接常见缺陷有哪些原因
焊接常见缺陷有哪些原因焊接常见缺陷主要有以下几个原因:1.操作不当:焊接操作不规范、不熟练,包括焊接温度、焊接时间、焊接速度等参数设置不正确,或者焊接技术不到位,操作过程发生错误,导致焊接缺陷。
2.焊接材料问题:焊条、电极、焊丝、焊剂等焊接材料的质量差,或者选择不当,也会导致焊接缺陷。
例如,焊条中的气孔、裂纹或杂质会影响焊缝的质量。
3.焊接设备问题:焊机、变压器、电源等设备的质量差,或者使用不当,会影响焊接质量。
例如,焊机输出电流不稳定,会导致焊缝的不均匀性。
4.环境条件不良:焊接的环境条件不良也会导致焊接缺陷。
例如,焊接时周围温度过低或过高、湿度过高、空气中存在过多的氧气等都会影响焊接质量。
5.设计问题:焊接结构的设计不合理或者焊接焊缝的设计不符合焊接工艺要求,也会导致焊接缺陷。
常见的焊接缺陷包括以下几种:1.气孔:焊缝中出现的气孔是最常见的焊接缺陷之一。
气孔可以由焊接材料中的气体、焊接过程中的气体、氧化物等引起。
气孔的存在会降低焊接强度和密封性。
2.夹渣:焊缝中出现的夹渣是焊接中常见的缺陷之一。
夹渣会使焊缝中夹杂物增多,降低焊接强度。
夹渣通常由焊条、焊丝、焊剂等材料中的杂质引起。
3.裂纹:焊接过程中材料的收缩或冷却不均匀可能导致焊接缺陷,如焊缝中出现裂纹。
裂纹会降低焊接强度和密封性。
4.未熔透:未熔透是焊接缺陷的一种,指焊缝中未完全熔化的部分。
未熔透会使焊接强度降低,影响焊接质量。
5.焊缝形状不符合要求:焊缝的几何形状与设计要求不符,如焊缝宽度、高度等超过规定范围,都属于焊接缺陷。
这种缺陷可能影响焊接件的负载能力和外观要求。
6.焊渣:焊缝中残留的焊渣也是一种常见的焊接缺陷。
焊渣会降低焊接强度和密封性,还会影响焊接表面的平整度。
综上所述,焊接常见缺陷的产生主要与操作不当、焊接材料问题、焊接设备问题、环境条件不良、设计问题等有关。
为了确保焊接质量,必须严格按照焊接工艺要求进行操作,并选择合适的焊接材料和设备,同时注意环境条件的影响。
半齿圈渣气孔缺陷的影响因素及解决措施
2 渣气孔原 因分析
渣 大 都属 非 金 属夹 杂 物 , 比通 常 所 说 的金 相 但 组 织 中 的非 金属 夹杂 物要 大 , 的来源 主要 有三 , 渣 即
来 自造型材 料 , 自耐 火 材 料 , 自钢水 ; 孔 则 由 来 来 气
浇注 系统 是 否 合 理 , 接 影 响铸 件 质 量 , 气 直 如 孑、 L夹杂物 、 不足 、 浇 裂纹等 缺 陷 , 多与 浇注 系统不 合
20 09年 7月 , 由于 发 展 的需 要 , 司 成 立 了铸 公
造分 厂 , 随着部 分设 备及造 型材 料 的更 新 , 生产 的铸 件产 品相继 出现 了一 些 问题 , 齿 圈渣 气孔 问题 尤 半 为 突 出 , 一 定 规 律 性 , 要 分 布 在 上端 面 冒 口之 有 主
陷。 关键词 : 半齿圈 ; 渣气孔 ; 铸造工艺
中 图分 类 号 : G2 0 T 6 文 献标 识 码 : B
中色 ( 阳 ) 金 机 械有 限公 司过 去 生 产 的材 沈 冶 料 为 Z 4 CMo的 大 型磨 机 及 混 合 机 半 齿 圈 铸 件 , G2r 直 径 0 0 0 0 m, 520~ 650m 高度 50~ 5 0 7 0mm, 重量
半 齿 圈渣 气 孔 缺 陷 的影 响 因素 及解 决措 施
刘 云 平 , 海 军 张
[ 中国有色 ( 沈阳) 冶金机械有限公司 , 辽宁沈 阳 10 4 ] 1 11
摘
要: 分析渣气孔缺陷产生的位置及形式 , 根据现 场实际条件 , 善铸造工艺 方案 , 完 改变浇注 系
统形式 、 提高浇注温度 、 置集渣槽 等措施 , 设 并加强操作过程控制 , 较好 的解决 了渣气孑 缺 L
焊接常见的缺陷及产生原因
焊接常见的缺陷及产生原因焊接是一种将材料加热融化并加压使其连接在一起的工艺,常用于金属或塑料制品的生产中。
然而,在实际操作中,可能会出现一些缺陷,影响焊接接头的强度和质量。
下面我将介绍一些常见的焊接缺陷及其产生原因。
1. 焊缝气孔:焊缝中出现散布的气体孔,一般呈圆形或者椭圆形。
产生原因主要有以下几种:a) 气体存在:焊接人员或焊接材料中含有气体,在焊接过程中没有完全排除气体。
b) 渣溅:有时焊机电流过大,导致焊接时产生大量渣溅,渣溅进入焊缝造成气孔。
c) 油污:焊接区域未清理干净,在焊接过程中,油污挥发产生气体导致气孔的形成。
2. 焊接裂纹:焊缝中出现的开裂现象,严重影响焊接接头的强度。
产生原因主要有以下几种:a) 焊接应力:焊接后,由于冷却速度不均匀,使得焊接材料产生应力,超过材料的强度极限从而导致裂纹。
b) 材料质量:焊接材料中的含氧量或者含硫量超标,或者焊接材料自身的质量问题,如硬度不均匀等。
c) 焊接参数:焊接电流、焊接速度以及焊接压力等参数不恰当,容易导致焊接裂纹的形成。
3. 焊接结构不均匀:焊接接头的强度和质量不均匀,一部分焊缝更容易破裂。
产生原因主要有以下几种:a) 预热温度不够:焊接材料在焊接前没有经过预热处理,容易导致结构不均匀。
b) 焊接参数不一致:不同焊缝采用了不同的焊接参数,导致焊接接头的质量不均匀。
c) 焊接过程控制不当:焊接时控制不良,如焊接速度不稳定、电流波动大等,容易导致结构不均匀。
4. 焊缝错边:焊接接头两边焊缝位置不对称或偏移,容易导致接头强度下降。
产生原因主要有以下几种:a) 材料不准确对位:焊接前没有正确的对位,或者对位不准确导致焊缝偏移。
b) 焊接操作不当:焊接人员的焊接技术不熟练或者操作不当,容易导致焊缝错边。
c) 焊接设备问题:焊机设备本身有问题,如电流不稳定等,导致焊接接头错边。
针对这些常见的焊接缺陷,可以采取一些措施来避免或解决:1. 焊缝气孔:焊接前进行充分的气体排除,确保焊缝周围环境清洁,使用合适的焊接工艺参数。
覆膜砂铸造砂眼 气孔 粘砂 的等缺陷原因及解决方法
壳型铸造方法生产的铸件尺寸精度高,表面粗糙度低,可节省大量的金属切削消耗和机加工工时,并且由于型砂用量和造型方法的改变,为铸造生产的机械化和自动化创造了条件,因而特别适用于生产批量较大、精度要求较高的铸件。
Hale Waihona Puke 用热芯盒覆膜砂工艺做壳形铸造不锈钢铸件跟铸铁的工艺区别在于覆膜砂工艺做壳形铸造不锈钢铸件跟铸铁的工艺区别是原砂SiO2含量不同,铸铁为SiO2含量90%,铸钢为大于95%。壳形铸造铸件精度低于腊模精铸。
气体保护焊角焊缝根部气孔缺陷的原因及对策
气体保护焊角焊缝根部气孔缺陷的原因及对策我们在焊接考试中,对角焊缝而言,一般是通过破断试验进行现场评估。
在评估试验过程中经常遇见角焊缝根部有长条状气孔。
由于这种气孔存在于焊缝根部,表面上根本不可能发现,其缺陷的隐患性非常大。
在重要的结构上,其产生重大失效的风险也非常大。
所以探寻其发生的原因,采取预防根部气孔发生的措施就显得非常有必要的。
缺陷状态:见图1 & 图2.图1图2形成机理:通过仔细观察,发现气孔内表面有氧化色。
表明气孔里面一定有氧化性气体,且经过高温。
这就说明气孔形成于焊缝在进行熔敷的过程中。
初步判断缺陷的形成机理是由于气孔形成在根部,在向焊缝表面运动的过程中,还未到达表面,焊缝熔池就凝固了,从而形成了一个从根部开始,止于焊缝中部的长条状气孔。
缺陷检测:这样的缺陷,在焊缝表面看不出任何异常,用MT检测也不可能检测出来。
只有做破坏性检测,如宏观或破断才能让它现出原形。
产生原因:1.焊前未打磨和除锈除油处理。
2.气体管路老化,有漏气。
3.喷嘴有焊渣,堵焊枪了。
4.气体流量不足。
5.气瓶没气或气压不足。
6.气体纯度不达标(比较难发现)。
7.焊接环境有风扇吹(夏天尤其注意)。
8.管道里面有水未及时排放(如果是管道送气)。
采取对策:1.首先要查明原因,查原因时,要把上面可能产生气孔的原因一一进行排除。
2.查到原因后,采取相应改进或更换措施。
采取措施后,一定要再次进行试验,因为有时不是一个因素导致的,可能有好几个因素。
如果现象消失,说明改进或更换措施有效。
3.如果是气体不达标,最好更换气体厂家。
45钢棒料中心气孔
45钢棒料中心气孔
钢棒料中心气孔是指在钢棒的中心部位出现的气孔缺陷,这种缺陷会严重影响钢材的质量和性能。
气孔是由于钢坯中的气体在凝固过程中没有被完全排除而形成的孔洞,其存在会使钢材的机械性能降低,易造成开裂和断裂现象。
造成钢棒料中心气孔的原因主要有以下几点:
1. 原料质量不过关:钢材生产中使用的原料中含有杂质或氧化物等,会在钢材凝固过程中产生气体,从而形成气孔。
2. 浇注过程中气体混入:在钢液浇注过程中,如果操作不当或浇注速度过快,会造成气体混入钢液中,导致气孔形成。
3. 冷却不均匀:钢材在冷却过程中,如果温度控制不当或冷却速度过快,会使钢材中心部位的气体无法充分排除,形成气孔。
钢棒料中心气孔对钢材的性能影响非常大,主要表现在以下几个方面:
1. 降低强度和韧性:气孔会在应力作用下成为应力集中点,导致钢材的强度和韧性下降,易发生断裂。
2. 影响加工性能:气孔会使钢材的表面不平整,影响钢材的加工性能,降低加工质量。
3. 增加钢材的脆性:气孔会使钢材的组织不均匀,增加钢材的脆性,容易出现开裂现象。
为了避免钢棒料中心气孔的产生,钢材生产过程中需要加强质量控制,包括严格控制原料质量、优化浇注工艺、控制冷却速度等。
此外,钢材生产厂家也需要加强对设备的维护和保养,确保设备的正常运行,减少气孔的产生。
总的来说,钢棒料中心气孔是钢材生产过程中常见的缺陷,对钢材的质量和性能会产生严重影响,因此在生产过程中要加强质量控制,防止气孔的产生,提高钢材的质量和性能。
只有这样,才能生产出高质量的钢材,满足不同领域的需求。
铸铁件渣眼的10种原因分析,及13种防止方法!
铸铁件渣眼的10种原因分析,及13种防止方法!在铸件外部和内部的孔穴中有非金属夹杂物,形状极不规则,颜色各异。
铸件抛丸后留下不规则的孔洞。
俗称渣孔。
渣孔多出现在铸件的上表面,砂芯的下表面或熔渣不易浮起的地方。
(在铸件表面的浆渣抛丸后凹坑表面较光滑)发现方法:外观检查或机械加工可发现。
典型案例:如图1、图2.原因分析:⑴ 浇注系统设计不合理,挡渣效果差,浇注时溶渣进入型内。
抛丸后在铸件表面可见。
⑵ 铁液处理时溶渣未清净,浇注时铁液未充满浇口(特别初始铁液流太细),带入溶渣。
⑶ 铁液在转运过程中镁和稀土与空气生成氧化物,浇注时与铁液一起卷入型内,与铁液中的硫化物、游离石墨一起浮到铸件表面。
⑷ 修包材料耐火度低,在浇注过程中生成新的熔渣,与铁液一起卷入型内。
⑸ 浇注温度低,熔渣来不及泛起。
⑹ 浇注时铁液不平稳,断流。
⑺ 随流孕育剂灰分大(粉化或低于200目的颗粒过多),浇注时随铁液进入型内。
⑻ 避渣网不起作用,只避渣,不避浆。
浆随铁液一起进入型内。
⑼ 陶瓷网质量差。
⑽ 炉料不纯净,铁液严重氧化,或在炉内停留时间过长,都会在晶间产生熔渣类铸造缺陷。
如果说渣眼是宏观缺陷,那么晶间熔渣缺陷是一种微观缺陷,对材质的性能影响极大。
防止方法:⑴ 采用封闭或半封闭浇口,加强挡渣效果。
⑵ 用膨化效果好的除渣剂,铁液出炉前扒净溶渣。
⑶ 浇铸时充满浇口,避免卷入气体和熔渣。
⑷ 在包内撒覆盖保温剂,把浆变成渣,避渣网能避渣但不能避浆。
⑸ 横浇道用上下箱搭节,在端部设集渣槽,在浇注的初期浇口未充满时起集渣的作用。
⑹ 尽量用干净炉料,减少熔渣。
⑺ 防止铁液氧化。
快速熔炼,快速浇注,减少晶间熔渣缺陷。
⑻ 提高修包材料的耐火度,避免浇注时产生的二次熔渣进入型内。
采用茶壶包。
⑼ 熔炼时加入适当的溶剂,使杂质和有害元素变成低熔点且流动性好,密度低的熔渣上浮去除。
⑽ 适当提高浇注温度,浇注时不得断流。
⑾ 采用适宜的陶瓷网。
⑿ 采用优质随流孕育剂,不得有灰分和粉化现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渣气孔缺陷原因
1、铁水浇注时流速不稳定,浇注时一开始较慢后续位置方向准确后流速提升。
刚开始浇注时就会有铁流溅到远处形成了豆状,如果后续进入的铁水温度降低后不能融化此铁豆就会形成渣气孔。
2、合箱时发生了掉砂现象,浇注时有了渣子和气体。
解决方案:
1.设计时适当放宽内浇道,减少铁流溅射。
浇注时先
对好位置,尽量不要在浇注过程再调整,控制好流速。
2.合箱时减少掉砂,铁水尽量除渣除干净。
缩孔(缩松)
缩松,缩孔或缩松处晶粒粗大。
常发生在铸件内浇道附近、冒口根部、厚大部位,壁的厚薄转接处及具有大平面的厚薄处。
250经常出现在内平面,可能原因涂料选择不当,不同部位涂料层厚度控制不好。
应调整涂料层厚度,涂料要均匀,涂料脱落而补涂时不可形成局部涂料堆积现象。