2019高考数学一轮复习第9章平面解析几何第2讲两直线的位置关系分层演练文

合集下载

全国通用近年高考数学大一轮复习第九章平面解析几何第2节两直线的位置关系学案文新人教A版(2021年

全国通用近年高考数学大一轮复习第九章平面解析几何第2节两直线的位置关系学案文新人教A版(2021年

(全国通用版)2019版高考数学大一轮复习第九章平面解析几何第2节两直线的位置关系学案文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学大一轮复习第九章平面解析几何第2节两直线的位置关系学案文新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学大一轮复习第九章平面解析几何第2节两直线的位置关系学案文新人教A版的全部内容。

第2节 两直线的位置关系最新考纲 1。

能根据两条直线的斜率判定这两条直线平行或垂直;2。

能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知 识 梳 理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行.(2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应。

相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3。

距离公式(1)两点间的距离公式平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|特别地,原点O(0,0)与任一点P(x,y)的距离|OP(2)点到直线的距离公式平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=错误!.(3)两条平行线间的距离公式一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=错误!。

高考数学一轮复习第九章平面解析几何第2讲两直线的位置关系练习理

高考数学一轮复习第九章平面解析几何第2讲两直线的位置关系练习理

【创新设计】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 第2讲 两直线的位置关系练习 理基础巩固题组(建议用时:40分钟)一、填空题1.(2016·苏北四市模拟)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a =________.解析 若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,若两直线平行,则有a -11=2a ≠13,解得a =-1或2. 答案 -1或22.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为________.解析 把3x +y -3=0化为6x +2y -6=0,则两平行线间的距离d =|1-(-6)|62+22=72010.答案 71020 3.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为________.解析 由⎩⎪⎨⎪⎧x -3y +4=0,2x +y +5=0,得⎩⎪⎨⎪⎧x =-197,y =37,则所求直线方程为:y =37-197x =-319x , 即3x +19y =0.答案 3x +19y =04.两直线2x +3y -k =0和x -ky +12=0的交点在y 轴上,则k =________.解析 由⎩⎪⎨⎪⎧2x +3y -k =0,x -ky +12=0,得x =k 2-362k +3, 由x =0,得k =±6. 答案 ±65.(2015·金华调研)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第________象限.解析 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得两直线的交点坐标为⎝ ⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k <12,所以kk -1<0,2k -1k -1>0,故交点在第二象限. 答案 二6.点(2,1)关于直线x -y +1=0的对称点为________. 解析 设对称点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0-1x 0-2=-1,x 0+22-y 0+12+1=0, 解得⎩⎪⎨⎪⎧x 0=0,y 0=3,故所求对称点为(0,3). 答案 (0,3)7.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2. ∴点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,∴m =-9.答案 -98.(2016·南京师大附中调研)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析 显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2, ∴k =2或k =-23. ∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.答案 2x +3y -18=0或2x -y -2=0二、解答题9.已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得:(1)l 1与l 2相交;(2)l 1⊥l 2;(3)l 1∥l 2;(4)l 1,l 2重合.解 (1)由已知1×3≠m (m -2),即m 2-2m -3≠0,解得m ≠-1且m ≠3.故当m ≠-1且m ≠3时,l 1与l 2相交.(2)当1·(m -2)+m ·3=0,即m =12时,l 1⊥l 2. (3)当1×3=m (m -2)且1×2m ≠6×(m -2)或m ×2m ≠3×6,即m =-1时,l 1∥l 2.(4)当1×3=m (m -2)且1×2m =6×(m -2),即m =3时,l 1与l 2重合.10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解 依题意知:k AC =-2,A (5,1),∴l AC 为2x +y -11=0,联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴C (4,3). 设B (x 0,y 0),AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.能力提升题组(建议用时:20分钟)11.(2014·四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则PA ·PB 的最大值是________.解析 易知A (0,0),B (1,3)且两直线互相垂直,即△APB 为直角三角形,∴PA ·PB ≤PA 2+PB 22=AB 22=102=5.答案 512.(2016·南京、盐城调研)若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是________.解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0.欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值,而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小为2.所以m 2+n 2的最小值为4.答案 413.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是________.解析 易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1(4,2)与A 2(-2,0)两点间的距离.于是A 1A 2=(4+2)2+(2-0)2=210.答案 21014.(1)过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.(2)光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 (1)设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,∴a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.(2) 法一 由⎩⎪⎨⎪⎧x -2y +5=0,3x -2y +7=0, 得⎩⎪⎨⎪⎧x =-1,y =2. ∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5. 而PP ′的中点Q 的坐标为⎝⎛⎭⎪⎫x 0-52,y 02,又Q 点在l 上, ∴3·x 0-52-2·y 02+7=0. 由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213. 根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0.法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x =-23, 又PP ′的中点Q ⎝⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0,由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0. 可得P 点的横、纵坐标分别为x 0=-5x +12y -4213,y 0=12x +5y +2813, 代入方程x -2y +5=0中,化简得29x -2y +33=0,∴所求反射光线所在的直线方程为29x -2y +33=0.。

2019届高考数学一轮复习 第九章 平面解析几何 第二节 两直线的位置关系夯基提能作业本 文

2019届高考数学一轮复习 第九章 平面解析几何 第二节 两直线的位置关系夯基提能作业本 文

第二节两直线的位置关系A组基础题组1.若直线l1:mx-y-2=0与直线l2:(2-m)x-y+1=0互相平行,则实数m的值为( )A.-1B.0C.1D.22.若直线l1:x+ay+6=0和l2:(a-2)x+3y+2a=0平行,则l1与l2之间的距离为( )A. B.4 C. D.23.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点( )A.(0,4)B.(0,2)C.(-2,4)D.(4,-2)4.已知点P(3,2)与点Q(1,4)关于直线l对称,则直线l的方程为( )A.x-y+1=0B.x-y=0C.x+y+1=0D.x+y=05.(2018四川成都调研)在平面直角坐标系内,过定点P的直线l:ax+y-1=0与过定点Q的直线m:x-ay+3=0相交于点M,则|MP|2+|MQ|2的值为( )A. B.C.5D.106.已知点A(-3,-4),B(6,3)到直线l:ax+y+1=0的距离相等,则实数a的值为.7.以点A(4,1),B(1,5),C(-3,2),D(0,-2)为顶点的四边形ABCD的面积为.8.已知△ABC的一个顶点为A(5,1),AB边上的中线CM所在直线的方程为2x-y-5=0,AC边上的高BH所在直线的方程为x-2y-5=0,求直线BC的方程.9.正方形的中心为点C(-1,0),一条边所在的直线方程是x+3y-5=0,求其他三边所在的直线方程.B组提升题组1.在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是.2.如图,已知A(-2,0),B(2,0),C(0,2),E(-1,0),F(1,0),一束光线从F点出发射到BC上的D点,经BC反射后,再经AC反射,落到线段AE上(不含端点),则直线FD的斜率的取值范围是.3.已知光线从点A(-4,-2)射出,到直线y=x上的B点后被直线y=x反射到y轴上的C点,又被y轴反射,这时反射光线恰好过点D(-1,6),求BC所在的直线方程.4.已知三条直线l1:2x-y+a=0(a>0);l2:-4x+2y+1=0;l3:x+y-1=0,且l1与l2间的距离是.(1)求a的值;(2)能否找到一点P,使P同时满足下列三个条件:①点P在第一象限;②点P到l1的距离是点P到l2的距离的;③点P到l1的距离与点P到l3的距离之比是∶.若能,求出点P的坐标;若不能,请说明理由.答案精解精析A组基础题组1.C ∵直线l1:mx-y-2=0与直线l2:(2-m)x-y+1=0互相平行,∴解得m=1.故选C.2.C ∵l1∥l2,∴=≠,解得a=-1,∴l1与l2的方程分别为l1:x-y+6=0,l2:x-y+=0,∴l1与l2的距离d==.3.B 由于直线l1:y=k(x-4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l1:y=k(x-4)与直线l2关于点(2,1)对称,所以直线l2恒过定点(0,2).4.A 由题意知直线l与直线PQ垂直,直线PQ的斜率k PQ=-1,所以直线l的斜率k=-=1.又直线l经过PQ的中点(2,3),所以直线l的方程为y-3=x-2,即x-y+1=0.5.D 由题意知P(0,1),Q(-3,0),∵过定点P的直线ax+y-1=0与过定点Q的直线x-ay+3=0垂直,∴M位于以PQ为直径的圆上.∵|PQ|==,∴|MP|2+|MQ|2=10,故选D.6.答案-或-解析由题意及点到直线的距离公式得=,解得a=-或-.7.答案25解析因为kAB==-,k DC==-,k AD==,k BC==,所以k AB=k DC,k AD=k BC,所以AB∥DC,AD∥BC,所以四边形ABCD为平行四边形.又k AD·k AB=-1,即AD⊥AB,故四边形ABCD为矩形.故四边形ABCD的面积S=|AB|·|AD|=×=25.8.解析依题意知k AC=-2,又A(5,1),∴l AC:2x+y-11=0,由可解得C(4,3).设B(x0,y0),则AB的中点M的坐标为,代入2x-y-5=0,得2x0-y0-1=0,由可解得故B(-1,-3),∴k BC=,∴直线BC的方程为y-3=(x-4),即6x-5y-9=0.9.解析点C到直线x+3y-5=0的距离d 1==.设与直线x+3y-5=0平行的边所在的直线方程是x+3y+m=0(m≠-5),则点C到直线x+3y+m=0的距离d2==,解得m=-5(舍去)或m=7,所以与直线x+3y-5=0平行的边所在的直线方程是x+3y+7=0.设与x+3y-5=0垂直的边所在的直线方程是3x-y+n=0,则点C到直线3x-y+n=0的距离d3==,解得n=-3或n=9,所以与直线x+3y-5=0垂直的两边所在的直线方程分别是3x-y-3=0和3x-y+9=0.B组提升题组1.答案(2,4)解析由题意可知,若P为平面直角坐标系内任意一点,则|PA|+|PC|≥|AC|,等号成立的条件是点P在线段AC上;|PB|+|PD|≥|BD|,等号成立的条件是点P在线段BD上,所以到A,B,C,D四点的距离之和最小的点为AC与BD的交点.由题意知直线AC的方程为2x-y=0,直线BD的方程为x+y-6=0,由解得即所求点的坐标为(2,4).2.答案(4,+∞)解析从特殊位置考虑.如图,∵点A(-2,0)关于直线BC:x+y=2的对称点为A1(2,4),∴=4,又点E(-1,0)关于直线AC:y=x+2的对称点为E1(-2,1),点E1(-2,1)关于直线BC:x+y=2的对称点为E2(1,4),此时直线E2F的斜率不存在,∴k FD>,即k FD∈(4,+∞).3.解析作出草图,如图,设A关于直线y=x的对称点为A',D关于y轴的对称点为D',则易得A'(-2,-4),D'(1,6).由反射角等于入射角易得A'D'所在直线经过点B与C.故BC所在的直线方程为=,即10x-3y+8=0.4.解析(1)直线l 2:2x-y-=0,所以两条平行线l1与l2间的距离d==,所以=,即=,又a>0,解得a=3.(2)假设存在点P,设点P(x0,y0).若点P满足条件②,则点P在与l1,l2平行的直线l':2x-y+c=0上,且=×,即c=或,所以直线l'的方程为2x-y+=0或2x-y+=0;若点P满足条件③,由点到直线的距离公式,有=×,即|2x0-y0+3|=|x0+y0-1|,所以x0-2y0+4=0或3x0+2=0;由于点P在第一象限,所以3x0+2=0不符合题意.联立方程2x0-y0+=0和x0-2y0+4=0,解得(舍去);联立方程2x0-y0+=0和x0-2y0+4=0,解得所以存在点P同时满足三个条件.。

高考数学一轮复习第9章平面解析几何2第2讲两直线的位置关系教案理

高考数学一轮复习第9章平面解析几何2第2讲两直线的位置关系教案理

第2讲 两直线的位置关系1.两直线的平行、垂直与其斜率的关系3.三种距离(1)平行于直线Ax +By +C =0的直线系方程:Ax +By +λ=0(λ≠C ). (2)垂直于直线Ax +By +C =0的直线系方程:Bx -Ay +λ=0.(3)过两条已知直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不包括直线A 2x +B 2y +C 2=0).判断正误(正确的打“√”,错误的打“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( )(2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√(教材习题改编)直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则直线l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解析:选A.由题意知,直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x+2y -1=0.已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( )A. 2 B .2- 2 C.2-1D.2+1解析:选C.由题意知|a -2+3|2=1,所以|a +1|=2,又a >0,所以a =2-1.(教材习题改编)已知直线l1:ax +3y +1=0,l 2:2x +(a +1)y +1=0互相平行,则实数a 的值是________.解析:由直线l 1与l 2平行,可得⎩⎪⎨⎪⎧a (a +1)=2×3,a ×1≠2,解得a =-3.答案:-3若三条直线2x +3y +8=0,x -y -1=0和x +by =0相交于一点,则b =________.解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0解得⎩⎪⎨⎪⎧x =-1,y =-2. 将其代入x +by =0,得b =-12.答案:-12两条直线平行与垂直(高频考点)两条直线的平行与垂直是高考的热点,高考多出现在选择题、填空题或解答题中的一小问,一般难度较小.高考对两条直线的平行与垂直的考查主要有以下两个命题角度: (1)两条直线位置关系的判断; (2)由两条直线位置关系求直线方程.[典例引领]角度一 两条直线位置关系的判断设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0,则“m =2”是“l 1∥l 2”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 当m =2时,代入两直线方程中,易知两直线平行,即充分性成立.当l 1∥l 2时,显然m ≠0,从而有2m=m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不合要求,故必要性成立. 【答案】 C角度二 由两条直线位置关系求直线方程(2018·湖南东部十校联考)经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.【解析】 法一:由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0解得⎩⎪⎨⎪⎧x =-53,y =79,即交点为⎝ ⎛⎭⎪⎫-53,79,因为所求直线与直线3x +4y -7=0垂直, 所以所求直线的斜率为k =43.由点斜式得所求直线方程为y -79=43⎝ ⎛⎭⎪⎫x +53,即4x -3y +9=0.法二:由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0可解得交点为⎝ ⎛⎭⎪⎫-53,79,代入4x -3y +m =0得m =9, 故所求直线方程为4x -3y +9=0.法三:由题意可设所求直线的方程为(2x +3y +1)+λ(x -3y +4)=0, 即(2+λ)x +(3-3λ)y +1+4λ=0,① 又因为所求直线与直线3x +4y -7=0垂直, 所以3(2+λ)+4(3-3λ)=0,所以λ=2,代入①式得所求直线方程为4x -3y +9=0. 【答案】 4x -3y +9=0两直线平行、垂直的判断方法若已知两直线的斜率存在.(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1. [提醒] 判断两条直线位置关系应注意: (1)注意斜率不存在的特殊情况;(2)注意x ,y 的系数不能同时为零这一隐含条件.[通关练习]1.已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( ) A .2或12B. 13或-1 C. 13D .-1解析:选B.因为直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或a =-1.故选B.2.求满足下列条件的直线方程.(1)过点P (-1,3)且平行于直线x -2y +3=0; (2)已知A (1,2),B (3,1),线段AB 的垂直平分线.解:(1)设直线方程为x -2y +c =0,把P (-1,3)代入直线方程得c =7, 所以直线方程为x -2y +7=0. (2)AB 中点为⎝⎛⎭⎪⎫1+32,2+12,即⎝ ⎛⎭⎪⎫2,32,直线AB 斜率k AB =2-11-3=-12,故线段AB 垂直平分线斜率k =2,所以其方程为y -32=2(x -2),即4x -2y -5=0.距离公式[典例引领](1)已知A (2,0),B (0,2),若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( ) A .4 B .3 C .2D .1(2)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.【解析】 (1)设点C (t ,t 2),直线AB 的方程是x +y -2=0, |AB |=2 2.由于△ABC 的面积为2,则这个三角形中AB 边上的高h 满足方程12×22h =2,即h = 2.由点到直线的距离公式得2=|t +t 2-2|2,即|t +t 2-2|=2,即t 2+t -2=2或者t 2+t -2=-2.因为这两个方程各有两个不相等的实数根,故这样的点C 有4个. (2)依题意知,63=a -2≠c-1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行线之间的距离为21313,所以⎪⎪⎪⎪⎪⎪c 2+132+(-2)2=21313,因此c =2或-6. 【答案】 (1)A (2)2或-6距离的求法(1)点到直线的距离可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. (2)两平行直线间的距离①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离; ②利用两平行线间的距离公式.[通关练习]1.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是( ) A .[-10,10] B .[-10,5] C .[-5,5]D .[0,10]解析:选D.由题意得,点P 到直线的距离为 |4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].2.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________. 解析:l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则:|c +6|=|c +32|,解得c =-154,所以l 的方程为12x +8y-15=0.答案:12x +8y -15=03.l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是________.解析:当两条平行直线与A ,B 两点连线垂直时,两条平行直线间的距离最大.又k AB =-1-10-1=2,所以两条平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0. 答案:x +2y -3=0对称问题[典例引领]已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 【解】 (1)设A ′(x ,y ),由已知⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.所以A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′的方程为9x -46y +102=0. (3)设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ), 因为P ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.[通关练习]1.(2018·河北五校联考)直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为( ) A .2x +3y -12=0 B .2x -3y -12=0 C .2x -3y +12=0D .2x +3y +12=0解析:选D.由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧x +3=0,y -1=0,可得x =-3,y=1,所以M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),所以所求方程为2x +3y +12=0,故选D.2.如图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到点P ,则光线所经过的路程是________.解析:直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.答案:210由一般式确定两直线位置关系的方法(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据相应公式或性质判断,若直线无斜率,要单独考虑.(2)求点到直线的距离时,若给出的直线不是一般式,则应化为一般式.(3)在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中x ,y 的系数化为相同的形式.1.(2018·石家庄模拟)已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0 C .x +y +1=0D .x +y =0解析:选A.由题意知直线l 与直线PQ 垂直,直线PQ 的斜率k PQ =-1,所以直线l 的斜率k =-1k PQ=1.又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0.2.已知过点A (-2,m )和点B (m ,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( ) A .-10 B .-2 C .0D .8解析:选A.因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n×(-2)=-1,解得n =-2,所以m +n =-10.3.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为( ) A.12 B .-12C .2D .-2解析:选A.直线y =2x +3与y =-x 的交点为A (-1,1),而直线y =2x +3上的点(0,3)关于y =-x 的对称点为B (-3,0),而A ,B 两点都在l 2上,所以kl 2=1-0-1-(-3)=12.4.已知点A (-1,2),B (3,4).P 是x 轴上一点,且|PA |=|PB |,则△PAB 的面积为( ) A .15 B.552 C .6 5D.152解析:选D.设AB 的中点坐标为M (1,3),k AB =4-23-(-1)=12,所以AB 的中垂线方程为y -3=-2(x -1). 即2x +y -5=0.令y =0,则x =52,即P 点的坐标为(52,0),|AB |=(-1-3)2+(2-4)2=2 5.P 到AB 的距离为|PM |=(1-52)2+32=352.所以S △PAB =12|AB |·|PM |=12×25×352=152.5.(2018·河南安阳模拟)两条平行线l 1,l 2分别过点P (-1,2),Q (2,-3),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间距离的取值范围是( )A .(5,+∞)B .(0,5]C .(34,+∞)D .(0,34 ]解析:选D.当PQ 与平行线l 1,l 2垂直时,|PQ |为平行线l 1,l 2间的距离的最大值,为(-1-2)2+[2-(-3)]2=34,所以l 1,l 2之间距离的取值范围是(0,34 ]. 故选D.6.设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析:设点P 的坐标为⎝ ⎛⎭⎪⎫x 0,1x 0,x 0>0,曲线y =1x在点P 处的切线斜率k 2=-1x 20(x 0>0).又因为曲线y =e x 在点(0,1)处的切线斜率k 1=e x|x =0=1,k 1k 2=-1,所以x 20=1,所以x 0=1,所以点P 的坐标为(1,1). 答案:(1,1)7.已知一直线经过点(1,2),并且与点(2,3)和(0,-5)的距离相等,则此直线的方程为________.解析:若所求直线的斜率存在,则可设其方程为:y -2=k (x -1),即kx -y -k +2=0,由题设有|2k -3-k +2|1+k 2=|0+5-k +2|1+k 2, 即|k -1|=|k -7|,解得k =4. 此时直线方程为4x -y -2=0.又若所求直线的斜率不存在,方程为x =1, 满足题设条件.故所求直线的方程为4x -y -2=0或x =1. 答案:4x -y -2=0或x =18.(2018·山西四校联考)若将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.解析:由题可知纸的折痕垂直平分点(0,2)与点(4,0)的连线,可得折痕所在直线为y =2x -3,又折痕也垂直平分点(7,3)与点(m ,n )的连线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,所以m +n =345.答案:3459.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R ).(1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎪⎫a 2+122+14,因为a 2≥0,所以b ≤0. 又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0]. (2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0, 显然a ≠0,所以ab =a +1a,|ab |=⎪⎪⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立, 因此|ab |的最小值为2.10.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P . (1)点A (5,0)到直线l 的距离为3,求直线l 的方程; (2)求点A (5,0)到直线l 的距离的最大值. 解:(1)因为经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, 所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=12或λ=2. 所以直线l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到直线l 的距离, 则d ≤|PA |(当l ⊥PA 时等号成立). 所以d max =|PA |=10.1.(2018·洛阳统考)已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( ) A .过点P 且与l 垂直的直线 B .过点P 且与l 平行的直线 C .不过点P 且与l 垂直的直线 D .不过点P 且与l 平行的直线解析:选D.因为点P (x 0,y 0)不在直线Ax +By +C =0上,所以Ax 0+By 0+C ≠0,所以直线Ax+By +C +(Ax 0+By 0+C )=0不经过点P ,排除A 、B ;又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C =0平行,排除C ,故选D.2.(2018·湖北孝感五校联考)已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C.设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,所以BC 所在直线方程为y -1=-2-14-3(x -3),即3x +y -10=0.同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),所以AC 所在直线方程为y -2=3-2-1-(-4)·(x+4),即x -3y +10=0.联立得⎩⎪⎨⎪⎧3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,则C (2,4).故选C. 3.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程. 解:依题意知,k AC =-2,A (5,1), 所以l AC 为2x +y -11=0,联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,所以C (4,3).设B (x 0,y 0),AB 的中点M 为⎝⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,所以⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,所以B (-1,-3),所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.4.在直线l :3x -y -1=0上求一点P ,使得: (1)P 到A (4,1)和B (0,4)的距离之差最大; (2)P 到A (4,1)和C (3,4)的距离之和最小.解:(1)如图,设B 关于l 的对称点为B ′,AB ′的延长线交l 于P 0,在l上另任取一点P ,则|PA |-|PB |=|PA |-|PB ′|<|AB ′|=|P 0A |-|P 0B ′|=|P 0A |-|P 0B |,则P 0即为所求.易求得直线BB ′的方程为x +3y -12=0, 设B ′(a ,b ),则a +3b -12=0,①又线段BB ′的中点⎝ ⎛⎭⎪⎫a 2,b +42在l 上,故3a -b -6=0.②由①②解得a =3,b =3,所以B ′(3,3). 所以AB ′所在直线的方程为2x +y -9=0.由⎩⎪⎨⎪⎧2x +y -9=0,3x -y -1=0可得P 0(2,5). (2)设C 关于l 的对称点为C ′,与(1)同理可得C ′⎝ ⎛⎭⎪⎫35,245.连接AC ′交l 于P 1,在l 上另任取一点P ,有|PA |+|PC |=|PA |+|PC ′|>|AC ′|=|P 1C ′|+|P 1A |=|P 1C |+|P 1A |,故P 1即为所求. 又AC ′所在直线的方程为19x +17y -93=0,故由⎩⎪⎨⎪⎧19x +17y -93=0,3x -y -1=0可得P 1⎝ ⎛⎭⎪⎫117,267.精美句子1、善思则能“从无字句处读书”。

高考数学一轮复习第9章平面解析几何第2讲两直线的位置关系课件文

高考数学一轮复习第9章平面解析几何第2讲两直线的位置关系课件文

1.(必修 2 P87 例 3 改编)已知 A(2,3),B(-4,0),P(-3, 1),Q(-m,m+1),若直线 AB⊥PQ,则 m 的值为( )
A.-1
B.-6
C.6
D.2
12/11/2021
第十八页,共四十二页。
解析:选 C.因为 AB⊥PQ, kAB=-0-4-32=12,所以 kPQ 存在且 kPQ=-mm-+(1--13)=3-mm, kAB·kPQ=-1 即12×3-mm=-1 解得 m=6,故选 C.
|Ax0+By0+C| d=________A__2+__B__2 ________.
(3)两条平行线 Ax+By+C1=0 与 Ax+By+C2=0
|C1-C2| (其中 C1≠C__2_____.
12/11/2021
第四页,共四十二页。
(必修 2 P109A 组 T2 改编)直线 ax-2y-1=0 与直线 6x+4y +1=0 平行,则 a 的值为( )
解得x=13.即 y=43
P
点的坐标为(13,43).
此时|PA|+|PB|=|PQ|+|BP|
=|BQ|= (-1-3)2+(2-0)2=2 5.
即当 P 的坐标为(13,43)时,|PA|+|PB|的最小值为 2 5.
12/11/2021
第二十四页,共四十二页。
(1)关于中心对称问题的处理方法 ①若点 M(x1,y1)及 N(x,y)关于 P(a,b)对称,则由中点坐标 公式得xy==22ba--yx11., ②求直线关于点的对称直线的方程,其主要方法是:在已知
第九章 平面(píngmiàn)解析几何
第 2 讲 两直线的位置关系
12/11/2021
第一页,共四十二页。

高考数学一轮复习第九章平面解析几何第2讲两直线的位置关系教案理含解析新人教A版

高考数学一轮复习第九章平面解析几何第2讲两直线的位置关系教案理含解析新人教A版

高考数学一轮复习第九章平面解析几何第2讲两直线的位置关系教案理含解析新人教A 版第2讲 两直线的位置关系基础知识整合1.两条直线的位置关系 (1)两条直线平行与垂直 ①两条直线平行(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔□01k 1=k 2. (ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. ②两条直线垂直(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔□02k 1k 2=-1. (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2. (2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组□03⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=□04 x 2-x 12+y 2-y 12.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =□05|Ax 0+By 0+C |A 2+B 2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =□06|C 1-C 2|A 2+B 2.1.与直线Ax +By +C =0(A 2+B 2≠0)垂直和平行的直线方程可设为: (1)垂直:Bx -Ay +m =0; (2)平行:Ax +By +n =0.2.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.1.(2019·广东惠阳模拟)点A (2,5)到直线l :x -2y +3=0的距离为( )A .2 5 B.55 C. 5 D.255答案 C解析 点A (2,5)到直线l :x -2y +3=0的距离为d =|2-10+3|1+4= 5.故选C.2.已知直线l 1:ax +2y +1=0与直线l 2:(3-a )x -y +a =0,若l 1∥l 2,则a 的值为( ) A .1 B .2 C .6 D .1或2答案 C解析 ∵直线l 1:ax +2y +1=0与直线l 2:(3-a )x -y +a =0的斜率都存在,且l 1∥l 2,∴k 1=k 2,即-a2=3-a ,解得a =6.故选C.3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0答案 A解析 因为所求直线与直线x -2y -2=0平行,所以设直线方程为x -2y +c =0,又经过点(1,0),得出c =-1,故所求方程为x -2y -1=0.4.(2019·重庆模拟)光线从点A (-3,5)射到x 轴上,经x 轴反射后经过点B (2,10),则光线从A 到B 的距离为( )A .5 2B .2 5C .510D .10 5答案 C解析 点B (2,10)关于x 轴的对称点为B ′(2,-10),由对称性可得光线从A 到B 的距离为|AB ′|=-3-22+[5--10]2=510.故选C.5.(2019·陕西黄陵模拟)不论m 为何值,直线(m -1)x +(2m -1)y =m -5恒过定点( )A.⎝ ⎛⎭⎪⎫1,-12B .(-2,0)C .(2,3)D .(9,-4)答案 D解析 ∵直线方程为(m -1)x +(2m -1)y =m -5, ∴直线方程可化为(x +2y -1)m +(-x -y +5)=0.∵不论m 为何值,直线(m -1)x +(2m -1)y =m -5恒过定点,∴⎩⎪⎨⎪⎧x +2y -1=0,-x -y +5=0,∴⎩⎪⎨⎪⎧x =9,y =-4.故选D.6.(2018·金华模拟)经过两条直线l 1:x -2y +4=0和l 2:x +y -2=0的交点且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.答案 4x +3y -6=0解析 由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即交点P (0,2).因l 3的斜率为34,且l⊥l 3,故l 的斜率为-43.故直线l 的方程为y =-43x +2,即4x +3y -6=0.核心考向突破考向一 平行与垂直问题例 1 (1)设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0,则“m =2”是“l 1∥l 2”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 C解析 当m =2时,将m =2代入两直线方程中,易知两直线平行,即充分性成立;当l 1∥l 2时,显然m ≠0,从而有2m=m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不符合要求,故必要性成立,故选C.(2)(2019·湖北武汉调研)已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0互相垂直,则ab 的最小值为( )A .1B .2C .2 2D .2 3答案 B解析 由已知两直线垂直得b 2+1-ab 2=0,即ab 2=b 2+1,根据b >0,两边同时除以b 得ab =b +1b≥2b ·1b=2,当且仅当b =1时等号成立,故选B.触类旁通两直线位置关系问题的解题策略(1)充分掌握两直线平行与垂直的条件是解决此类试题的关键,对于斜率都存在且不重合的两条直线l 1和l 2,l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是否存在一定要特别注意.2设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2⇔A 1A 2+B 1B 2=0. 即时训练 1.“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0, ∴m =3或m =-2,∴m =3是l 1⊥l 2的充分不必要条件.2.(2019·宁夏模拟)若直线l 1:x +2my -1=0与l 2:(3m -1)x -my -1=0平行,则实数m 的值为________.答案 0或16解析 因为直线l 1:x +2my -1=0与l 2:(3m -1)x -my -1=0平行,则斜率相等或者斜率不存在,-12m =3m -1m 或者m =0,所以m =16或0.考向二 距离公式的应用例2 (1)(2019·四川绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95 B.185 C.2910D.295答案 C解析 因为36=48≠-125,所在两直线平行,由题意可知,|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910. (2)已知点M (a ,b )在直线3x +4y =15上,则 a 2+b 2的最小值为________. 答案 3解析 ∵M (a ,b )在直线3x +4y =15上,∴3a +4b =15,而a 2+b 2的几何意义是a ,b 坐标平面内原点到直线3a +4b =15上任意一点的距离,所以(a 2+b 2)min =1532+42=3.触类旁通1点到直线的距离可直接利用点到直线的距离公式去求,注意直线方程应为一般式. 2运用两平行直线间的距离公式d =\f(|C 1-C 2|,\r(A 2+B 2))的前提是两直线方程中的x ,y 的系数对应相等.即时训练 3.P 点在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则P 点坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)答案 C解析 设P (x,5-3x ),则d =|x -5+3x -1|12+-12=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故点P 的坐标为(1,2)或(2,-1).4.(2019·河南中原联考)已知直线l 的方程为x -y +2=0,抛物线为y 2=2x ,若点P 是抛物线上任一点,则点P 到直线l 的最短距离是________.答案324解析 设与直线l 平行的抛物线y 2=2x 的切线方程为x -y +k =0,由⎩⎪⎨⎪⎧y 2=2x ,x -y +k =0消去x ,得y 2-2y +2k =0,所以Δ=(-2)2-8k =0,解得k =12.所以切线方程为x -y +12=0.当点P 为切点时,点P 到直线l 的距离是最短距离,最短距离为直线l 到切线x -y +12=0的距离,所以最短距离为d =⎪⎪⎪⎪⎪⎪2-1212+-12=324. 考向三 对称问题角度1 点关于点的对称例3 过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以直线l 的方程为x +4y -4=0. 角度2 点关于直线的对称例 4 若将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.答案345解析 由题可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,故m +n =345.角度3 直线关于直线的对称例5 光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 由⎩⎪⎨⎪⎧x -2y +5=0,3x -2y +7=0,得⎩⎪⎨⎪⎧x =-1,y =2.∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝⎛⎭⎪⎫x 0-52,y 02,Q 点在l 上,∴3·x 0-52-2·y 02+7=0. 由⎩⎪⎨⎪⎧y 0x 0+5=-23,32x 0-5-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0. 触类旁通解决对称问题的方法(1)中心对称①点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点为A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ×⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.即时训练 5.已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A 的对称直线l ′的方程. 解 (1)设A ′(x ,y ),由已知条件得⎩⎪⎨⎪⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. (3)解法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3),则M ,N 关于点A (-1,-2)的对称点M ′,N ′均在直线l ′上, 易得M ′(-3,-5),N ′(-6,-7), 再由两点式可得l ′的方程为2x -3y -9=0. 解法二:∵l ∥l ′,∴设l ′的方程为2x -3y +C =0(C ≠1). ∵点A (-1,-2)到两直线l ,l ′的距离相等, ∴由点到直线的距离公式,得|-2+6+C |22+32=|-2+6+1|22+32,解得C =-9, ∴l ′的方程为2x -3y -9=0.解法三:设P (x ,y )为l ′上任意一点,则P(x,y)关于点A(-1,-2)的对称点为P′(-2-x,-4-y).∵点P′在直线l上,∴2(-2-x)-3(-4-y)+1=0,即2x-3y-9=0.。

版高考数学一轮复习第九章平面解析几何第讲两直线的位置关系高效演练分层突破文新人教A版

版高考数学一轮复习第九章平面解析几何第讲两直线的位置关系高效演练分层突破文新人教A版

第2讲 两直线的位置关系[根底题组练]1.直线ax +2y +2=0与3x -y -2=0平行,那么系数a =( ) A .-3 B .-6 C .-32D .23解析:选B.由直线ax +2y +2=0与直线3x -y -2=0平行知,-a2=3,a =-6.2.点A (5,-1),B (m ,m ),C (2,3),假设△ABC 为直角三角形且AC 边最长,那么整数m 的值为( )A .4B .3C .2D .1解析:选D.由题意得∠B =90°, 即AB ⊥BC ,k AB ·k BC =-1, 所以m +1m -5·3-m2-m=-1. 解得m =1或m =72,故整数m 的值为1,应选D.3.(2022·安庆模拟)假设直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,那么m =( )A .7 B.172C .14D .17解析:选B.直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,求得m =172.4.点P (4,a )到直线4x -3y -1=0的距离不大于3,那么a 的取值范围是( ) A .[-10,10] B .[-10,5] C .[-5,5]D .[0,10]解析:选D.由题意得,点P 到直线的距离为 |4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3, 即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].5.坐标原点关于直线l 1:x -y +1=0的对称点为A ,设直线l 2经过点A ,那么当点B (2,-1)到直线l 2的距离最大时,直线l 2的方程为( )A .2x +3y +5=0B .3x -2y +5=0C .3x +2y +5=0D .2x -3y +5=0解析:选B.设A (x 0,y 0),依题意可得⎩⎪⎨⎪⎧x 02-y2+1=0,y 0x=-1,解得⎩⎪⎨⎪⎧x 0=-1,y 0=1,即A (-1,1).设点B (2,-1)到直线l 2的距离为d ,当d =|AB |时取得最大值,此时直线l 2垂直于直线AB ,又-1k AB =32,所以直线l 2的方程为y -1=32(x +1),即3x -2y +5=0. 6.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为 . 解析:过两直线交点的直线系方程为x -3y +4+λ(2x +y +5)=0,代入原点坐标,求得λ=-45,故所求直线方程为x -3y +4-45(2x +y +5)=0,即3x +19y =0.答案:3x +19y =07.点A (3,2)和B (-1,4)到直线ax +y +1=0的距离相等,那么a 的值为 . 解析:由点到直线的距离公式可得|3a +2+1|a 2+1=|-a +4+1|a 2+1,解得a =12或a =-4.答案:12或-48.点A (1,3),B (5,-2),在x 轴上有一点P ,假设|AP |-|BP |最大,那么P 点坐标为 .解析:作出A 点关于x 轴的对称点A ′(1,-3),那么A ′B 所在直线方程为x -4y -13=0.令y =0得x =13,所以点P 的坐标为(13,0).答案:(13,0)9.两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足以下条件的a ,b 的值. (1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1)因为l 1⊥l 2,所以a (a -1)-b =0. 又因为直线l 1过点(-3,-1), 所以-3a +b +4=0. 故a =2,b =2.(2)因为直线l 2的斜率存在,l 1∥l 2, 所以直线l 1的斜率存在.所以ab=1-a .①。

浙江新高考数学一轮复习第九章平面解析几何2第2讲两直线的位置关系高效演练分层突破2

浙江新高考数学一轮复习第九章平面解析几何2第2讲两直线的位置关系高效演练分层突破2

2021-4-29 20XX年复习资料教学复习资料班级:科目:第2讲 两直线的位置关系[基础题组练]1.(2020·富阳市场口中学高三质检)已知直线l 1:x +ay +1=0与直线l 2:y =12x +2垂直,则a 的值是( )A .2B .-2 C.12D .-12解析:选C.因为直线l 2的斜率为12,直线l 1:x +ay +1=0与直线l 2:y =12x +2垂直,所以直线l 1的斜率等于-2,即-1a=-2,所以a =12,故选C.2.(2020·金华十校联考)“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B.点(2,1)到直线3x +4y +C =0的距离为3等价于|3×2+4×1+C |32+42=3,解得C =5或C =-25,所以“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的充分不必要条件,故选B.3.(2020·义乌模拟)直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=0解析:选D.由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.4.已知点A (-1,2),B (3,4),P 是x 轴上一点,且|PA |=|PB |,则△PAB 的面积为( ) A .15 B.552 C .6 5D.152解析:选D.设AB 的中点坐标为M (1,3),k AB =4-23-(-1)=12,所以AB 的中垂线方程为y -3=-2(x -1). 即2x +y -5=0.令y =0,则x =52,即P 点的坐标为⎝ ⎛⎭⎪⎫52,0, |AB |=(-1-3)2+(2-4)2=2 5.P 到AB 的距离为|PM |=⎝ ⎛⎭⎪⎫1-522+32=352.所以S △PAB =12|AB |·|PM |=12×25×352=152.5.已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析:选D.因为点P (x 0,y 0)不在直线Ax +By +C =0上,所以Ax 0+By 0+C ≠0,所以直线Ax +By +C +(Ax 0+By 0+C )=0不经过点P ,排除A 、B ;又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C =0平行,排除C ,故选D.6.两条平行线l 1,l 2分别过点P (-1,2),Q (2,-3),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间距离的取值范围是( )A .(5,+∞)B .(0,5]C .(34,+∞)D .(0,34 ]解析:选D.当PQ 与平行线l 1,l 2垂直时,|PQ |为平行线l 1,l 2间的距离的最大值,为(-1-2)2+[2-(-3)]2=34,所以l 1,l 2之间距离的取值范围是(0,34 ].故选D.7.已知坐标平面内两点A (x ,2-x )和B ⎝ ⎛⎭⎪⎫22,0,那么这两点之间距离的最小值是________.解析:由题意可得两点间的距离d =⎝ ⎛⎭⎪⎫x -222+(2-x )2=2⎝⎛⎭⎪⎫x -3242+14≥12,即最小值为12.答案:128.直线x +2y -3=0与直线ax +4y +b =0关于点A (1,0)对称,则b =________. 解析:在直线x +2y -3=0上取两点P 1(1,1)、P 2(3,0),则P 1、P 2关于点A 的对称点P ′1、P ′2都在直线ax +4y +b =0上.因为易知P ′1(1,-1)、P ′2(-1,0),所以⎩⎪⎨⎪⎧a -4+b =0,-a +b =0,所以b =2.答案:29.(2020·瑞安四校联考)若将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.解析:由题可知纸的折痕垂直平分点(0,2)与点(4,0)的连线,可得折痕所在直线为y =2x -3,又折痕也垂直平分点(7,3)与点(m ,n )的连线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,所以m +n =345.答案:34510.(2020·浙江新高考冲刺卷)已知m ∈R ,若点M (x ,y )为直线l 1:my =-x 和l 2:mx =y +m -3的交点,l 1和l 2分别过定点A 和B ,则|MA |·|MB |的最大值为________.解析:动直线l 1:my =-x 过定点A (0,0),动直线l 2:mx =y +m -3化为m (x -1)-(y -3)=0,得x =1,y =3,过定点B (1,3). 因为此两条直线互相垂直, 所以|MA |2+|BM |2=|AB |2=10, 所以10≥2|MA |·|MB |, 所以|MA |·|BM |≤5,当且仅当|MA |=|MB |时取等号. 答案:511.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R ). (1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎪⎫a 2+122+14,因为a 2≥0,所以b ≤0. 又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0]. (2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0, 显然a ≠0,所以ab =a +1a,|ab |=⎪⎪⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立,因此|ab |的最小值为2. 12.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P . (1)点A (5,0)到直线l 的距离为3,求直线l 的方程; (2)求点A (5,0)到直线l 的距离的最大值. 解:(1)因为经过两已知直线交点的直线系方程为 (2x +y -5)+λ(x -2y )=0, 即(2+λ)x +(1-2λ)y -5=0, 所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=12或λ=2. 所以直线l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到直线l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立). 所以d max =|PA |=10.[综合题组练]1.(2020·温州八校联考)已知M =⎩⎨⎧⎭⎬⎫(x ,y )|y -3x -2=3,N ={(x ,y )|ax +2y +a =0},且M ∩N =∅,则a =( )A .-6或-2B .-6C .2或-6D .-2解析:选A.集合M 表示去掉一点A (2,3)的直线3x -y -3=0,集合N 表示恒过定点B (-1,0)的直线ax +2y +a =0,因为M ∩N =∅,所以两直线要么平行,要么直线ax +2y +a =0与直线3x -y -3=0相交于点A (2,3).因此-a2=3或2a +6+a =0,即a =-6或a =-2.2.设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是( )A.22,12B.2,22C.2,12D.24,14解析:选A.由题意知a ,b 是方程x 2+x +c =0的两个实根,所以ab =c ,a +b =-1. 又直线x +y +a =0,x +y +b =0的距离d =|a -b |2,所以d 2=⎝ ⎛⎭⎪⎫|a -b |22=(a +b )2-4ab 2=(-1)2-4c 2=12-2c , 而0≤c ≤18,所以12-2×18≤12-2c ≤12-2×0,得14≤12-2c ≤12,所以12≤d ≤22.3.(2020·浙江省名校协作体高三联考)在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是________.解析:由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线l 1:y =k (x -3)+5+b ,再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b .所以b =3-4k +b ,解得k =34.所以直线l的方程为y =34x +b ,直线l 1为y =34x +114+b ,设直线l 上的一点P ⎝ ⎛⎭⎪⎫m ,b +3m 4,则点P 关于点(2,3)的对称点为⎝ ⎛⎭⎪⎫4-m ,6-b -34m ,所以6-b -34m =34(4-m )+b +114,解得b =18.所以直线l 的方程是y =34x +18,即6x -8y +1=0.答案:6x -8y +1=04.(2020·宁波效实中学高三月考)著名数学家华罗庚曾说过:“数形结合百般好,割裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为________.解析:因为f (x )=x 2+4x +20+x 2+2x +10=(x +2)2+(0-4)2+(x +1)2+(0-3)2,所以f (x )的几何意义为点M (x ,0)到两定点A (-2,4)与B (-1,3)的距离之和,设点A (-2,4)关于x 轴的对称点为A ′,则A ′为(-2,-4).要求f (x )的最小值,可转化为|MA |+|MB |的最小值,利用对称思想可知|MA |+|MB |≥|A ′B |=(-1+2)2+(3+4)2=52,即f (x )=x 2+4x +20+x 2+2x +10的最小值为5 2.答案:5 25.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0. (1)证明:l 1与l 2相交;(2)证明:l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)反证法.假设l 1与l 2不相交,则l 1与l 2平行,有k 1=k 2,代入k 1k 2+2=0,得k 21+2=0.此与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)由方程组⎩⎪⎨⎪⎧y =k 1x +1,y =k 2x -1,解得交点P 的坐标(x ,y )为⎩⎪⎨⎪⎧x =2k 2-k 1,y =k 2+k 1k 2-k 1,而2x 2+y 2=2⎝ ⎛⎭⎪⎫2k 2-k 12+⎝ ⎛⎭⎪⎫k 2+k 1k 2-k 12=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.6.在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-13.(1)求动点P 的轨迹方程;(2)设直线AP 和BP 分别与直线x =3交于点M ,N ,问:是否存在点P ,使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.解:(1)因为点B 与A (-1,1)关于原点O 对称,所以点B 的坐标为(1,-1). 设点P 的坐标为(x ,y ). 由题意,得y -1x +1·y +1x -1=-13, 化简,得x 2+3y 2=4(x ≠±1).故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1).(2)法一:设点P 的坐标为(x 0,y 0),点M ,N 的坐标分别为(3,y M ),(3,y N ). 则直线AP 的方程为y -1=y 0-1x 0+1(x +1), 直线BP 的方程为y +1=y 0+1x 0-1(x -1).令x =3,得y M =4y 0+x 0-3x 0+1,y N =2y 0-x 0+3x 0-1.于是△PMN 的面积S △PMN =12|y M -y N |(3-x 0)=|x 0+y 0|(3-x 0)2|x 20-1|. 又直线AB 的方程为x +y =0,|AB |=22, 点P 到直线AB 的距离d =|x 0+y 0|2.于是△PAB 的面积S △PAB =12|AB |·d =|x 0+y 0|.当S △PAB =S △PMN 时,得|x 0+y 0|=|x 0+y 0|(3-x 0)2|x 20-1|. 又|x 0+y 0|≠0.所以(3-x 0)2=|x 20-1|,解得x 0=53.因为x 20+3y 20=4,所以y 0=±339. 故存在点P ,使得△PAB 与△PMN 的面积相等,此时点P 的坐标为⎝ ⎛⎭⎪⎫53,±339.法二:若存在点P 使得△PAB 与△PMN 的面积相等,设点P 的坐标为(x 0,y 0), 则12|PA |·|PB |sin ∠APB =12|PM |·|PN |·sin ∠MPN . 因为sin ∠APB =sin ∠MPN ,所以|PA ||PM |=|PN ||PB |,所以|x 0+1||3-x 0|=|3-x 0||x 0-1|,即(3-x 0)2=|x 20-1|,解得x 0=53.因为x 20+3y 20=4,所以y 0=±339. 故存在点P ,使得△PAB 与△PMN 的面积相等,此时点P 的坐标为⎝ ⎛⎭⎪⎫53,±339.结束语同学们,相信梦想是价值的源泉,相信成功的信念比成功本身更重要,相信人生有挫折没有失败,相信生命的质量来自决不妥协的信念。

高考数学一轮复习 第九章 平面解析几何 第2讲 两直线的位置关系教学案 理 北师大版-北师大版高三全

高考数学一轮复习 第九章 平面解析几何 第2讲 两直线的位置关系教学案 理 北师大版-北师大版高三全

第2讲 两直线的位置关系一、知识梳理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率都存在且分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2;特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行.(2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.两种距离点点距点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2点线距 点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2常用结论 1.两个充要条件(1)两直线平行或重合的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行或重合的充要条件是A 1B 2-A 2B 1=0.(2)两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0. 2.六种常见对称(1)点(x ,y )关于原点(0,0)的对称点为(-x ,-y ).(2)点(x ,y )关于x 轴的对称点为(x ,-y ),关于y 轴的对称点为(-x ,y ). (3)点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ).(4)点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x ,2b -y ).(5)点(x ,y )关于点(a ,b )的对称点为(2a -x ,2b -y ).(6)点(x ,y )关于直线x +y =k 的对称点为(k -y ,k -x ),关于直线x -y =k 的对称点为(k +y ,x -k ).3.三种直线系方程(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +n =0(n ∈R ).(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.二、教材衍化1.已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a =________. 解析:由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2.因为a >0,所以a =-1+ 2. 答案:2-12.已知P (-2,m ),Q (m ,4),且直线PQ 垂直于直线x +y +1=0,则m =________.解析:由题意知m -4-2-m=1,所以m -4=-2-m ,所以m =1.答案:1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( )(2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√ 二、易错纠偏常见误区|K(1)判断两直线平行时,忽视两直线重合的情况; (2)判断两直线的位置关系时,忽视斜率不存在的情况; (3)求两平行线间的距离,忽视x ,y 的系数应对应相同.1.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =________.解析:直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m=2或-3.答案:2或-32.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.解析:由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.答案:0或13.直线2x +2y +1=0,x +y +2=0之间的距离是________. 解析:先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.答案:324两直线的位置关系(多维探究) 角度一 判断两直线的位置关系(2020·某某静海区联考)“a =1”是“直线ax +2y -8=0与直线x +(a +1)y+4=0平行”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【解析】 设直线l 1:ax +2y -8=0,直线l 2:x +(a +1)y +4=0.若l 1与l 2平行,则a (a +1)-2=0,即a 2+a -2=0,解得a =1或a =-2.当a =-2时,直线l 1的方程为-2x+2y -8=0,即x -y +4=0,直线l 2的方程为x -y +4=0,此时两直线重合,则a ≠-2.当a =1时,直线l 1的方程为x +2y -8=0,直线l 2的方程为x +2y +4=0,此时两直线平行.故“a =1”是“直线ax +2y -8=0与直线x +(a +1)y +4=0平行”的充要条件.故选A.【答案】 A角度二 由两直线的位置关系求参数(1)(2020·某某某某四校联考)直线(2m -1)x +my +1=0和直线mx +3y +3=0垂直,则实数m 的值为( )A .1B .0C .2D .-1或0(2)(2020·某某某某中学二模)若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( )A .1B .-2C .1或-2D .-32【解析】 (1)由两直线垂直可得m (2m -1)+3m =0,解得m =0或-1.故选D. (2)①当m =-1时,两直线方程分别为x -2=0和x -2y -4=0,此时两直线相交,不符合题意.②当m ≠-1时,两直线的斜率都存在,由两直线平行可得⎩⎪⎨⎪⎧-11+m =-m 2,21+m ≠-2,解得m =1.综上可得m =1.故选A.【答案】 (1)D (2)A角度三 由两直线的位置关系求直线方程(一题多解)经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线的方程为________.【解析】 法一:由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0解得⎩⎪⎨⎪⎧x =-53,y =79,即交点为⎝ ⎛⎭⎪⎫-53,79,因为所求直线与直线3x +4y -7=0垂直, 所以所求直线的斜率为k =43.由点斜式得所求直线方程为y -79=43⎝ ⎛⎭⎪⎫x +53,即4x -3y +9=0.法二:由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0可解得交点为⎝ ⎛⎭⎪⎫-53,79,代入4x -3y +m =0得m =9, 故所求直线方程为4x -3y +9=0.法三:由题意可设所求直线的方程为(2x +3y +1)+λ(x -3y +4)=0, 即(2+λ)x +(3-3λ)y +1+4λ=0,① 又因为所求直线与直线3x +4y -7=0垂直, 所以3(2+λ)+4(3-3λ)=0,所以λ=2,代入①式得所求直线方程为4x -3y +9=0. 【答案】 4x -3y +9=0两直线平行、垂直的判断方法若已知两直线的斜率存在.(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等. (2)两直线垂直⇔两直线的斜率之积等于-1. [提醒] 判断两条直线的位置关系应注意: (1)注意斜率不存在的特殊情况.(2)注意x ,y 的系数不能同时为零这一隐含条件.1.求满足下列条件的直线方程.(1)过点P (-1,3)且平行于直线x -2y +3=0; (2)已知A (1,2),B (3,1),线段AB 的垂直平分线.解:(1)设直线方程为x -2y +c =0,把P (-1,3)代入直线方程得c =7, 所以直线方程为x -2y +7=0.(2)AB 的中点为⎝⎛⎭⎪⎫1+32,2+12,即⎝ ⎛⎭⎪⎫2,32,直线AB 的斜率k AB =2-11-3=-12,故线段AB 的垂直平分线的斜率k =2,所以其方程为y -32=2(x -2),即4x -2y -5=0.2.(一题多解)已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解:(1)法一:当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1), l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1),解得a =-1,综上可知,当a =-1时,l 1∥l 2. 法二:由A 1B 2-A 2B 1=0, 得a (a -1)-1×2=0, 由A 1C 2-A 2C 1≠0, 得a (a 2-1)-1×6≠0,所以l 1∥l 2⇔⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0, ⇔⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6,可得a =-1, 故当a =-1时,l 1∥l 2.(2)法一:当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2, 故a =0不成立;当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-ax -(a +1),由⎝ ⎛⎭⎪⎫-a 2·11-a=-1,得a =23.法二:由A 1A 2+B 1B 2=0,得a +2(a -1)=0, 可得a =23.两条直线的交点和距离问题(典例迁移)(1)经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为__________________.(2)(2020·某某模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值X 围是________.(3)(2020·某某模拟)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.【解析】 (1)由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2).因为l ⊥l 3,所以直线l 的斜率k =-43,所以直线l 的方程为y -2=-43x ,即4x +3y -6=0.(2)由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值X 围是[0,10].(3)依题意知,63=a -2≠c-1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x-2y +c 2=0,又两平行线之间的距离为21313,所以|c2+1|32+(-2)2=21313,解得c =2或-6.【答案】 (1)4x +3y -6=0 (2)[0,10] (3)2或-6【迁移探究】 若将本例(1)中的“垂直”改为“平行”,如何求解? 解:法一:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2). 因为l ∥l 3,所以直线l 的斜率k =34,所以直线l 的方程为y -2=34x ,即3x -4y +8=0.法二:因为直线l 过直线l 1和l 2的交点,所以可设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.因为l 与l 3平行,所以3(λ-2)-(-4)(1+λ)=0,且(-4)(4-2λ)≠5(λ-2),所以λ=27,所以直线l 的方程为3x -4y +8=0.(1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②应用两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为相等.1.已知A (2,0),B (0,2),若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .1解析:选A.设点C (t ,t 2),直线AB 的方程是x +y -2=0,|AB |=2 2. 由于△ABC 的面积为2,则这个三角形中AB 边上的高h 满足方程12×22h =2,即h = 2.由点到直线的距离公式得2=|t +t 2-2|2,即|t +t 2-2|=2,即t 2+t -2=2或者t 2+t -2=-2.因为这两个方程各有两个不相等的实数根,故这样的点C 有4个.2.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值X 围是________.解析:如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.因为两直线的交点在第一象限,所以两直线的交点必在线段AB 上(不包括端点), 所以动直线的斜率k 需满足k PA <k <k PB . 因为k PA =-16,k PB =12.所以-16<k <12.答案:⎝ ⎛⎭⎪⎫-16,12 3.(一题多解)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,所以k =-13,所以直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l的方程为x =-1,也符合题意.故所求直线l 的方程为x +3y -5=0或x =-1.法二:当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 的中点时,AB 的中点为(-1,4),所以直线l 的方程为x =-1,故所求直线l 的方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-1对称问题(多维探究) 角度一 点关于点的对称过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.【解析】 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0.【答案】 x +4y -4=0 角度二 点关于线的对称如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210B .6C .3 3D .2 5【解析】 易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 的对称点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1(4,2)与A 2(-2,0)两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210.【答案】 A角度三 线关于线的对称直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( )A .x -2y +3=0B .x -2y -3=0C .x +2y +1=0D .x +2y -1=0【解析】 设所求直线上任意一点P (x ,y ),则P 关于直线x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0)得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, 所以2(y -2)-(x +2)+3=0,即x -2y +3=0. 【答案】 A(1)中心对称问题的2个类型及求解方法 ①点关于点对称:若点M (x 1,y 1)及N (x ,y )关于点P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解;②直线关于点的对称,主要求解方法:(a)在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;(b)求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. (2)轴对称问题的2个类型及求解方法 ①点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). ②直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 解:(1)设A ′(x ,y ),由已知⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.所以A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′的方程为9x -46y +102=0.(3)设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),因为P ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.直线系方程的应用一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.【解】 依题意,设所求直线方程为3x +4y +C 1=0(C 1≠1),因为直线过点(1,2), 所以3×1+4×2+C 1=0,解得C 1=-11. 因此,所求直线方程为3x +4y -11=0.先设与直线Ax +By +C =0平行的直线系方程为Ax +By +C 1=0(C 1≠C ),再由其他条件求C 1.二、垂直直线系由于直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0垂直的充要条件为A 1A 2+B 1B 2=0,因此,当两直线垂直时,它们的一次项系数有必然的联系,可以考虑用直线系方程求解.求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.【解】 因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C 1=0,又直线过点A (2,1),所以有2-2×1+C 1=0,解得C 1=0,所以所求直线方程为x -2y =0.先设与直线Ax +By +C =0垂直的直线系方程为Bx -Ay +C 1=0,再由其他条件求出C 1. 三、过直线交点的直线系求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x-5y +6=0的直线l 的方程.【解】 法一:将直线l 1,l 2的方程联立,得⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =2,即直线l 1,l 2的交点为(-1,2).由题意得直线l 3的斜率为35,又直线l ⊥l 3,所以直线l 的斜率为-53,则直线l 的方程是y -2=-53(x +1),即5x +3y -1=0.法二:由于l ⊥l 3,所以可设直线l 的方程是5x +3y +C =0,将直线l 1,l 2的方程联立,得⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =2,即直线l 1,l 2的交点为(-1,2),则点(-1,2)在直线l上,所以5×(-1)+3×2+C =0,解得C =-1,所以直线l 的方程为5x +3y -1=0.法三:设直线l 的方程为3x +2y -1+λ(5x +2y +1)=0, 整理得(3+5λ)x +(2+2λ)y +(-1+λ)=0.由于l ⊥l 3,所以3(3+5λ)-5(2+2λ)=0,解得λ=15,所以直线l 的方程为5x +3y -1=0.本题中的法二、法三均是利用直线系设出直线l 的方程,而法三是利用相交直线系设出方程,避免了求直线l 1与l 2的交点坐标,方便简捷,是最优解法.四、直线恒过定点已知λ∈R ,求证直线l :(2λ+1)x +(3λ+1)y -7λ-3=0恒过定点,并求出该定点坐标.【解】 将(2λ+1)x +(3λ+1)y -7λ-3=0化成 (2x +3y -7)λ+(x +y -3)=0.要使直线恒过定点,必须⎩⎪⎨⎪⎧2x +3y -7=0x +y -3=0.解得⎩⎪⎨⎪⎧x =2,y =1.即直线l 恒过定点(2,1).直线Ax +By +C =0恒过定点问题实际上是直线系方程问题.将问题转化为两直线的交点,即将Ax +By +C =0化为(a 1x +b 1y +c 1)λ+(a 2x +b 2y +c 2)=0.通过方程组⎩⎪⎨⎪⎧a 1x +b 1y +c 1=0a 2x +b 2y +c 2=0,即可求出直线恒过的定点.[基础题组练]1.已知直线l 1:mx +y -1=0与直线l 2:(m -2)x +my -2=0,则“m =1”是“l 1⊥l 2”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选A.由l 1⊥l 2,得m (m -2)+m =0,解得m =0或m =1,所以“m =1”是“l 1⊥l 2”的充分不必要条件,故选A.2.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或2解析:选C.法一:由两直线平行得,当k -3=0时,两直线的方程分别为y =-1和y =32,显然两直线平行.当k -3≠0时,由k -32(k -3)=4-k -2≠13,可得k =5.综上,k 的值是3或5.法二:当k =3时,两直线平行,故排除B ,D ;当k =1时,两直线不平行,排除A. 3.(2020·某某江南十校二联)已知直线l 1:mx -3y +6=0,l 2:4x -3my +12=0,若l 1∥l 2,则l 1,l 2之间的距离为( )A.121313 B .81313C.91313D .13解析:选A.由于两条直线平行,所以m ·(-3m )-(-3)·4=0,解得m =±2,当m =2时,两直线方程都是2x -3y +6=0,故两直线重合,不符合题意.当m =-2时,l 1:2x +3y -6=0,l 2:2x +3y +6=0,故l 1,l 2之间的距离为|6-(-6)|22+32=121313.故选A. 4.若点P 在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)解析:选C.设P (x ,5-3x ),则d =|x -(5-3x )-1|12+(-1)2=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故P (1,2)或(2,-1).5.直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为( )A .2x +3y -12=0B .2x -3y -12=0C .2x -3y +12=0D .2x +3y +12=0解析:选D.由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧x +3=0,y -1=0,可得x =-3,y =1,所以M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c=-6(舍去),所以所求方程为2x +3y +12=0,故选D.6.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________. 解析:l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则:|c +6|=|c +32|,解得c =-154,所以l 的方程为12x+8y -15=0.答案:12x +8y -15=07.l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是________.解析:当两条平行直线与A ,B 两点连线垂直时,两条平行直线间的距离最大.又k AB=-1-10-1=2,所以两条平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=08.已知点A (-1,2),B (3,4).P 是x 轴上一点,且|PA |=|PB |,则△PAB 的面积为________.解析:设AB 的中点坐标为M (1,3),k AB =4-23-(-1)=12,所以AB 的中垂线方程为y -3=-2(x -1). 即2x +y -5=0. 令y =0,则x =52,即P 点的坐标为(52,0),|AB |=(-1-3)2+(2-4)2=2 5. 点P 到AB 的距离为|PM |=⎝ ⎛⎭⎪⎫1-522+32=352. 所以S △PAB =12|AB |·|PM |=12×25×352=152.答案:1529.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1)因为l 1⊥l 2, 所以a (a -1)-b =0.又因为直线l 1过点(-3,-1), 所以-3a +b +4=0. 故a =2,b =2.(2)因为直线l 2的斜率存在,l 1∥l 2, 所以直线l 1的斜率存在. 所以a b=1-a .①又因为坐标原点到这两条直线的距离相等, 所以l 1,l 2在y 轴上的截距互为相反数,即4b=b .②联立①②可得a =2,b =-2或a =23,b =2.10.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P . (1)点A (5,0)到直线l 的距离为3,求直线l 的方程; (2)求点A (5,0)到直线l 的距离的最大值. 解:(1)因为经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, 所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=12或λ=2. 所以直线l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到直线l 的距离, 则d ≤|PA |(当l ⊥PA 时等号成立). 所以d max =|PA |=10.[综合题组练]1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为 ( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C.设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,所以BC 所在的直线方程为y -1=-2-14-3(x -3),即3x +y -10=0.同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),所以AC 所在的直线方程为y -2=3-2-1-(-4)·(x +4),即x -3y +10=0.联立得⎩⎪⎨⎪⎧3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,则C (2,4).故选C.2.两条平行线l 1,l 2分别过点P (-1,2),Q (2,-3),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间距离的取值X 围是( )A .(5,+∞)B .(0,5]C .(34,+∞)D .(0,34]解析:选D.当直线PQ 与平行线l 1,l 2垂直时,|PQ |为平行线l 1,l 2间的距离的最大值,为(-1-2)2+[2-(-3)]2=34,所以l 1,l 2之间距离的取值X 围是(0,34].故选D.3.在平面直角坐标系xOy (O 为坐标原点)中,不过原点的两直线l 1:x -my +2m -1=0,l 2:mx +y -m -2=0的交点为P ,过点O 分别向直线l 1,l 2引垂线,垂足分别为M ,N ,则四边形OMPN 面积的最大值为( )A .3B .32 C .5D .52解析:选D.将直线l 1的方程变形得(x -1)+m (2-y )=0,由⎩⎪⎨⎪⎧x -1=02-y =0,得⎩⎪⎨⎪⎧x =1y =2,则直线l 1过定点A (1,2),同理可知,直线l 2过定点A (1,2),所以,直线l 1和直线l 2的交点P 的坐标为(1,2),易知,直线l 1⊥l 2,如图所示, 易知,四边形OMPN 为矩形,且|OP |=12+22=5, 设|OM |=a ,|ON |=b ,则a 2+b 2=5,四边形OMPN 的面积为S =|OM |·|ON |=ab ≤a 2+b 22=52, 当且仅当⎩⎪⎨⎪⎧a =b a 2+b 2=5,即当a =b =102时,等号成立, 因此,四边形OMPN 面积的最大值为52,故选D.4.如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值X 围为________.解析:从特殊位置考虑.如图,因为点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4),所以kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,所以k FD >kA 1F ,即k FD ∈(4,+∞).答案:(4,+∞)5.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.解:点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 6.在直线l :3x -y -1=0上求一点P ,使得: (1)P 到A (4,1)和B (0,4)的距离之差最大; (2)P 到A (4,1)和C (3,4)的距离之和最小. 解:(1)如图,设B 关于l 的对称点为B ′,AB ′的延长线交l 于P 0,在l 上另任取一点P ,则|PA |-|PB |=|PA |-|PB ′|<|AB ′|=|P 0A |-|P 0B ′|=|P 0A |-|P 0B |,则P 0即为所求.易求得直线BB ′的方程为x +3y -12=0, 设B ′(a ,b ),则a +3b -12=0,①又线段BB ′的中点⎝ ⎛⎭⎪⎫a 2,b +42在l 上,故3a -b -6=0.②由①②解得a =3,b =3, 所以B ′(3,3).所以AB ′所在直线的方程为2x +y -9=0.由⎩⎪⎨⎪⎧2x +y -9=0,3x -y -1=0可得P 0(2,5). (2)设C 关于l 的对称点为C ′,与(1)同理可得C ′⎝ ⎛⎭⎪⎫35,245.连接AC ′交l 于P 1,在l 上另任取一点P ,有|PA |+|PC |=|PA |+|PC ′|>|AC ′|=|P 1C ′|+|P 1A |=|P 1C |+|P 1A |,故P 1即为所求.又AC ′所在直线的方程为19x +17y -93=0,故由⎩⎪⎨⎪⎧19x +17y -93=0,3x -y -1=0可得P 1⎝ ⎛⎭⎪⎫117,267.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 两直线的位置关系一、选择题1.已知直线l 1:mx +y -1=0与直线l 2:(m -2)x +my -2=0,则“m =1”是“l 1⊥l 2”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选A .由l 1⊥l 2,得m (m -2)+m =0,解得m =0或m =1,所以“m =1”是“l 1⊥l 2”的充分不必要条件,故选A .2.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B .由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k ,得⎩⎪⎨⎪⎧x =k k -1,y =2k -1k -1.又因为0<k <12,所以x =kk -1<0,y =2k -1k -1>0, 故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.3.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)解析:选B .由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,所以直线l 2恒过定点(0,2).4.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y =0平行,则l 1与l 2之间的距离为( ) A . 2 B .2 2 C .3 2D .4 2解析:选C .因为l 1∥l 2, 所以1a -2=a 3,解得a =-1,所以l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y =0, 所以l 1与l 2的距离d =||6-02=32.选C .5.光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( )A .a =13,b =6B .a =-13,b =-6C .a =3,b =-16D .a =-3,b =16解析:选B .在直线y =-3x +b 上任意取一点A (1,b -3),则点A 关于直线x +y =0的对称点B (-b +3,-1)在直线y =ax +2上,故有-1=a (-b +3)+2,即-1=-ab +3a +2,所以ab =3a +3,结合所给的选项,只有B 项符合,故选B .6.在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2的值为( )A .102B .10C .5D .10解析:选D .由题意知P (0,1),Q (-3,0),因为过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以M 位于以PQ 为直径的圆上,因为|PQ |=9+1=10,所以|MP |2+|MQ |2=|PQ |2=10,故选D . 二、填空题7.直线x -2y +1=0关于直线x =1对称的直线方程是________. 解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1). 又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=08.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________.解析:因为k AB =5-11-4=-43,k DC =2-(-2)-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形. 又k AD ·k AB =-1,即AD ⊥AB , 故四边形ABCD 为矩形. 故S =|AB |·|AD |=(1-4)2+(5-1)2×(0-4)2+(-2-1)2=25. 答案:259.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=010.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.因为k AC =6-23-1=2, 所以直线AC 的方程为y -2=2(x -1), 即2x -y =0.①又因为k BD =5-(-1)1-7=-1,所以直线BD 的方程为y -5=-(x -1), 即x +y -6=0.②联立①②⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =2,y =4,所以M (2,4). 答案:(2,4)三、解答题11.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34. 此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图. 由l ⊥OP ,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0. 所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线, 最大距离为|-5|5=5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.12.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.解:点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0.1.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), 所以l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.2.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解:(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+(-1)2=7510, 所以⎪⎪⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12×⎪⎪⎪⎪⎪⎪c +125,即c =132或116,所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0;若点P 满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25×|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能. 联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12(舍去); 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=19,y 0=3718.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.。

相关文档
最新文档