2018年高考数学一轮复习专题21简单的三角恒等变换教学案文!

合集下载

三角恒等变换备课教案

三角恒等变换备课教案

三角恒等变换备课教案备课教案:三角恒等变换一、引言三角恒等变换是高中数学中的重要内容,对于学生深入理解三角函数的性质和应用具有重要意义。

本教案将通过引导学生发现和探究三角恒等变换的规律,帮助学生理解和掌握相关的变换技巧。

二、知识背景1. 三角函数的基本关系:(1) 正弦函数:sinθ = 对边/斜边(2) 余弦函数:cosθ = 邻边/斜边(3) 正切函数:tanθ = 对边/邻边2. 三角函数的周期性:(1) 正弦函数、余弦函数的周期是2π(2) 正切函数的周期是π3. 三角函数的基本恒等式:(1) 余弦函数的平方与正弦函数的平方和为1:cos^2θ + sin^2θ = 1(2) 正切函数与余切函数的乘积始终等于1:tanθ · cotθ = 1(3) 正弦函数与余切函数、余弦函数与正切函数的关系:sinθ/cotθ = cosθcosθ/tanθ = sinθ三、教学过程1. 引入:通过提问的方式引导学生回顾三角函数的基本关系和周期性规律。

2. 发现:给出一个具体的三角函数等式,例如sinθ = cos(π/2 - θ),请学生尝试寻找与之相关的恒等式。

3. 探究:根据学生的发现,引导学生使用初等三角函数的定义和已知的三角函数恒等式,进行推导和证明,找出恒等式的变换规律。

4. 总结:整理学生的发现和推导过程,总结三角恒等变换的基本规律,并给出示例进行演示和讲解。

5. 练习:提供一些练习题,让学生运用所学的三角恒等变换规律,解决相关的三角函数等式和问题。

四、教学评价1. 通过观察学生的推导过程和解题思路,评价他们对三角恒等变换规律的理解和掌握情况。

2. 提供针对性的反馈和指导,帮助学生纠正错误和加深对知识点的理解。

3. 鼓励学生积极参与课堂讨论和解题过程,培养他们的合作和思考能力。

五、课后作业1. 题目一:证明sin(π/2 - θ) = cosθ。

2. 题目二:利用三角恒等变换,化简并求解tanθ + 1 = secθ的解。

321简单的三角恒等变换教学设计

321简单的三角恒等变换教学设计
三角函数的定义
根据角度在直角三角形中的对边、邻边和斜边的比值,定义了正弦、余弦和正 切等三角函数。
三角函数的性质
包括周期性、奇偶性、增减性、最值等。例如,正弦函数和余弦函数具有周期 性,周期为2π;正切函数具有周期性,周期为π,并且在每一个周期内是增函 数。
三角函数图像与变换
三角函数图像
正弦函数、余弦函数和正切函数的图像分别是正弦曲线、余 弦曲线和正切曲线。这些图像具有特定的形状和性质,如振 幅、周期、相位等。
三角函数问题具有重要意义。
通过本课程的学习,学生将掌握 三角恒等变换的基本方法和技巧 ,提高数学素养和解决问题的能
力。
教学目标与要求
知识目标
掌握基本的三角恒等变换公式, 如和差化积、积化和差、倍角公
式等。
能力目标
能够运用三角恒等变换解决简单的 三角函数问题,如求值、化简、证 明等。
情感目标
培养学生对数学的兴趣和热爱,提 高学生的数学素养和审美能力。
角的变换法
通过角的变换,将所求角用已知角表示,然后代 入公式计算。
3
公式变形法
将公式进行变形,使得所求值能够直接代入计算 。
证明类问题解决方法
分析法
从结论出发,逆向思维, 寻找使结论成立的条件, 逐步推导至已知条件。
综合法
从已知条件出发,通过逐 步推导,得出结论。
比较法
通过比较两个表达式之间 的差异,寻找联系,从而 证明结论。
题目二
化简 $sin^2alpha cos^2beta + cos^2alpha sin^2beta$。
题目三
求 $sin 2alpha cos 2beta + cos 2alpha sin 2beta$ 的值。

简单的三角恒等变换(教案)

简单的三角恒等变换(教案)

简单的三角恒等变换(一)张掖中学 宋娟一、教学目标知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用;过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力;情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点教学重点:利用公式进行简单的恒等变换;教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、教学类型:新授课. 五、教学内容复习引入(学生组织完成)问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解思考1(学生组织完成):如何用cos α表示222sin cos tan 222ααα、、?分析:观察α与2α的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的变形公式.解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2α代替α,即得2cos 12sin 2αα=-,所以21cos sin 22αα-=; ①在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2α代替α,即得2cos 2cos 12αα=-,所以21cos cos 22αα+=. ②将①②两个等式的左右两边分别相除,即得21cos tan 21cos ααα-=+.思考2:若已知cos α,如何计算sincos tan 222ααα、、?sincos tan 222ααα=== (半角公式) 强调:“±”号由2α所在象限决定. 例1:已知5sin 13α=,且2παπ<<,求tan 2α的值.解512sin cos 13213,tan24222tan tan 522πααπαππαπααπαα=<<∴=-<<∴<<∴>=====因为且又由公式例2 求证sin 1cos tan 21cos sin ααααα-==+ 证明22sin sin2cossin sin 222tan21cos cos cos 2cos 2cos 2222sin sin 2sin 2sin1cos 2222tan2sin sin coscos2sin222αααααααααααααααααααααα⋅====+⋅⋅-====⋅利用例2的结论,再做一下例1,比较两种方法.例3 已知3sin 25θ=,022πθ<<,求22cos sin 12)4θθπθ--+.分析:由降幂公式知22cos 1cos 2αα=+,故有cos sin cos sin θθθθ-=+原式 ﹡ 此处有两种处理方法:方法一、由已知求出cos sin θθ、的值,带入﹡式计算,即可得到结果; 方法二、由﹡继续变形,将半角化为倍角进行计算. 解法一22cos sin......cos sin020cos0,sin02434sin2,02cos2525cos212sin2cos1sin121010θθθθππθθθθπθθθθθθθθ-=*+<<∴<<∴>>=<<==-=-∴==**==原式由由得又带入式得解法二222cos sincos sin(cos sin)(cos sin)(cos sin)12sin cos1sin2......cos sin cos234sin2,02cos252532115544255θθθθθθθθθθθθθθθθπθθθ-=+-=+---==*-=<<=*-*==原式由得带入式得=小结:对于例3,我们从不同角度出发,解法一先利用倍角计算半角,再带入求值,解法二先利用半角化为倍角,再带入求值.在三角恒等变换中,正所谓“条条大路通罗马”.在以后的学习当中,此类问题是三角恒等变换中常见的问题.万丈高楼平地起,在此告诫同学们,基础知识的理解和必要的记忆是很重要的,所以在以后的学习中,不管题目如何变化,都有一个固定的解题理论,那就是我们的倍角公式,及其逆用,掌握好了基础的理论知识,不管题目如何变化,我们都能将他们各个击破.所谓“咬定青山不放松,任尔东南西北风”.下面我们来分小组讨论一下这一个问题:(练一练)化简22221sin sin cos cos cos2cos22αβαβαβ⋅+⋅-⋅.分析:1.从“角”入手,倍角化半角;2.从“幂”入手,利用降幂公式将次;3.从“形”入手,利用配方法.本题目至少有6种解法,请同学们讨论完成.课堂小结三个数学方法1.从“角”入手,倍角化半角(半角化倍角);2.从“幂”入手,利用降幂公式将次(利用升幂公式升次);3.从“形”入手,利用配方法(分母有理化、分子有理化).两个人生哲理1.条条大路通罗马;2.咬定青山不放松,任尔东南西北风.布置作业习题3.2A组1(1)、(2)、(4)、(5)课后反思。

三角恒等变换教案

三角恒等变换教案

三角恒等变换教案教案标题:三角恒等变换教案教案概述:本教案针对高中数学课程中的三角函数学习内容,以“三角恒等变换”为主题。

通过引导学生理解三角恒等变换的定义、性质和运用方法,培养学生的逻辑思维能力和数学推理能力,提高他们解决实际问题的能力。

教案目标:1. 了解三角恒等变换的概念和性质;2. 能够正确运用三角恒等变换的方法和技巧进行数学推导和证明;3. 培养学生的数学思维能力和解决实际问题的能力。

教案重点:1. 三角恒等变换的定义和性质;2. 学生针对具体问题,灵活运用三角恒等变换进行推导和证明。

教案难点:学生对三角恒等变换的抽象性理解以及如何熟练运用于解决问题。

教学准备:1. 教师准备幻灯片、黑板、白板等教学工具;2. 学生准备笔记本、教材等学习工具。

教学过程:步骤一:导入1. 引入数学公式和恒等式的概念,向学生介绍三角恒等变换是一类特殊的恒等变换。

2. 通过具体的示例和问题,引发学生对三角函数之间关系的思考。

步骤二:讲解1. 结合幻灯片或黑板,向学生逐步展示三角恒等变换的基本定义和性质。

2. 通过示例演算和详细讲解,帮助学生理解三角恒等变换的运用方法和技巧。

步骤三:练习1. 发放练习题,让学生运用所学的三角恒等变换方法解决具体问题。

2. 在学生独立完成后,进行试卷讲解,鼓励学生积极参与并解答问题。

步骤四:拓展1. 提出更加复杂的问题,引导学生运用三角恒等变换解决实际问题。

2. 引导学生思考三角恒等变换的实际应用,例如在工程、物理等领域中的具体运用。

步骤五:总结1. 对三角恒等变换内容进行小结,强调重要概念和方法。

2. 提醒学生在复习中注意三角恒等变换的细节,以及如何灵活运用于解决问题。

教学辅助:1. 幻灯片或黑板白板;2. 教材和练习题。

教学延伸:1. 将三角恒等变换与其他数学知识进行整合,拓展学生的数学思维;2. 引导学生自主探究和发现更多三角恒等变换的性质和应用场景;3. 带领学生进行相关的作业和实践项目,综合运用所学的知识。

三角恒等变换教案优质课教案

三角恒等变换教案优质课教案

三角函数的图像与变换
三角函数的基本图像
01
正弦、余弦、正切函数在坐标系中的图像及其特点。
图像的平移与伸缩
02
通过平移和伸缩变换,可以得到不同振幅、周期和相位的三角
函数图像。
图像的对称与周期性
03
三角函数图像具有对称性和周期性,可以通过这些性质进行图
像分析和变换。
三角函数的和差化积与积化和差公式
和差化积公式
05
06
$tan(A - B) = frac{tan A - tan B}{1 + tan A tan B}$
倍角公式与半角公式
倍角公式 $sin 2A = 2sin A cos A$
$cos 2A = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1 - 2sin^2 A$
解释三角恒等变换在几何图形中的应用,如角度、边长等的计算。
02
三角恒等变换在物理中的应用
阐述三角恒等变换在物理学中的应用,如振动、波动等问题的分析。
03
三角恒等变换在工程学中的应用
介绍三角恒等变换在工程领域中的应用,如建筑设计、机械制造等。
拓展:三角恒等变换在其他领域的应用
三角恒等变换在数学分析中的应用
三角恒等变换在数学、物理、工程等领域具有广泛的应用,是解决实际问题的重要 工具之一。
掌握三角恒等变换的方法和技巧,对于提高学生的数学素养和解决问题的能力具有 重要意义。
课程目标与要求
知识与技能目标
掌握三角恒等变换的基本方法和技巧, 能够熟练地进行三角函数的化简和计 算。
过程与方法目标
情感态度与价值观目标
将两个角的三角函数和差转化为 单个角的三角函数形式,便于计

高三数学一轮复习三角恒等变换及应用教案

高三数学一轮复习三角恒等变换及应用教案

三角恒等变换及应用tan tan 1tan tan αβα±ααcos ;αα2sin -tan α。

(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

二.典例分析(2011·广东高考)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎪⎫5π4的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值.(1)∵f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,∴f ⎝⎛⎭⎪⎫5π4=2sin ⎝ ⎛⎭⎪⎫5π12-π6=2sin π4= 2.(2)∵α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,∴2sin α=1013,2sin ⎝ ⎛⎭⎪⎫β+π2=65.即sin α=513,cos β=35.∴cos α=1213,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β =1213×35-513×45=1665. 由题悟法两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.以题试法1.(1)已知sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,则cos 2α2sin ⎝⎛⎭⎪⎫α+π4=________.(2)(2012·济南模拟)已知α为锐角,cos α=55,则tan ⎝ ⎛⎭⎪⎫π4+2α=( ) A .-3 B .-17C .-43D .-7解析:(1)cos 2α2sin ⎝⎛⎭⎪⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎪⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-45.∴原式=-75.(2)依题意得,sin α=255,故tan α=2,tan 2α=2×21-4=-43,所以tan ⎝ ⎛⎭⎪⎫π4+2α=1-431+43=-17. 答案:(1)-75(2)B三角函数公式的逆用与变形应用典题导入(2013·德州一模)已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域;(2)若α为第二象限角,且f ⎝⎛⎭⎪⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值. (1)∵f (x )=2cos 2x 2-3sin x =1+cos x -3sin x =1+2cos ⎝⎛⎭⎪⎫x +π3,∴周期T =2π,f (x )的值域为.(2)∵f ⎝⎛⎭⎪⎫α-π3=13,∴1+2cos α=13,即cos α=-13.∵α为第二象限角,∴sin α=223.∴cos 2α1+cos 2α-sin 2α=cos 2α-sin 2α2cos 2α-2sin αcos α =cos α+sin α2cos α=-13+223-23=1-222.由题悟法运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.以题试法2.(1)(2012·赣州模拟)已知sin ⎝ ⎛⎭⎪⎫α+π6+cos α=435,则sin ⎝ ⎛⎭⎪⎫α+π3的值为( )A.45B.35 C.32D.35(2)若α+β=3π4,则(1-tan α)(1-tan β)的值是________.解析:(1)由条件得32sin α+32cos α=435, 即12sin α+32cos α=45. ∴sin ⎝⎛⎭⎪⎫α+π3=45.(2)-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β. ∴1-tan α-tan β+tan αtan β=2, 即(1-tan α)(1-tan β)=2. 答案:(1)A (2)2角 的 变 换典题导入(1)(2012·温州模拟)若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)=________.(2)(2012·江苏高考)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.(1)由条件知sin α+cos αsin α-cos α=tan α+1tan α-1=3,则tan α=2. 故tan(β-2α)=tan =tan β-α-tan α1+tan β-αtan α=-2-21+-2×2=43.(2)因为α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=45, 所以sin ⎝ ⎛⎭⎪⎫α+π6=35,sin 2⎝ ⎛⎭⎪⎫α+π6=2425,cos 2⎝⎛⎭⎪⎫α+π6=725, 所以sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4=2425×22-725×22=17250. (1)43 (2)17250由题悟法1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式;2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.3.常见的配角技巧:α=2·α2;α=(α+β)-β;α=β-(β-α); α=12;β=12;π4+α=π2-⎝ ⎛⎭⎪⎫π4-α;α=π4-⎝ ⎛⎭⎪⎫π4-α. 以题试法3.设tan ()α+β=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝ ⎛⎭⎪⎫α+π4=( )A.1318 B.1322C.322D.16解析:选C tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=tan α+β-tan ⎝⎛⎭⎪⎫β-π41+tan α+βtan ⎝ ⎛⎭⎪⎫β-π4=322.化简2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .原式=-2sin 2x cos 2x +122sin ⎝ ⎛⎭⎪⎫π4-x cos 2⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x=121-sin 22x2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =12cos 22x sin ⎝ ⎛⎭⎪⎫π2-2x=12cos 2x . 由题悟法三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.以题试法1.化简⎝ ⎛⎭⎪⎪⎫1tan α2-tan α2·⎝ ⎛⎭⎪⎫1+tan α·tan α2. 解:法一:原式=⎝ ⎛⎭⎪⎫cos α2sin α2-sin α2cos α2·⎝⎛⎭⎪⎫1+sin αcos α·sin α2cosα2 =cos2α2-sin2α2sin α2·co s α2·cos αcos α2+sin αsinα2cos αcosα2=2cos αsin α·cos ⎝⎛⎭⎪⎫α-α2cos αcosα2=2cos αsin α·cos α2cos αcosα2=2sin α.法二:原式=1-tan2α2tanα2·⎝⎛⎭⎪⎫1+sin αsin α2cos αcos α2=2tan α·cos αcos α2+sin αsinα2cos αcosα2 =2cos αsin α·cosα2cos α·co sα2=2sin α.三角函数式的求值典题导入(1)(2012·重庆高考)sin 47°-sin 17°cos 30°cos 17°=( )A .-32B .-12C.12D.32. (2)已知α、β为锐角,sin α=35,cos ()α+β=-45,则2α+β=________.(1)原式=sin30°+17°-sin17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.(2)∵sin α=35,α∈⎝ ⎛⎭⎪⎫0,π2,∴cos α=45,∵cos(α+β)=-45,α+β∈(0,π),∴sin(α+β)=35,∴sin(2α+β)=sin =sin αcos(α+β)+cos αsin(α+β)=35×⎝ ⎛⎭⎪⎫-45+45×35=0. 又2α+β∈⎝⎛⎭⎪⎫0,3π2.∴2α+β=π. (1)C (2)π由题悟法三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.以题试法2.(2012·广州一测)已知函数f (x )=tan ⎝⎛⎭⎪⎫3x +π4. (1)求f ⎝ ⎛⎭⎪⎫π9的值;(2)设α∈⎝ ⎛⎭⎪⎫π,3π2,若f ⎝ ⎛⎭⎪⎫α3+π4=2,求cos ⎝ ⎛⎭⎪⎫α-π4的值. 解:(1)f ⎝ ⎛⎭⎪⎫π9=tan ⎝ ⎛⎭⎪⎫π3+π4=tan π3+tanπ41-tan π3tanπ4=3+11-3=-2- 3. (2)因为f ⎝ ⎛⎭⎪⎫α3+π4=tan ⎝ ⎛⎭⎪⎫α+3π4+π4=tan(α+π)=tan α=2, 所以sin αcos α=2,即sin α=2cos α.①又sin 2α+cos 2α=1,② 由①②解得cos 2α=15.因为α∈⎝⎛⎭⎪⎫π,3π2,所以cos α=-55,sin α=-255. 所以cos ⎝ ⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4=-55×22+⎝ ⎛⎭⎪⎫-255×22=-31010.三角恒等变换的综合应用典题导入(2011·四川高考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝⎛⎭⎪⎫x -3π4,x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:2-2=0.(1)∵f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4-2π+cos ⎝ ⎛⎭⎪⎫x -π4-π2 =sin ⎝ ⎛⎭⎪⎫x -π4+sin ⎝ ⎛⎭⎪⎫x -π4=2sin ⎝⎛⎭⎪⎫x -π4,∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2.∴2-2=4sin 2π4-2=0.在本例条件不变情况下,求函数f (x )的零点的集合.解:由(1)知f (x )=2sin ⎝⎛⎭⎪⎫x -π4, ∴sin ⎝⎛⎭⎪⎫x -π4=0,∴x -π4=k π(k ∈Z ), ∴x =k π+π4(k ∈Z ). 故函数f (x )的零点的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k π+π4,k ∈Z .由题悟法三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.以题试法3.已知函数f (x )=2cos x cos ⎝⎛⎭⎪⎫x -π6-3sin 2x +sin x cos x . (1)求f (x )的最小正周期;(2)当α∈时,若f (α)=1,求α的值.解:(1)因为f (x )=2cos x cos ⎝⎛⎭⎪⎫x -π6-3sin 2x +sin x cos x =3cos 2 x +sin x cos x -3sin 2x +sin x cos x=3cos 2x +sin 2x =2sin ⎝⎛⎭⎪⎫2x +π3, 所以最小正周期T =π.(2)由f (α)=1,得2sin ⎝ ⎛⎭⎪⎫2α+π3=1,tan tan 1tan tan αβα±ααcos ; αα2sin -tan α。

高三数学人教版A版数学(理)高考一轮复习教案简单的三角恒等变换 简单的三角恒等变换1

高三数学人教版A版数学(理)高考一轮复习教案简单的三角恒等变换 简单的三角恒等变换1

第六节 简单的三角恒等变换 简单的三角恒等变换能运用公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).知识点一 半角公式1.用cos α表示sin 2 α2,cos 2 α2,tan 2 α2.sin 2α2=1-cos α2;cos 2 α2=1+cos α2; tan 2 α2=1-cos α1+cos α.2.用cos α表示sin α2,cos α2,tan α2.sin α2=±1-cos α2;cos α2=± 1+cos α2; tan α2=±1-cos α1+cos α.3.用sin α,cos α表示tan α2.tan α2=sin α1+cos α=1-cos αsin α.易误提醒 应用“sin α2=±1-cos α2”或“cos α2=± 1+cos α2”求值时,可由α2所在象限确定该三角函数值的符号.易混淆由α决定.必记结论 用tan α表示sin 2α与cos 2αsin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[自测练习]1.已知cos θ=-15,5π2<θ<3π,那么sin θ2=( )A.105 B .-105 C.155D .-155解析:∵5π2<θ<3π,∴5π4<θ2<3π2.∴sin θ2=-1-cos θ2=-1+152=-155. 答案:D知识点二 辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝⎛⎭⎫其中tan φ=ba . 易误提醒 在使用辅助角公式易忽视φ的取值,应由点(a ,b )所在象限决定,当φ在第一、二象限时,一般取最小正角,当φ在第三、四象限时,一般取负角.[自测练习]2.函数f (x )=sin 2x +cos 2x 的最小正周期为( ) A .π B.π2 C .2πD.π4解析:f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴T =π. 答案:A3.函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( ) A .[-2,2] B .[-3,3] C .[-1,1]D.⎣⎡⎦⎤-32,32 解析:∵f (x )=sin x -cos ⎝⎛⎭⎫x +π6=sin x -cos x cos π6+sin x sin π6=sin x -32cos x +12sin x =3⎝⎛⎭⎫32sin x -12cos x =3sin ⎝⎛⎭⎫x -π6(x ∈R ), ∴f (x )的值域为[-3,3]. 答案:B考点一 三角函数式的化简|化简:(1)sin 50°(1+3tan 10°);(2)2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫x +π4.解:(1)sin 50°(1+3tan 10°) =sin 50°(1+tan 60°tan 10°)=sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.(2)原式=2cos 2x (cos 2x -1)+122tan ⎝⎛⎭⎫π4-x ·cos 2⎝⎛⎭⎫π4-x=-4cos 2x sin 2x +14cos ⎝⎛⎭⎫π4-x sin ⎝⎛⎭⎫π4-x =1-sin 22x2sin ⎝⎛⎭⎫π2-2x=cos 22x 2cos 2x =12cos 2x . 考点二 辅助角公式的应用|(1)函数y =sin 2x +2 3sin 2x 的最小正周期T 为________.[解析] y =sin 2x +23sin 2x =sin 2x -3cos 2x +3=2sin(2x -π3)+3,所以该函数的最小正周期T =2π2=π.[答案] π(2)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________. [解析] f (x )=sin x -2cos x =5⎝⎛⎭⎫55sin x -255cos x =5sin(x -φ),其中sin φ=255,cos φ=55,当x -φ=2k π+π2(k ∈Z )时函数f (x )取到最大值,即θ=2k π+π2+φ时函数f (x )取到最大值,所以cos θ=-sin φ=-255.[答案] -255(1)利用a sin x +b cos x =a 2+b 2sin(x +φ)把形如y =a sin x +b cos x +k 的函数化为一个角的一种函数的一次式,可以求三角函数的周期、单调区间、值域、最值和对称轴等.(2)化a sin x +b cos x =a 2+b 2sin(x +φ)时φ的求法:①tan φ=ba ;②φ所在象限由(a ,b )点确定.已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. 求函数f (x )的最小正周期和单调递增区间. 解:f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z .考点三 三角恒等变换的综合应用|三角恒等变换是高考必考内容,考查时多与三角函数的图象与性质、解三角形及平面向量交汇综合考查,归纳起来常见的命题探究角度有:1.三角恒等变换与三角函数性质的综合. 2.三角恒等变换与三角形的综合.3.三角恒等变换与向量的综合.探究一 三角恒等变换与三角函数性质的综合1.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值; (2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3, 求cos ⎝⎛⎭⎫α+3π2的值. 解:(1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2,k =0,±1,±2,…. 因为-π2≤φ<π2,所以k =0,所以φ=π2-2π3=-π6.(2)由(1)得f ⎝⎛⎭⎫α2=3sin ⎝⎛⎭⎫2·α2-π6=34, 所以sin ⎝⎛⎭⎫α-π6=14.由π6<α<2π3,得0<α-π6<π2, 所以cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=1-⎝⎛⎭⎫142=154. 因此cos ⎝⎛⎭⎫α+3π2=sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π6+π6=sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6=14×32+154×12=3+158. 探究二 三角恒等变换与三角形的结合2.(2016·台州模拟)已知实数x 0,x 0+π2是函数f (x )=2cos 2ωx +sin ⎝⎛⎭⎫2ωx -π6(ω>0)的相邻的两个零点.(1)求ω的值;(2)设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若f (A )=32且b tan B +c tan C =2atan A,试判断△ABC 的形状,并说明理由.解:(1)f (x )=1+cos 2ωx +32sin 2ωx -12cos 2ωx =32sin 2ωx +12cos 2ωx +1 =sin ⎝⎛⎭⎫2ωx +π6+1, 由题意得T =π,∴2π2ω=π.∴ω=1.(2)由(1)得f (x )=sin ⎝⎛⎭⎫2x +π6+1, ∴f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 即sin ⎝⎛⎭⎫2A +π6=12. ∵0<A <π,∴π6<2A +π6<13π6,∴2A +π6=5π6,即A =π3.由b tan B +c tan C =2a tan A 得b cos B sin B +c cos C sin C =2a cos A sin A,所以cos B +cos C =2cos A =1, 又因为B +C =2π3,所以cos B +cos ⎝⎛⎭⎫2π3-B =1, 即sin ⎝⎛⎭⎫B +π6=1,所以B =C =π3. 综上,△ABC 是等边三角形. 探究三 三角恒等变换与向量的综合3.(2015·合肥模拟)已知向量a =⎝⎛⎭⎫cos ⎝⎛⎭⎫θ-π4,1,b =(3,0),其中θ∈⎝⎛⎭⎫π2,5π4,若a·b =1.(1)求sin θ的值; (2)求tan 2θ的值.解:(1)由已知得:cos ⎝⎛⎭⎫θ-π4=13,sin ⎝⎛⎭⎫θ-π4=223,sin θ=sin ⎣⎡⎦⎤⎝⎛⎭⎫θ-π4+π4=sin ⎝⎛⎭⎫θ-π4cos π4+cos ⎝⎛⎭⎫θ-π4·sin π4=4+26.(2)由cos ⎝⎛⎭⎫θ-π4=13得sin θ+cos θ=23,两边平方得:1+2sin θcos θ=29,即sin 2θ=-79,而cos 2θ=1-2sin 2θ=-429,∴tan 2θ=728. 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.5.三角恒等变换与解三角形的综合的答题模板【典例】 (12分)(2015·高考山东卷)设f (x )=sin x cos x -cos 2⎝⎛⎭⎫x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝⎛⎭⎫A 2=0,a =1,求△ABC 面积的最大值.[思路点拨] (1)首先利用二倍角公式及诱导公式将f (x )的解析式化为“一角一函数”的形式,然后求解函数f (x )的单调区间.(2)首先求出角A 的三角函数值,然后根据余弦定理及基本不等式求出bc 的最大值,最后代入三角形的面积公式即可求出△ABC 面积的最大值.[规范解答] (1)由题意知f (x )=sin 2x2-1+cos ⎝⎛⎭⎫2x +π22=sin 2x 2-1-sin 2x2=sin 2x -12.(3分)由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π, k ∈Z ;(4分)由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z , 所以f (x )的单调递增区间是⎣⎡⎦⎤-π4+k π,π4+k π(k ∈Z );(5分)单调递减区间是⎣⎡⎦⎤π4+k π,3π4+k π(k ∈Z ).(6分) (2)由f ⎝⎛⎭⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32.(8分) 由余弦定理a 2=b 2+c 2-2bc cos A ,(9分) 可得1+3bc =b 2+c 2≥2bc ,(10分) 即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.(11分)所以△ABC 面积的最大值为2+34.(12分) [模板形成][跟踪练习] 已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ). (1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)已知△ABC 为锐角三角形,A =π3,且f (B )=65,求cos 2B 的值.解:(1)由f (x )=23sin x cos x +2cos 2x -1得 f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 所以函数f (x )的最小正周期为π.因为f (x )=2sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,π6上为增函数,在区间⎣⎡⎦⎤π6,π2上为减函数, 又f (0)=1,f ⎝⎛⎭⎫π6=2,f ⎝⎛⎭⎫π2=-1, 所以f (x )在区间⎣⎡⎦⎤0,π2上的最大值为2,最小值为-1. (2)因为△ABC 为锐角三角形,且A =60°,所以⎩⎨⎧0<B <π2,0<C =2π3-B <π2,即B ∈⎝⎛⎭⎫π6,π2,所以2B +π6∈⎝⎛⎭⎫π2,7π6. 由(1)可知f (B )=2sin ⎝⎛⎭⎫2B +π6=65, 即sin ⎝⎛⎭⎫2B +π6=35,cos ⎝⎛⎭⎫2B +π6=-45, 所以cos 2B =cos ⎝⎛⎭⎫2B +π6-π6 =cos ⎝⎛⎭⎫2B +π6cos π6+sin ⎝⎛⎭⎫2B +π6sin π6 =3-4310.A 组 考点能力演练1.(2015·洛阳统考)已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B .-23C.13D.23解析:∵cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=1+sin 2α2,∴cos 2⎝⎛⎭⎫α-π4=23. 答案:D2.已知2sin θ+3cos θ=0,则tan 2θ=( ) A.59 B.125 C.95D.512解析:∵2sin θ+3cos θ=0,∴tan θ=-32,∴tan 2θ=2tan θ1-tan 2θ=2×⎝⎛⎭⎫-321-94=125.答案:B3.sin 2α=2425,0<α<π2,则2cos ⎝⎛⎭⎫π4-α的值为( )A.15 B .-15C.75D .±15解析:因为sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1,所以2cos ⎝⎛⎭⎫π4-α=±1+sin 2α,因为sin 2α=2425,所以2cos ⎝⎛⎭⎫π4-α=±75,因为0<α<π2,所以-π4<π4-α<π4,所以2cos ⎝⎛⎭⎫π4-α=75. 答案:C4.(2015·太原一模)设△ABC 的三个内角分别为A ,B ,C ,且tan A ,tan B ,tan C,2tan B 成等差数列,则cos(B -A )=( )A .-31010B .-1010C.1010D.31010解析:由题意得tan C =32tan B ,tan A =12tan B ,所以△ABC 为锐角三角形.又tan A =-tan(C +B )=-tan C +tan B 1-tan C tan B =-52tan B 1-32tan 2B =12tan B ,所以tan B =2,tan A =1,所以tan(B -A )=tanB -tan A 1+tan B tan A =2-11+2×1=13.因为B >A ,所以cos(B -A )=31010,故选D.答案:D5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A.118 B .-118C.1718D .-1718解析:依题意得3(cos 2α-sin 2α)=22(cos α-sin α),cos α+sin α=26,(cos α+sin α)2=⎝⎛⎭⎫262=118,即1+sin 2α=118,sin 2α=-1718,故选D.答案:D6.计算sin 250°1+sin 10°=________.解析:sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 答案:127.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:法一:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α =1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 法二:令α=0,则原式=14+14=12. 答案:128.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________.解析:∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. 答案: 39.设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合; (2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期. 解:由已知:f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4.又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,∴f (x )max =2,此时12x -π4=2k π+π2,k ∈Z , 即x ∈⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z . (2)∵x =π8是函数f (x )的一个零点, ∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z , 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,此时其最小正周期为π. 10.(2016·沈阳模拟)已知函数f (x )=sin x -3cos x +2,记函数f (x )的最小正周期为β,向量a =(2,cos α),b =⎝⎛⎭⎫1,tan ⎝⎛⎭⎫α+β2⎝⎛⎭⎫0<α<π4,且a·b =73. (1)求f (x )在区间⎣⎡⎦⎤2π3,4π3上的最值;(2)求2cos 2α-sin 2(α+β)cos α-sin α的值. 解:(1)f (x )=sin x -3cos x +2=2sin ⎝⎛⎭⎫x -π3+2, ∵x ∈⎣⎡⎦⎤2π3,4π3,∴x -π3∈⎣⎡⎦⎤π3,π, ∴f (x )的最大值是4,最小值是2.(2)∵β=2π,∴a·b =2+cos αtan(α+π)=2+sin α=73, ∴sin α=13, ∴2cos 2α-sin 2(α+β)cos α-sin α=2cos 2α-sin 2αcos α-sin α=2cos α =21-sin 2α=423. B 组 高考题型专练1.(2015·高考北京卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解:(1)因为f (x )=22sin x -22(1-cos x ) =sin ⎝⎛⎭⎫x +π4-22,所以f (x )的最小正周期为2π. (2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝⎛⎭⎫-3π4=-1-22. 2.(2013·高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a·b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值. 解:f (x )=⎝⎛⎭⎫cos x ,-12·(3sin x ,cos 2x ) =3cos x sin x -12cos 2x =32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝⎛⎭⎫2x -π6. (1)f (x )的最小正周期T =2πω=2π2=π, 即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6. 当2x -π6=π2,即x =π3时,f (x )取得最大值1. 当2x -π6=-π6,即x =0时,f (0)=-12, 当2x -π6=56π,即x =π2时,f ⎝⎛⎭⎫π2=12, ∴f (x )的最小值为-12.因此,f (x )在⎣⎡⎦⎤0,π2上的最大值是1,最小值是-12. 3.(2014·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b .sin B =6sin C .(1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A -π6的值. 解:(1)在△ABC 中,由b sin B =c sin C ,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c .所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64,可得sin A =104. 于是,cos 2A =2cos 2A -1=-14, sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.。

数学教案三角恒等变换

数学教案三角恒等变换

数学教案三角恒等变换数学教案:三角恒等变换引言:三角恒等变换是高中数学中的重要内容,它在解题过程中具有广泛的应用。

本教案将通过多种实例,引导学生理解三角恒等变换的概念、性质及应用,提高学生解决三角函数相关问题的能力。

一、知识导入:基本概念与性质(500字左右)1. 引入:提出实际中的三角形问题,引发学生思考三角形之间的关系。

2. 提出三角恒等变换的概念,并解释其意义和用途。

3. 结合基本三角函数的定义,介绍三角恒等变换的性质和基本公式。

二、基本恒等变换(500字左右)1. 说明三角恒等变换的基本形式,并给出示例。

2. 推导和解释基本恒等变换的推导过程,帮助学生理解其中的数学原理。

3. 针对不同类型的三角函数,列举相应的基本恒等变换公式。

三、应用实例一:解三角方程(500字左右)1. 提供一些实际问题,通过三角恒等变换的方法,将其转化为解方程的问题。

2. 引导学生通过恒等变换的方式,解决多种类型的三角方程。

3. 鼓励学生总结解题方法和技巧,帮助他们深入理解三角恒等变换的实际应用。

四、应用实例二:三角函数的求值与简化(500字左右)1. 提供一些实际问题,要求学生利用三角恒等变换简化复杂的三角函数式子。

2. 引导学生通过代入不同的角度值,比较不同的三角函数值,推导出恒等变换的结果。

3. 帮助学生发现并总结三角函数简化的一般规律。

五、综合应用:证明三角恒等式(500字左右)1. 提出一些已知的三角恒等式,要求学生通过恒等变换的方式来证明其正确性。

2. 指导学生进行恒等变换的证明过程,注重逻辑推理和数学推导的合理性。

3. 提供一些挑战性问题,鼓励学生运用恒等变换证明复杂的三角恒等式。

六、总结与拓展(200字左右)1. 总结三角恒等变换的基本思想和方法,强调其在解题中的重要性。

2. 提供一些额外的拓展问题,引导学生进一步思考和应用所学的三角恒等变换知识。

3. 引导学生关注数学以及实际生活中的三角形相关问题,并从中发现和解决问题的方法。

高二数学简单的三角恒等变换教案(通用11篇)

高二数学简单的三角恒等变换教案(通用11篇)

高二数学简单的三角恒等变换教案(通用11篇)高二数学简单的三角恒等变换教案 1教学目标1、理解并掌握基本的三角恒等式,如和差化积、积化和差公式。

2、能够运用三角恒等式进行简单的三角恒等变换。

3、培养学生的逻辑推理能力和数学运算能力。

教学重点1、三角恒等式的理解和记忆。

2、三角恒等变换的方法和步骤。

教学难点三角恒等式的灵活运用和复杂三角表达式的化简。

教学准备1、多媒体课件,包含三角恒等式、例题和练习题。

2、黑板和粉笔。

教学过程一、导入新课复习上节课内容,回顾三角函数的定义和性质。

提出问题:如何利用已知的三角函数公式推导出新的三角恒等式?二、新课讲解1、讲解三角恒等式的基本概念,介绍和差化积、积化和差等公式。

2、通过实例演示如何使用三角恒等式进行三角恒等变换。

3、引导学生总结三角恒等变换的.一般方法和步骤。

三、课堂练习布置一些简单的三角恒等变换练习题,让学生尝试运用所学知识解决问题。

教师巡视指导,及时纠正学生的错误,并给予适当的提示和帮助。

四、巩固提升分析一些较复杂的三角恒等变换问题,引导学生思考如何灵活运用三角恒等式进行化简。

鼓励学生相互讨论,分享解题思路和方法。

五、课堂小结总结本节课的重点内容,强调三角恒等变换的重要性和应用价值。

布置课后作业,要求学生完成一些三角恒等变换的练习题,以巩固所学知识。

教学反思本节课通过实例演示和课堂练习,使学生初步掌握了三角恒等变换的基本方法和步骤。

但在处理较复杂问题时,部分学生仍显得不够熟练,需要进一步加强练习和指导。

在今后的教学中,可以设计更多具有针对性的练习题,帮助学生巩固和提高三角恒等变换的能力。

同时,也要注重培养学生的逻辑思维能力和数学运算能力,为后续的数学学习打下坚实的基础。

高二数学简单的三角恒等变换教案 2理解并掌握三角恒等变换的基本公式,包括正弦、余弦、正切的和差公式,二倍角公式,半角公式等。

能够运用三角恒等变换解决一些简单的三角函数化简、求值及证明问题,培养学生的逻辑推理能力和数学运算能力。

高中数学教案三角恒等变换

高中数学教案三角恒等变换

高中数学教案三角恒等变换高中数学教案:三角恒等变换一、引言在高中数学中,三角恒等变换是重要的内容之一。

本教案旨在帮助学生深入理解三角恒等变换的概念、性质以及运用方法,以提升他们在解决相关数学问题时的能力。

二、基础知识概述1. 三角函数的定义- 正弦函数sin(x):在直角三角形中,对边与斜边的比值。

- 余弦函数cos(x):在直角三角形中,邻边与斜边的比值。

- 正切函数tan(x):在直角三角形中,对边与邻边的比值。

2. 三角恒等变换的基本概念- 三角恒等变换是指将一个三角函数转化为另一个三角函数的等价关系。

- 常见的三角恒等变换包括正弦函数、余弦函数和正切函数的互换关系。

三、三角恒等变换的性质1. 基本恒等变换a)正弦函数的互换:- sin(x) = cos(90° - x)- cos(x) = sin(90° - x)b)余弦函数的互换:- cos(x) = cos(-x)c)正切函数的互换:- tan(x) = cot(90° - x)- cot(x) = tan(90° - x)2. 辅助恒等变换a)正弦函数的辅助恒等变换:- sin²(x) + cos²(x) = 1- 1 + tan²(x) = sec²(x)b)余弦函数的辅助恒等变换:- 1 + cot²(x) = csc²(x)四、三角恒等变换的运用方法1. 化简复杂的三角表达式a)使用基本恒等变换来替换特定的三角函数,将复杂的表达式化简为简洁的形式。

b)利用辅助恒等变换将三角函数关系转化为其他形式的等式。

2. 证明三角恒等式a)基于已知三角函数的定义和性质,运用三角恒等变换的知识进行变换和推导,证明给定的三角恒等式。

b)通过使用辅助线、反证法等数学方法,辅助完成恒等式的证明过程。

3. 解决三角函数方程和不等式根据题目给出的条件和问题,结合三角恒等变换的知识,将方程或不等式中的三角函数改写为相同或相关的三角函数,从而简化问题的求解。

简单的三角恒等变换教案

简单的三角恒等变换教案

简单的三角恒等变换教案(一)一.教学目标1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力。

2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用。

3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.二、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.三、教学设想:(一)复习:三角函数的和(差)公式,倍角公式(二)新课讲授:1、由二倍角公式引导学生思考:2αα与有什么样的关系?学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台. 例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin 2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=. 又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2.已知135sin =α,且α在第三象限,求2tan α的值。

2018高考数学文科一轮复习讲义 8.6 第六节 简单的三角恒等变换

2018高考数学文科一轮复习讲义 8.6  第六节  简单的三角恒等变换

第六节 简单的三角恒等变换【考点点知】知己知彼,百战不殆新课标高考对三角恒等变换的要求有所降低,但三角函数求值、化简及恒等式证明仍是高考的热点.需要掌握的公式有两角和差、倍角的三角函数公式.新课标主要要求“能用上述公式进行简单的三角函数恒等变换”,这说明备考重点是掌握变换的基本思想方法.而不是盲目地训练繁难的偏题、怪题,应重视通性、通法的运用.考点一: 简单的三角恒等变换1.巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,2αβαβ++=⋅,()()222αββααβ+=---等).2.三角函数次数的降升(降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=与升幂公式:21cos 22cos αα+=,21cos 22sin αα-=).利用倍角公式或半角公式,可对三角式中某些项进行升降幂处理 ( 1±sin α 可化为⎪⎭⎫ ⎝⎛-±απ2cos 1,再用升次公式) ;22cos 2sin sin 1⎪⎭⎫ ⎝⎛+=+ααα,22cos 2sin sin 1⎪⎭⎫ ⎝⎛-=-ααα等.从右到左为升幂,这种变形有利用根式的化简或通分、约分;从左到右是降幂,有利于加、减运算或积和(差)互化.3.辅助角公式中辅助角的确定:(),ϕααα++=+sin cos sin 22b a b a )sin ,(cos 2222ba b ba a s +=+=ϕϕ在求最值、化简时起着重要作用.【考题点评】分析原因,醍醐灌顶例1.(基础·2007宁夏卷理科9文科9)若cos 2πsin 4αα=⎛⎫- ⎪⎝⎭则c o s s i n αα+的值为( )A.B.12-C.12思路透析:解法一: sin(2)sin 2()cos 224sin()sin()sin()444ππαααπππααα--==---2sin()cos()442cos()4sin()4ππααπαπα--==---)αα=-sin )αα=+= ∴1cos sin 2αα+=, 故应选C. 解法二:22cos 2sin()4απα=-sin )2αα=+=-∴1cos sin 2αα+=, 故应选C. 点评:部分考生不能识别2α角与4πα±角间的二倍角关系,致使化简过程出现错误或不能化至最简式,而对余弦二倍角公式的平方差公式的应用既可降低化简过程中的运算量,也简化了思维过程,展示了该题考查了本质问题.例2.(基础·求证:︒=︒-︒20cos 3210cos 310sin 122 =32cos20°. 思路透析: 证法一:左边=︒+-︒-=︒+-︒-20cos 1620cos 12220cos 13220cos 11 右边=︒=︒︒⋅︒=︒︒︒=︒︒+︒-︒-︒=︒︒-︒=︒-︒=︒--︒=20cos 3220sin 20sin 20cos 3220sin 20sin 40sin 1620sin )]2040cos()2040[cos(820sin )60cos 20(cos 820sin )2120(cos 820cos 1420cos 82222222 ∴原式成立.证法二:左边=︒⋅︒︒-︒10cos 10sin 10sin 310cos 2222221116(cos10)(cos10)2222sin 2016sin(3010)sin(3010)16sin 4032cos 20.sin 20sin 20=︒+︒︒-︒=︒︒+︒⋅︒-︒︒===︒=︒︒右边 ∴原式成立.点评:证明的恒等变形的基本思路是:一角二名三结构.即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点.例3.(综合·设3sin β=sin(2α+β),α≠k π+2π,α+β≠k π+2π.(k ∈Z ) 求证:tan(α+β)=2tan α.思路透析:证明: 由3sin β=sin(2α+β),得3sin [(α+β)-α]=sin [(α+β)+α], 即3sin(α+β)cos α-3cos(α+β)sin α=sin (α+β)cos α+cos(α+β)·sin α. 整理得sin(α+β)cos α=2cos(α+β)sin α. 因为α≠k π+2π,α+β≠k π+2π(k ∈Z ).将上式两边同除以cos αcos(α+β). 得tan(α+β)=2tan α.点评:要注意观察条件和结论之间的差异.主要是看角,看函数的名称、次数、式子的结构特征.如从角的差异入手,将角变形为2α+β=(α+β)+α,β=(α+β)-α.从已知条件变形入手,可证得结论.例4.(综合·已知7sin α=3sin (α+β),求证:2tan22βα+=5tan 2β. 思路透析:证明:由已知7sin α=3sin (α+β),即7sin (22βα+-2β)=3sin (22βα++2β).∴7sin 22βα+cos 2β-7cos 22βα+sin 2β=3sin 22βα+cos 2β+3cos 22βα+sin 2β,即2sin 22βα+cos 2β=5cos 22βα+sin 2β.两边同除以cos 22βα+cos 2β,即得2tan 22βα+=5tan 2β.点评:盯住欲证等式的左、右两边,根据它们的状况(一般要看角、函数名称、结构特征),采取恰当的措施来对条件等式进行变形,直到目标.例5.(创新探究·求证:αβαsin 2sin )(+-2cos (α+β)=αβsin sin .思路透析:证明:sin (2α+β)-2cos (α+β)sin α =sin [(α+β)+α]-2cos (α+β)sin α=sin (α+β)cos α+cos (α+β)sin α-2cos (α+β)sin α =sin (α+β)cos α-cos (α+β)sin α=sin [(α+β)-α]=sin β.两边同除以sin α得αβαsin 2sin )(+-2cos (α+β)=αβsin sin .点评:证明三角恒等式,可先从两边的角入手——变角,将表达式中出现了较多的相异的角朝着我们选定的目标转化,然后分析两边的函数名称——变名,将表达式中较多的函数种类尽量减少,这是三角恒等变形的两个基本策略.例6.(创新探究· P 是以F 1、F 2为焦点的椭圆上一点,且∠PF 1F 2=α,∠PF 2F 1=2α,求证:椭圆的离心率为e =2cos α-1.思路透析:证明:在△PF 1F 2中,由正弦定理知α2sin ||1PF =αsin ||2PF =)(α3πsin||21-F F .由比例的性质得α3sin ||21F F =ααsin 2sin ||||21++PF PF⇒e =||||||2121PF PF F F +=αααsin 2sin 3sin +=ααααααα2cos sin 2sin 2sin cos 2cos sin ++ =)()(αααααcos 21sin cos sin 2cos 2sin 22+⋅+1-=1+-ααcos 21cos 42=2cos α-1. 点评:依据椭圆的定义2a =|PF 1|+|PF 2|,2c =|F 1F 2|,∴e =ac22.在△PF 1F 2中解此三角即可得证.恰当地利用比例的性质有事半功倍之效.【画龙点睛】探索规律,豁然开朗 1.规律总结:(1)证明三角恒等式的基本思路,是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右归一、变更命题等方法,使等式两端的“异”化为“同”.(2)条件等式的证明,通过认真观察,发现已知条件和待证等式之间的关系,选择适当的途径把条件用上去.常用方法有代入法、消去法、综合法(即从已知条件出发,以待证式为目标进行代数或三角恒等变形,逐步推出待证式)、分析法等.(3)三角函数的应用主要是借用三角函数的值域求最值,这首先应将原函数通过降幂、辅助角公式等化成y =A sin (ωx +ϕ)(A ≠0,ω>0)的形式,或者通过换元转化成二次函数,然后再求之.2.学以致用:(1)如果tan312=α,那么cos α的值是 ( ) A.53 B.54 C.-53 D.-54(2)若tan θ+cot θ=m,则sin2θ等于 ( ) A.m 1 B.m 2 C.2m D.21m(3)化简cos2α+6sin 22α-8sin 42α的结果是________.(4)给出下列三角函数式:①)4sin(2x +π; ②2tan 12tan 2tan21)3(),4cos(222xxx x +--+π③22cos 122cos 1xx --+, 当x ∈R 时与cos x -sin x 恒等的是___________.答案:(1) B 解析:cos α=549119112tan 12tan 122=+-=+-αα. (2)B 解析:∵tan θ+cot θ=tan θ+θtan 1=m即:m =+θθtan 1tan 2 , 又∵sin2θ=m 2tan 1tan 22=+θθ.(3)cos α解析:原式=cos2α+3(1-cos α)-2(1-cos α)2=cos2α+3-3cos α-2(1-2cos α+cos 2α) =cos2α+3-3cos α-2+4cos α-2cos 2α=cos2α+cos α+1-2cos 2α=cos2α+cos α-cos2α=cos α(4)②解析: ①原式=cos x +sin x ;②原式=cos x -sin x .③原式=2tan 12tan 22tan 12tan 1222x xx x +-+-=cos x -sin x ,(x ≠2k π+π,k ∈Z ), ④原式=|cos x |-|sin x |=cos x -sin x ,(2k π≤x ≤2k π+2π,k ∈Z ).3.易错分析:(1)三角恒等式的证明实际上就是三角函数式的化简过程.(2)有条件的三角函数求值有两个关键:①三角函数各关系式及常用公式的熟练应用.②条件的合理应用:注意条件的整体功能,注意将条件适当简化、整理或重新改造组合,使其与所计算的式子更加吻合(3)注意方程思想的应用.【能力训练】学练结合,融会贯通一、选择题:1.满足cos αcos β=23+sin αsin β的一组α、β的值是 A.α=12π13,β=4π3 B.α=2π,β=3πC.α=2π,β=6π D.α=3π,β=6π2.已知tan α和tan (4π-α)是方程ax 2+bx +c =0的两个根,则a 、b 、c 的关系是 A.b =a +c B.2b =a +c C.c =b +a D.c =ab 3.下列等式中不正确...的是 A.sin αcos β=21[sin (α+β)+sin (α-β)] B.cos αsin β=21[sin (α-β)-sin (α-β)]C.cos αcos β=21[cos (α+β)+cos (α-β)]D.sin αsin β=21[cos (α+β)-cos (α-β)]4.若2π<α<π,且cos α=a ,则sin2α等于A.21a- B.±21a - C.21a+ D.±21a+ 5.若-2π<α<-23π,则2)cos(1πα--等于A.sin2αB.cos2αC.-sin2αD.-cos2α6.若sin α=135,α在第二象限,则tan 2α的值为 ( ) A.5 B.-5 C.51 D.-51二、填空题: 7.已知sin θ=-53,3π<θ<27π,则tan 2θ=____________. 8.αβαsin 2sin )(+-2cos (α+β)= .9.化简x x x x 2cos cos sin 2cos 44-++的结果是________. 10.周长为定值L (L >0)的直角三角形的面积的最大值为 . 三、解答题: 11.证明:cos 2A +cos 2(3π-A )+cos 2(3π+A )32=.12.(1)若A +B +C=n π(n ∈Z), 证明tan A +tan B +tan C=tan A ·tan B ·tan C. (2) 若tan A +tan B +tan C=tan A ·tan B ·tan C,证明A +B +C=nπ(n ∈Z) . 13.求证:.2tan 2sin )1cos )(sin 1cos (sin xx x x x x =+--+14.在△ABC 中,求证:sin 2.2sin 2sin 2sin 212sin 2sin 222C B A C B A -=++【能力训练】参考答案 一、选择题:1. A2. C3. D4. A5. D6. A 二、填空题:7. -38. αβsin sin 9. 1 10. 4223-L 2三、解答题:11.证明: 原式=2)232cos(12)232cos(122cos 1A A A+++-+++ππ 312322[cos 2(cos cos 2sin sin 2)(cos cos 2sin sin 2)]2233333123113(cos 22cos cos 2)[cos 22()cos 2]2232222A A A A A A A A A πππππ=+++⋅+-=++=++⨯-=12.证明:(1)由A +B +C=n π即A +B =n π-C 得tan (A +B )=-tan Ctan A +tan B +tan C=tan (A +B )(1-tanAtan B )+tan C =-tan C(1-tan A tan B )+tan C =tan A tan B tan C.(2)tan tan tan tan()tan 1tan tan tan()1tan()tan 1tan()tan A BCA B C A BA B C A B C A B C++++-++==-+-+tan tan tan tan tan tan 0(1tan tan )[1tan()tan ]A B C A B CA B A B C ++-==--+.πn C B A =++∴(n ∈Z )13.证明:左边=x x x x x x x x cos sin 2)2sin 22cos 2sin 2)(2sin 22cos 2sin 2(22+- xx x x x x x cos sin 2)2sin 2)(cos 2sin 2(cos 2sin 42+-=2222sin (cos sin )sin cos 2222tan 22sin cos cos cos cos 222x x x xxx x x x x x -⋅====⋅右边.14.证明:左边=2cos 12cos 12cos 1CB A -+-+- 31(cos cos cos )22A B C =-++31[cos()cos()cos ]222222A B A B A B A B C +-+-=-++-+ 231(2cos cos 12sin )22222A B A B C +-=-+- 211(2sin cos 2sin )2222C A B C -=--1sin (cos cos )1sin 2sin sin 222222C A B A B C A B-+=--=-⋅12sinsin sin .222A B C =-。

高中数学:3.2 简单的三角恒等变换(2)教案

高中数学:3.2 简单的三角恒等变换(2)教案

3.2 简单的三角恒等变换(2)一、教学目标:知识与技能:1、加深对和差角、二倍角公式的记忆,推导降幂公式及其它变形形式。

2、理解三角恒等变换的基本思想,培养的定向思考和逆向思维能力,理解化归思想。

3、能独立分析和解决一些三角问题。

过程与方法:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.情感、态度与价值观通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 二.重点难点重点:三角恒等变换的模式难点:降次、化为一个角的三角函数三、教材与学情分析本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸.三角恒等变换不同于代数变换,后者往往着眼于式子结构形式的变换,变换内容比较单一.而对于三角变换,不仅要考虑三角函数是结构方面的差异,还要考虑三角函数式所包含的角,以及这些角的三角函数种类方面的差异,它是一种立体的综合性变换.从函数式结构、函数种类、角与角之间的联系等方面找一个切入点,并以此为依据选择可以联系它们的适当公式进行转化变形,是三角恒等变换的重要特点. 四、教学方法问题引导,主动探究,启发式教学.五、教学过程(一)导入新课前面已经学过如何把形如y=asinx+bcosx的函数转化为形如y=Asin(ωx+φ)的函数,本节主要研究函数y=asinx+bcosx的周期、最值等性质.三角函数和代数、几何知识联系密切,它是研究其他各类知识的重要工具.高考题中与三角函数有关的问题,大都以恒等变形为研究手段.三角变换是运算、化简、求值、证明过程中不可缺少的解题技巧,要学会创设条件灵活运用三角公式,掌握运算,化简的方法和技能.(二)新知探究、提出问题①三角函数y=sinx ,y=cosx 的周期,最大值和最小值是多少?②函数y=asinx+bcosx 的变形与应用是怎样的?③三角变换在几何问题中有什么应用?活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回顾,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2kπ(k ∈Z 且k≠0),最小正周期都是2π.三角函数的定义与变化时,会对其周期性产生一定的影响,例如,函数y=sinx 的周期是2kπ(k ∈Z 且k≠0),且最小正周期是2π,函数y=sin2x 的周期是kπ(k ∈Z 且k≠0),且最小正周期是π.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是[-1,1].函数y=asinx+bcosx=22b a +(2222sin b a b x b a a+++cosx ), ∵(sin ,cos 1)()(2222222222=+=+=+++b a b b a a ba b b a aϕ从而可令φ, 则有asinx+bcosx=22b a +(sinxcosφ+cosxsinφ)=22b a +sin (x+φ).因此,我们有如下结论:asinx+bcosx=22b a +sin (x+φ),其中tanφ=ab .在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题.我们知道角的概念起源于几何图形,从而使得三角函数与平面几何有着密切的内在联系.几何中的角度、长度、面积等几何问题,常需借助三角函数的变换来解决,通过三角变换来解决几何中的有关问题,是一种重要的数学方法.讨论结果:①y=sinx ,y=cosx 的周期是2kπ(k ∈Z 且k≠0),最小正周期都是2π;最大值都是1,最小值都是-1.②—③(略)见活动.(三)应用示例例1 求函数y=sin 4x+23sinxcosx-cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.活动:教师引导学生利用公式解题,本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题.解:y=sin 4x+23sinxcosx-cos 4x=(sin 2x+cos 2x)(sin 2x-cos 2x)+3sin2x=3sin2x-cos2x=2sin (2x-6π).故该函数的最小正周期是π;最小值是-2;在[0,π]上单调增区间是[0, 3π],[65π,π]. 点评:本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识. 变式训练1.已知函数f(x)=cos 4x-2sinxcosx-sin 4x,(1)求f(x)的最小正周期;(2)若x ∈[0,2π],求f(x)的最大、最小值.解:f(x)=cos 4x-2sinxcosx-sin 4x=(cos 2x+sin 2x)(cos 2x-sin 2x)-sin2x=cos2x-sin2x=2cos(2x+4π), 所以,f(x)的最小正周期T=22π=π. (2)因为x ∈[0,2π],所以2x+4π∈[4π,45π]. 当2x+4π=4π时,cos(2x+4π)取得最大值22, 当2x+4π=π时,cos(2x+4π)取得最小值-1.所以,在[0,2π]上的最大值为1,最小值为-2.例2. 已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M(43π,0)对称,且在区间[0,2π]上是单调函数,求φ和ω的值.活动:提醒学生在解此题时,对f(x)是偶函数这一条件的运用不在问题上,而在对“f(x)的图象关于M(43π,0)对称”这一条件的使用上,多数考生都存在一定问题.一般地:定义在R 上的函数y=f(x)对定义域内任意x 满足条件:f(x+a)=2b-f(a-x),则y=f(x)的图象关于点(a,b)对称,反之亦然.教师在这类问题的教学时要给予充分的提示与总结,多做些这种类型的变式训练. 解:由f(x)是偶函数,得f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ),所以-cosφsinωx=cosφsinωx对任意x 都成立.又ω>0,所以,得cosφ=0.依题设0≤φ≤π,所以,解得φ=2π. 由f(x)的图象关于点M 对称,得f(43π-x)=-f(43π+x).取x=0,得f(43π)=-f(43π),所以f(43π)=0. ∵f(43π)=sin(43ωπ+2π)=cos 43ωπ,∴cos 43ωπ=0.又ω>0,得43ωπ=2π+kπ,k=0,1,2,…. ∴ω=32(2k+1),k=0,1,2,….当k=0时,ω=32,f(x)=sin(32x+2π)在[0,2π]上是减函数; 当k=1时,ω=2,f(x)=sin(2x+2π)在[0,2π]上是减函数; 当k≥2时,ω≥310,f(x)=sin(ωx+2π)在[0,2π]上不是单调函数.所以,综合得ω=32或ω=2. 点评:利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题.例3. 如图1,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP=α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积. 活动:要求当角α取何值时,矩形ABCD 的面积S 最大,先找出S 与α之间的函数关系,再求函数的最值.找S 与α之间的函数关系可以让学生自己解决,得到:S=AB·BC=(cosα33-sinα)sinα=sinαcosα-33-sin 2α. 求这种y=asin 2x+bsinxcosx+ccos 2x 函数的最值,应先降幂,再利用公式化成Asin(ωx+φ)型的三角函数求最值.教师引导学生思考:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行:图1(1)找出S 与α之间的函数关系;(2)由得出的函数关系,求S 的最大值.解:在Rt △OBC 中,BC=cosα,BC=sinα,在Rt △OAD 中,OADA =tan60°=3, 所以OA=33DA=33BC=33sinα.所以AB=OB-OA=c osα33-sinα.设矩形ABCD 的面积为S,则S=AB·BC=(cosα33-sinα)sinα=sinαcosα33-sin 2α =21sin2α+63cos2α-63=31(23sin2α+21cos2α)-63=31sin(2α+6π)-63. 由于0<α<3π,所以当2α+6π=2π,即α=6π时,S 最大=31-63=63. 因此,当α=6π时,矩形ABCD 的面积最大,最大面积为63. 点评:可以看到,通过三角变换,我们把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申即可以去掉“记∠COP=α”,结论改成“求矩形ABCD 的最大面积”,这时,对自变量可多一种选择,如设AD=x,S=x(x x 3312--),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点.变式训练2. 已知如图2的Rt △ABC 中,∠A=90°,a 为斜边,∠B 、∠C 的内角平分线BD 、CE的长分别为m 、n,且a 2=2mn.问:是否能在区间(π,2π]中找到角θ,恰使等式cosθ-sinθ=4(cos2C B +-cos 2C B -)成立?若能,找出这样的角θ;若不能,请说明理由. 解:在Rt △BAD 中,m AB =cos 2B ,在Rt △BAC 中,a AB =sinC,∴mcos 2B =asinC.图2同理,ncos2C =asinB.∴mncos 2B cos 2C =a 2sinBsinC.而a 2=2mn, ∴cos 2B cos 2C =2sinBsinC=8sin 2B ·cos 2B cos 2C sin 2C .∴sin 2B sin 2C =81. 积化和差,得4(cos 2C B +-cos 2C B -)=-1, 若存在θ使等式cosθ-sinθ=4(cos 2C B +-cos 2C B -)成立,则2cos(θ+4π)=-1, ∴cos(θ+4π)=22.而π<θ≤2π,∴45π<θ+4π≤29π.∴这样的θ不存在.点评:对于不确定的开放式问题,通常称之为存在性问题.处理这类问题的一般思路是先假设结论是肯定的,再进行演绎推理,若推证出现矛盾,即可否定假设;若推出合理结果,即假设成立.这个探索结论的过程可概括为假设——推证——定论.例4. 已知tan(α-β)=21,tanβ=71-,且α,β∈(0,π),求2α-β的值. 解:∵2α-β=2(α-β)+β,tan(α-β)=21,∴tan2(α-β)=)(tan 1)tan(22βαβα---=34. 从而tan(2α-β)=tan [2(α-β)+β]=713417134tan )(2tan 1tan )(2tan ⨯+-=--+-ββαββα=121252125=. 又∵tanα=tan [(α-β)+β]=ββαββαtan )tan(1tan )tan(--+-=31<1.且0<α<π,∴0<α<4π.∴0<2α<2π. 又tanβ=71-<0,且β∈(0,π),∴2π<β<π,-π<-β<2π-.∴-π<2α-β<0.∴2α-β=43π-. 点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,若α∈(0,π),则求cosα;若α∈(2π-,2π),则求sinα等.变式训练3.若α,β为锐角,且3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:α+2β=2π.证明:已知两个等式可化为3sin 2α=cos2β, ①3sinαcosα=sin2β, ② ①÷②,得a a cos sin =ββ2sin 2cos ,即cosαcos2β-sinαsin2β=0, ∴cos(α+2β)=0.∵0<α<2π,0<β<2π,∴0<α+2β<23π.∴α+2β=2π. 六、课堂小结本节课主要研究了通过三角恒等变形,把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出生活的数学和“活”的数学.七、课后作业1.课时练与测八、教学反思。

【2018年高考一轮课程】文科数学 全国通用版 三角恒等变换 教案

【2018年高考一轮课程】文科数学  全国通用版 三角恒等变换 教案

一、自我诊断 知己知彼1.sin 18°cos 27°+cos 18°sin 27°的值是( ) A.22 B.12 C.32D .-22【答案】 A【解析】 sin 18°cos 27°+cos 18°sin 27°=sin(18°+27°)=sin 45°=22. 2.化简cos 40°cos 25°1-sin 40°等于( )A .1 B. 3 C. 2 D .2 【答案】 C 【解析】原式=cos 40°cos 25°1-cos 50°=cos 40°cos 25°·2sin 25°=cos 40°22sin 50°= 2. 3.若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34 B. 34 C .-43 D. 43【答案】 B【解析】 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α,得tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34. 4.tan 20°+tan 40°+3tan 20°tan 40°= . 【答案】 3【解析】∵tan 60°=tan(20°+40°)=tan 20°+tan 40°1-tan 20°tan 40°,∴tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°) =3-3tan 20°tan 40°,∴原式=3-3tan 20°tan 40°+3tan 20°tan 40°= 3.5.已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A = ,b = . 【答案】 2 1 【解析】∵2cos 2x +sin 2x =cos 2x +1+sin 2x=2⎪⎪⎭⎫ ⎝⎛+x x 2sin 222cos 22+1=2sin ⎪⎭⎫⎝⎛+42πx +1 =A sin(ωx +φ)+b (A >0),∴A =2,b =1.二、温故知新 夯实基础1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β,(C (α-β)) cos(α+β)=cos αcos β-sin αsin β,(C (α+β)) sin(α-β)=sin αcos β-cos αsin β,(S (α-β)) sin(α+β)=sin αcos β+cos αsin β,(S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β,(T (α-β))tan(α+β)=tan α+tan β1-tan αtan β.(T (α+β))2.二倍角公式 sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3、知识拓展1.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.2.升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.3.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+b 2,cos φ=aa 2+b 2. 三、典例剖析 思维拓展考点一 两角和与差的正弦、余弦、正切公式直接应用例1 已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)= . 【答案】 -75【解析】cos 2α2sin (α+π4)=cos 2α-sin 2α2(22sin α+22cos α)=cos α-sin α, ∵sin α=35,α∈(π2,π),∴cos α=-45,∴原式=-75.例2 在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22B.22C.12D .-12【答案】 B 【解析】由tan A tan B =tan A +tan B +1,可得tan A +tan B 1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.【方法点拨】(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.考点二 三角函数式的化简例1 化简:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+-x x x x 4sin 4tan 221cos 2cos 2224ππ= .【答案】 12cos 2x【解析】原式=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⨯+-x x x x x 4cos 4cos 4sin 2)1cos 4cos 4(21224πππ=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--x x x 4cos 4sin 4)1cos 2(22ππ=⎪⎭⎫ ⎝⎛-x x 22sin 22cos 2π=cos 22x 2cos 2x =12cos 2x .例2 已知cos ⎪⎭⎫⎝⎛+4πθ=1010,θ∈⎪⎭⎫ ⎝⎛20π,,则sin ⎪⎭⎫ ⎝⎛-32πθ= . 【答案】4-3310【解析】 由题意可得,cos 2⎪⎭⎫ ⎝⎛+4πθ=222cos 1⎪⎭⎫ ⎝⎛++πθ=110,cos ⎪⎭⎫ ⎝⎛+22πθ=-sin 2θ=-45,即sin 2θ=45.因为cos ⎪⎭⎫⎝⎛+4πθ=1010>0,θ∈⎪⎭⎫ ⎝⎛20π,, 所以0<θ<π4,2θ∈⎪⎭⎫⎝⎛20π,,根据同角三角函数基本关系式可得cos 2θ=35,由两角差的正弦公式可得sin ⎪⎭⎫⎝⎛-32πθ=sin 2θcos π3-cos 2θsin π3=4-3310. 【方法点拨】(1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征. (2)三角函数式化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.考点三 三角函数的求值例1 已知α,β为锐角,cos α=17,sin(α+β)=5314,则cos β= .【答案】 12【解析】 ∵α为锐角, ∴sin α=1-(17)2=437.∵α,β∈(0,π2),∴0<α+β<π.又∵sin(α+β)<sin α,∴α+β>π2,∴cos(α+β)=-1114.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-1114×17+5314×437=4998=12.【易错点】容易忽略角的的范围.【方法点拨】给值求值问题的关键在“变角”,通过角之间的联系寻找转化方法; 例2 设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A.3π4 B.5π4 C.7π4 D.5π4或7π4【答案】 C 【解析】∵α,β为钝角,sin α=55,cos β=-31010, ∴cos α=-255,sin β=1010,∴cos(α+β)=cos αcos β-sin αsin β=22>0. 又α+β∈(π,2π),∴α+β∈(3π2,2π),∴α+β=7π4.【易错点】容易忽略角的的范围.【方法点拨】给值求值问题的关键在“变角”,通过角之间的联系寻找转化方法; (2)给值求角问题:先求角的某一三角函数值,再求角的范围确定角.考点四 三角恒等变换的应用例1 已知函数f (x )=4tan x sin ⎪⎭⎫⎝⎛-x 2π·cos ⎪⎭⎫ ⎝⎛-3πx - 3.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎥⎦⎤⎢⎣⎡-44ππ,上的单调性. 【解析】(1)f (x )的定义域为{x |x ≠π2+k π,k ∈Z }.f (x )=4tan x cos x cos ⎪⎭⎫⎝⎛-3πx - 3 =4sin x cos ⎪⎭⎫⎝⎛-3πx - 3 =4sin x ⎪⎪⎭⎫ ⎝⎛+x x sin 23cos 21- 3 =2sin x cos x +23sin 2x - 3 =sin 2x +3(1-cos 2x )- 3 =sin 2x -3cos 2x =2sin ⎪⎭⎫⎝⎛-32πx . 所以f (x )的最小正周期T =2π2=π.(2)令z =2x -π3,则函数y =2sin z 的单调递增区间是⎥⎦⎤⎢⎣⎡++-ππππk k 2222,,k ∈Z . 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎥⎦⎤⎢⎣⎡-44ππ,,B ={x |-π12+k π≤x ≤5π12+k π,k ∈Z },易知A ∩B =⎥⎦⎤⎢⎣⎡-412ππ,. 所以当x ∈⎥⎦⎤⎢⎣⎡-44ππ,时,f (x )在区间⎥⎦⎤⎢⎣⎡-412ππ,上单调递增,在区间⎥⎦⎤⎢⎣⎡--124ππ,上单调递减.【易错点】忽略定义域,辅助角公式不会应用【方法点拨】三角恒等变换的应用策略(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.(2)把形如y =a sin x +b cos x 化为y =a 2+b 2sin(x +φ),可进一步研究函数的周期、单调性、最值与对称性.四、举一反三 成果巩固考点一 两角和与差的正弦、余弦、正切公式直接应用1、若tan α=34,则cos 2α+2sin 2α等于( )A.6425B.4825 C .1 D.1625 【答案】 A 【解析】tan α=34,则cos 2α+2sin 2α=cos 2α+2sin 2αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.2、计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12 B. 12 C. 32D .-32【答案】 B 【解析】sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12. 考点二 三角函数式的化简1、已知cos(x -π6)=-33,则cos x +cos(x -π3)= .【答案】 -1 【解析】 cos x +cos(x -π3)=cos x +12cos x +32sin x=32cos x +32sin x =3cos(x -π6) =3×(-33)=-1. 2、若α∈⎪⎭⎫⎝⎛ππ,2,且3cos 2α=sin ⎪⎭⎫⎝⎛-απ4,则sin 2α的值为( ) A.118 B .-118 C.1718 D .-1718 【答案】D 【解析】 cos 2α=sin ⎪⎭⎫⎝⎛-απ22 =sin ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-απ42=2sin ⎪⎭⎫⎝⎛-απ4cos ⎪⎭⎫ ⎝⎛-απ4 代入原式,得 6sin ⎪⎭⎫⎝⎛-απ4cos ⎪⎭⎫ ⎝⎛-απ4=sin ⎪⎭⎫ ⎝⎛-απ4, ∵α∈⎪⎭⎫⎝⎛ππ,2,∴cos ⎪⎭⎫ ⎝⎛-απ4=16, ∴sin 2α=cos ⎪⎭⎫⎝⎛-απ22 =2cos 2⎪⎭⎫⎝⎛-απ4-1=-1718. 考点三 三角函数的求值。

2018届高考数学总复习教学案:简单的三角恒等变换

2018届高考数学总复习教学案:简单的三角恒等变换

第六节简单的三角恒等变换[知识能否忆起]半角公式(不要求记忆)1.用cos α表示sin 2α2,cos 2α2,tan 2α2.sin 2α2=1-cos α2;cos 2α2=1+cos α2;tan 2α2=1-cos α1+cos α. 2.用cos α表示sin α2,cos α2,tan α2.sin α2=± 1-cos α2;cos α2=± 1+cos α2; tan α2=± 1-cos α1+cos α.3.用sin α,cos α表示tan α2.tan α2=sin α1+cos α=1-cos αsin α. [小题能否全取]1.(教材习题改编)已知cos α=13,α∈(π,2π),则cos α2等于( )A.63 B .-63 C.33D .-33解析:选B ∵cos α=13,α∈(π,2π),∴α2∈⎝⎛⎭⎫π2,π, ∴cos α2=-1+cos α2=- 1+132=-63.2.已知函数f (x )=cos 2⎝⎛⎭⎫π4+x -cos 2⎝⎛⎭⎫π4-x ,则f ⎝⎛⎭⎫π12等于( ) A.12B .-12C.32D .-32解析:选B f (x)=cos 2⎝⎛⎭⎫π4+x -sin 2⎝⎛⎭⎫x +π4=-sin 2x ,∴f ⎝⎛⎭⎫π12=-sin π6=-12. 3.已知tan α=12,则cos 2α+sin 2α+1cos 2α等于( )A .3B .6C .12D.32解析:选A cos 2α+sin 2α+1cos 2α=2cos 2α+2sin α·cos αcos 2α =2+2tan α=3. 4.sin 20°cos 20°cos 50°=________.解析:sin 20°cos 20°cos 50°=12sin 40°cos 50°=12sin 40°sin 40°=12.答案:125.若1+tan α1-tan α=2 013,则1cos 2α+tan 2α=________.解析:1cos 2α+tan 2α=1+sin 2αcos 2α=(cos α+sin α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2 013.答案:2 013三角恒等变换的常见形式三角恒等变换中常见的三种形式:一是化简;二是求值;三是三角恒等式的证明. (1)三角函数的化简常见的方法有切化弦、利用诱导公式、同角三角函数关系式及和、差、倍角公式进行转化求解.(2)三角函数求值分为给值求值(条件求值)与给角求值,对条件求值问题要充分利用条件进行转化求解.(3)三角恒等式的证明,要看左右两侧函数名、角之间的关系,不同名则化同名,不同角则化同角,利用公式求解变形即可.三角函数式的化简典题导入[例1] 化简2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x .[自主解答] 原式=-2sin 2x cos 2x +122sin ⎝⎛⎭⎫π4-x cos 2⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x=12(1-sin 22x )2sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x =12cos 22x sin ⎝⎛⎭⎫π2-2x=12cos 2x . 由题悟法三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.以题试法1.化简⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·tan α2. 解:法一:原式=⎝ ⎛⎭⎪⎫cos α2sin α2-sin α2cos α2·⎝ ⎛⎭⎪⎫1+sin αcos α·sin α2cos α2=cos 2α2-sin 2α2sin α2·cos α2·cos αcos α2+sin αsinα2cos αcos α2=2cos αsin α·cos ⎝⎛⎭⎫α-α2cos αcosα2 =2cos αsin α·cosα2cos αcosα2=2sin α. 法二:原式=1-tan 2α2tan α2·⎝ ⎛⎭⎪⎫1+sin αsin α2cos αcos α2 =2tan α·cos αcos α2+sin αsinα2cos αcosα2 =2cos αsin α·cos α2cos α·cosα2=2sin α.三角函数式的求值典题导入[例2] (1)(·重庆高考)sin 47°-sin 17°cos 30°cos 17°=( )A .-32 B .-12C.12D.32. (2)已知α、β为锐角,sin α=35,cos ()α+β=-45,则2α+β=________.[自主解答] (1)原式=sin (30°+17°)-sin17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.(2)∵sin α=35,α∈⎝⎛⎭⎫0,π2, ∴cos α=45,∵cos(α+β)=-45,α+β∈(0,π),∴sin(α+β)=35,∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=35×⎝⎛⎭⎫-45+45×35=0. 又2α+β∈⎝⎛⎭⎫0,3π2. ∴2α+β=π. [答案] (1)C (2)π由题悟法三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.以题试法2.(·广州一测)已知函数f (x )=tan ⎝⎛⎭⎫3x +π4. (1)求f ⎝⎛⎭⎫π9的值;(2)设α∈⎝⎛⎭⎫π,3π2,若f ⎝⎛⎭⎫α3+π4=2,求cos ⎝⎛⎭⎫α-π4的值. 解:(1)f ⎝⎛⎭⎫π9=tan ⎝⎛⎭⎫π3+π4=tan π3+tan π41-tan π3tanπ4=3+11-3=-2- 3. (2)因为f ⎝⎛⎭⎫α3+π4=tan ⎝⎛⎭⎫α+3π4+π4=tan(α+π)=tan α=2, 所以sin αcos α=2,即sin α=2cos α.①又sin 2α+cos 2α=1,② 由①②解得cos 2α=15.因为α∈⎝⎛⎭⎫π,3π2,所以cos α=-55,sin α=-255. 所以cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4=-55×22+⎝⎛⎭⎫-255×22=-31010.三角恒等变换的综合应用典题导入[例3] (2011·四川高考)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.[自主解答] (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.在本例条件不变情况下,求函数f (x )的零点的集合. 解:由(1)知f (x )=2sin ⎝⎛⎭⎫x -π4, ∴sin ⎝⎛⎭⎫x -π4=0,∴x -π4=k π(k ∈Z ), ∴x =k π+π4(k ∈Z ).故函数f (x )的零点的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π4,k ∈Z .由题悟法三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.以题试法3.已知函数f (x )=2cos x cos ⎝⎛⎭⎫x -π6-3sin 2x +sin x cos x . (1)求f (x )的最小正周期;(2)当α∈[0,π]时,若f (α)=1,求α的值.解:(1)因为f (x )=2cos x cos ⎝⎛⎭⎫x -π6-3sin 2x +sin x cos x =3cos 2 x +sin x cos x -3sin 2x +sin x cos x =3cos 2x +sin 2x =2sin ⎝⎛⎭⎫2x +π3, 所以最小正周期T =π.(2)由f (α)=1,得2sin ⎝⎛⎭⎫2α+π3=1, 又α∈[0,π],所以2α+π3∈⎣⎡⎦⎤π3,7π3, 所以2α+π3=5π6或2α+π3=13π6,故α=π4或α=11π12.1.在△ABC 中,tan B =-2,tan C =13,则A 等于( )A.π4 B.3π4 C.π3D.π6解析:选A tan A =tan [π-(B +C )]=-tan(B +C )=-tan B +tan C1-tan B tan C=--2+131-(-2)×13=1.故A =π4.2.sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)等于( )A .-sin αB .-cos αC .sin αD .cos α解析:选D 原式=(-sin 2α)·cos 2α(1+cos 2α)·(-sin α)=2sin α·cos α·cos 2α2cos 2α·sin α=cos α.3.(·深圳调研)已知直线l: x tan α-y -3tan β=0的斜率为2,在y 轴上的截距为1,则tan(α+β)=( )A .-73B.73C.57D .1解析:选D 依题意得,tan α=2,-3tan β=1, 即tan β=-13,tan(α+β)=tan α+tan β1-tan αtan β=2-131+23=1.4.(·山东高考)若θ∈⎣⎡⎦⎤π4,π2,sin 2θ=378,则sin θ=( ) A.35B.45C.74D.34解析:选D 因为θ∈⎣⎡⎦⎤π4,π2,所以2θ∈⎣⎡⎦⎤π2,π, 所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.5.(·河北质检)计算tan ⎝⎛⎭⎫π4+α·cos 2α2cos 2⎝⎛⎭⎫π4-α的值为( )A .-2B .2C .-1D .1解析:选D tan ⎝⎛⎭⎫π4+α·cos 2α2cos 2⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α·cos 2α2sin 2⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α=cos 2α2sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α=cos 2αsin 2⎝⎛⎭⎫π4+α =cos 2αsin ⎝⎛⎭⎫π2+2α =cos 2αcos 2α=1. 6.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12 B.π6 C.π4D.π3解析:选D 依题意有sin αcos β-cos αsin β =sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin 2(α-β)=1314,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32. 故β=π3.7.若tan ⎝⎛⎭⎫π4-θ=3,则cos 2θ1+sin 2θ=________. 解析:∵tan ⎝⎛⎭⎫π4-θ=1-tan θ1+tan θ=3, ∴tan θ=-12.∴cos 2θ1+sin 2θ=cos 2θ-sin 2θsin 2θ+2sin θcos θ+cos 2θ =1-tan 2θtan 2θ+2tan θ+1=1-1414-1+1=3.答案:38.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________. 解析:由(1+3tan α)(1+3tan β)=4, 可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),所以α+β=π3.答案:π39.计算:cos 10°+3sin 10°1-cos 80°=________.解析:cos 10°+3sin 10°1-cos 80°=2(sin 30°cos 10°+cos 30°sin 10°)2sin 240°=2sin 40°2sin 40°= 2.答案: 210.已知函数f (x )=sin x +cos x ,f ′(x )是f (x )的导函数. (1)求f ′(x )及函数y =f ′(x )的最小正周期;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数F (x )=f (x )f ′(x )+f 2(x )的值域. 解:(1)由题意可知,f ′(x )=cos x -sin x =-2·sin ⎝⎛⎭⎫x -π4, 所以y =f ′(x )的最小正周期为T =2π. (2)F (x )=cos 2x -sin 2x +1+2sin x cos x =1+sin 2x +cos 2x =1+2sin ⎝⎛⎭⎫2x +π4. ∵x ∈⎣⎡⎦⎤0,π2,∴2x +π4∈⎣⎡⎦⎤π4,5π4, ∴sin ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1. ∴函数F (x )的值域为[0,1+ 2 ].11.已知0<α<π2<β<π,tan α2=12,cos(β-α)=210.(1)求sin α的值; (2)求β的值.解:(1)∵tan α2=12, ∴tan α=2tan α21-tan 2α2=2×121-⎝⎛⎭⎫122=43, 由⎩⎪⎨⎪⎧sin αcos α=43,sin 2α+cos 2α=1,解得sin α=45⎝⎛⎭⎫sin α=-45舍去. (2)由(1)知cos α=1-sin 2α= 1-⎝⎛⎭⎫452=35, 又0<α<π2<β<π,∴β-α∈(0,π), 而cos(β-α)=210, ∴sin(β-α)=1-cos 2(β-α)=1-⎝⎛⎭⎫2102=7210, 于是sin β=sin[α+(β-α)]=sin αcos(β-α)+cos αsin(β-α)=45×210+35×7210=22. 又β∈⎝⎛⎭⎫π2,π,∴β=3π4. 12.已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ).(1)求证:tan(α+β)=2tan α;(2)求f (x )的解析式.解:(1)证明:由sin(2α+β)=3sin β,得sin [(α+β)+α]=3sin [(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)cos α-3cos(α+β)sin α,∴sin(α+β)cos α=2cos(α+β)sin α.∴tan(α+β)=2tan α.(2)由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y 1-xy=2x , ∴y =x 1+2x 2,即f (x )=x 1+2x 2.1.(·郑州质检)已知曲线y =2sin ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫π4-x 与直线y =12相交,若在y 轴右侧的交点自左向右依次记为P 1,P 2,P 3,…,则|15P P u u u u r |等于( ) A .πB .2πC .3πD .4π解析:选B 注意到y =2sin ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫π4-x =2sin 2⎝⎛⎭⎫x +π4=1-cos 2⎝⎛⎭⎫x +π4=1+sin 2x ,又函数y =1+sin 2x 的最小正周期是2π2=π,结合函数y =1+sin 2x 的图象(如图所示)可知,|15P P u u u u r |=2π.2.3-sin 70°2-cos 210°等于( ) A.12B.22 C .2D.32 解析:选C 3-sin 70°2-cos 2 10°=3-cos 20°2-cos 210°=3-(2cos 210°-1)2-cos 210°=2(2-cos 210°)2-cos 210°=2. 3.(·江西重点高中模拟)已知函数f (x )=sin ⎝⎛⎭⎫2x +π3+sin ⎝⎛⎭⎫2x -π3+3cos 2x -m ,若f (x )的最大值为1.(1)求m 的值,并求f (x )的单调递增区间;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若f (B )=3-1,且3a =b +c ,试判断三角形的形状.解:(1)f (x )=2sin 2x ·cos π3+3cos 2x -m =sin 2x +3cos 2x -m =2sin ⎝⎛⎭⎫2x +π3-m . 又f (x )max =2-m ,所以2-m =1,得m =1.由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z ) 得到k π-5π12≤x ≤k π+π12(k ∈Z ), 所以f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ).(2)由f (B )=3-1,得2sin ⎝⎛⎭⎫2B +π3-1=3-1, 所以B =π6. 又3a =b +c ,则3sin A =sin B +sin C ,3sin A =12+sin ⎝⎛⎭⎫5π6-A ,即sin ⎝⎛⎭⎫A -π6=12, 所以A =π3,C =π2,故△ABC 为直角三角形.1.求证:tan α+1tan ⎝⎛⎭⎫π4+α2=1cos α. 证明:左边=sin αcos α+cos ⎝⎛⎭⎫π4+α2sin ⎝⎛⎭⎫π4+α2=sin αsin ⎝⎛⎭⎫π4+α2+cos αcos ⎝⎛⎭⎫π4+α2cos αsin ⎝⎛⎭⎫π4+α2 =cos ⎝⎛⎭⎫π4+α2-αcos αsin ⎝⎛⎭⎫π4+α2 =cos ⎝⎛⎭⎫π4-α2cos αsin ⎝⎛⎭⎫π4+α2 =sin ⎝⎛⎭⎫π4+α2cos αsin ⎝⎛⎭⎫π4+α2=1cos α=右边. 故原式得证.2.已知f (x )=⎝⎛⎭⎫1+1tan x sin 2x -2sin ⎝⎛⎭⎫x +π4·sin ⎝⎛⎭⎫x -π4. (1)若tan α=2,求f (α)的值;(2)若x ∈⎣⎡⎦⎤π12,π2,求f (x )的取值范围.解:(1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4 =1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎫2x +π2=12+12(sin 2x -cos 2x )+cos 2x =12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以f (α)=12(sin 2α+cos 2α)+12=35. (2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤54π. 故-22≤sin ⎝⎛⎭⎫2x +π4≤1,则0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12.。

(新课标)高考数学一轮总复习 第四章 三角函数 第21讲 简单三角恒等变换导学案 新人教A版-新人教

(新课标)高考数学一轮总复习 第四章 三角函数 第21讲 简单三角恒等变换导学案 新人教A版-新人教

第21讲 简单三角恒等变换【课程要求】1.能利用两角和与差以及二倍角的正弦、余弦、正切公式进行简单的三角恒等变换. 2.能利用上述公式及三角恒等变换的基本思想方法对三角函数式进行化简、求值及恒等式的证明.对应学生用书p 57【基础检测】概念辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)对任意的角α,都有cos2α2=1-cos α2成立.( ) (2)y =sin 4x -cos 4x 的周期为π2.( ) (3)y =2sin x +6cos x 在x =π6取最大值是2 2.( )[答案] (1)× (2)× (3)√教材改编2.[必修4p 143B 组T 2]已知sin 74°=a ,则cos 8°=__________.(用含a 的式子表示) [解析]由题知cos 16°=sin 74°=a , 又cos 16°=2cos 28°-1=a , 所以cos 28°=a +12,cos 8°=a +12=2a +22. [答案]2a +223.[必修4p 141例4]如图,现要在一块半径为1,圆心角为π3的扇形铁片AOB 上剪出一个平行四边形MNPQ ,使点P 在弧AB 上,点Q 在OA 上,点M ,N 在OB 上,设∠BOP=θ,平行四边形MNPQ 的面积为S.(1)求S 关于θ的函数关系式; (2)求S 的最大值及相应的θ的大小.[解析] (1)分别过P ,Q 作PD⊥OB 于点D ,QE⊥OB 于点E , 则四边形QEDP 为矩形.由扇形半径为1,得|PD|=sin θ, |OD|=cos θ. 又|OE|=33|QE|=33|PD|, ∴|MN|=|QP|=|DE|=|OD|-|OE|=cos θ-33sin θ, ∴S=|MN|·|PD|=⎝ ⎛⎭⎪⎫cos θ-33sin θ·sin θ =sin θcos θ-33sin 2θ,θ∈⎝⎛⎭⎪⎫0,π3.(2)由(1)知S =12sin 2θ-36(1-cos 2θ)=12sin 2θ+36cos 2θ-36=33sin ⎝⎛⎭⎪⎫2θ+π6-36,因为θ∈⎝⎛⎭⎪⎫0,π3,所以2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以sin ⎝ ⎛⎭⎪⎫2θ+π6∈⎝ ⎛⎦⎥⎤12,1.当θ=π6时,S 取最大值,且S max =36.易错提醒4.化简tan 70°cos 10°(3tan 20°-1)的值为( )A .1B .2C .-1D .-2[解析]原式=sin 70°cos 70°·cos 10°⎝ ⎛⎭⎪⎫3sin 20°cos 20°-1=cos 20°cos 10°sin 20°·⎝ ⎛⎭⎪⎫3sin 20°-cos 20°cos 20°=cos 10°sin 20°×2sin (20°-30°)=-sin 20°sin 20°=-1.[答案]C 5.若sin 2α=55,sin (β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是( )A .7π4B .9π4C .5π4或7π4D .5π4或9π4[解析]∵α∈⎣⎢⎡⎦⎥⎤π4,π,∴2α∈⎣⎢⎡⎦⎥⎤π2,2π,∵sin 2α=55,∴2α∈⎣⎢⎡⎦⎥⎤π2,π. ∴α∈⎣⎢⎡⎦⎥⎤π4,π2且cos 2α=-255, 又∵sin (β-α)=1010,β∈⎣⎢⎡⎦⎥⎤π,3π2,∴β-α∈⎣⎢⎡⎦⎥⎤π2,5π4,cos (β-α)=-31010,∴cos (α+β)=cos [(β-α)+2α] =cos (β-α)cos 2α-sin (β-α)sin 2α =⎝ ⎛⎭⎪⎫-31010×⎝ ⎛⎭⎪⎫-255-1010×55=22, 又α+β∈⎣⎢⎡⎦⎥⎤5π4,2π,所以α+β=7π4. [答案]A 【知识要点】1.三角变换的一般方法(1)角的变换,一般包括角的分解和角的组合,如α=(α+β)-β,π4+x =π2-⎝ ⎛⎭⎪⎫π4-x ,α=2·α2等;(2)函数名称的变换,一般包括将三角函数统一成弦,以减少函数种类,对齐次式也可化成切;(3)注意结构的变换,如升幂与降幂,辅助角公式等;(4)角变换中以角的变换为中心;解题时,一看角,二看名称,三看结构. 2.三角变换的常见题型(1)化简:灵活选用和、差、倍、辅助角公式进行三角恒等变换是化简三角函数式的难点,解题时应注意降次,减少角的种类及三角函数的种类,注意角的范围及三角函数的正负.(2)求值:给值求值时,注意要求角与已知角及特殊角的关系.(3)证明:证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简,左右归一.对应学生用书p 58三角函数的化简问题1 (1)化简:2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝⎛⎭⎪⎫x +π4;(2)已知-π2<x <0,sin x +cos x =15.求3sin 2x 2-2sin x 2cos x 2+cos2x2tan x +1tan x的值.[解析] (1)原式=12(4cos 4x -4cos 2x +1)2·sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x ·cos 2⎝ ⎛⎭⎪⎫π4-x=(2cos 2x -1)24sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =cos 22x 2sin ⎝ ⎛⎭⎪⎫π2-2x =cos 22x2cos 2x=12cos 2x. (2)由sin x +cos x =15,两边平方得sin 2x +2sin x cos x +cos 2x =125,即2sin x cos x =-2425.∴3sin 2x 2-2sin x 2cos x 2+cos 2x 2tan x +1tan x =2sin 2x2-sin x +1sin x cos x +cos xsin x=sin x cos x(2-cos x -sin x)=⎝ ⎛⎭⎪⎫-1225×⎝ ⎛⎭⎪⎫2-15 =-108125.[小结]①三角函数式的变形,主要思路为角的变换、函数变换、结构变换,常用技巧有“辅助角”“1的代换”“切弦互化”等,其中角的变换是核心.②三角函数式的化简原则:尽量使函数种类最少,次数相对较低,项数最少,尽量使分母不含三角函数,尽量去掉根号或减少根号的层次,能求值的应求出其值.1.化简:sin (2α+β)sin α-2cos (α+β).[解析]原式=sin (2α+β)-2sin αcos (α+β)sin α=sin [α+(α+β)]-2sin αcos (α+β)sin α=sin αcos (α+β)+cos αsin (α+β)-2sin αcos (α+β)sin α=cos αsin (α+β)-sin αcos (α+β)sin α=sin [(α+β)-α]sin α=sin βsin α.三角函数的求值问题2 已知tan α=2.(1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解析] (1)tan ⎝⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.3 已知α,β为锐角,cos α=17,sin (α+β)=5314,则cos β=________.[解析]因为α,β为锐角,cos α=17,sin (α+β)=5314,所以sin α=1-cos 2α=437,cos (α+β)=±1-sin 2(α+β)=±1114,当cos (α+β)=1114时,sin β=sin [](α+β)-α=sin (α+β)cos α-cos (α+β)sin α=5314×17-1114×437<0,与sin β>0矛盾,所以cos β=cos [](α+β)-α=cos (α+β)cos α+sin (α+β)sin α=-1114×17+5314×437=12.[答案]12[小结]三角函数求值的3类求法(1)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(2)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,最后确定角.2.已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( ) A .3π4B .π4或3π4 C .π4D .2k π+π4(k∈Z )[解析]由sin α=55,cos β=31010,且α,β为锐角,可知cos α=255,sin β=1010, 故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.[答案]C三角恒等式的证明问题4 求证2-2sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝⎛⎭⎪⎫α+π4cos 4α-sin 4α=1+tan α1-tan α.[解析]左边=2-()cos α-sin α2cos 2α-sin 2α=1+2sin αcos αcos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=右边.[小结]三角恒等式的证明一般有三种方式:从左到右,从右到左,左=右=某一三角式.一般来说都是从复杂的一端向简单的一端证明.3.已知θ∈⎝ ⎛⎭⎪⎫π2,π,证明:1-sin θ1+sin θ-1+sin θ1-sin θ=2tan θ.[解析]由于θ∈⎝ ⎛⎭⎪⎫π2,π,所以θ2∈⎝ ⎛⎭⎪⎫π4,π2,所以sin θ2>cos θ2>0,sin θ2-cos θ2>0. 故原式=sin 2θ2-2sin θ2cos θ2+cos 2θ2sin 2θ2+2sin θ2cos θ2+cos2θ2-sin 2θ2+2sin θ2cos θ2+cos 2θ2sin 2θ2-2sin θ2cos θ2+cos 2θ2=⎝ ⎛⎭⎪⎫sin θ2-cos θ22⎝ ⎛⎭⎪⎫sin θ2+cos θ22-⎝⎛⎭⎪⎫sin θ2+cos θ22⎝ ⎛⎭⎪⎫sin θ2-cos θ22=sin θ2-cos θ2sin θ2+cosθ2-sin θ2+cosθ2sin θ2-cosθ2=⎝ ⎛⎭⎪⎫sin θ2-cos θ22-⎝ ⎛⎭⎪⎫sin θ2+cos θ22sin 2θ2-cos 2θ2=-2sin θ-cos θ=2tan θ.对应学生用书p 601.(2016·全国卷Ⅲ文)若tan θ=-13,则cos 2θ=( )A .-45B .-15C .15D .45[解析]∵cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ,又∵tan θ=-13,∴cos 2θ=1-191+19=45.[答案]D2.(2018·江苏)已知α,β为锐角,tan α=43,cos (α+β)=-55.(1)求cos 2α的值; (2)求tan (α-β)的值.[解析] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2α+cos 2α=1,所以cos 2α=925.因此,cos 2α=2cos 2α-1=-725.(2)因为α、β为锐角,所以α+β∈(0,π).又因为cos (α+β)=-55, 所以sin (α+β)=1-cos 2(α+β)=255,因此tan (α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2α=-247, 因此,tan (α-β)=tan [2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题21 简单的三角恒等变换1.掌握二倍角的正弦、余弦、正切公式.2.能运用两角和与差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).1.公式的常见变形 (1)1+cos α=2cos 2α2; 1-cos α=2sin2α2; (2)1+sin α=(sin α2+cos α2)2;1-sin α=(sin α2-cos α2)2.(3)tan α2=sin α1+cos α=1-cos αsin α.2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+b2,cos φ=a a 2+b 2.高频考点一 三角函数式的化简与求值例1、(1)化简:2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x =________.(2)已知α∈⎝ ⎛⎭⎪⎫0,π2,且2sin 2α-sin α²cos α-3cos 2α=0,则sin ⎝ ⎛⎭⎪⎫α+π4sin2α+cos2α+1=______________________________________________________________.答案 (1)12cos2x (2)268解析 (1)原式=124cos 4x -4cos 2x +1 2³sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x ²cos 2⎝ ⎛⎭⎪⎫π4-x又sin 2α+cos 2α=1, ∴cos α=213,sin α=313,∴sin ⎝⎛⎭⎪⎫α+π4sin2α+cos2α+1=22 sin α+cos α sin α+cos α 2+ cos 2α-sin 2α =268. 【感悟提升】(1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)三角函数式化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.【变式探究】(1)cos π9²cos 2π9²cos ⎝ ⎛⎭⎪⎫-23π9等于( ) A .-18B .-116C.116D.18(2)若1+cos2αsin2α=12,则tan2α等于( )A.54B .-54C.43D .-43答案 (1)A (2)D解析 (1)原式=cos π9²cos 29π²cos(-3π+49π)=-cos π9²cos 29π²cos 49π²sinπ9sinπ9=-12sin 29π²cos 29π²cos 49πsinπ9=-18sin 89πsinπ9=-18.(2)1+cos2αsin2α=2cos 2α2sin αcos α=cos αsin α=12,∴tan α=2,∴tan2α=2tan α1-tan 2α=41-4=-43. 高频考点二 三角函数的求角问题 例2、(1)已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( ) A.3π4B.π4或3π4C.π4 D .2k π+π4(k ∈Z )(2)已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α、tan β,且α、β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β等于( ) A.π8 B .-3π4C.π8或-3π8D.π4或-3π4答案 (1)C (2)B【感悟提升】通过求角的某种三角函数值来求角,在选取函数时,有以下原则: (1)已知正切函数值,则选正切函数.(2)已知正弦、余弦函数值,则选正弦或余弦函数.若角的范围是⎝ ⎛⎭⎪⎫0,π2,则选正弦、余弦皆可;若角的范围是(0,π),则选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,则选正弦较好.【变式探究】 (1)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B.π3C.π4D.π6(2)在△ABC 中,tan A +tan B +3=3tan A ²tan B ,则C 等于( ) A.π3 B.2π3 C.π6D.π4答案 (1)C (2)A解析 (1)∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =55³31010-255³(-1010)=22. ∴β=π4.(2)由已知可得tan A +tan B =3(tan A ²tan B -1), ∴tan(A +B )=tan A +tan B1-tan A tan B =-3,又0<A +B <π,∴A +B =23π,∴C =π3.高频考点三 三角恒等变换的应用例3、已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R ,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.(2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f π =1.得⎩⎪⎨⎪⎧cos θ 1-2a sin θ =0,2a sin 2θ-sin θ-a =1,由θ∈⎝ ⎛⎭⎪⎫-π2,π2知cos θ≠0,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.【感悟提升】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)+k 的形式再研究性质,解题时注意观察角、函数名、结构等特征.【变式探究】(1)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. (2)函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是________.答案 (1)1 (2)π解析 (1)因为f (x )=sin(x +φ)-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ), -1≤sin(x -φ)≤1,所以f (x )的最大值为1. (2)f (x )=22sin2x -22cos2x -2(1-cos2x ) =22sin2x +22cos2x -2=sin(2x +π4)-2, ∴T =2π2=π.1.【2016高考新课标2理数】若3cos()45πα-=,则sin 2α=( ) (A )725(B )15 (C )15- (D )725-【答案】D【解析】2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.2.【2016高考新课标3理数】若3tan 4α= ,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【答案】A 【解析】3.【2016年高考四川理数】22cossin 88ππ-= .【答案】2【解析】由二倍角公式得22cossin 88ππ-=cos42=π【2015高考四川,理12】=+ 75sin 15sin .【解析】法一、sin15sin75sin15cos1545)2+=+=+=法二、sin15sin75sin(4530)sin(4530)2sin45cos302+=-++==法三、sin15sin75+==.【2015高考浙江,理11】函数2()sin sin cos1f x x x x=++的最小正周期是,单调递减区间是.【答案】π,]87,83[ππππkk++,Zk∈.【2015高考天津,理15】(本小题满分13分)已知函数()22sin sin6f x x xπ⎛⎫=--⎪⎝⎭,Rx∈(I)求()f x最小正周期;(II)求()f x在区间[,]34p p-上的最大值和最小值.【答案】(I)π; (II)max()4f x=,min1()2f x=-.【解析】(I) 由已知,有1cos21cos21113()cos22cos2222222xxf x x x xπ⎛⎫--⎪⎛⎫-⎝⎭=-=+-⎪⎝⎭112cos2sin2426x x xπ⎛⎫-=-⎪⎝⎭.所以()f x的最小正周期22Tππ==.(II)因为()f x在区间[,]36p p--上是减函数,在区间[,]64p p-上是增函数,11(),(),()34624f f fπππ-=--=-=,所以()f x在区间[,]34p p-最小值为12-.【2015高考重庆,理18】 已知函数()2sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭(1)求()f x 的最小正周期和最大值; (2)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.【答案】(1)最小正周期为p ,最大值为22-(2)()f x 在5[,]612ππ上单调递增;()f x 在52[,]123ππ上单调递减. 【解析】(2)当2[,]63x ππ∈时,有023x ππ≤-≤,从而当0232x ππ≤-≤时,即5612x ππ≤≤时,()f x 单调递增,当223x πππ≤-≤时,即52123x ππ≤≤时,()f x 单调递减,综上可知,()f x 在5[,]612ππ上单调递增;()f x 在52[,]123ππ上单调递减. (2014²全国卷)直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.【答案】43【解析】 如图所示,根据题意,OA ⊥PA ,OA =2,OP =10,所以PA =OP 2-OA 2=2 2,所以tan∠OPA =OA PA =22 2=12,故tan∠APB =2tan∠OPA 1-tan 2∠OPA =43,即l 1与l 2的夹角的正切值等于43. (2014²全国卷)若函数f (x )=cos 2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2是减函数,则a 的取值范围是________. 【答案】(-∞,2](2014²福建卷)已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.【解析】方法一:(1)因为0<α<π2,sin α=22,所以cos α=22.所以f (α)=22³⎝ ⎛⎭⎪⎫22+22-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x=22sin ⎝⎛⎭⎪⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z,(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z,得k π-3π8≤x ≤k π+π8,k ∈Z.所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.(2014²四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝ ⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值. 【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z.所以,函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z. (2)由已知,得sin ⎝⎛⎭⎪⎫α+π4=45cos ⎝ ⎛⎭⎪⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝ ⎛⎭⎪⎫cos α cos π4-sin αsin π4(cos 2 α-sin 2α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角, 得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2014²天津卷)已知函数f (x )=cos x ²s in ⎝ ⎛⎭⎪⎫x +π3-3cos 2x +34,x ∈R.(1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值.所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π4,-π12上是减函数,在区间⎣⎢⎡⎦⎥⎤-π12,π4上是增函数,f ⎝ ⎛⎭⎪⎫-π4=-14,f ⎝ ⎛⎭⎪⎫-π12=-12,f ⎝ ⎛⎭⎪⎫π4=14,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为14,最小值为-12.(2014²北京卷)如图1­2,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC=17. (1)求sin∠BAD ; (2)求BD ,AC 的长.图1­2【解析】(1) 在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =4 37.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B =4 37³12-17³32=3 314.(2014²福建卷)在△ABC 中,A =60°,AC =4,BC =2 3,则△ABC 的面积等于________.【答案】2 3 【解析】 由BC sin A =AC sin B ,得sin B =4sin 60°23=1,∴B =90°,C =180°-(A +B )=30°,则S △ABC =12²AC ²BC sin C =12³4³23sin 30°=23,即△ABC 的面积等于2 3.(2014²湖南卷)如图1­5所示,在平面四边形ABCD 中,AD =1,CD =2,AC =7.图1­5(1)求cos ∠CAD 的值; (2)若cos∠BAD =-714,sin∠CBA =216,求BC 的长.1-⎝ ⎛⎭⎪⎫2772=217,sin∠BAD =1-cos 2∠BAD =1-⎝ ⎛⎭⎪⎫-7142=32114.于是sin α=sin (∠BAD -∠CAD )=sin∠BAD cos∠CAD -cos∠BAD sin∠CAD=32114³277-⎝ ⎛⎭⎪⎫-714³217=32. 在△ABC 中,由正弦定理,得BCsin α=ACsin∠CBA.故BC =AC ²sin αsin∠CBA=7³32216=3.(2014²四川卷)如图1­3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高度是46 m ,则河流的宽度BC 约等于________m.(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin37°≈0.60,cos37°≈0.80,3≈1.73)图1­3【答案】601.设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2答案 B解析 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.2.已知sin2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4等于( ) A.16 B.13 C.12 D.23答案 A3.若α∈⎝ ⎛⎭⎪⎫π2,π,且3cos2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin2α的值为( )A.118B .-118C.1718 D .-1718答案 D解析 cos2α=sin ⎝ ⎛⎭⎪⎫π2-2α=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-α =2sin ⎝⎛⎭⎪⎫π4-αcos ⎝⎛⎭⎪⎫π4-α 代入原式,得6sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫π4-α, ∵α∈⎝⎛⎭⎪⎫π2,π,∴cos ⎝ ⎛⎭⎪⎫π4-α=16,∴sin2α=cos ⎝ ⎛⎭⎪⎫π2-2α =2cos 2⎝ ⎛⎭⎪⎫π4-α-1=-1718.4.若sin2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4 C.5π4或7π4D.5π4或9π4答案 A解析 ∵α∈⎣⎢⎡⎦⎥⎤π4,π,∴2α∈⎣⎢⎡⎦⎥⎤π2,2π.∵sin2α=55,∴2α∈⎣⎢⎡⎦⎥⎤π2,π, ∴α∈⎣⎢⎡⎦⎥⎤π4,π2,cos2α=-255. ∵β∈⎣⎢⎡⎦⎥⎤π,3π2,∴β-α∈⎣⎢⎡⎦⎥⎤π2,5π4, ∴cos(β-α)=-31010,∴cos(α+β)=cos[2α+(β-α)] =cos2αcos(β-α)-sin2αsin(β-α) =⎝ ⎛⎭⎪⎫-255³⎝ ⎛⎭⎪⎫-31010-55³1010=22.又∵α+β∈⎣⎢⎡⎦⎥⎤5π4,2π,∴α+β=7π4.5.函数f (x )=sin(2x +θ)+3cos(2x +θ)⎝ ⎛⎭⎪⎫|θ|<π2的图象关于点⎝ ⎛⎭⎪⎫π6,0对称,则f (x )的单调递增区间为( ) A.⎣⎢⎡⎦⎥⎤π3+k π,5π6+k π,k ∈ZB.⎣⎢⎡⎦⎥⎤-π6+k π,π3+k π,k ∈ZC.⎣⎢⎡⎦⎥⎤-7π12+k π,-π12+k π,k ∈ZD.⎣⎢⎡⎦⎥⎤-π12+k π,5π12+k π,k ∈Z 答案 C由2k π-π2≤2x +23π≤2k π+π2(k ∈Z ),得k π-712π≤x ≤k π-π12(k ∈Z ).故选C.6.已知tan(π4+θ)=3,则sin2θ-2cos 2θ的值为________.答案 -45解析 ∵tan(π4+θ)=3,∴1+tan θ1-tan θ=3,解得tan θ=12.∵sin2θ-2cos 2θ=sin2θ-cos2θ-1 =2sin θcos θsin 2θ+cos 2θ-cos 2θ-sin 2θsin 2θ+cos 2θ-1 =2tan θ1+tan 2θ-1-tan 2θ1+tan 2θ-1 =45-35-1=-45. 7.若tan α+1tan α=103,α∈(π4,π2),则sin(2α+π4)的值为________.答案 -210=22³(35-45)=-210. 8.若α、β是锐角,且sin α-sin β=-12,cos α-cos β=12,则tan(α-β)=________.答案 -73解析 ∵sin α-sin β=-12,cos α-cos β=12,两式平方相加得:2-2cos αcos β-2sin αsin β=12,即2-2cos(α-β)=12,∴cos(α-β)=34.∵α、β是锐角,且sin α-sin β=-12<0,∴0<α<β<π2,∴-π2<α-β<0.∴sin(α-β)=-1-cos 2α-β =-74. ∴tan(α-β)=sin α-β cos α-β =-73.9.已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .10.已知函数f (x )=2cos 2ωx -1+23cos ωx sin ωx (0<ω<1),直线x =π3是f (x )图象的一条对称轴. (1)试求ω的值;(2)已知函数y =g (x )的图象是由y =f (x )图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎝ ⎛⎭⎪⎫2α+π3=65,α∈⎝ ⎛⎭⎪⎫0,π2,求sin α的值. 解 f (x )=2cos 2ωx -1+23cos ωx sin ωx =cos2ωx +3sin2ωx- 21 - =2sin ⎝⎛⎭⎪⎫2ωx +π6. (1)由于直线x =π3是函数f (x )=2sin ⎝⎛⎭⎪⎫2ωx +π6图象的一条对称轴, ∴sin ⎝⎛⎭⎪⎫2π3ω+π6=±1. ∴2π3ω+π6=k π+π2(k ∈Z ), ∴ω=32k +12(k ∈Z ). 又0<ω<1,∴-13<k <13. 又∵k ∈Z ,从而k =0,∴ω=12. (2)由(1)知f (x )=2sin ⎝⎛⎭⎪⎫x +π6,∴sin ⎝⎛⎭⎪⎫α+π6=45. ∴sin α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6=sin ⎝ ⎛⎭⎪⎫α+π6cos π6-cos ⎝ ⎛⎭⎪⎫α+π6sin π6=45³32-35³12=43-310.。

相关文档
最新文档