中考数学模拟测试试题(二次根式)(一)

合集下载

2024年3月浙江省宁波市镇海蛟川书院九年级中考数学模拟试题

2024年3月浙江省宁波市镇海蛟川书院九年级中考数学模拟试题

2024年3月浙江省宁波市镇海蛟川书院九年级中考数学模拟试题一、单选题1x 的取值范围是( ) A .12x <B .12x ≥C .12x ≤D .12x ≠2.已知一组数据2,l ,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( ). A .2 B .2.5C .3D .53.若33243x +=,则38x的值为( )A .98B .14C .89D .344.一次函数()0y ax b a =+≠,当3x <时,y 都大于0,则下列各点可能在一次函数y ax b =+的图象上的是( ) A .()2,0B .(1,3)--C .(1,2)D .(2,3)-5.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,BE 与CD 相交于F ,则下列结论一定正确的是( ).A .AD BD DEBC= B .=AD DEBD ECC .DF FC AEAC= D .DF BFEFFC=6.{}a 表示小于a 的最大整数,[]b 表示不小于b 的最小整数,若整数x 、y 满足4{}[]9,3{}[]5x y x y -=+=,则32x y +的平方根为( )A .B .1±C .2±D .7.新定义:若一个点的横纵坐标之和为6,则称这个点为“和谐点”.若二次函数22y x x c=-+(c 为常数)在13x -<<的图象上存在两个“和谐点”,则c 的取值范围是( ) A .2574c << B .2544c <<C .11c -<<D .2504c <<8.如图,等边ABC V 内接于O e ,D 为劣弧AC 上一点,连接CD 井廷长交BA 延长线于点E ,连结BD ,若57BD CD =,等边ABC V 的边长为7,则AE 的长为( )A .135B .3C .145D .1149.如图,在O e 中,直径AB ⊥弦CD 于点M ,点E 是半径OC 上一点,连结AE 并延长交O e 于点F ,连结DF 交BC 于点G .若10AB =,1OM =,且32OE =,则BG 的长为( )A B C D 10.如图,在ABC V 中,过点A 作AE BC ⊥交BC 于点E ,点D 为AB 上一点,G 为BC 上一点,且BD BG =,过点D 作DF DG ⊥交AC 于点F ,交AE 于点H ,2180ABC BAC ∠+∠=︒,2AD BD ==DG DH BDG V 的面积为( )AB C D二、填空题11.因式分解:2288-+=x y xy y .12.已知二次函数2(3)4=+-y x 的图象上有两点()11A x y ,,()22B x y ,,x 2<x 2且127x x +=-,则1y 与2y 的大小关系是.13.一个圆锥的底面半径为8cm ,其侧面展开图的圆心角为240°,则此圆锥的侧面积为.14.已知关于a 、b 的方程组2315657a mb a nb -=⎧⎨+=⎩的解为 6.51.3a b =⎧⎨=⎩,则关于x 、y 的方程组2113(1)6(1)45x m y x n y =+-⎧⎨+-=⎩的解为. 15.代数式222461249ab ac bca b c ++++的最大值为.16.如图,点A 为反比例函数1(0)k y x x=>上一点,连结AO 并延长交反比例函数2(0)k y x x=<于点B ,且219k k =.点C 在y 轴正半轴上,连结CA 并延长交x 轴于点E ,连结BC 交x 轴于点F ,若4ACAE=,10COB S ∆=,则COF V 的面积为.17.如图,将矩形ABCD 的边AD 翻折到AE ,使点D 的对应点E 在边BC 上,再将边AD 翻折到DF ,且点A 的对应点F 为ABE V 的内心,则ADEAEFS S∆∆=.18.如图,AB CD 、是O e 中的两条弦,相交于点E ,且AB CD AE DE ⊥=,,点H 为劣弧AD 上一动点,G 为HE 中点,若17CE DE ==,,连接AG ,则AG 最小值为.三、解答题19.(1()045tan 602cos30tan303π︒+︒-︒︒+- (2)已知11a a -=,求()2225161122444a a a a a a a a -⎡⎤---÷-⎢⎥--++⎣⎦的值.20.如图①、图②、图③均是55⨯的正方形网格,每个小正方形的顶点称为格点,线段AB 的端点均在格点上.只用无刻度的直尺,在给定的网格中画图.要求:(1)如图①,在AB 边上找点E ,使得12AE BE =. (2)如图②,在网格中找格点E (一个即可),画出ABE ∠,使得1tan 2ABE ∠=. (3)如图③,C 为格点,在AC 边上找点E ,使得3tan 5ABE ∠=. 21.某款旅游纪念品很受游客喜爱,每个纪念品进价40元,规定销售单价不低于44元,且不高于52元.某商户在销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y 个,销售单价为x 元.(1)求y 关于x 的函数关系式;(2)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w 元最大?最大利润是多少元?(3)该商户从每天的利润中捐出200元做慈善,为了保证捐款后每天剩余利润不低于2200元,求销售单价x 的范围.22.若二次函数21111y a x b x c =++与22222y a x b x c =++的图象关于点(1,0)P 成中心对称图形,我们称1y 与2y 互为“中心对称”函数.(1)求二次函数263y x x =++的“中心对称”函数的解析式;(2)若二次函数22(0)y ax ax c a =++>的顶点在它的“中心对称”函数图象上,且当24c a a cx a a+-≤≤时,y 最大值为2,求此二次函数解析式. (3)二次函数21(0)y ax bx c a =++<的图象顶点为M ,与x 轴负半轴的交点为A 、B ,它的“中心对称”函数2y 的顶点为N ,与x 轴的交点为C 、D ,从左往右依次是A 、B 、C 、D ,若2A B B P =,且四边形AMDN 为矩形,求24b ac -的值.23.在矩形ABCD 中,M 、N 分别在边BC CD 、上,且AM MN ⊥,以MN 为直径作O e ,连结AN 交O e 于点H ,连结CH 交MN 于点P ,8AB =,12AD =.(1)求证:MAD MHC ∠=∠; (2)若AM 平分BAN ∠,求MP 的长;(3)若CMH V 为等腰三角形,直接写出BM 的长.24.如图1,O e 为Rt ABC △的外接圆,90C ∠=︒,点D 为圆上一点,连结AD 并延长与ACB∠的角平分线交于点E ,连结BE ,2AB AD AE =⋅,设,BC CEx y AC AC==.(1)求y 关于x 的函数表达式;(2)如图2,连结CD ,若3,1x AC ==,求CD 的长.。

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。

初中数学二次根式中考试题(含答案)

初中数学二次根式中考试题(含答案)

初中数学二次根式中考试题(含答案)1、8 2 的结果是()(09 常德 )A .6B.2 2C.2 D .22、下列运算正确的是() (黑龙江齐齐哈尔09)1A .3 273B.(π3.14)01C.12D.9323、下列各式中,运算正确的是() (09长沙 )A .a6a3a2B .(a3)2a5C.2233 55 D .6324、若使二次根式x 2 在实数范围内有意义,则 x 的取值范围是 (湖南株洲 09)...A .x 2B.x 2C.x 2 D .x 25、估算272的值() (09 四川眉山 )A.在 1到 2之间B.在 2到 3之间C.在 3到 4之间D.在 4到5之间x 20096、若x,y为实数,且x2y 2 0 ,则的值为()(09 天津 )y7m n, y m n ,则xy的值是((新疆09)、若 x)A .2m B.2nC.m n D.m n8、下列运算正确的是()(09绥化 )A .a3·a2=a6B. ( π -3.14)0=l C .() -1 =-2 D .=± 39、 36 的算术平方根是(). (09哈尔滨 )(A )6(B)± 6(C)6(D)±610、下面计算正确的是()(09 衡阳 )A .3333B.2733C.235D.4211、 |-9|的平方根是 ()(09 湖北荆门 )(A)81 .(B)± 3.(C)3.(D) - 3.12、若x 1 1 x =( x+y)2,则x-y的值为() (09 湖北荆门 )(A) - 1.(B)1 .(C)2 .(D)3 .113、计算12 的结果是 (09 淄博 )3(A)73(B)332(C)3(D)5333314、下列计算正确的是 ()(09湖南娄底 )222235A. (a-b)=a -bB.a · a =aC. 2a+3b=5abD.33-2 2=115、下列运算中,正确的是()(09 济宁 )A . 93B. (a 2 ) 3a6C. 3a·2a 6a D.32616、已知 a 为实数,那么 a 2等于()(09 济宁 )A 、 aB 、 -aC 、-1D 、 017、下列各数中,最大的数是()(09 湖州 )A .1B .0C.1 D .218、4的算术平方根是()(09湖州 )A .2B .2C.2D.1619、下列计算正确的是:(09 安顺 )A .822B.3 2 1C.325D.23620、 9 的平方根是 ( )(09宜宾 )A.3 B .一3 C .±3D.321、使二次根式x 2 有意义的x的取值范围是()(09 宁波).A .x 2B.x 2C.x 2 D .x 222、计算:12 3 =. (09 广西柳州 )、已知 | a1|8b0 ,则a b .安徽芜湖095分)23(24、计算:327418 =_________.(湖北荆州09)225、 9的算术平方根是.( 湖北恩施州 09)26、若a2b3c20,则 a b c.(09 怀化 ) 427、对于任意不相等的两个数a, b,定义一种运算※如下:a※ b=a b ,a b如 3※2=325 .那么12※4=. (湖南湘西 09) 3228、计算( 3 1)(31) =___________.(大连09)29、计算:12 3 =.(09 山西 )30、分母有理化:1.(上海 ) 531、化简:188 =.(09 天津 )32、计算18-8= ___________. (09 仙桃 )33、化简:38532 的结果为。

2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题

2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题
①求y关于n的函数关系式;
②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.
24.某初中在“读书共享月”活动中.学生都从家中带了图书到学校给大家共享阅读.经过抽样调查得知,初一人均带了2册;初二人均带了3.5册:初三人均带了2.5册.已知各年级学生人数的扇形统计图如图所示,其中初三共有210名学生.请根据以上信息解答下列问题:
(1)扇形统计图中,初三年级学生数所对应的圆心角为°;
28.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于 BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)根据条件与作图信息知四边形ABEF是
A.非特殊的平行四边形
B.矩形
C.菱形
D.正方形
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
22.随着”互联网+“时代的到来,利用网络呼叫专车的打车方式深受大众欢迎.据了解,在非高峰期时,某种专车所收取的费用y(元)与行驶里程x(km)的函数图象如图所示.请根据图象,回答下列问题:
(1)当x≥5时,求y与x之间的函数关系式;
(2)若王女士有一次在非高峰期乘坐这种专车外出,共付费47元,求王女士乘坐这种专车的行驶里程.
【详解】
∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP,

中考数学数学二次根式的专项培优练习题(及解析

中考数学数学二次根式的专项培优练习题(及解析

一、选择题1.下列二次根式中是最简二次根式的为( ) ABCD2.a 的值可能是( ) A .2-B .2C .32D .83.已知x 1x 2,则x₁²+x₂²等于( ) A .8 B .9C .10D .114.化简) ABCD5.=a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是( )A .3B .13C .2D .536.已知a 满足2018a -a ,则a -2 0182=( ) A .0B .1C .2 018D .2 0197.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()123A .BC .D8.有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限9.下列说法中正确的是( )A ±5B .两个无理数的和仍是无理数C .-3没有立方根.D .10.已知,5x y +=-,3xy =则y x x y x y+的结果是( ) A .23B .23-C .32D .32-二、填空题11.比较实数的大小:(1)5?-______3- ;(2)514-_______12 12.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______.13.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.14.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.15.观察下列等式:第1个等式:a 12112=+, 第2个等式:a 23223=+, 第3个等式:a 332+3, 第4个等式:a 45225=+, …按上述规律,回答以下问题: (1)请写出第n 个等式:a n =__________. (2)a 1+a 2+a 3+…+a n =_________16.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行13 154173219254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是(用含 n 的代数式表示). 17.把 18.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____. 19.3y =,则2xy 的值为__________.20.下列各式:是最简二次根式的是:_____(填序号)三、解答题21.计算及解方程组: (1-1-)(2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可;(2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2 ∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.小明在解决问题:已知a2a 2-8a +1的值,他是这样分析与解答的: 因为a=2,所以a -2所以(a -2)2=3,即a 2-4a +4=3. 所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题: (1)计算:= - .(2)…(3)若a ,求4a 2-8a +1的值. 【答案】 ,1;(2) 9;(3) 5 【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解; (3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可. 【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===,则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.23.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.24.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.25.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.26.一样的式子,其实我3====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=.考点:分母有理化.27.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.28.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4 =+4 =-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A =不是最简二次根式,本选项错误;BC =不是最简二次根式,本选项错误;D =故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.B解析:B 【分析】直接利用最简二次根式的定义分析得出答案. 【详解】∴a ≥0,且a故选项中-2,32,8都不合题意, ∴a 的值可能是2. 故选:B . 【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.3.C解析:C 【详解】12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C . 【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.4.C解析:C 【解析】根据二次根式有意义的条件可知﹣1x>0,求得x <0,然后根据二次根式的化简,可得x. 故选C .5.B解析:B 【分析】根据根号下的数要是非负数,得到a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x ,把y=-x 代入原式即可求出答案. 【详解】由于根号下的数要是非负数,∴a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0, a (x-a )≥0和x-a≥0可以得到a≥0, a (y-a )≥0和a-y≥0可以得到a≤0, 所以a 只能等于0,代入等式得,所以有x=-y , 即:y=-x ,由于x ,y ,a 是两两不同的实数,∴x >0,y <0.将x=-y 代入原式得:原式=()()()()2222313x x x x x x x x +---=--+-. 故选B .【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a 、x 、y 的值和代入求分式的值是解此题的关键.6.D解析:D【解析】【分析】根据二次根式的被开数的非负性,求的a 的范围,然后再化简绝对值,最后,依据二次根式的定义进行变形即可.【详解】解:等式2018a -=a 成立,则a ≥2019,∴,,∴a-2019=20182,∴a-20182=2019.故选D .【点睛】本题主要考查的是二次根式有意义的条件,求得a 的取值范围是解题的关键.7.B解析:B【解析】【分析】由图形可知,第n(n =案.【详解】由图形可知,第n (n=∴第8=, 则第9行从左至右第5=, 故选B .【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n 行最后一个数为8.A解析:A【解析】试题分析:根据二次根式的概念,可知a≥0,ab >0,解得a >0,b >0,因此可知A (a ,b )在第一象限.故选A9.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=,故C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.10.B解析:B【分析】由x+y=-5,xy=3可得到x <0,y <0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可. 【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x <0,y <0),当xy=3时,原式=-故选B.【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题11.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为: ,.解析:< <【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<(2)113424-=∵3=∴304<< 12 故答案为:< ,<.【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键. 12.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x −a)=(y+b)(y −b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 13.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.14.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换.15.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, ……∴第n==(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=121n +++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题16.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.17.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键. 18.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.19.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15.解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy =-2×52×3=-15. 20.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】② ③ 是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】是最简二次根式,③4故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

中考数学最新真题专项汇总—二次根式(含解析)

中考数学最新真题专项汇总—二次根式(含解析)

中考数学最新真题专项汇总—二次根式(含解析)一.选择题1.(2022·湖北武汉)下列各式计算正确的是( )A=B .1= C =D 2=【答案】C【分析】由合并同类二次根式判断A ,B ,由二次根式的乘除法判断C ,D .【详解】解:A ≠B 、=C=D22==C .【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键.2.(2022·山东聊城)射击时,子弹射出枪口时的速度可用公式v 其中a 为子弹的加速度,s 为枪筒的长.如果52510m /s a =⨯,0.64m s =,那么子弹射出枪口时的速度(用科学记数法表示)为( )A .20.410m /s ⨯B .20.810m /s ⨯C .2410⨯m /sD .28s 10m /⨯【答案】D【分析】把a =5×105m/s 2,s =0.64m 代入公式=v 化简即可.【详解】解:()2810m /s v =⨯,故选:D .【点睛】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2022·|2|cos45-⨯︒的结果,正确的是()B.C.D.2A【答案】B【分析】化简二次根式并代入特殊角的锐角三角比,再按照正确的运算顺序进行计算即可.-⨯︒|2|cos45=2==B【点睛】此题考查了二次根式的运算、特殊角的锐角三角比等知识,熟练掌握运算法则是解题的关键.4.(2022·山东青岛)计算)AB.1C D.3【答案】B再合并即可.【详解】解:94321故选:B.【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.5.(2022·2x -在实数范围内有意义,则x 的取值范围是( )A .1x >-B .1x -C .1x -且0x ≠D .1x -且0x ≠【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥-1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.6.(2022·山东潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛,下列估算正确的是( )A .205<<B .2152<< C .12<<1 D 1> 【答案】C【分析】用夹逼法估算无理数即可得出答案.【详解】解:4<5<9,∴23,∴1∴1<1,故选:C.2【点睛】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.7.(2022·湖北恩施)函数y的自变量x的取值范围是()A.3x≥-x≠D.1x≥-且3x≠B.3x≥C.1【答案】C【分析】根据分式有意义的条件与二次根式有意义的条件得出不等式组,解不等式组即可求解.【详解】解:∴10,30+≥-≠,x x解得1x≠,故选C.x≥-且3【点睛】本题考查了求函数自变量的取值范围,掌握分式有意义的条件与二次根式有意义的条件是解题的关键.8.(2022·)A.B.3C.D.2【答案】A【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为故选:A.【点睛】本题考查了二次根式的化简,关键在于被开方数要写成平方数乘积的形式再进行化简.9.(2022·x的取值范围是()A.1≥x B.1x>x>C.0x≥D.0【答案】A0)进行计算即可.【详解】解:由题意得:10x-,∴,1x故选:A.0)是解题的关键.10.(2022·山东临沂)满足1m>的整数m的值可能是()A.3B.2C.1D.0【答案】A11的范围,再确定m的范围即可确定答案.【详解】3104<<,∴<,2131011m>,-,1∴≥,故选:A.3m【点睛】本题考查了绝对值的化简,无理数的估算和不等式的求解,熟练掌握知识点是解题的关键.11.(2021·)A.±3B.3C.±9D.9【答案】A【详解】解:,9的平方根是±3,±3,故选:A.【点睛】本题考查了算术平方根,平方根,熟练掌握相关知识是解题的关键.12.(2022·四川广安)下列运算中,正确的是()A.3a2 +2a2 =5a4B.a9÷a3=a3C=D.(﹣3x2)3=﹣27x6【答案】D【分析】根据合并同类项,同底数幂的除法,二次根式的加法,积的乘方运算,逐项分析判断即可求解.【详解】解:A. 3a2 +2a2 =5 a 2,故该选项不正确,不符合题意;B. a9÷a3=a6,故该选项不正确,不符合题意;C.D. (﹣3x2)3=﹣27x6,故该选项正确,符合题意;故选D【点睛】本题考查了合并同类项,同底数幂的除法,二次根式的加法,积的乘方运算,正确的计算是解题的关键.13.(2022·x的取值范围是A .x≥3B .x≤3C .x >3D .x <3【答案】A 【详解】解:由题意得30x -≥.解得x≥3,故选:A .14.(2022·内蒙古呼和浩特)下列运算正确的是( )A2± B .222()m n m n +=+ C .1211-=--x x x D .2229332-÷=-y x xy x y【答案】D【分析】分别根据二次根式乘法法则,完全平方公式,异分母分式加减法法则以及分式除法法则计算出各项结果后,再进行判断即可.【详解】解:A. 2,故此计算错误,不符合题意; B. 222()2m n m mn n +=++,故此计算错误,不符合题意; C. 1221(1)x x x x x --=---,故此计算错误,不符合题意; D. 22223933322y x x xy xy =x y y-÷=--,计算正确,符合题意,故选:D . 【点睛】本题主要考查了二次根式乘法,完全平方公式,异分母分式加减法以及分式除法,熟练掌握相关运算法则是解答本题的关键.15.(2022·湖南郴州)下列运算正确的是( )A .325a a a +=B .632a a a ÷=C .()222a b a b +=+ D 5 【答案】D【分析】根据合并同类项、同底数幂的除法法则,完全平方公式以及二次根式的计算法则进行计算即可.【详解】A.32a a+不能合并,故A错误;B.633a a a÷=,故B错误;C.()2222a b a ab b+=++,故C错误;5=,故D正确;故答案为:D.【点睛】本题考查合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则等知识.掌握合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则是解答本题的关键.16.(2022·四川雅安)下列计算正确的是()A.32=6B.(﹣25)3=﹣85C.(﹣2a2)2=2a4D【答案】D【分析】由有理数的乘方运算可判断A,B,由积的乘方运算与幂的乘方运算可判断C,由二次根式的加法运算可判断D,从而可得答案.【详解】解:239=,故A不符合题意;328,5125故B不符合题意;22424,a a故C不符合题意;2333,故D符合题意;故选D【点睛】本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.17.(2022·湖南永州)下列各式正确的是()A=B .020= C .321a a -= D .()224--=【答案】D 【分析】利用二次根式性质化简、零指数幂、合并同类项、有理数减法运算即可判断。

2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编(Word版,含答案)

2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编(Word版,含答案)

2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编一、选择题1. (2021•甘肃省定西市)下列运算正确的是( ) A .+=3B .4﹣=4C .×=D .÷=42. (2021•湖南省常德市)计算:5151122⎛⎫++-⋅=⎪⎝⎭( ) A. 0B. 1C. D.512- 3. (2021•湖南省衡阳市)下列计算正确的是( ) A .=±4B .(﹣2)0=1C .+=D .=34. (2021•株洲市) 计算:142-⨯=( ) A. 22-B. -2C. 2-D. 225. (2021•江苏省苏州市)计算()2的结果是( )A .B .3C .2D .96. (2021•河北省)与结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣17. (2021•广东省)若22391240a a ab b -+-+=,则ab =() A .3B .92C .43D .98. (2021•广东省)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是()A .6B .210C .12D .9109(2021•湖北省恩施州)从,﹣,﹣这三个实数中任选两数相乘,所有积中小于2的有( )个. A .0B .1C .2D .310. (2021•青海省)已知a ,b 是等腰三角形的两边长,且a ,b 满足+(2a +3b﹣13)2=0,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或811. (2021•浙江省杭州)下列计算正确的是( ) A .=2B .=﹣2C .=±2D .=±212. (2021•浙江省湖州市)化简8的正确结果是.A .4B .±4C .22D .22±13. (2021•浙江省嘉兴市)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( ) A .x =﹣1B .x =+1C .x =3D .x =﹣14. (2021•湖北省荆门市)下列运算正确的是( ) A .(﹣x 3)2=x 5 B .=xC .(﹣x )2+x =x 3D .(﹣1+x )2=x 2﹣2x +115. (2021•重庆市B )下列计算中,正确的是( ) A .5﹣2=21 B .2+=2C .×=3D .÷=316. (2021•重庆市A )1472 ) A. 7B. 62C. 72D. 2717. (2021•襄阳市)3x +x 的取值范围是( ) A. 3x ≥-B. 3x ≥C. 3x ≤-D. 3x >-18. (2021•绥化市)01x +x 的取值范围是( )A. –1x >B. 1x ≥-且0x ≠C. 1x >-且0x ≠D. 0x ≠19. (2021•湖南省娄底市)2,5,m 22(3)(7)m m --( ) A. 210m - B. 102m -C. 10D. 4二.填空题1.(2021·安徽省)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等51,它介于整数n 和1n +之间,则n 的值是______. 2. (2021•湖北省黄冈市)式子在实数范围内有意义,则a 的取值范围是 a ≥﹣2 .3. (2021•江苏省连云港) 计算()25-=__________.4. (2021•江苏省南京市) 计算982-的结果是________. 5. (2021•宿迁市)若代数式22x +有意义,则x 的取值范围是____________. 6. (2021•山东省聊城市)计算:121882⎛⎫-⎪⎝⎭=_______. 7. (2021•上海市)已知43x +=,则x =___________.8. (2021•湖北省随州市)2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率π精确到小数点后第七位的人,他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和d c (即有b dx a c<<,其中a ,b ,c ,d 为正整数),则b d a c ++是x 的更为精确的近似值.例如:已知15722507π<<,则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+;由于179 3.140457π≈<,再由17922577π<<,可以再次使用“调日法”得到π的更为精确的近似分数……现已知73252<<,则使用两次“调日法”可得到2的近似分数为______.9. (2021•四川省达州市)已知a ,b 满足等式a 2+6a +9+=0,则a 2021b 2020= .10. (2021•四川省眉山市)观察下列等式:x 1===1+;x 2===1+;x 3===1+;…根据以上规律,计算x 1+x 2+x 3+…+x 2020﹣2021= . 11. (2021•遂宁市)若20a a b -++=,则b a =_____. 12. (2021•天津市)计算(101)(101)+-的结果等于_____. 13. (2021•青海省)观察下列各等式: ①; ②; ③;…根据以上规律,请写出第5个等式: . 14. (2021•山东省威海市)计算624455-⨯的结果是____________________. 15. (2021•贵州省铜仁市)计算()()271832+-=______________;三、解答题1. (2021•湖北省江汉油田)计算:03(32)4(236)812-⨯--+-+2. (2021•海南省)计算:23+|﹣3|÷3﹣×5﹣1;3. (2021•内蒙古通辽市)计算:()﹣1+(π﹣3)0﹣2cos30°+|3﹣|.答案一、选择题1.(2021•甘肃省定西市)下列运算正确的是()A.+=3B.4﹣=4C.×=D.÷=4【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项的计算错误;B、原式=3,所以B选项的计算错误;C、原式==,所以C选项的计算正确;D、原式===2,所以D选项的计算错误.故选:C.2.(2021•湖南省常德市)计算:5151122⎛⎫++-⋅=⎪⎝⎭()A. 0B. 1C.D. 51 2 -【答案】C【解析】【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:5151122⎛⎫++-⋅⎪⎪⎝⎭=5151 22 -+⋅=51 2 -=2.故选:C.3.(2021•湖南省衡阳市)下列计算正确的是()A.=±4B.(﹣2)0=1C.+=D.=3【分析】根据相关概念和公式求解,选出正确答案即可.【解答】解:16的算术平方根为4,即,故A不符合题意;根据公式a0=1(a≠0)可得(﹣2)0=1,故B符合题意;、无法运用加法运算化简,故,故C 不符合题意;,故D 不符合题意;故选:B .4. (2021•株洲市) 计算:142-⨯=( ) A. 22- B. -2C. 2-D. 22【答案】A5. (2021•江苏省苏州市)计算()2的结果是( )A .B .3C .2D .9【分析】按照二次根式的乘法法则求解. 【解答】解:()2=4.故选:B . 6. (2021•河北省)与结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣1【分析】化简===2,再逐个选项判断即可. 【解答】解:===2,∵3﹣2+1=2,故A 符合题意; ∵3+2﹣1=4,故B 不符合题意; ∵3+2+1=6,故C 不符合题意; ∵3﹣2﹣1=0,故D 不符合题意. 故选:A .7. (2021•广东省)若22391240a a ab b -+,则ab =() A 3B .92C .43D .9【答案】B【解析】因为22391240a a ab b -+,且30a 2291240a ab b -+ 所以3=0a ()222912432320a ab b a b a b -+--=所以3a 3332a b ==33932ab ==,考查绝对值、二次根式的非负性。

中考数学专题练习 二次根式及一元二次方程(含解析)-人教版初中九年级全册数学试题

中考数学专题练习 二次根式及一元二次方程(含解析)-人教版初中九年级全册数学试题

《二次根式及一元二次方程》一、选择题1.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤33.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.某某市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)26.下列各式计算正确的是()A.B.(a<1)C.D.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.20169.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=010.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二、填空题13.化简=.14.计算的结果是.15.计算: +=.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值X围是.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.19.请你写出一个有一根为1的一元二次方程:.(答案不唯一)20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=.22.将根号外面的因式移进根号后等于.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC 的面积为1,则k的值为;点E的坐标为.三、解答题24.计算:.25.用配方法解方程:2x2+1=3x.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的X围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值X围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.《二次根式及一元二次方程》参考答案与试题解析一、选择题1.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间【考点】估算无理数的大小.【专题】应用题.【分析】首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断的X围,再估算的X围即可.【解答】解:∵5<<6∴3<<4故选C.【点评】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算的整数部分和小数部分.2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤3【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义,把x=﹣a代入方程,即可求解.【解答】解:∵方程x2+bx+a=0有一个根是﹣a(a≠0),∴(﹣a)2+b(﹣a)+a=0,又∵a≠0,∴等式的两边同除以a,得a﹣b+1=0,故a﹣b=﹣1.故本题选D.【点评】本题考查的重点是方程根的定义,分析问题的方向比较明确,就是由已知入手推导、发现新的结论.4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式;三角形三边关系.【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.能够根据三角形的三边关系,得到关于a,b,c的式子的符号.【解答】解:∵△=(2c)2﹣4(a+b)2=4[c2﹣(a+b)2]=4(a+b+c)(c﹣a﹣b),根据三角形三边关系,得c﹣a﹣b<0,a+b+c>0.∴△<0.∴该方程没有实数根.故选A.【点评】本题是方程与几何的综合题.主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对(2c)2﹣4(a+b)(a+b)进行因式分解.5.某某市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),然后用平均增长率和实际增长率分别求出今年的国内生产总值,由此可得到一个方程,即x%满足的关系式.【解答】解:若设2015年的国内生产总值为y,则根据实际增长率和平均增长率分别得到2010年和今年的国内生产总值分别为:2016年国内生产总值:y(1+x%)或y(1+12%),所以1+x%=1+12%,今年的国内生产总值:y(1+x%)2或y(1+12%)(1+7%),所以(1+x%)2=(1+12%)(1+7%).故选D.【点评】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程.6.下列各式计算正确的是()A.B.(a<1)C.D.【考点】二次根式的混合运算;立方根.【分析】A、根据二次根式的乘法运算法则的逆运算直接计算就可以;B、由条件可以判断出原式为负数再将根号外面的数移到根号里面化简求解就可以了;C、先将被开方数进行乘方运算再合并最后化简就可以了;D、先进行分母有理化,再进行合并同类二次根式就可以了.【解答】解:A、≠,本答案错误;B、(a<1),本答案正确;C、,本答案错误;D、==4≠2,本答案错误.故选B.【点评】本题考查了二次根式的乘、除、加、减混合运算的运用及立方根的运用,在结算时注意运算的顺序和运算的符号是解答的关键.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值X围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值X围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.2016【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.【分析】由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.【解答】解:∵a是方程x2+x﹣2016=0的根,∴a2+a=2016;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=(a2+a)+(a+b)=2016﹣1=2015.故选:C.【点评】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.9.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=0【考点】解一元二次方程﹣因式分解法.【专题】计算题;压轴题.【分析】此题可以采用因式分解法,此题的公因式为(x﹣3),提公因式,降次即可求得.【解答】解:∵(x﹣3)(x+1)=x﹣3∴(x﹣3)(x+1)﹣(x﹣3)=0∴(x﹣3)(x+1﹣1)=0∴x1=0,x2=3.故选D.【点评】此题考查了学生的计算能力,注意把x﹣3当作一个整体,直接提公因式较简单,选择简单正确的解题方法可以达到事半功倍的效果.10.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程﹣因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.【点评】本题考查了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.二、填空题13.化简= 0 .【考点】二次根式有意义的条件.【分析】由1﹣x≥0,x﹣1≥0,得出x﹣1=0,从而得出结果.【解答】解:∵1﹣x≥0,x﹣1≥0,∴x﹣1=0,∴=0.【点评】二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.计算的结果是 4 .【考点】算术平方根.【专题】常规题型.【分析】根据算术平方根的定义解答即可.【解答】解: ==4.故答案为:4.【点评】此题主要考查了算术平方根的定义,本题易错点在于符号的处理.15.计算: += 3.【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.【解答】解:原式=2+=3.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值X围是a<1且a≠0 .【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:根据题意列出不等式组,解之得a<1且a≠0.故答案为:a<1且a≠0.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为7 .【考点】根与系数的关系.【分析】根据根与系数的关系,可求出x1+x2以及x1x2的值,然后根据x12+3x1x2+x22=(x1+x2)2+x1x2进一步代值求解.【解答】解:由题意,得:x1+x2=3,x1x2=﹣2;原式=(x1+x2)2+x1x2=9﹣2=7.故答案为:7.【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为 1 .【考点】一元二次方程的解;完全平方公式.【分析】首先把x=1代入一元二次方程x2+mx+n=0中得到m+n+1=0,然后把m2+2mn+n2利用完全平方公式分解因式即可求出结果.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=(m+n)2=(﹣1)2=1.故答案为:1.【点评】此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.19.请你写出一个有一根为1的一元二次方程:x2=1 .(答案不唯一)【考点】一元二次方程的解.【专题】开放型.【分析】可以用因式分解法写出原始方程,然后化为一般形式即可.【解答】解:根据题意x=1得方程式x2=1.故本题答案不唯一,如x2=1等.【点评】本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如(y﹣1)(y+2)=0,后化为一般形式为y2+y﹣2=0.20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是13 .【考点】根与系数的关系;根的判别式.【分析】首先根据根与系数的关系,得出x1+x2和x1x2的值,然后根据x12+x22的值求出m(需注意m 的值应符合此方程的根的判别式);然后再代值求解.【解答】解:由题意,得:x1+x2=m,x1x2=2m﹣1;则:(x1+x2)2=x12+x22+2x1x2,即m2=7+2(2m﹣1),解得m=﹣1,m=5;当m=5时,△=m2﹣4(2m﹣1)=25﹣4×9<0,不合题意;故m=﹣1,x1+x2=﹣1,x1x2=﹣3;∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=1+12=13.【点评】此题用到的知识点有:根与系数的关系、根的判别式、完全平方公式等知识.本题需注意的是在求出m值后,一定要用根的判别式来判断所求的m是否符合题意,以免造成多解、错解.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k= ﹣3 .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.【解答】解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故答案为:﹣3.【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.22.将根号外面的因式移进根号后等于.【考点】二次根式的性质与化简.【专题】计算题.【分析】先根据二次根式定义得到a<0,然后根据二次根式的性质把﹣a转化为,再利用乘法公式运算即可.【解答】解:∵﹣≥0,∴a<0,∴原式=﹣(﹣a)•=﹣=﹣.故答案为﹣.【点评】本题考查了二次根式的性质与化简:(a≥0)为二次根式; =|a|; =•(a≥0,b≥0)等.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为 1 ;点E的坐标为(+,﹣).【考点】反比例函数系数k的几何意义.【分析】(1)根据正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC 的边长为1,得出B点坐标,即可得出反比例函数的解析式;(2)由于D点在反比例函数图象上,用a和正方形OABC的边长表示出来E点坐标,代入y=(x >0)求得a的值,即可得出D点坐标.【解答】解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:(1,1),设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,则E(1+a,a),代入反比例函数y=(x>0)得:1=(1+a)a,又a>0,解得:a=﹣.∴点E的坐标为:( +,﹣).【点评】本题考查了反比例函数与正方形性质结合的综合应用,考查了数形结合的思想,利用xy=k 得出是解题关键.三、解答题24.计算:.【考点】二次根式的混合运算;负整数指数幂.【分析】本题涉及分数指数幂、负整数指数幂、乘方、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】原式=3+4﹣2﹣2+=5﹣2+2﹣2=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是理解分数指数幂的意义,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.25.用配方法解方程:2x2+1=3x.【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】首先把方程的二次项系数变成1,然后等式的两边同时加上一次项系数的一半,则方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得,配方,,由此可得,∴x1=1,.【点评】配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.本题考查用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即ax2+bx+c=0(a ≠0)的形式,然后再配方求解.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.【考点】根与系数的关系;根的判别式;勾股定理.【专题】计算题.【分析】(1)根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.【解答】解:(1)关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,△=(2k+1)2﹣4(4k﹣3)=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,则b+c=2k+1②,bc=4k﹣3③,因为(b+c)2﹣2bc=b2+c2=31,即(2k+1)2﹣2(4k﹣3)=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2,∵b+c=2k+1>0即k>﹣.bc=4k﹣3>0即k>,∴k2=﹣2(舍去),则b+c=2k+1=7,又因为a=,则△ABC的周长=a+b+c=+7.【点评】本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明(1),再根据勾股定理和根与系数的关系列出方程组进行解答.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的X围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】(1)一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的X围;(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.【解答】解:(1)∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1•x2=m,解方程组,解得,∴m=x1•x2=.【点评】本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值X围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.【考点】根与系数的关系;根的判别式;一次函数的性质.【专题】综合题.【分析】(1)若一元二次方程有两不等根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,可求出m的取值X围;(2)根据根与系数的关系可得出x1+x2的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值X围,即可求出y的最小值及对应的m值.【解答】解:(1)将原方程整理为x2+2(m﹣1)x+m2=0;∵原方程有两个实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,得m≤;(2)∵x1,x2为一元二次方程x2=2(1﹣m)x﹣m2,即x2+2(m﹣1)x+m2=0的两根,∴y=x1+x2=﹣2m+2,且m≤;因而y随m的增大而减小,故当m=时,取得最小值1.【点评】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答(2)题的关键.。

备战中考数学(华师大版)巩固复习第二十一章二次根式(含解析)

备战中考数学(华师大版)巩固复习第二十一章二次根式(含解析)

备战中考数学(华师大版)巩固复习第二十一章二次根式(含解析)一、单选题1.下列根式中,是最简二次根式的是()A.B.C.D.2.下列二次根式中,不能与合并的是()A.B.C.D.3.下列各式中不是二次根式的是()A.B.C.D.4.下列各式中,正确的是()A.=﹣2 B.=9 C.=±3 D.±=±35.下列运算错误的是()A.÷=2B.(+ )×=2 +3C.(4 ﹣3 )÷2 =2﹣D.(+7)(﹣7)=﹣26.9的算术平方根是()A.3B.-3C.±3D.±97.下列式子为最简二次根式的是()A.B.C.D.8.下列根式中属最简二次根式的是()A.B.C.D.9.下列二次根式中属于最简二次根式的是().A.B.C.D.10.下列各式中,是最简二次根式的是()A.8B.C.D.11.有一个数值转换器,原理如下:当输入的X=64时,输出的y等于()A.2B.8C.D.二、填空题12.已知(2a+1)2+=0,则a2+b2021=________13.9的算术平方根是________14.若二次根式有意义,则m的取值范畴是________.15.化简的结果是________16.当x=-1时,二次根式的值是________.17.若二次根式在实数范畴内有意义,则x的取值范畴是_______ _.18.运算:=________19.化简的结果________20.的结果是________.21.最简根式和是同类二次根式,则a=________三、运算题22.运算(1)(2).23.运算:﹣15+(1)﹣15 +(2)÷﹣×+ .四、解答题24.求使有意义的x的取值范畴.25.运算:(1)+|3﹣|﹣()2;(2)•(﹣).五、综合题26.按要求填空:(1)填表:________(2)依照你发觉规律填空:已知:________,________;已知:,________.27.已知和,求下列各式的值:(1)x2﹣y2(2)x2+2xy+y2 .答案解析部分一、单选题1.【答案】D【考点】最简二次根式【解析】【解答】解:A、被开方数含分母,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意,故答案为:D.【分析】最简二次根式满足的条件:1、被开方数的每一个因数(或因式)的指数都小于根指数2;2、被开方数中不含有分母,被开方数是多项式时要先因式分解后再观看。

2015届中考数学专项复习之《二次根式》基础测试(含答案)

2015届中考数学专项复习之《二次根式》基础测试(含答案)

(一)判断题:(每小题1分,共5分).1.2)2(=2.……( ) 2.21x --是二次根式.……………( ) 3.221213-=221213-=13-12=1.( )4.a ,2ab ,ac 1是同类二次根式.……( )5.b a +的有理化因式为b a -.…………( )【答案】1.√;2.×;3.×;4.√;5.×.(二)填空题:(每小题2分,共20分)6.等式2)1(-x =1-x 成立的条件是_____________.【答案】x ≤1.7.当x ____________时,二次根式32-x 有意义.【提示】二次根式a 有意义的条件是什么?a ≥0.【答案】≥23. 8.比较大小:3-2______2-3.【提示】∵ 243=<,∴ 023<-,032>-.【答案】<.9.计算:22)21()213(-等于__________.【提示】(321)2-(21)2=?【答案】23. 10.计算:92131·3114a =______________.【答案】92aa .11.实数a 、b 在数轴上对应点的位置如图所示: a o b 则3a -2)43(b a -=______________.【提示】从数轴上看出a 、b 是什么数?[a <0,b >0.]3a -4b 是正数还是负数?[3a -4b <0.]【答案】6a -4b .12.若8-x +2-y =0,则x =___________,y =_________________.【提示】8-x 和2-y 各表示什么?[x -8和y -2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x -8=0,y -2=0.]【答案】8,2.13.3-25的有理化因式是____________.【提示】(3-25)(3+25)=-11.【答案】3+25.14.当21<x <1时,122+-x x -241x x +-=______________. 【提示】x 2-2x +1=( )2;41-x +x 2=( )2.[x -1;21-x .]当21<x <1时,x -1与21-x 各是正数还是负数?[x -1是负数,21-x 也是负数.]【答案】23-2x .15.若最简二次根式132-+b a 与a b -4是同类二次根式,则a =_____________,b =______________.【提示】二次根式的根指数是多少?[3b -1=2.]a +2与4b -a 有什么关系时,两式是同类二次根式?[a +2=4b -a .] 【答案】1,1.(三)选择题:(每小题3分,共15分)16.下列变形中,正确的是………( )(A )(23)2=2×3=6 (B )2)52(-=-52 (C )169+=169+ (D ))4()9(-⨯-=49⨯【答案】D .【点评】本题考查二次根式的性质.注意(B )不正确是因为2)52(=|-52|=52;(C )不正确是因为没有公式b a +=b a +.17.下列各式中,一定成立的是……( )(A )2)(b a +=a +b (B )22)1(+a =a 2+1(C )12-a =1+a ·1-a (D )b a =b1ab 【答案】B .【点评】本题考查二次根式的性质成立的条件.(A )不正确是因为a +b 不一定非负,(C )要成立必须a ≥1,(D )要成立必须a ≥0,b >0.18.若式子12-x -x 21-+1有意义,则x 的取值范围是………………………( ) (A )x ≥21 (B )x ≤21 (C )x =21(D )以上都不对 【提示】要使式子有意义,必须⎩⎨⎧≥-≥-.021012x x【答案】C .19.当a <0,b <0时,把ba化为最简二次根式,得…………………………………( ) (A )ab b 1 (B )-ab b 1 (C )-ab b-1 (D )ab b 【提示】b a =2b ab =||b ab.【答案】B .【点评】本题考查性质2a =|a |和分母有理化.注意(A )错误的原因是运用性质时没有考虑数.20.当a <0时,化简|2a -2a |的结果是………( )(A )a (B )-a (C )3a (D )-3a【提示】先化简2a ,∵ a <0,∴ 2a =-a .再化简|2a -2a |=|3a |.【答案】D .(四)在实数范围内因式分解:(每小题4分,共8分)21.2x 2-4;【提示】先提取2,再用平方差公式.【答案】2(x +2)(x -2).22.x 4-2x 2-3.【提示】先将x 2看成整体,利用x 2+px +q =(x +a )(x +b )其中a +b =p ,ab =q 分解.再用平方差公式分解x 2-3.【答案】(x 2+1)(x +3)(x-3).(五)计算:(每小题5分,共20分)23.(48-814)-(313-5.02); 【提示】先分别把每一个二次根式化成最简二次根式,再合并同类二次根式.【答案】33.24.(548+12-76)÷3; 【解】原式=(203+23-76)×31=203×31+23×31-76×31=20+2-76×33=22-221. 25.50+122+-421+2(2-1)0;【解】原式=52+2(2-1)-4×22+2×1=52+22-2-22+2=52.26.(b a 3-b a +2a b +ab )÷ab. 【提示】本题先将除法转化为乘法,用分配律乘开后,再化简. 【解】原式=(b a 3-b a +2a b +ab )·b a=b a 3·ba -ba ·ba +2ab ·ba+ab ·ba=a -2)(ba +2+2a =a 2+a -b a+2.【点评】本题如果先将括号内各项化简,利用分配律乘开后还要化简,比较繁琐. (六)求值:(每小题6分,共18分)27.已知a =21,b =41,求b a b --ba b+的值. 【提示】先将二次根式化简,再代入求值. 【解】原式=))(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2.当a =21,b =41时,原式=4121412-⨯=2. 【点评】如果直接把a 、b 的值代入计算,那么运算过程较复杂,且易出现计算错误. 28.已知x =251-,求x 2-x +5的值. 【提示】本题应先将x 化简后,再代入求值. 【解】∵ x =251-=4525-+=25+.∴ x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45.【点评】若能注意到x -2=5,从而(x -2)2=5,我们也可将x 2-x +5化成关于x -2的二次三项式,得如下解法:∵ x 2-x +5=(x -2)2+3(x -2)+2+5=(5)2+35+2+5=7+45.显然运算便捷,但对式的恒等变形要求甚高. 29.已知y x 2-+823-+y x =0,求(x +y )x的值.【提示】y x 2-,823-+y x 都是算术平方根,因此,它们都是非负数,两个非负数的和等于0有什么结论? 【解】∵y x 2-≥0,823-+y x ≥0,而 y x 2-+823-+y x =0,∴ ⎩⎨⎧=-+=-.082302y x y x 解得 ⎩⎨⎧==.12y x ∴ (x +y )x =(2+1)2=9.(七)解答题:30.(7分)已知直角三角形斜边长为(26+3)cm ,一直角边长为(6+23)cm ,求这个直角三角形的面积.【提示】本题求直角三角形的面积只需求什么?[另一条直角边.]如何求?[利用勾股定理.]【解】在直角三角形中,根据勾股定理:另一条直角边长为:22)326()362(+-+=3(cm ). ∴ 直角三角形的面积为:S =21×3×(326+)=23336+(cm 2) 答:这个直角三角形的面积为(23336+)cm 2.31.(7分)已知|1-x |-1682+-x x =2x -5,求x 的取值范围.【提示】由已知得|1-x |-|x -4|=2x -5.此式在何时成立?[1-x ≤0且x -4≤0.]【解】由已知,等式的左边=|1-x |-2)4(-x =|1-x |-|x -4 右边=2x -5.只有|1-x |=x -1,|x -4|=4-x 时,左边=右边.这时⎩⎨⎧≤-≤-.0401x x 解得1≤x ≤4.∴ x 的取值范围是1≤x ≤4.。

初中数学人教版八年级下册第十六章 二次根式16.1 二次根式-章节测试习题(1)

初中数学人教版八年级下册第十六章 二次根式16.1 二次根式-章节测试习题(1)

章节测试题1.【答题】若与互为相反数,则x+y的值=______。

【答案】27【分析】互为相反数的两个数之和等于0.【解答】根据题意得+=0,∵≥0 且≥0∴=0 且=0∴且解得∴x+y=15+12=272.【答题】实数a在数轴上的位置如图,化简+a=______.【答案】1【分析】根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.【解答】解:+a=1﹣a+a=1,3.【答题】函数中自变量的取值范围______.【答案】x≥2【分析】根据被开方数非负来解.【解答】根据被开方数非负,得到关于x的不等式,x-2≥0求解即可.4.【答题】若在实数范围内有意义,则x的取值范围是______.【答案】x≥3【分析】被开方数或被开方式是非负数【解答】由于被开方数或被开方式是非负数得x﹣3≥0,即x≥35.【答题】要使有意义,则x的取值范围是______.【答案】x≥4【分析】根据算术平方根的意义,可知其被开方数为非负数.【解答】根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为:x≥4.方法总结:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.6.【题文】想一想:将等式=3和=7反过来的等式3=和7=还成立吗?式子:9==和4==成立吗?仿照上面的方法,化简下列各式:(1)2(2)11(3)6【答案】成立,、、【分析】当a≥0时,a=,所以对于有理数与二次根式相乘的形式的化简,可以将根号外的非负数通过这样的变形后,再用二次根式的乘法法则化简.【解答】解:等式3=和7=成立,9==和4==成立.(1);(2);(3).方法总结:本题主要考查了二次根式的非负性,二次根式有双重非负性,即二次根式的被开方数是非负数,二次根式的值是非负数,所以每一个非负数都可以根据二次根式的双重非负性写成二次根式的形式.7.【题文】若y=++3,求xy的值。

2013年中考数学模拟试题分类4:二次根式

2013年中考数学模拟试题分类4:二次根式

2013年中考数学模拟试题汇编 二次根式一、选择题1. (2011贵州毕节,1,3分)16的算术平方根是( ) A .4 B .±4 C.2 D .±2 【答案】C2. (2011辽宁大连,3,3 A .2 B .3C .4D .5【答案】B3. (2011天津,4,3分) )A.1到2之间B.2到3之间C.3到4之间D.4到5之间 答案:C4. (2010湖南长沙,3,3分)下列计算正确的是( )A. 3-1=-3 B. a 2·a 3=a 6C.(x +1)2=x 2【答案】D5. (2011贵州遵义,8,3分)若a 、b 均为正整数,且32,7<>b a 则b a +的最小值...是A. 3B. 4C. 5D. 6 【答案】B6. (2011江苏徐州,3,2 )A.在2到3之间B. 在3到4之间C. 在4到5之间D. 在5到6之间 【答案】B7. (2011江苏徐州,5,2分)在实数范围内有意义,则x 的取值范围是( ) A.x ≥1 B.x >1C.x <1D.x ≤1 【答案】A8. (2011云南省昆明市,6,3分)下列各式运算中,正确的是( )A .3a ·2b =6aB .|3-2|=2- 3C .32-8=2D .(2a +b )(2a -b )=2a 2-b 2【答案】B9. (2011•泸州,8, 2分)设实数a ,b 在数轴上对应的位置如图所示,化简的结果是( )A 、﹣2a+bB 、2a+bC 、﹣bD 、b 【答案】D .10.(2011山东淄博,3,3分)下列等式不成立的是( )A .66326=⋅B 4=C .3331=D .228=-【答案】B二、填空题1. (2011福建泉州,8,4分)比较大小:. 【答案】>;2. (2011广东河源,6,4分)4的算术平方根是___________. 【答案】23. (2011河南,7,3分)27的立方根是 。

数学中考试题二次根式200题(含解析)

数学中考试题二次根式200题(含解析)
113.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)
-(cos30°)0115.已知x= +1,求x2-2x-3的值.
116. 先化简,再求值 ,其中a=,b=.
117.计算: .
118.计算: .
119. 计算:
120.计算: .
121. 计算:.
122.计算:(2-)(2+)+(-1)2010 .
25.已知实数x、y、a满足: ,
试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果丌能,请说明理由.
26. 我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:
…①(其中 a、b、c 为三角形的三边长,s
163.计算:-(-3)=;如图所示,化简 =.
164.实数a在数轴上的位置如图所示,则化简|a-2|+ 的结果为.
165.已知a<2,则 =.
166.当x>2时,化简=.
167.计算: +| -2|+(2-π)0
168.计算: .
169.计算:-(-2009)0+( )-1+|-1|.
170.计算:
154.计算:(-1)(+1)-(sin35°- )0+(-1)2008-(-2)-2
155.计算:( +3)(3- )
156.阅读下列材料,然后回答问题.
在迚行二次根式的化简不运算时,我们有时会碰上如 一样的式子, 其实我们还可以将其迚一步化简:
=
=
= (三)
以上这种化简的步骤叫做分母有理化. 还可以用以下方法化简:

2020届中考数学总复习(7)二次根式-精练精析(1)及答案解析

2020届中考数学总复习(7)二次根式-精练精析(1)及答案解析

2020届中考数学总复习数与式——二次根式1一.选择题(共8小题)1.函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠22.要使式子有意义,则m的取值范围是()A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1D.m≥﹣1且m≠13.在式子,,,中,x可以取2和3的是()A.B.C.D.4.代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1B.x≠1 C.x≥1且x≠﹣1 D.x≥﹣15.要使二次根式在实数范围内有意义,则实数x的取值范围是()A.x>2 B.x≥2 C.x>﹣2 D.x≥﹣26.下列说法中,正确的是()A.当x<1时,有意义B.方程x2+x﹣2=0的根是x 1=﹣1,x2=2C.的化简结果是 D.a,b,c均为实数,若a>b,b>c,则a>c7.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①② B.②③ C.①③ D.①②③8.二次根式有意义,则实数x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<2 D.x≤2二.填空题(共7小题)9.若y=﹣2,则(x+y)y= _________ .10.使二次根式有意义的x的取值范围是_________ .11.已知x、y为实数,且y=﹣+4,则x﹣y= _________ .12.若式子有意义,则实数x的取值范围是_________ .13.计算:﹣= _________ .14.实数a在数轴上的位置如图,化简+a= _________ .15.计算:(+1)(﹣1)= _________ .三.解答题(共8小题)16.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.17.(1)计算:×﹣4××(1﹣)0;(2)先化简,再求值:(+)÷,其中a,b满足+|b﹣|=0.18.先化简下式,再求值:(﹣x2+3﹣7x)+(5x﹣7+2x2),其中x=+1.19.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.20.已知+有意义,求的值.21.计算.22.(1)计算:;(2)先化简,再求值:,其中.23.(1)|﹣|﹣+(π+4)0﹣sin30°+;(2)+÷a,其中a=.数与式——二次根式1参考答案与试题解析一.选择题(共8小题)1.函数y=中自变量x的取值范围是()A.x>2 B.x≥2C.x≤2D.x≠2考点:二次根式有意义的条件.分析:二次根式的被开方数大于等于零.解答:解:依题意,得2﹣x≥0,解得x≤2.故选:C.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.要使式子有意义,则m的取值范围是()A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:,解得:m≥﹣1且m≠1.故选:D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.在式子,,,中,x可以取2和3的是()A.B.C.D.考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义:被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断.解答:解:A、的分母不可以为0,即x﹣2≠0,解得:x≠2,故A错误;B、的分母不可以为0,即x﹣3≠0,解得:x≠3,故B错误;C、被开方数大于等于0,即x﹣2≥0,解得:x≥2,则x可以取2和3,故C正确;D、被开方数大于等于0,即x﹣3≥0,解得:x≥3,x不能取2,故D错误.故选:C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1B.x≠1C.x≥1且x≠﹣1 D.x≥﹣1考点:二次根式有意义的条件;分式有意义的条件.分析:此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.解答:解:依题意,得x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1.故选:A.点评:本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.要使二次根式在实数范围内有意义,则实数x的取值范围是()A.x>2 B.x≥2C.x>﹣2 D.x≥﹣2考点:二次根式有意义的条件.分析:直接利用二次根式的概念.形如(a≥0)的式子叫做二次根式,进而得出答案.解答:解:∵二次根式在实数范围内有意义,∴x+2≥0,解得:x≥﹣2,则实数x的取值范围是:x≥﹣2.故选:D.点评:此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.6.下列说法中,正确的是()A.当x<1时,有意义B.方程x2+x﹣2=0的根是x 1=﹣1,x2=2C.的化简结果是 D. a,b,c均为实数,若a>b,b>c,则a>c考点:二次根式有意义的条件;实数大小比较;分母有理化;解一元二次方程-因式分解法.专题:代数综合题.分析:根据二次根式有意义,被开方数大于等于0,因式分解法解一元二次方程,分母有理化以及实数的大小比较对各选项分析判断利用排除法求解.解答:解:A、x<1,则x﹣1<0,无意义,故本选项错误;B、方程x2+x﹣2=0的根是x1=1,x2=﹣2,故本选项错误;C、的化简结果是,故本选项错误;D、a,b,c均为实数,若a>b,b>c,则a>c正确,故本选项正确.故选:D.点评:本题考查了二次根式有意义的条件,实数的大小比较,分母有理化,以及因式分解法解一元二次方程,是基础题,熟记各概念以及解法是解题的关键.7.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③考点:二次根式的乘除法.专题:计算题.分析:由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.解答:解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.点评:本题是考查二次根式的乘除法,解答本题的关键是明确a<0,b<0.8.二次根式有意义,则实数x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<2 D.x≤2考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,﹣2x+4≥0,解得x≤2.故选:D.点评:本题考查的知识点为:二次根式的被开方数是非负数.二.填空题(共7小题)9.若y=﹣2,则(x+y)y= .考点:二次根式有意义的条件.专题:计算题.分析:根据被开方数大于等于0,列式求出x,再求出y,然后代入代数式进行计算即可得解.解答:解:由题意得,x﹣4≥0且4﹣x≥0,解得x≥4且x≤4,∴x=4,y=﹣2,∴x+y)y=(4﹣2)﹣2=.故答案为:.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.使二次根式有意义的x的取值范围是x≥﹣3 .考点:二次根式有意义的条件.专题:计算题.分析:二次根式有意义,被开方数为非负数,列不等式求解.解答:解:根据二次根式的意义,得x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.点评:用到的知识点为:二次根式的被开方数是非负数.11.已知x、y为实数,且y=﹣+4,则x﹣y= ﹣1或﹣7 .考点:二次根式有意义的条件.专题:计算题.分析:根据一对相反数同时为二次根式的被开方数,那么被开方数为0可得x可能的值,进而得到y的值,相减即可.解答:解:由题意得x2﹣9=0,解得x=±3,∴y=4,∴x﹣y=﹣1或﹣7.故答案为﹣1或﹣7.点评:考查二次根式有意义的相关计算;得到x可能的值是解决本题的关键;用到的知识点为:一对相反数同时为二次根式的被开方数,那么被开方数为0.12.若式子有意义,则实数x的取值范围是x≤2且x≠0.考点:二次根式有意义的条件;分式有意义的条件.专题:计算题.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,2﹣x≥0且x≠0,解得x≤2且x≠0.故答案为:x≤2且x≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.计算:﹣= .考点:二次根式的加减法.专题:计算题.分析:先进行二次根式的化简,然后合并同类二次根式求解.解答:解:原式=2﹣=.故答案为:.点评:本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.14.实数a在数轴上的位置如图,化简+a= 1 .考点:二次根式的性质与化简;实数与数轴.分析:根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.解答:解:+a=1﹣a+a=1,故答案为:1.点评:本题考查了实数的性质与化简,=a(a≥0)是解题关键.15.计算:(+1)(﹣1)= 1 .考点:二次根式的乘除法;平方差公式.专题:计算题.分析:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).解答:解:(+1)(﹣1)=.故答案为:1.点评:本题应用了平方差公式,使计算比利用多项式乘法法则要简单.三.解答题(共8小题)16.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.解答:解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.17.(1)计算:×﹣4××(1﹣)0;(2)先化简,再求值:(+)÷,其中a,b满足+|b﹣|=0.考点:二次根式的混合运算;非负数的性质:绝对值;非负数的性质:算术平方根;分式的化简求值;零指数幂.专题:计算题.分析:(1)根据二次根式的乘法法则和零指数幂的意义得到原式=﹣4××1=2﹣,然后合并即可;(2)先把分子和分母因式分解和除法运算化为乘法运算,再计算括号内的运算,然后约分得到原式=,再根据非负数的性质得到a+1=0, b﹣=0,解得a=﹣1,b=,然后把a和b的值代入计算即可.解答:解:(1)原式=﹣4××1=2﹣=;(2)原式=[﹣]•=(﹣]•=•=,∵+|b﹣|=0,∴a+1=0,b﹣=0,解得a=﹣1,b=,当a=﹣1,b=时,原式=﹣=﹣点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、非负数的性质和分式的化简求值.18.先化简下式,再求值:(﹣x2+3﹣7x)+(5x﹣7+2x2),其中x=+1.考点:二次根式的化简求值;整式的加减.分析:根据去括号、合并同类项,可化简代数式,根据代数式求值,可得答案.解答:解;原式=x2﹣2x﹣4=(x﹣1)2﹣5,把x=+1代入原式,=(+1﹣1)2﹣5=﹣3.点评:本题考查了二次根式的化简求值,先去括号、合并同类项,再求值.19.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.考点:二次根式的化简求值;因式分解的应用.专题:计算题.分析:根据x、y的值,先求出x﹣y和xy,再化简原式,代入求值即可.解答:解:∵x=1﹣,y=1+,∴x﹣y=(1﹣)﹣(1+)=﹣2,xy=(1﹣)(1+)=﹣1,∴x2+y2﹣xy﹣2x+2y=(x﹣y)2﹣2(x﹣y)+xy=(﹣2)2﹣2×(﹣2)+(﹣1)=7+4.点评:本题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式.20.已知+有意义,求的值.考点:二次根式有意义的条件.分析:先根据二次根式的基本性质:有意义,则a≥0可求x=a,再代入即可求值.解答:解:∵+有意义,∴x﹣a≥0且a﹣x≥0,∴x=a,∴==2.点评:考查了二次根式有意义的条件,解决此题的关键:掌握二次根式的基本性质:有意义,则a≥0.21.计算.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:根据二次根式的除法法则、零指数幂和负整数指数幂的意义得到原式=+1﹣1+2﹣+4,然后化简后合并即可.解答:解:原式=+1﹣1+2﹣+4=2+1﹣1+2﹣+4=8﹣.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.22.(1)计算:;(2)先化简,再求值:,其中.考点:二次根式的混合运算;分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据零指数幂、负整数指数幂和特殊角的三角函数值得到=2+1﹣2×+﹣1,然后合并即可;(2)先把括号内通分和除法运算化为乘法运算,再把分母分解因式,然后约分得到原式=,再把a的值代入计算即可.解答:解:(1)原式=2+1﹣2×+﹣1=3﹣+﹣1=2;(2)原式=•=,当a=时,原式==﹣2.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了分式的混合运算、零指数幂、负整数指数幂和特殊角的三角函数值.23.(1)|﹣|﹣+(π+4)0﹣sin30°+;(2)+÷a,其中a=.考点:二次根式的混合运算;分式的化简求值;零指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据零指数幂、特殊角的三角函数值和分母有理化得到原式=﹣3+1﹣++1,然后合并即可;(2)先把分子分母因式分解,然后约后合并得到原式=,然后把a的值代入计算即可.解答:解:(1)原式=﹣3+1﹣++1=﹣1;(2)原式=﹣÷a=﹣1=,当a=+1时,原式==.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和特殊角的三角函数值以及分式的化简求值.。

2024年中考数学真题分类汇编(全国通用)(第一期)专题06 二次根式(24题)(解析版)

2024年中考数学真题分类汇编(全国通用)(第一期)专题06 二次根式(24题)(解析版)

专题06二次根式(24题)一、单选题1.(2024·湖南·27)A .7B .72C .14D 14【答案】D【分析】此题主要考查了二次根式的乘法,正确计算是解题关键.直接利用二次根式的乘法运算法则计算得出答案.【详解】解:2714⨯=,故选:D2.(2024·内蒙古包头·2296-所得结果是()A .3B 6C .35D .35±【答案】C【分析】本题考查化简二次根式,根据二次根式的性质,化简即可.【详解】解:229681364535-=-==;故选C .3.(2024·云南·x x 的取值范围是()A .0x >B .0x ≥C .0x <D .0x ≤【答案】B【分析】本题主要考查了二次根式有意义的条件.根据二次根式有意义的条件,即可求解.【详解】解:∵式子x 在实数范围内有意义,∴x 的取值范围是0x ≥.故选:B4.(2024·黑龙江绥化·23m -有意义,则m 的取值范围是()A .23m ≤B .32m ≥-C .32m ≥D .23m ≤-【答案】C【分析】本题考查了二次根式有意义的条件,根据题意可得230m -≥,即可求解.5.(2024·四川乐山·中考真题)已知12x <<2x +-的结果为()A .1-B .1C .23x -D .32x-6.(2024·重庆·中考真题)已知m =m 的范围是()A .23m <<B .34m <<C .45m <<D .56m <<7.(2024·江苏盐城·,设其面积为2cm S ,则S 在哪两个连续整数之间()A .1和2B .2和3C .3和4D .4和5【答案】C【分析】本题主要考查无理数的估算,二次根式的乘法,先计算出矩形的面积S ,再利用放缩法估算无理数大小即可.【详解】解:2510S =⨯=,91016<<,∴91016<<,∴3104<<,即S 在3和4之间,故选:C .8.(2024·安徽·中考真题)下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=D 2a a=【答案】C【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据相应运算法则依次判断即可【详解】解:A 、3a 与5a 不是同类项,不能合并,选项错误,不符合题意;B 、633a a a ÷=,选项错误,不符合题意;C 、()22a a -=,选项正确,符合题意;D 、当0a ≥时,2a a =,当0a <时,2a a =-,选项错误,不符合题意;故选:C9.(2024·重庆·1223的值应在()A .8和9之间B .9和10之间C .10和11之间D .11和12之间【答案】C【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.【详解】解:∵()1223266+=+,而424265<=<,∴1026611<+<,故答案为:C10.(2024·四川德阳·,按以下方式进行排列:则第八行左起第1个数是()A .B .CD .二、填空题11.(2024·江苏连云港·x 的取值范围是.12.(2024·江苏扬州·有意义,则x 的取值范围是.13.(2024·贵州·23的结果是.【答案】6【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式=23⨯=6,故答案为:6.【点睛】本题考查二次根式的乘法运算,掌握二次根式乘法的运算法则a b ab ⋅=(a ≥0,b >0)是解题关键.14.(2024·北京·9x -x 的取值范围是.【答案】9x ≥【分析】根据二次根式有意义的条件,即可求解.【详解】解:根据题意得90x -≥,解得:9x ≥.故答案为:9x ≥【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数为非负数是解题的关键.15.(2024·天津·中考真题)计算()111111-+的结果为.【答案】10【分析】利用平方差公式计算后再加减即可.【详解】解:原式11110=-=.故答案为:10.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.16.(2024·四川德阳·()23-=.【答案】3【分析】根据二次根式的性质“2a a =”进行计算即可得.【详解】解:()2333-=-=,故答案为:3.【点睛】本题考查了化简二次根式,解题的关键是掌握二次根式的性质.17.(2024·黑龙江大兴安岭地·中考真题)在函数32y x =+中,自变量x 的取值范围是.【答案】3x ≥/3x≤【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,30x -≥,且20x +≠,解得,3x ≥,故答案为:3x ≥.18.(2024·山东烟台·x 的取值范围为.【答案】1x >/1x<【分析】本题考查代数式有意义,根据分式的分母不为0,二次根式的被开方数为非负数,进行求解即可.【详解】解:由题意,得:10x ->,解得:1x >;故答案为:1x >.19.(2024·山东威海·=.20.(2024·黑龙江齐齐哈尔·中考真题)在函数2y x =+中,自变量x 的取值范围是.【答案】3x >-且2x ≠-【分析】本题考查了求自变量的取值范围,根据二次根式有意义的条件和分式有意义的条件列出不等式组解答即可求解,掌握二次根式有意义的条件和分式有意义的条件是解题的关键.【详解】解:由题意可得,3020x x +>⎧⎨+≠⎩,解得3x >-且2x ≠-,故答案为:3x >-且2x ≠-.三、解答题21.(2024·内蒙古包头·中考真题)(1)先化简,再求值:()()2121x x +-+,其中22x =(2)解方程:2244x xx x --=.【答案】(1)21x -,7;(2)3x =【分析】本题考查了整式的运算,二次根式的运算,解分式方程等知识,解题的关键是:(1)先利用完全平方公式、去括号法则化简,然后把x 的值代入计算即可;(2)先去分母,去括号,移项,合并同类项,系数化1,检验,解分式方程即可.【详解】解:(1)()()2121x x +-+22122x x x =++--21x =-,当22x =时,原式()22217=-=;(2)2244x x x x --=--去分母,得()224x x x ---=,解得3x =,把3x =代入43410x -=-=-≠,∴3x =是原方程的解.22.(2024·上海·中考真题)计算:1021|13|24(13)23-++--+.【答案】26【分析】本题考查了绝对值,二次根式,零指数幂等,掌握化简法则是解题的关键.先化简绝对值,二次根式,零指数幂,再根据实数的运算法则进行计算.【详解】解:121|13|24(13)23-++--+2331261(23)(23)-=-++-+-3126231=-++--26=.23.(2024·甘肃·318122【答案】0【分析】根据二次根式的混合运算法则计算即可.24.(2024·河南·中考真题)(1(01;(2)化简:231124a a a +⎛⎫+÷ ⎪.。

2013中考数学提高测试《二次根式》

2013中考数学提高测试《二次根式》

《二次根式》提高测试(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×. 2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、ba x2-是同类二次根式.…( )【提示】31b a 3、ba x2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x≠9. 7.化简-81527102÷31225a=_.【答案】-2aa .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a .9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3. 10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小.13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D . 【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-xx -4)1(2-+xx 等于………………………( )(A )x2 (B )-x2 (C )-2x (D )2x 【提示】(x -x 1)2+4=(x +x1)2,(x +x1)2-4=(x -x1)2.又∵ 0<x <1,∴ x +x1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a -(C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2.(五)计算题:(每小题6分,共24分)23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式. 【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2mn -mab mn +mn nm )÷a 2b 2mn ;【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2mn -m ab mn +m n n m )·221ba nm=21b nm mn ⋅-mab1nm mn ⋅+22bma n nmn m ⋅ =21b -ab1+221ba =2221ba ab a +-.26.(a +ba ab b +-)÷(bab a ++aab b --abb a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=ba b a ++÷))((2222b a b a ab ba b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232yx y x y x xyx ++-的值.【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xyx ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652.【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax xa x x+-++222222ax x x ax x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x22a x +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x ax x -++-+221ax +=)()()2(22222222222x ax a x xx ax x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x xx a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x ax x -++-+221ax +=)11(2222ax x a x +--+-)11(22xxa x --++221ax +=x1.七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy yx ++2-xy yx +-2的值.【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xy yx +-2=2)(xy yx +-2)(xy yx -=|xy yx +|-|xy yx -|∵ x =41,y =21,∴ y x <x y .∴ 原式=xy yx +-yx xy +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

人教版中考第二次模拟测试《数学试题》含答案解析

人教版中考第二次模拟测试《数学试题》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、填空题(每小题3分,共24分)1.如果|a |+a =0,则22(1)a a -+=______.2.已知x 2-x -1=0,则代数式-x 3+2x 2+2002的值为______.3.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.4.升国旗时,某同学站在离旗杆底部18米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为45°,若该同学双眼离地面1.6米,则旗杆高度为_______米.5.如图,某涵洞截面是抛物线型,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO =2.4m ,在图中直角坐标系内涵洞截面所在抛物线的表达式是______________.6.已知一个圆的弦切角等于40°,那么这个弦切角所夹的弧所对的圆心角的度数是______.7.如图,在Rt △ABC 中,腰AC =BC =1,按下列方法折叠Rt △ABC ,点B 不动,使BC 落在AB 上,点A 不动,使AB 落在AC 的延长线上;点C 不动,使CA 落在CB 上,设点A 、B 、C 对应的落点分别为A ′、B ′、C ′,则△A ′B ′C ′的面积是______.8.如图,⊙O 1的半径是⊙O 2的直径,⊙O 1的半径O 1C 交⊙O 2于B ,若AB 的度数是48°,那么AC 的度数是______.二、选择题(每小题3分,共18分)9.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )A. 3B. 4C. 5D. 610.在一次汽车性能测试中,型号不同甲、乙两辆汽车同时从A 地出发,匀速向距离560千米的B 地行驶,结果甲车7小时到达,乙车8小时到达,则两车行驶时离A 地的距离s (千米)与行驶时间t (小时)的函数关系对应的图象大致是( )A B.C. D.11.两圆的圆心坐标分别为(3,0)、(0,4),直径分别为4和6,则这两圆的位置关系是( )A. 外离B. 相交C. 外切D. 内切12.在Rt ABC 中,C Rt ∠=∠,若30A ∠=,则cos sin A B +等于( ) A. 312 B. 1 3 D. 21213.在直角坐标系中,O 为坐标原点,A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( )A. 4个B. 3个C. 2个D. 1个14.当今材料科学已发展到纳米时代,1纳米等于1米的十亿分之一,我国科学家已研制成功直径为0.4纳米的碳米管,如果用科学记数法表示这种碳米管的直径,应为()A. 4×10-9米B. 0.4×10-8米C. 4×10-10米D. 0.4×10-9米三、解答题(15~19每小题8分,共40分)15.解方程21023x xx x-+=-.16.某校初二年级四个班的同学外出植树一天,已知每小时5个女生种3棵树,3个男生种5棵树,各班人数如图所示,则植树最多的是初二几班.17.声音在空气中传播的速度y(米/秒)是气温x (摄氏度)的一次函数,下表列出了一组不同气温时的音速.气温x/摄氏度0 5 10 15 20音速y/(米/秒) 331 334 337 340 343(1)求y 与x之间的函数关系式(2)气温x=22(摄氏度)时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地相距多远?18.某广场有一块长50米、宽30米的空地,现要将它改造为花园,请你设计一个修建方案,使满足下列条件:(1)正中间留出一条宽2米的道路(如图);(2)道路两旁修建花坛,且花坛总面积占整个面积(不包括道路)的一半;(3)设计好的整个图形既是轴对称图形,又是中心对称图形.(计算结果精确到0.1米).19.已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)如图 (1)所示,当P 在线段AB 上时,求证:P A ·PB =PE ·PF ;(2)如图 (2)所示,当P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.四、解答题(每题9分,共18分)20.先仔细阅读下列材料,然后回答问题:如果a >0,b >0,那么(a -b )2≥0,即a +b -2ab ≥0 得2a b +≥ab ,其中,当a =b 时取等号,我们把2a b +称为a 、b 算术平均数, ab 称为a 、b 的几何平均数. 如果a >0,b >0,c >0,同样可以得到3a b c ++≥3abc ,其中,当a =b =c 时取等号于是就有定理:几个正数的算术平均数不小于它们的几何平均数.请用上述定理解答问题:把边长为30 cm 的正方形纸片的4角各剪去一个小正方形,折成无盖纸盒(如图)(1)设剪去的小正方形边长为x cm ,无盖纸盒的容积为V ,求V 与x 的函数关系式及x 的取值范围.(2)当x 为何值时,容积V 有最大值,最大值是多少?21.以△ABC 的边AC 为直径的半圆交AB 边于D 点,∠A 、∠B 、∠C 所对边长为a 、b 、c ,且二次函数y =12(a +c )x 2-bx +12(c -a )顶点在x 轴上,a 是方程z 2+z -20=0的根. (1)证明:∠ACB =90°;(2)若设b =2x ,弓形面积S 弓形AED =S 1,阴影面积为S 2,求(S 2-S 1)与x 的函数关系式;(3)在(2)条件下,当BD为何值时,(S2-S1)最大?答案与解析一、填空题(每小题3分,共24分)1.如果|a |+a =0______.【答案】-2a +1【解析】【分析】由0a a +=得到0,a ≤ 根据0a ≤ 【详解】解:0,a a +=,a a ∴=-0,a ∴≤10,a ∴-<1112.a a a a a =-+=--=-故答案为:12.a -a =是解题的关键.2.已知x 2-x -1=0,则代数式-x 3+2x 2+2002值为______.【答案】2003【解析】【分析】由210x x --=得到221,1,x x x x -==+把原多项式降次处理,进而可得答案.【详解】解:210,x x --=221,1,x x x x ∴-==+32222002(1)22002x x x x x ∴-++=-+++22002120022003.x x =-+=+=故答案为:2003.【点睛】本题考查的是代数式的值,把待求值的代数式进行降次处理是解题的关键.3.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.【答案】1 (答案不唯一,满足02m <<均可)【解析】【分析】一次函数()2y m x m =-+的图象经过第一、二、四象限,列出不等式组200,m m -<⎧⎨>⎩求解即可. 【详解】解:一次函数()2y m x m =-+的图象经过第一、二、四象限,200m m -<⎧⎨>⎩解得:02m <<m 值可以是1.故答案为:1(答案不唯一,满足02m <<均可).【点睛】此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.4.升国旗时,某同学站在离旗杆底部18米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为45°,若该同学双眼离地面1.6米,则旗杆高度为_______米.【答案】19.6【解析】【分析】由题意可知,在直角三角形中,已知角和邻边,要求出对边,直接用正切即可解答.【详解】解:根据题意可得:旗杆高度为1.6+18×tan45°=1.6+18=19.6(m ).故答案为:19.6.【点睛】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.5.如图,某涵洞的截面是抛物线型,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO =2.4m ,在图中直角坐标系内涵洞截面所在抛物线的表达式是______________.【答案】y =-154x 2 【解析】 【详解】解:设涵洞所在抛物线的解析式为y=ax 2,由题意可知点B 坐标为(0.8,-2.4),代入得-2.4=a×0.82 解得a=-154, 所以y=-154x 2 故答案为:y =-154x 2 【点睛】本题考查二次函数的应用.6.已知一个圆的弦切角等于40°,那么这个弦切角所夹的弧所对的圆心角的度数是______.【答案】80°【解析】【分析】根据题意画出图形,利用切线的性质与等腰三角形的性质可得答案.【详解】解:如图,AB 为O 的切线,切点为,40,DAB ∠=︒,OA AB ∴⊥90,OAB ∴∠=︒50,OAD ∴∠=︒,OA OD =50,OAD ODA ∴∠=∠=︒80.AOD ∴∠=︒故答案为:80°.【点睛】本题考查了切线的性质定理,等腰三角形的性质,掌握以上知识点是解题的关键.7.如图,在Rt △ABC 中,腰AC =BC =1,按下列方法折叠Rt △ABC ,点B 不动,使BC 落在AB 上,点A 不动,使AB 落在AC 的延长线上;点C 不动,使CA 落在CB 上,设点A 、B 、C 对应的落点分别为A ′、B ′、C ′,则△A ′B ′C ′的面积是______.【答案】12【解析】分析】 过'C 作''C H AB ⊥,利用轴对称的性质求解''',,,BC AB AC 利用勾股定理求解',C H 由''''''A B C ABB AB C S S S ∆∆∆=-可得答案.【详解】解:如图:过'C 作''C H AB ⊥,结合题意知:'AC H ∆是等腰直角三角形,由对折知:'1,BC BC ==Rt△ABC 中,腰AC =BC =1, 2,AB ∴='21,AC ∴=-'22(21)1,22C H ∴=-=- ''12212(1),2222AC B S ∆∴=⨯-=- 由对折知:'2,AB AB =='1221,22ABB S ∆∴=⨯⨯= ''''''2211(),2222A B C ABB AB C S S S ∆∆∆∴=-=--= 故答案为:12.【点睛】本题考查的是轴对称的性质,勾股定理,图形面积的计算,掌握轴对称的性质是解题的关键. 8.如图,⊙O 1的半径是⊙O 2的直径,⊙O 1的半径O 1C 交⊙O 2于B ,若AB 的度数是48°,那么AC 的度数是______.【答案】24°【解析】【分析】连接2BO ,得到等腰21O O B ∆,结合已知条件求解21O O B ∠,从而可得答案.【详解】解:如图,连接2,BOAB 的度数是48°, 248,AO B ∴∠=︒212,O O O B =212124,O O B O BO ∴∠=∠=︒AC ∴的度数是24︒,故答案是:24.︒【点睛】本题考查的是等腰三角形的性质,弧的度数等于它所对的圆心角的度数,掌握以上知识点是解题的关键.二、选择题(每小题3分,共18分)9.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )A. 3B. 4C. 5D. 6【答案】D【解析】【分析】本题主要考查了多边形内角与外角.n 边形的内角和可以表示成(n-2)•180°,外角和为360°,根据题意列方程求解.【详解】解:设多边形的边数为n ,依题意,得(n-2)•180°=2×360°,解得n=6,故选D【点睛】错因分析较易题.失分原因:没有掌握多边形的内角和与外角和公式.逆袭突破多边形的性质,详见逆袭必备P24必备23.10.在一次汽车性能测试中,型号不同的甲、乙两辆汽车同时从A地出发,匀速向距离560千米的B地行驶,结果甲车7小时到达,乙车8小时到达,则两车行驶时离A地的距离s(千米)与行驶时间t(小时)的函数关系对应的图象大致是()A. B.C. D.【答案】C【解析】【分析】由甲乙列车同时出发,符合条件的有,C D,又因为甲车7小时到达,乙车8小时到达,所以甲车所花的时间少于乙车所花的时间,从而可得答案.【详解】解:因为甲乙列车同时出发,所以两个图像都经过原点,符合条件的有,C D,又因为甲车7小时到达,乙车8小时到达,所以甲车所花的时间少于乙车所花的时间,而图表示乙车还没有到达地,不符合题意,所以正确答案为C.故选C.【点睛】本题考查的是实际问题中的一次函数图像问题,掌握自变量的范围对函数图像的影响,以及路程与时间图像中,速度的大小对图像的影响,掌握以上知识是解题的关键.11.两圆的圆心坐标分别为(3,0)、(0,4),直径分别为4和6,则这两圆的位置关系是()A. 外离B. 相交C. 外切D. 内切【答案】C【解析】【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),外离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差).【详解】解:∵两圆直径分别为4和6,∴两圆的半径分别为2和3.∵两圆的圆心坐标分别为(3,0)、(0,4),∴根据勾股定理,得两圆的圆心距离为5.∵2+3=5,即两圆圆心距离等于两圆半径之和, ∴这两圆的位置关系是是外切.故选C .【点睛】本题考查勾股定理,两圆的位置关系.12.在Rt ABC 中,C Rt ∠=∠,若30A ∠=,则cos sin A B +等于( )B. 1 【答案】C【解析】解:∠B =90°﹣∠A =90°﹣30°=60°,则cos A +sin B =22+.故选C . 13.在直角坐标系中,O 为坐标原点,A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】有三种情况:当OA=OP 时,以O 为圆心,以OA 为半径画弧交x 轴于两点;当OA=AP 时,以A 为圆心,以OA 为半径画弧交x 轴于一点;当OP=AP 时,根据线段垂直平分线的性质作OA 的垂直平分线,交x 轴于点P ,综上即可得答案.【详解】如图,当OA=OP 时,以O 为圆心,以OA 为半径画弧交x 轴于两点(P 2、P 3),当OA=AP 时,以A 为圆心,以OA 为半径画弧交x 轴于一点(P 1),当OP=AP 时,作OA 的垂直平分线,交x 轴于一点(P 4).∴符合使△AOP 为等腰三角形的点P 有4个,故选A.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.14.当今材料科学已发展到纳米时代,1纳米等于1米的十亿分之一,我国科学家已研制成功直径为0.4纳米的碳米管,如果用科学记数法表示这种碳米管的直径,应为( )A. 4×10-9米B. 0.4×10-8米C. 4×10-10米D. 0.4×10-9米【答案】C【解析】【分析】 科学记数法的形式是:10n a ⨯ ,其中110,a ≤<为整数,所以4,a =,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数,本题小数点往右移动到4的后面,所以10.n =-【详解】解:0.4纳米910810.40.4104101010--=⨯=⨯=⨯⨯ 米. 故选C .【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响. 三、解答题(15~19每小题8分,共40分)15.解方程21023x x x x -+=-. 【答案】x 1=-1,x 2=3.【解析】【分析】去分母把方程化为整式方程,得到整式方程的解,检验可得答案.【详解】解:21023x x x x -+=- 223(2)310(2),x x x x ∴-+=-2230,x x ∴--=(3)(1)0,x x ∴-+=121, 3.x x ∴=-=经检验:121,3x x =-=都是原方程的根,所以原方程的根是121,3x x =-=.【点睛】本题考查的是分式方程的解法,掌握把分式方程化为整式方程再求解,并检验是解题关键. 16.某校初二年级四个班的同学外出植树一天,已知每小时5个女生种3棵树,3个男生种5棵树,各班人数如图所示,则植树最多的是初二几班.【答案】三班.【解析】【分析】由条形统计图得到各班的男女学生人数,由每班男、女生种树的速度相同,所以每班人数减去相同的女生数和男生数,计算剩下的男生与女生种的数的数量即可得到答案.【详解】解:由图可知一班 二班 三班 四班 女生数(人)22 18 13 15 男生数(人)18 20 22 21因为每班男、女生种树的速度相同,所以每班人数减去相同的女生数和男生数,比较结果不变,每个班减去13个女生和18个男生,一班余下女生9人,可植树35×9=525(棵).二班余下女生5人和男生2人,可植树35×5+53×2=613(棵).三班余下男生4人,可植树53×4=623(棵).四班余下女生2人和男生3人,可植树35×2+53×3=615(棵).所以种树最多的班级是三班. 【点睛】本题考查的是条形统计图的应用,掌握条形统计图的特点是解题的关键.17.声音在空气中传播的速度y (米/秒)是气温x (摄氏度)的一次函数,下表列出了一组不同气温时的音速.(1)求y 与 x 之间的函数关系式(2)气温x=22(摄氏度)时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地相距多远?【答案】(1)33315y x =+(2)1721 【解析】【分析】(1)由表中的数据可知,温度每升高5℃,声速就提高3米/秒,所以y 是x 的一次函数,利用待定系数法即可求出该函数解析式;(2)令x=22,求出此时的声速y ,然后利用路程=速度×时间即可求出该距离.【详解】(1)根据表中数据可知y 与x 成一次函数关系,故设y=kx+b ,取两点(0,331),(5,334)代入关系式得 3313345b k b =⎧⎨=+⎩,解得35331k b ⎧=⎪⎨⎪=⎩, ∴函数关系式为y=35x+331; (2)把x=22代入y=35x+331, 得y=35×22+331=344.2, 334.2×5=1721m ,∵光速非常快,传播时间可以忽略,故此人与燃放烟花的所在地相距约1721m .【点睛】本题考查了一次函数的应用,解题的关键是仔细分析表中的数据,利用待定系数法求出函数解析式.18.某广场有一块长50米、宽30米的空地,现要将它改造为花园,请你设计一个修建方案,使满足下列条件:(1)正中间留出一条宽2米的道路(如图);(2)道路两旁修建花坛,且花坛总面积占整个面积(不包括道路)的一半;(3)设计好的整个图形既是轴对称图形,又是中心对称图形.(计算结果精确到0.1米).【答案】x 的值约取3.9米.【解析】【分析】如图,设计成下图所示,设设花坛的边与空地之间的距离为米,由题意列出方程求解即可.【详解】解:设计成如下图方案.设花坛的边与空地之间的距离为米,由题意可列方程: (502)30(5024)(302),2x x -⨯---=227900,x x ∴-+= 解得: 123.93,2.1x x ≈≈(舍去),x 的值约取3.9米.花坛四周与空地的距离,中间与道路的距离都约为3.9米.【点睛】本题考查轴对称图形与中心对称图形,考查了一元二次方程的解法,掌握以上知识是解题的关键. 19.已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)如图 (1)所示,当P 在线段AB 上时,求证:P A ·PB =PE ·PF ;(2)如图 (2)所示,当P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.【答案】(1)证明见解析;(2)对谁成立,证明见解析【解析】【分析】(1)利用圆周角、弦切角间的关系证明△APF ∽△BPE ,根据相似三角形的性质证明 PA •PB=PE •PF 成立.(2)当点P 在线段BA 的延长线上时,(1)的结论仍成立.先证明∠AFP=∠PBE ,再由∠BPE=∠FPA ,可得△PAF ∽△PEB ,根据成比例线段证明 PA •PB=PE •PF 成立.【详解】证明:(1) 如图1,连接,BO 延长BO 与圆交于,H∵EB 为⊙O 的切线,90,ABE HBA ∴∠+∠=︒ BH 为⊙O 的直径,90,BAH ∴∠=︒90,AHB ABH ∴∠+∠=︒,AHB ACB ∠=∠90,ACB ABH ∴∠+∠=︒∴∠ACB=∠ABE ,∵EF ∥BC ,∴∠AFP=∠ACB ,故∠AFP=∠ABE .∠APF=∠EPB ,∴△APF ∽△BPE , ,PA PF PE PB∴= ∴PA•PB=PE•PF .(2)结论成立,理由如下:∵EB 为⊙O 的切线,结合(1)问:∴∠ACB=∠ABT ,∵EF ∥BC ,∴∠ACB =∠AFP ,,ACB ABT AFP ∴∠=∠=∠∴∠AFP=∠PBE .∠BPE=∠FPA ,△PAF ∽△PEB ,,PA PF PE PB ∴= ∴PA•PB=PE•PF .当点P 在线段BA 的延长线上时,(1)的结论仍成立.【点睛】本题主要考查圆的相交弦及切线的性质,用三角形全等证明线段间的关系,体现了数形结合的数学思想,属于中档题.四、解答题(每题9分,共18分)20.先仔细阅读下列材料,然后回答问题:如果a >0,b >0,那么(a -b )2≥0,即a +b -2ab ≥0 得2a b +≥ab ,其中,当a =b 时取等号,我们把2a b +称为a 、b 的算术平均数, ab 称为a 、b 的几何平均数. 如果a >0,b >0,c >0,同样可以得到3a b c ++≥3abc ,其中,当a =b =c 时取等号于是就有定理:几个正数的算术平均数不小于它们的几何平均数.请用上述定理解答问题:把边长为30 cm 的正方形纸片的4角各剪去一个小正方形,折成无盖纸盒(如图)(1)设剪去的小正方形边长为x cm ,无盖纸盒的容积为V ,求V 与x 的函数关系式及x 的取值范围.(2)当x 为何值时,容积V 有最大值,最大值多少?【答案】(1)V =4x (15-x )2(0<x <15);(2)当剪去的小正方形边长为5 cm 时,无盖空盒的容积最大为2×103 cm 3 【解析】【分析】(1)由剪去的小正方形边长为x cm ,表示纸盒的底边与高,利用容积公式得到答案,(2)利用3a b c ++3abc 【详解】解:(1) 设剪去的小正方形边长为x cm ,纸盒底边为(302),x cm -纸盒的高是,xcmV =x (30-2x )(30-2x )=4x (15-x )2(0<x <15),(2) V =332(15)(15)22(15)(15)2210,3x x x x x x +-+-⎡⎤••--≤=⨯⎢⎥⎣⎦这时,当2x =15-x ,即x =5时取等号.∴ 当剪去的小正方形边长为5 cm 时,无盖空盒的容积最大为2×103 cm 3 【点睛】本题考查的是阅读题型,掌握题干给的信息解决实际问题,同时考查了列函数关系式,求函数的最大值等问题,知识迁移能力是解题关键.21.以△ABC 的边AC 为直径的半圆交AB 边于D 点,∠A 、∠B 、∠C 所对边长为a 、b 、c ,且二次函数y =12(a +c )x 2-bx +12(c -a )顶点在x 轴上,a 是方程z 2+z -20=0的根. (1)证明:∠ACB =90°;(2)若设b =2x ,弓形面积S 弓形AED =S 1,阴影面积为S 2,求(S 2-S 1)与x 的函数关系式;(3)在(2)的条件下,当BD 为何值时,(S 2-S 1)最大?【答案】(1)证明见解析;(2)S 2-S 1=-2πx 2+4x ;(3)BD 244ππ+. 【解析】【分析】(1)由抛物线的顶点在轴上,得到0,∆= 从而可得结论.(2)利用a 是z 2+z -20=0的根,求解的值,再利用S 2-S 1=S △ABC -(S 半圆-S 1)-S 1=S △ABC -S 半圆,从而可得答案,(3)由(2)的函数关系式求解(21S S -)最大时,,a b c ,利用直径所对的圆周角是直角,得到,BCD BAC ∆∆利用相似三角形的性质可得答案. 【详解】(1)因为二次函数y =12(a +c )x 2-bx +12(c -a )的顶点在x 轴上, ∴ Δ=0,即:b 2-4×12(a +c )×12(c -a )=0, ∴ c 2=a 2+b 2,得∠ACB =90°.(2)∵ z 2+z -20=0.∴ z 1=-5,z 2=4,∵ a >0,得a =4.设b =AC =2x ,有S △ABC =12AC ·BC =4x ,S 半圆=12π x 2∴ S 2-S 1=S △ABC -(S 半圆-S 1)-S 1=S △ABC -S 半圆=-2πx 2+4x (3) S 2-S 1=-2π(x -4π)2+8π, ∴ 当x =4π时,(S 2-S 1)有最大值8π. 这时,b =8π,a =4,c =244ππ+, 如图,连接,CDAC 为圆的直径,90,90,ADC CDB ∴∠=︒∠=︒90,ACB ∠=︒,BCD BAC ∴∆∆,BC BD BA BC∴= BD =22244BC a BA c ππ+==. 当BD 为22444ππ++时,(S 2-S 1)最大. 【点睛】本题考查二次函数与轴只有一个交点的性质,考查一元二次方程的解法,二次函数的最值,三角形相似的判定与性质,直径所对的圆周角是直角等知识点,掌握相关的知识点是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式
一、选择题
1.下列运算结果正确的是()
A.B.a2•a3=a6C.a2•a3=a5D.a2+a3=a6
2.计算的结果是()
A.﹣3 B.3 C.﹣9 D.9
3.下列运算正确的是()
A. =+B.()2=3 C.3a﹣a=3 D.(a2)3=a5
4.下列等式成立的是()
A.a2•a5=a10B.C.(﹣a3)6=a18D.
5.下列哪一个选项中的等式不成立?()
A. =34B. =(﹣5)3
C. =32×55D. =(﹣3)2×(﹣5)4
6.化简的结果是()
A.4 B.2 C.3 D.2
7.当1<a<2时,代数式+|1﹣a|的值是()
A.﹣1 B.1 C.2a﹣3 D.3﹣2a
8.k、m、n为三整数,若=k, =15, =6,则下列有关于k、m、n的大小关系,何者正确?()
A.k<m=n B.m=n<k C.m<n<k D.m<k<n
二、填空题
9.若在实数范围内有意义,则x的取值范围是.
10.化简: = .
11.若二次根式有意义,则x的取值范围是.
12.若式子有意义,则x的取值范围是.
13.若=3﹣x,则x的取值范围是.
14.计算: = .
15.计算: = .
16.要使在实数范围内有意义,x应满足的条件是.
17.使式子有意义的x取值范围是.
18.使代数式有意义的x的取值范围是.
19.若在实数范围内有意义,则x的取值范围是.
20.要使式子有意义,则x的取值范围是.
21.使根式有意义的x的取值范围是.
22.实数a在数轴上的位置如图,化简+a= .
23.无论x取任何实数,代数式都有意义,则m的取值范围为.
参考答案
一、选择题
1.C;2.B;3.B;4.C;5. B;6.B;7.B;8.D;
二、填空题
9.x≤;10.2;11.x≥2;12.x≥-1且x≠0;13.x≤3;14.3;15.4;16.x≥2;17.x
≥-1;18.x≥且x≠3;19.x≥3;20.x≤2;21.x≤3;22.1;23.m≥9;。

相关文档
最新文档